
POWER ADDITIVITY AND ORTHOGONALITY∗

ROBERT E. HARTWIG† AND PETER ŠEMRL‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 1–13

Abstract. The relation between rank additivity and orthogonality is analyzed. The central
role played by Cochran’s theorem is illustrated and the properties of orthogonal and power-additive
families are investigated.

Key words. power additivity, rank additivity, orthogonality, Cochran’s theorem

AMS subject classifications. 15A21, 15A24

PII. S089547989731498X

1. Introduction. Suppose we are given a family {Ai}i=si=1 of complex n × n
matrices and define A = A1 + · · ·+As. We say that the family is power additive if

Ak = Ak1 + · · ·+Aks for all k = 1, 2, . . . ,(1)

and that the family is orthogonal if

AiAj = 0 for i 6= j.(2)

It is clear that the orthogonality implies power additivity, but the converse need not
be true. Indeed, the latter may be seen from the example where

A1 =

[
1 0
0 0

]
, A2 =

[
0 1
0 0

]
, A3 =

[
0 −1
0 0

]
.(3)

A family {Ai}i=si=1 is rank additive relative to A = A1 + · · ·+As if

rankA =

s∑
i=1

rankAi.

It is easy to find examples showing that rank additivity does not imply orthogonality
and that orthogonality does not imply rank additivity. Extensions of the algebraic
version of Cochran’s statistical theorem (see [1, 4, 5]) play a crucial role in linking
these two concepts. One part of this theorem states that if a family {Ai}i=si=1 is rank
additive and A is an idempotent, then this is an orthogonal family. Motivated by
this statement, we say that a matrix A has property (C) if every rank additive family
{Ai}i=si=1, whose sum is A, is orthogonal.

How far can one generalize Cochran’s theorem? To answer this we have to char-
acterize the set of all matrices having property (C). We will show that a matrix A has
property (C) if and only if it is a scalar multiple of an idempotent or a square-zero
matrix.

∗Received by the editors January 5, 1997; accepted for publication (in revised form) by G. P.
Styan June 8, 1997; published electronically September 15, 1998.

http://www.siam.org/journals/simax/20-1/31498.html
†Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695-8205

(hartwig@math.ncsu.edu).
‡Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

(peter.semrl.uni lj.si). The work of this author was supported by a grant from the Ministry of Science
and Technology of Slovenia.

1

2 ROBERT HARTWIG AND PETER ŠEMRL

The second part of the algebraic version of Cochran’s theorem states that an
orthogonal family of idempotents is rank additive. Once again it seems natural to ask
how far we can extend this part of Cochran’s theorem. In other words, when does
orthogonality imply rank additivity? To answer this question we have to examine
the structure of orthogonal families of matrices. This is the main objective of this
paper. When trying to obtain structural results for orthogonal families of matrices,
we noticed that some of our proofs also work for power-additive families of matrices.
The investigation of power-additive families of matrices might be of some independent
interest because the concept of power additivity surfaces also in modular arithmetic.

Throughout this note, all matrices will be complex n× n matrices, and we shall
denote the range space, the null space, the characteristic polynomial, the minimal
polynomial, and the adjoint of A by R(A), N(A), ∆A, ψA, and A∗, respectively. The
algebraic multiplicity of λ as an eigenvalue of A is denoted by nA(λ). It is defined to
be zero if λ is not an eigenvalue of A. We shall use AD and A− to, respectively, denote
the Drazin inverse and an inner inverse (see [2, 3]). The core and nilpotent parts of A
are defined and denoted by CA = A2AD and NA = A(I−AAD), respectively. It is well
known that these matrices are orthogonal polynomials in A and that An = CnA is a
group matrix; that is, a matrix which has a group inverse. From these observations, it
is clear that AB = 0 if and only if CAB = 0 and NAB = 0 which is further equivalent
to CACB = CANB = NACB = NANB = 0. Hence, if {Ai}i=si=1 is orthogonal, then so
are {CAi}i=si=1 and {NAi}i=si=1.

2. Orthogonality. We start by characterizing property (C).
Theorem 2.1. A complex n× n matrix A has property (C) if and only if it is a

scalar multiple of an idempotent or a square-zero matrix.
Proof. If A is a scalar multiple of an idempotent, then it has property (C) by

Cochran’s theorem. Assume now that A is a square-zero matrix and that {Ai}i=si=1

is a rank additive family with A = A1 + · · · + As. It follows [5, Lemma 6] that
R(A) = R(A1) ⊕ · · · ⊕ R(As). If x ∈ R(Ai), 1 ≤ i ≤ s, then x ∈ R(A), and
hence Ax = 0 = A1x + · · · + Asx. As R(A) is a direct sum of the R(Ai)’s, we have
A1x = · · · = Asx = 0. Hence, {Ai}i=si=1 is an orthogonal family of square-zero matrices.

Assume now that A is neither a scalar multiple of an idempotent nor square-zero.
We will show that there exist A1 and A2 = A−A1 which are rank additive to A but
are not orthogonal. The first case we will consider is that A has at least two nonzero
eigenvalues. Rank additivity and orthogonality are invariant under similarity. So,
applying the Jordan canonical form we can assume, with no loss of generality, that A
is of the form

A =

 λI +N1 0 0
0 µI +N2 0
0 0 A3

 ,
where N1 and N2 are nilpotents and 0 6= λ 6= µ 6= 0. Some bordering zeroes and A3

may be absent. Obviously,

A1 =

 λI +N1 X 0
0 0 0
0 0 A3

 and A2 =

 0 −X 0
0 µI +N2 0
0 0 0

is a rank additive splitting of A which is not orthogonal if X 6= 0. If A has exactly
one nonzero eigenvalue but is not a scalar multiple of an idempotent, then it is similar

POWER ADDITIVITY AND ORTHOGONALITY 3

to either

k∑
i=1

λEii + E12 +
n−1∑
i=2

εiEi,i+1

or

k∑
i=1

λEii + Ek+1,k+2 +
n−1∑
i=k+2

εiEi,i+1.

Here, λ is a nonzero complex number, Eij denotes the matrix having 1 in the (i, j)th
position as the only nonzero entry, all the εi’s are either 0 or 1, and 2 ≤ k ≤ n in
the first case, while 1 ≤ k ≤ n − 2 in the second case. In the first case, we define
A1 = λE11 +E12 and A2 = A−A1 to obtain a nonorthogonal rank additive splitting
of A. In the second case, we define A1 by

∑k
i=1 λEii + Ek+1,k and A2 = A − A1 to

show that A does not have property (C). It remains to consider the case where A is

a nilpotent of index at least 3. Then A is similar to E12 + E23 +
∑n−1
i=3 εiEi,i+1 with

εi ∈ {0, 1}. Matrices E12 and A − E12 are rank additive to A, but not orthogonal,
completing the characterization of (C).

Let {Ai}i=si=1 be a family of complex n×n matrices, and define A = A1 + · · ·+As
and Bi = A − Ai, i = 1, . . . , s. We will call a family {Ai}k=s

i=1 left complementary
orthogonal if AiBi = 0 for all i = 1, . . . , s. It is clear that every orthogonal family
is left complementary orthogonal. To show that the converse is not true, one can
consider matrices

A1 =

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A3 =

0 0 0 0
0 0 0 −1
0 0 1 0
0 0 0 0

 .
The next result is a structural theorem for a left complementary orthogonal family of
matrices.

Theorem 2.2. Let {Ai}i=si=1 be a left complementary orthogonal family of complex
n× n matrices. Then there exists an invertible matrix P such that

A1 = P

U1 0 0 . . . 0 0
0 0 0 . . . 0 G12

0 0 0 . . . 0 G13

...
...

...
. . .

...
...

0 0 0 . . . 0 G1s

0 0 0 . . . 0 N1

P−1,

A2 = P

0 0 0 . . . 0 G21

0 U2 0 . . . 0 0
0 0 0 . . . 0 G23

...
...

...
. . .

...
...

0 0 0 . . . 0 G2s

0 0 0 . . . 0 N2

P−1,

...

4 ROBERT HARTWIG AND PETER ŠEMRL

As = P

0 0 0 . . . 0 Gs1
0 0 0 . . . 0 Gs2
0 0 0 . . . 0 Gs3
...

...
...

. . .
...

...
0 0 0 . . . Us 0
0 0 0 . . . 0 Ns

P−1,

A =

s∑
i=1

Ai = P

U1 0 0 . . . 0 0
0 U2 0 . . . 0 0
0 0 U3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Us 0
0 0 0 . . . 0 N

P−1,

where U1, . . . , Us are invertible matrices and {Ni}i=si=1 is a left complementary ortho-
gonal family of nilpotents.

Proof. Let us define idempotents Ei = ADi Ai, i = 1, . . . , s, and E = ADA.
Applying induction, we get

AkiA = Ak+1
i = AiA

k(4)

for all positive integers k and all i = 1, . . . , s. We can write ADi as ADi = pi(Ai),
where pi is a polynomial satisfying pi(0) = 0. Consequently, ADi (A − Ai) = 0, or
equivalently, ADi A = Ei. The core-nilpotent decomposition yields the existence of an
invertible matrix Pi such that

Ai = Pi

[
Ci 0
0 Ni

]
P−1
i , i = 1, . . . , s,

with Ci being invertible and Ni being nilpotent. Hence,

ADi = Pi

[
C−1
i 0
0 0

]
P−1
i and Ei = Pi

[
I 0
0 0

]
P−1
i , i = 1, . . . , s.

From Ei = ADi A and (4) it follows that EiE = Ei. These two relations imply that

A = Pi

[
Ci 0
Si Ti

]
P−1
i and E = Pi

[
I 0
Qi Ri

]
P−1
i ,

for some matrices Si, Ti, Qi, Ri, which further yields that

AD = Pi

[
C−1
i 0
Wi Zi

]
P−1
i

for some matrices Wi and Zi. It is now easy to conclude that

ADi = Ani (AD)n+1(5)

for all i = 1, . . . , s. Postmultiplying A2
i = AiA by (AD)2, we get A2

i (A
D)2 = AiA

D.
So, we can rewrite (5) as ADi = Ai(A

D)2. Summing this relation over i and postmul-
tiplying by A, we get

s∑
i=1

Ei = E,

POWER ADDITIVITY AND ORTHOGONALITY 5

which by an extension of Cochran’s theorem [1] forces EiEj = 0, or equivalently,
CAiCAj = 0 for i 6= j.

We can assume now, without loss of generality, that

CA1
=

[
U1 0
0 0

]
,

where U1 is invertible. It then follows that

CAi =

[
0 0
0 Di

]
for all i > 1. Once again we can assume, without loss of generality, that

D2 =

[
U2 0
0 0

]
with U2 being invertible. Repeating this procedure we arrive at

CAi = diag(0, . . . , 0, Ui, 0, . . . , 0)

with Ui invertible, i = 1, . . . , s. From CnAiA = Ani A = An+1
i = Cn+1

Ai
, we get

A =

U1 0 . . . 0 0
0 U2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Us 0
M1 M2 . . . Ms N

 .

Now, CA = EAE = (
∑s
i=1Ei)A(

∑s
i=1Ei), and hence,

CA = diag(U1, . . . , Us, 0).

As NACA = 0 we have M1 = · · · = Ms = 0.
Let us now write A as

A =

 U1 0 0
0 D 0
0 0 N

 ,
where D = diag(U2, . . . , Us). From A1 = CA1

+NA1
and CA1

NA1
= NA1

CA1
= 0, we

get

A1 =

 U1 0 0
0 X Y
0 Z W

for some matrices X,Y, Z, and W . Here, block matrices A and A1 are partitioned
conformally. Let us next define matrices Xk, Yk, Zk,Wk, k = 1, 2, . . . , by

Ak1 =

 Uk1 0 0
0 Xk Yk
0 Zk Wk

 .

6 ROBERT HARTWIG AND PETER ŠEMRL

It follows from Ak+1
1 = Ak1A that[

Xk+1 Yk+1

Zk+1 Wk+1

]
=

[
Xk Yk
Zk Wk

] [
D 0
0 N

]
(6)

for every positive integer k. Clearly, Xn = 0 and Zn = 0. This yields, together with
(6), that Xn−1 = 0 and Zn−1 = 0. Repeating this procedure, we finally conclude that
X = 0 and Z = 0. Hence, the matrix A1 has the desired form. In the same way, we
consider matrices A2, . . . , As. This completes the proof.

Corollary 2.3. Let {Ai}i=si=1 be a left complementary orthogonal family of com-
plex n×n matrices, and let A = A1 + · · ·+As. Then CA = CA1

+ · · ·+CAs , and the
family {CAi}i=si=1 is orthogonal.

Similar to a left complementary orthogonal family of matrices, one can define
a right complementary orthogonal family of matrices. We will say that a family of
matrices is complementary orthogonal if it is left and right complementary orthogonal.
It is well known (and it is easy to prove) that if U is an invertible k×k matrix and M
is a nilpotent l × l matrix, then the only solution of the matrix equation UX = XM
is X = 0. Applying this fact, together with Theorem 2.2, one can prove the following
statement.

Corollary 2.4. The family {Ai}i=si=1 is complementary orthogonal if and only if
there exists an invertible matrix P such that

Ai = P diag(Gi, Ni)P
−1,

where Gi = diag(0, . . . , 0, Ui, 0, . . . , 0) with Ui invertible, and {Ni}i=si=1 is a family of
complementary orthogonal nilpotent matrices.

Corollary 2.5. The family {Ai}i=si=1 is orthogonal if and only if there exists an
invertible matrix P such that

Ai = P diag(Gi, Ni)P
−1,(7)

where Gi = diag(0, . . . , 0, Ui, 0, . . . , 0) with Ui invertible, and {Ni}i=si=1 is a family of
orthogonal nilpotent matrices.

A short direct proof of Corollary 2.5 can be obtained using the procedure that
gives the block diagonal form of matrices {CAi}i=si=1 in the proof of Theorem 2.2.
Corollary 2.5 underlines the fact that if {Ai}i=si=1 is orthogonal, then so are {CAi}i=si=1

and {NAi}i=si=1. From (7) it is clear that the general “orthogonality problem” reduces
to the nilpotent case. Finally, it should be mentioned that the results from [5] dealing
with algebraic and geometric multiplicities of eigenvalues of an orthogonal family of
matrices follow trivially.

3. Power additivity. Our first result in this section states that the concepts of
power additivity and orthogonality are equivalent in the case of group matrices.

Theorem 3.1. For the family of group matrices {Ai}i=si=1, the following are equiv-
alent:

(i) {Ai}i=si=1 is power additive,
(ii) {Ai}i=si=1 is left complementary orthogonal,
(iii) {Ai}i=si=1 is complementary orthogonal,
(iv) {Ai}i=si=1 is orthogonal,
(v) Ai = P diag(0, . . . , 0, Ui, 0, . . . , 0)P−1, for some invertible P , with Ui being

invertible, in which case A has a group inverse.

POWER ADDITIVITY AND ORTHOGONALITY 7

Proof. In [4, Lemma 1] it was proved that (ii) implies (i) and that (i) implies (iv).
Clearly, (iv) yields (iii) and (iii) yields (ii). Applying Corollary 2.5, one can easily
prove that statements (iv) and (v) are equivalent. This completes the proof.

In the next result we will show how the characteristic and the minimal polynomial
of A are related to characteristic and minimal polynomials of Ai, i = 1, . . . , s, in the
case that the family {Ai}i=si=1 is power additive.

Theorem 3.2. Suppose that the family {Ai}i=si=1 is power additive. Then
(a) ψA divides the least common multiple of {ψAi : i = 1, . . . , s},
(b) λ(s−1)n∆A(λ) =

∏s
i=1 ∆Ai .

Proof. If h = LCM(ψAi), then we can assume, with no loss of generality, that
h(0) = 0. Otherwise, all matrices Ai would be invertible, which would imply by
Theorem 3.1 that s = 1, in which case statement (a) is trivial. Power additivity
yields

f(A) =

s∑
i=1

f(Ai)

for all polynomials f(λ) with f(0) = 0. In particular, if f = h, then each term in
the sum vanishes, and consequently, h(λ) annihilates A. Applying the fact that ψA
divides any polynomial that annihilates A we complete the proof of (a). In [4, Proof
of Lemma 1] it was shown that the algebraic multiplicities of nonzero eigenvalues of
a family of power additive matrices are related by

nA(λ) =
s∑
i=1

nAi(λ), λ 6= 0.

From this (b) follows.
Theorem 3.3. The family {Ai}i=si=1 is power additive if and only if CA =∑s

i=1 CAi , NA =
∑s
i=1NAi , and {CAi}i=si=1 and {NAi}i=si=1 are power additive.

Even before proving this theorem, we will give an example showing that the power
additivity of families {CAi}i=si=1 and {NAi}i=si=1 does not imply the power additivity of
{Ai}i=si=1. If

A1 =

 1 0 0
0 0 1
0 0 0

 and A2 =

 0 0 1
0 1 0
0 0 0

 ,
then the families {CA1

, CA2
}, {NA1

, NA2
} are power additive (in fact, even more is

true; namely, both families are orthogonal), but (A1 + A2)2 6= A2
1 + A2

2. Thus, the
assumptions of the core-nilpotent additivity CA =

∑s
i=1 CAi and NA =

∑s
i=1NAi

are essential in the above result.
Proof of Theorem 3.3. The sufficiency is clear as CBNB = NBCB = 0 for any B.

So let us suppose that {Ai}i=si=1 is power additive and set CAi = Ci and NAi = Ni.
Then in particular,

(CnA)k = (An)k =
s∑
i=1

(Ani)k =
s∑
i=1

(Cni)k

for all positive integers k. Each matrix Cni is a group matrix, and so, by Theorem 3.1
they must be orthogonal, which further implies that

CiCj = 0(8)

8 ROBERT HARTWIG AND PETER ŠEMRL

for i 6= j.
Next, we will show that X = CA −

∑s
i=1 Ci vanishes. To do this, we form

CnAX = CnA(CA −
∑s
i=1 Ci) = Cn+1

A − (
∑s
i=1 C

n
i)(
∑s
i=1 Ci) which by (8) collapses to

Cn+1
A −∑s

i=1 C
n+1
i = 0. Hence, R(X) ⊂ N(CA). On the other hand, since rank is

additive for the family {Ani }i=si=1, we may deduce that R(CA) = R(An) = ⊕si=1R(Ani) =
⊕si=1R(Ci). Consequently, R(X) ⊂ R(CA)+R(

∑s
i=1 Ci) ⊂ R(CA), which means that

R(X) ⊂ R(CA) ∩ N(CA) = {0}, and thus X = 0. Lastly, we may split the power
additivity of the family {Ai}i=si=1 as CkA + Nk

A =
∑s
i=1(Cki + Nk

i), k ≥ 1, from which
we may conclude that NA =

∑s
i=1Ni and that the family {Ni}i=si=1 is power additive,

as desired.
Corollary 3.4. Let A1, A2, and A = A1 +A2 be n×n complex matrices. Then

Ak = Ak1 +Ak2 for every positive integer k if and only if there exist an invertible n×n
matrix P , invertible matrices E and F , and nilpotent matrices N , N1, and N2 with
Nk = Nk

1 +Nk
2 , k = 1, 2, . . . , such that

A = P

 E 0 0
0 F 0
0 0 N

P−1, A1 = P

 E 0 0
0 0 0
0 0 N1

P−1,

and A2 = P

 0 0 0
0 F 0
0 0 N2

P−1,

where the block matrices are partitioned conformally.
Proof. Applying Theorems 3.1 and 3.3, we can assume, with no loss of generality,

that the core parts of A, A1, and A2 have the following matrix representations

CA =

 E 0 0
0 F 0
0 0 0

 , CA1 =

 E 0 0
0 0 0
0 0 0

 , and CA2 =

 0 0 0
0 F 0
0 0 0

 ,
where E and F are invertible matrices. Applying the fact that the core and nilpo-
tent parts of any matrix are orthogonal matrices, we come to the following matrix
representations

A =

 E 0 0
0 F 0
0 0 N

 , A1 =

 E 0 0
0 U V
0 W N1

 , and A2 =

 X 0 Y
0 F 0
Z 0 N2

 ,
but we have A = A1 +A2, and consequently, U , V , W , X, Y , and Z are zero matrices.
This completes the proof.

Example (3) shows that an analogue of the above statement does not hold for
s > 2; that is, the power additivity does not guarantee that we may isolate the
nilpotent parts from the core parts when s > 2.

4. The nilpotent case. Understanding the structure of orthogonal families of
nilpotent matrices is, by Corollary 2.5, enough to understand the structure of an ar-
bitrary orthogonal family of matrices. Similarly, Corollary 3.4 shows that the general
“power additivity” problem in the case s = 2 reduces to the nilpotent case. In this
section we will give some partial structural results on the families of orthogonal (power
additive) nilpotent matrices. We will also give an example to stress that the general
structural problem for power additive families of nilpotents might be very difficult.

POWER ADDITIVITY AND ORTHOGONALITY 9

Theorem 4.1. Let A1 and A2 be n× n complex matrices. Then A1 and A2 are
orthogonal if and only if there exist an invertible n × n matrix P and matrices Aij,
i = 1, 2, j = 1, . . . , 4, such that

A1 = P

0 A11 0 A12

0 A13 0 A14

0 0 0 0
0 0 0 0

P−1 and A2 = P

0 0 A21 A22

0 0 0 0
0 0 A23 A24

0 0 0 0

P−1,(9)

where the block matrices are partitioned conformally.
Proof. We identify matrices A1 and A2 with endomorphisms acting on a finite-

dimensional Hilbert space H. Assume that A1 and A2 are orthogonal. Let us denote
the subspace R(A1)∩R(A2) by H0. We choose subspaces Hi ⊂ H, i = 1, 2 such that
R(Ai) = H0 ⊕Hi. Finally, let us choose a subspace H3 in H such that

H = H0 ⊕H1 ⊕H2 ⊕H3.(10)

The restriction of Ai to the subspace R(Aj) = H0 ⊕Hj , i 6= j is a zero operator. It
is now easy to see that A1 and A2 have the matrix representation (9) with respect to
the direct sum decomposition (10). The converse statement is trivial.

This result with its proof is an approach to the orthogonality problem that is
completely different from the approach presented in the second section of this note.
The disadvantage of this approach is that it cannot be generalized to the case s > 2.
However, in case s = 2, the results from section 2 did not give any information
about orthogonal nilpotent matrices. This special case is now solved by the matrix
representation (9). Namely, matrices A1 and A2 given by (9) are nilpotents if and
only if A13 and A23 are nilpotents.

It is easy to see that a family of orthogonal nilpotent matrices can be simultane-
ously triangulated. As the following result shows, even more is true. Once again we
identify matrices with linear operators acting on a finite-dimensional Hilbert space.

Theorem 4.2. Let {Ai}i=si=1 be a family of orthogonal nilpotents. Then there
exists a direct sum decomposition

H = H1 ⊕ · · · ⊕Hs(11)

such that R(Ai) ⊂ H1⊕ · · · ⊕Hi, i = 1, . . . , s, H1⊕ · · · ⊕Hi−1 ⊂ N(Ai), i = 2, . . . , s,
and the restriction of Ai to Hi is injective for all i = 2, . . . , s. So, with respect to the
direct sum decomposition (11), we have the following matrix representation:

A1 =

A1

11 A1
12 A1

13 . . . A1
1s

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , A2 =

0 A2

12 A2
13 . . . A2

1s

0 A2
22 A2

23 . . . A2
2s

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , . . . ,

As =

0 0 0 . . . As1s
0 0 0 . . . As2s
0 0 0 . . . As3s
...

...
...

. . .
...

0 0 0 . . . Asss

 .(12)

10 ROBERT HARTWIG AND PETER ŠEMRL

Proof. We will prove this statement by induction. In case s = 2, we decompose
H as H = N(A2) ⊕ R(A∗2). From A2A1 = 0, it follows that R(A1) ⊂ N(A2). This
proves the assertion in the case s = 2. Assume now that the statement holds true
for a positive integer s > 2, and consider an orthogonal family {Ai}i=s+1

i=1 of nilpotent
matrices. According to our induction hypothesis, H can be decomposed as

H = H2 ⊕ · · · ⊕Hs+1

such that R(Ai) ⊂ H2 ⊕ · · · ⊕ Hi, i = 2, . . . , s + 1, H2 ⊕ · · · ⊕ Hi−1 ⊂ N(Ai),
i = 3, . . . , s + 1, and the restriction of Ai to Hi is injective for all i = 3, . . . , s + 1.
Let us denote the restriction of A2 to H2 by B. Then H2 can be decomposed as
H2 = N(B) ⊕ R(B∗). The restrictions of operators A2, A3, . . . , As+1 to subspaces
R(B∗), H3, . . . , Hs+1, respectively, are injective. Thus, the orthogonality of the family
{Ai}i=s+1

i=1 implies that R(A1) ⊂ N(B). This completes the proof.
In fact, we have proved that a family {Ai}i=si=1 of nilpotent matrices has a matrix

block representation (12) if and only if AiAj = 0 whenever i > j. It seems natural to
try and use this result together with Weyr or Jordan canonical form for the inductive
study of the structure of the family of orthogonal nilpotent matrices. This approach
thus far has not been successful. However, if we combine orthogonality with rank
additivity we can satisfactorily answer the question.

Theorem 4.3. Let {Ni}i=si=1 be a family of n × n complex matrices. Then the
following are equivalent:

(i) {Ni}i=si=1 is an orthogonal rank additive family of nilpotent matrices.
(ii) There exists an invertible matrix P such that

N1 = P

M1 0 0 . . . 0 B1

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0

P−1,

N2 = P

0 0 0 . . . 0 0
0 M2 0 . . . 0 B2

0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0

P−1,

...

Ns = P

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Ms Bs
0 0 0 . . . 0 0

P−1,(13)

POWER ADDITIVITY AND ORTHOGONALITY 11

with Mi being nilpotent matrices, [Mi, Bi] being full rank matrices satisfying rankMi+
rankBi = rank[Mi, Bi] for every i ∈ {1, . . . , s}, and

rankB = rank

B1

B2

...
Bs

 = rankB1 + rankB2 + · · ·+ rankBs.

(iii) Matrix (13) holds with Mi being nilpotents, [Mi, Bi] being full rank matrices,
and

rank

B1

B2

...
Bs

 = rankB1 + rankB2 + · · ·+ rankBs.

Proof. Assume first that {Ni}i=si=1 is an orthogonal rank additive family of nilpotent
matrices. Denote N = N1 + · · ·+Ns. We have already mentioned that rank additivity
is equivalent to range additivity R(N) = R(N1) ⊕ · · · ⊕ R(Ns). It follows that there
exists an invertible matrix Q such that

N1 = Q

M1 N12 N13 . . . N1s B1

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0

Q−1,

N2 = Q

0 0 0 . . . 0 0
N21 M2 N23 . . . N2s B2

0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0

Q−1,

...

Ns = Q

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
Ns1 Ns2 Ns3 . . . Ms Bs

0 0 0 . . . 0 0

Q−1,

with [M1, N12, . . . , N1s, B1], . . . , [Ns1, Ns2, . . . ,Ms, Bs] being full rank matrices. Ap-
plying orthogonality, together with the fact that the ith row of Ni is a full rank matrix,

12 ROBERT HARTWIG AND PETER ŠEMRL

1 ≤ i ≤ s, we get that Nij = 0 for all i 6= j, 1 ≤ i, j ≤ s. Multiplying the Ni’s by

Q

I 0 0 . . . 0 X1

0 I 0 . . . 0 X2

0 0 I . . . 0 X3

...
...

...
. . .

...
...

0 0 0 . . . I Xs

0 0 0 . . . 0 I

Q−1

from the left, and by its inverse

Q

I 0 0 . . . 0 −X1

0 I 0 . . . 0 −X2

0 0 I . . . 0 −X3

...
...

...
. . .

...
...

0 0 0 . . . I −Xs

0 0 0 . . . 0 I

Q−1

from the right, we can assume after choosing appropriate blocks X1, . . . , Xs, say
Xi = M−i Bi, that rank[Mi, Bi] = rankMi+rankBi for every i ∈ {1, . . . , s}. Applying
R(N) = R(N1)⊕ · · · ⊕R(Ns), one can now easily prove that

rank

B1

B2

...
Bs

 = rankB1 + rankB2 + · · ·+ rankBs.

This completes the proof that (i) implies (ii). Obviously, (ii) yields (iii). Finally,
if (iii) is satisfied, then it follows at once that {Ni}i=si=1 is an orthogonal family of
nilpotent matrices. We next observe that the ranges of Ni, i = 1, . . . , s form a direct
sum. Clearly, R(N) ⊂ ⊕si=1R(Ni). For the converse inclusion, it suffices to show that
R(N1) ⊂ R(N), but

R(N1) ⊂ R
([

M1

0

])
+R

([
B1

0

])
.

Obviously,

R

([
M1

0

])
⊂ R(N),

but because of rank additivity, we have

R

([
B1

0

])
⊂ R(B),

which trivially is contained in R(N). This completes the proof.
As far as power additivity for a nilpotent family {Ai}i=si=1 is concerned, very little

can be said in general. All we know is that A =
∑s
i=1Ai is nilpotent and that

index(A) ≤ maxi=1,...,s index(Ai). To see that the “power-additivity” problem for a
family of nilpotents is difficult, one can consider matrices[

0 1
0 0

]
,

[
1 1
−1 −1

]
, and

[
1
2 +

√
3

2 i 1
1
2 −

√
3

2 i − 1
2 −

√
3

2 i

]
,

POWER ADDITIVITY AND ORTHOGONALITY 13

which are power-additive but are not simultaneously triangularizable. The same ex-
ample shows that the power additivity of the complete set does not imply the power
additivity of a subset.

In the case s = 2, we can say a little more. Indeed, A1A2 = −A2A1, and hence
p(A1)A2 = A2p(−A1) for every polynomial p. Moreover, A1A

k
2 = −A2A

k
1 for all

k = 1, 2, . . ., and so,

A1p(A2) = −A2p(A1)(14)

for every polynomial p with p(0) = 0. Applying Weyr form it is easy to see that A1

and A2 may be simultaneously triangulated. The general solution to BX = −XB is
obtained by finding a particular invertible solution to BX = −XB and the general
solution to BY = Y B. If A1 is a single Jordan block A1 = J , then we know that
D = diag(1,−1, 1,−1, . . . ,) is a particular solution to JX = −XJ , while at the
same time JX = XJ has a general solution of the form T = p(J), where p(λ) =
a0 + a1λ + · · ·+ amλ

m is any polynomial in λ; that is, T is Toeplitz. It follows that
the general solution to JY = −Y J has the form Y = DT . Needless to say, for this to
be nilpotent we need that a0 = 0. Power additivity now reduces to

[J +Dp(J)]k = Jk + [Dp(J)]k.

These equations can be further simplified using Dp(J) = p(−J)D which yields
[Dp(J)]2m = p(J)mp(−J)m and [Dp(J)]2m+1 = D[p(J)]m+1[p(−J)]m. Now, by (14)
we have Jf(Dp(J)) = −Dp(J)f(J) for all polynomials f(λ) with f(0) = 0. For
n = 2, 3, power additivity holds automatically for all A2 of the form Dp(J), while for
n = 4 this is the case precisely when a1 = 0 or a1 = 1. For n > 4, the necessary and
sufficient condition is that a1 = a2 = · · · = an−3 = 0.

When we have more than a single Jordan block, say, A1 = diag(J1, . . . , Jm), then
again D = diag(D1, . . . , Dm) solves A1D = −DA1. As such, to find the general
solution we have to multiply D by the commutator {X : A1X = XA1} which is
well known. The easiest way to describe the commutator is via the Weyr form which
has the advantage that the solutions are block upper triangular. The disadvantage
of this approach is that there is no particular invertible solution of the equation
A1X = −XA1 which is as simple as the matrix D. Using these methods and the
inductive approach, one can solve the “power-additivity” problem for two nilpotents
in the cases when n is small. This approach thus far has not lead to the general
solution.

REFERENCES

[1] T. W. Anderson and G. P. H. Styan, Cochran’s theorem, rank additivity and tripotent
matrices, in Essays in Honor of C. R. Rao, G. Kallianpur, P. R. Krishnaiah, and J. K.
Ghosh, eds., North–Holland, Amsterdam, 1982, pp. 1–23.

[2] A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, John
Wiley, New York, 1974.

[3] R. E. Hartwig, More on the Souriau-Frame algorithm, SIAM J. Appl. Math., 31 (1976),
pp. 42–46.

[4] P. Šemrl, On a matrix version of Cochran’s statistical theorem, Linear Algebra Appl., 237/238
(1996), pp. 477–487.

[5] G. P. H. Styan and A. Takemura, Rank additivity and matrix polynomials, in Studies in
Econometrics, Time Series and Multivariate Statistics, S. Karlin, T. Amemiya, and L. A.
Goodman, eds., Academic Press, New York, 1983, pp. 545–558.

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR
PROBLEMS∗

J. B. ROSEN† , HAESUN PARK‡ , AND JOHN GLICK§

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 14–30

Abstract. An extension of the recently developed structured total least norm (STLN) problem
formulation is described for solving a class of nonlinear parameter estimation problems. STLN is
a problem formulation for obtaining an approximate solution to the overdetermined linear system
Ax ≈ b preserving the given affine structure in A or [A | b], where errors can occur in both the vector
b and the matrix A. The approximate solution can be obtained to minimize the error in the Lp
norm, where p = 1, 2, or ∞. In the extension of STLN to nonlinear problems, the elements of A may
be differentiable nonlinear functions of a parameter vector, whose value needs to be approximated.
We call this extension structured nonlinear total least norm (SNTLN). The SNTLN problem is
formulated and its solution by a modified STLN algorithm is described. Optimality conditions and
convergence for the 2-norm case are presented.

Computational tests were carried out on an overdetermined system with Vandermonde structure
and on two nonlinear parameter estimation problems. In these problems, both the coefficients and
the unknown parameters were to be determined. The computational results demonstrate that the
SNTLN algorithm recovers good approximations to the correct values of both the coefficients and
parameters, in the presence of noise in the data and poor initial estimates of the parameters. It
is also shown that the SNTLN algorithm with the 1-norm minimization is robust with respect to
outliers in the data.

Key words. overdetermined linear systems, data fitting, least squares, linear prediction, param-
eter estimation, frequency estimation, outliers, total least norm, total least squares, Vandermonde
matrix, 1-norm, 2-norm

AMS subject classifications. 65F20, 65F30, 65M10, 65Y20

PII. S0895479896301662

1. Introduction. A new algorithm called structured total least norm (STLN)
has recently been developed [24] for obtaining an approximate solution to the overde-
termined linear system

Ax ≈ b,

where errors may occur in both the vector b and in elements of the affinely structured
(m×n) matrix A, where m > n. The STLN algorithm preserves the structure of A or
[A | b] and minimizes, in a suitable norm, the residual and the change in the elements
of A. This minimization can be done using the Lp norm, where p = 1, 2, or ∞.

∗Received by the editors April 8, 1996; accepted for publication (in revised form) by S. Van
Huffel June 20, 1997; published electronically September 15, 1998. The work of the first and third
authors was supported in part by Air Force Office of Scientific Research grant AFOSR-91-0147 and
the Minnesota Supercomputer Institute. The work of the first author was supported in part by
ARPA/NIST grant 60NANB4D1615 and National Science Foundation grant CCR-9509085. The
work of the second author was supported in part by National Science Foundation grants CCR-
9209726 and CCR-9509085.

http://www.siam.org/journals/simax/20-1/30166.html
†Computer Science Department, University of Minnesota, Minneapolis, MN 55455, and Depart-

ment of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
(rosen@cs.umn.edu, jbrosen@cs.ucsd.edu).
‡Computer Science Department, University of Minnesota, Minneapolis, MN 55455 (hpark@

cs.umn.edu).
§Department of Mathematics and Computer Science, University of San Diego, San Diego, CA

92110 (glick@pwa.acusd.edu).

14

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 15

The STLN algorithm addresses the same class of problems as total least squares
[30], but has the advantage that it preserves the structure of A or [A | b] when they
are perturbed in the solution. The theory, implementation, and some applications of
the STLN algorithm are presented in several recent papers [24, 25, 21, 28, 20, 7].

In this paper, we show that the STLN algorithm can be extended to solve a re-
lated, but more difficult, structured approximation problem, in which the elements
of A may be nonlinear differentiable functions of a parameter vector α. We call this
extension structured nonlinear total least norm (SNTLN). The SNTLN algorithm will
be described, and the optimality conditions and convergence properties of the algo-
rithm are also given for the L2 norm. Its relationship to the Gauss–Newton method
is shown. The details of the SNTLN algorithm for the Vandermonde structured prob-
lems are shown. Some computational tests of the algorithm, using the L1 and L2

norms are summarized. These tests were carried out on overdetermined systems for
which an exact solution with zero residual is known. That is, an exact parameter αc,
the right-hand side vector bc, and the exact solution xc are known so that

A(αc)xc = bc.

In typical applications, there is error in the vector b, and the parameter vector αc is not
known but is to be estimated. In the SNTLN algorithm, an initial estimate α̂ is needed
to start the iterative solution. In some applications, an initial value α̂ is either given
or can be estimated. In this case, the SNTLN algorithm is like the STLN algorithm in
the sense that it solves the given overdetermined system preserving the given problem
structure. The difference is that the SNTLN preserves nonlinear structures. In fact,
when the SNTLN algorithm is applied to affinely structured problems, it becomes the
STLN algorithm.

The computational results show that for both L1 and L2, the algorithm converged
from a range of initial values α̂, to αc for b = bc, and to a value close to αc for ‖b−bc‖
small. Furthermore, the robust behavior with respect to outliers in the vector b was
demonstrated by the SNTLN algorithm using the L1 norm. Such robust behavior
has previously been observed by Barrodale and others [23, 4, 5, 17] for the simpler
problem of finding an x such that the residual norm ‖b−Ax‖1 is minimized. The use
of the L1 norm for some nonlinear problems has also been investigated in [27, 31].

Before describing SNTLN we briefly summarize the earlier STLN formulation and
algorithm. The formulation takes full advantage of the special structure of the given
matrix A. In particular, when there are q ≤ mn elements of A which are subject to
error, a q × 1 vector α is used to represent the corresponding elements of the error
matrix E, which gives

(A+ E)x = b− r.

Note that for a sparse matrix, q � mn. Furthermore, if many elements of E must
have the same value, then q is the number of different such elements. For example, in
a Toeplitz or Hankel matrix, each diagonal or antidiagonal consists of elements with
the same value, respectively, so q ≤ m+ n− 1.

The matrix E is specified by those elements of A which may be subject to error.
Each different nonzero element of E corresponds to one of the αk, k = 1, . . . , q. Now,
the residual vector r = b − (A + E)x is a function of (α, x). Let D ∈ Rq×q be a
diagonal matrix that accounts for the repetition of elements of α in the matrix E.
Then the STLN problem can be stated as follows.

16 J. ROSEN, H. PARK, AND J. GLICK

Algorithm STLN.
Input – A Structured Total Least Norm problem (1.1), with matrices A, D, vector
b, and tolerance tol
Output – Error matrix E, residual vector r, and vector x

1. Set α = 0, E = 0, compute x from (1.4), construct X from x, and set
r = b−Ax.

2. repeat

(a) minimize
∆x,∆α

∥∥∥∥(X A+ E
D 0

)(
∆α
∆x

)
+

(−r
Dα

)∥∥∥∥
p

.

(b) Set x := x+ ∆x, α := α+ ∆α.
(c) Construct X from x, and E from α. Compute r = b− (A+ E)x.

until (‖∆x‖ ≤ tol and ‖∆α‖ ≤ tol)

min
α,x

∥∥∥∥ r(α, x)
Dα

∥∥∥∥
p

,(1.1)

where ‖ · ‖p is the vector p-norm, for p = 1, 2, or ∞.
In the iterative algorithm for solving the STLN problem, the vector Ex is rep-

resented in terms of α. This is accomplished by defining an m × q matrix X such
that Xα = Ex. The matrix X consists of the elements of x, with suitable repetition,
giving X a special structure. If E is Toeplitz and every diagonal in A is subject to
error, then X can be arranged to be Toeplitz too. In fact, E and X have exactly the
same number of nonzero elements.

In the minimization (1.1), a linear approximation to r(α, x) is used. Let ∆x
represent a small change in x, and ∆E a small change in the variable elements of E.
Then we have X(∆α) = (∆E)x, where ∆α represents the corresponding small change
in the elements of α. Neglecting the second-order terms in ‖∆α‖ and ‖∆x‖,

r(α+ ∆α, x+ ∆x) = r(α, x)−X∆α− (A+ E)∆x.(1.2)

The linearization of (1.1) now becomes

min
∆α,∆x

∥∥∥∥(X A+ E
D 0

)(
∆α
∆x

)
+

(−r
Dα

)∥∥∥∥
p

.(1.3)

To start the iterative algorithm, the initial values of E = 0 and the least norm value
of x = xln can be used, where xln is given by

min
x
‖b−Ax‖p.(1.4)

The STLN algorithm is summarized in Algorithm STLN.

2. SNTLN. We now show how the nonlinear extension is formulated, and how
Algorithm STLN can be modified to solve this nonlinear problem. We describe the
extension to the case in which the matrix A is a differentiable function A(α) of an
s× 1 parameter vector α and an approximate solution to the overdetermined system

A(α)x ≈ b(2.1)

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 17

is to be obtained. Any number of the elements of A may depend on α, but important
properties of the solution will depend on m, n, and s. This is discussed in section 3.
The residual vector r = r(α, x) is now defined by

r(α, x) = b−A(α)x(2.2)

and the parametric problem can be stated as

min
α,x

∥∥∥∥ r(α, x)
D(α− α̂)

∥∥∥∥
p

,(2.3)

where α̂ is an initial estimate of the optimum parameter vector and D is a diagonal
matrix of positive weights. For the assumptions on rank of A and Hessians of the
elements of A, see section 3.

The nonlinear parameter estimation problem of minimizing the L2-norm of r(α, x),
where the problem is linear in x but nonlinear in α, has been investigated in many
earlier papers [10, 12, 18, 6, 16]. It is often designated as “separable nonlinear least
squares” [6, 10, 12, 18, 13]. The method of solution presented here, as an exten-
sion of the STLN algorithm and called the SNTLN algorithm, is different from those
presented earlier.

The problem (2.3) clearly reduces to those considered earlier when p = 2 and
D = 0. More importantly, the solution method given here, the SNTLN algorithm,
applies directly to the problem (2.3) with p = 1 or ∞, in addition to p = 2. As shown
in section 5, the use of p = 1 has important practical applications because of its
robustness with respect to outliers in the data.

The most closely related of these earlier methods is variable projection [10, 12].
However, variable projection is only valid for s ≤ m − n, whereas SNTLN, with
positive D, is not similarly restricted. Furthermore, the SNTLN algorithm is valid
for all three norms, p = 1, 2,∞, while the variable projection method is limited to the
L2 norm. Starting with the same initial estimate α̂, the sequence of vectors {αk, xk}
computed by SNTLN, with p = 2, will differ from those computed by the variable
projection method. Specifically, variable projection xk will always be the least squares
solution of A(αk)x ≈ b; this may not be true for SNTLN, except at termination. A
complete statement on the increments (∆α,∆x) used in SNTLN is given in section 3.

The more general nonlinear model

min
y
‖f(y)‖p,

f : Cn → Cm, m > n,

can also be solved by the SNTLN algorithm. With appropriate assumptions on f(y),
this is shown in [26]. In this paper, we limit consideration to the separable case

y =

(
α
x

)
, f =

(
b−A(α)x
D(α− α̂)

)
.

Just as for the STLN algorithm, we compute the minimum solution to (2.3)
iteratively by linearizing r(α, x):

r(α+ ∆α, x+ ∆x) = r(α, x)−A(α)∆x− J(α, x)∆α,(2.4)

18 J. ROSEN, H. PARK, AND J. GLICK

Algorithm SNTLN.
Input – Matrices A(α), ∇αai, 1 ≤ i ≤ n, D, vector b, initial estimate α̂, and tolerance
tol.
Output – α, residual vector r, and vector x

1. Set α = α̂, compute x from (1.4) with A = A(α), J(α, x), and set r =
b−A(α)x.

2. repeat

(a) minimize
∆x,∆α

∥∥∥∥(A(α) J(α, x)
0 D

)(
∆x
∆α

)
+

(−r
D(α− α̂)

)∥∥∥∥
p

.

(b) Set x := x+ ∆x, α := α+ ∆α.
(c) Compute J(α, x), A(α), r = b−A(α)x.

until (‖∆x‖ ≤ tol and ‖∆α‖ ≤ tol)

where J(α, x) is the Jacobian, with respect to α, of A(α)x. Let aj(α) represent the
jth column of A(α). Then

J(α, x) = ∇α(A(α)x) =
n∑
j=1

xj∇αaj(α).(2.5)

The algorithm for the nonlinear extension is identical to the STLN algorithm as
given above, except that now the matrix X is replaced by J(α, x), and A + E is
replaced by A(α), wherever it is appropriate. The modification of STLN for nonlinear
parameter estimation is given by Algorithm SNTLN. For the formulation of step 2(a)
of Algorithm SNTLN for p = 1 and p =∞ as a linear program, see [24, 26].

It should be noted that STLN is a special case of SNTLN, and Algorithm SNTLN
becomes Algorithm STLN for affinely structured problems. Specifically, for affinely
structured problems, in Algorithm STLN, we have

A(α) = A+ E(α),

where α̂ = 0 and E(0) = 0 according to step 1, which gives

A(α̂) = A(0) = A+ E(0) = A.

Therefore,

A(α)x = Ax+ E(α)x = Ax+Xα

and

J(α, x) = ∇α[A(α)x] = X.

Note that using a small D in Step 2(a) of Algorithm STLN or Algorithm SNTLN
makes only a small change in the condition of the problem. This is due to the fact
that

cond

((
A J
0 D

))
≈ cond((A J))

when D is small. Also, the stable algorithms for computing the QR decomposition,
such as those based on Givens and Householder transformations, are not sensitive to
having small rows (0 D) placed at the bottom of the matrix. For details, see [2].

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 19

Important applications of SNTLN include problems of estimating parameters. In
some parameter estimation applications, it is assumed that the system, with no noise,
can be represented by

y(t) =

n∑
j=1

xjfj(α, t),

where the fj(α, t) are specified functions of α and t. The functional dependence of
the fj on α is known, and it is desired to estimate the “best” values of α and x.
Measurements of the system at m > n + s points ti, i = 1, . . . ,m, are taken, giving
the m× 1 vector b that represents y. Note that with the SNTLN algorithm presented
here there is no requirement that the ti be uniformly spaced.

This problem can immediately be put in the desired form by defining the elements
of A(α) as

A(α) = (aij) = fj(α, ti),

which gives
f1(α, t1) f2(α, t1) · · · fn(α, t1)
f1(α, t2) f2(α, t2) · · · fn(α, t2)

...
...

f1(α, tm) f2(α, tm) · · · fn(α, tm)

x1

x2
...
xn

 ≈

b1
b2
...
bm

 .(2.6)

This type of problem arises in a variety of signal processing applications, such as fre-
quency and exponential decay estimation [14, 22, 1]. In another potential application,
the matrix A(α) is large and sparse, with only a few elements depending on α. An
example of this kind of problem occurs in fitting scattered data in three-dimensional
space [11].

Another type of application involves solving an overdetermined system

A(α̂)x ≈ b
for x, where A is a nonlinear function of a vector α and the matrix A(α̂) is given.
In this case, the SNTLN can be used to solve the system while preserving the given
nonlinear structure in A(α). The only difference is that here the initial value α̂, for
α, is given.

3. Optimality conditions and convergence. In this section we generalize the
STLN convergence results presented in [24] to the SNTLN algorithm. These results
hold for the SNTLN algorithm using the L2 norm, where the function being minimized
is differentiable.

Some additional assumptions on A(α) are needed in order to obtain the conver-
gence results. We assume that with no noise (or error) in b = bc, there is a correct
parameter vector αc, and corresponding xc, such that A(αc)xc = bc. A neighborhood
Ωc in the s-dimensional space that contains the initial estimate α̂ is assumed, with
αc at its center. Also, it is assumed that A(α) has full rank and that all the elements
aij(α) have bounded Hessians for all α ∈ Ωc.

The function (2.3) being minimized, when p = 2, is equivalent to

ϕ(α, x) =
1

2
rT r +

1

2
(α− α̂)TD2(α− α̂),(3.1)

20 J. ROSEN, H. PARK, AND J. GLICK

where r = r(α, x) = b − A(α)x. The first-order optimality conditions for a local
optimum of ϕ(α, x) are the vanishing of the gradients ∇αϕ and ∇xϕ, where these
gradients are given by

∇αϕ = −JT (α, x)r +D2(α− α̂),
∇xϕ = −A(α)T r.

(3.2)

At each iteration of the SNTLN algorithm with the L2-norm, we compute the
least squares solution to

min
∆x,∆α

∥∥∥∥M (
∆α
∆x

)
+

(−r
D(α− α̂)

)∥∥∥∥
2

,(3.3)

where

M =

[
J(α, x) A(α)
D 0

]
.(3.4)

The least squares solution is given by

MTM

(
∆α
∆x

)
= −MT

(−r
D(α− α̂)

)
= −

(∇αϕ
∇xϕ

)
,(3.5)

where the last equality follows from (3.2). Since M has full rank, by the assumption
on A(α), MTM is nonsingular and (∆α,∆x) can only be zero when the gradient is
zero. Therefore at termination, the algorithm gives (α, x), satisfying the first-order
optimality conditions.

Now consider the Hessian of ϕ(α, x) with respect to (α, x). Then,

H(α, x) = (∇α,x(∇αϕ(α, x)) ∇α,x(∇xϕ(α, x)))(3.6)

= (∇α,x(−JT (α, x)r +D2(α− α̂)) ∇α,x(−A(α)T r)) .(3.7)

Since

(3.8)

∇α,x(−JT (α, x)r +D2(α− α̂)) =

(
JT (α, x)J(α, x)−∑m

i=1 riQi(α, x)
AT (α)J(α, x)−∑m

i=1 riK
T
i (α)

)
+

(
D2

0

)
and

∇α,x(−A(α)T r) =

(
JT (α, x)
AT (α)

)
A(α) +

(−∑m
i=1 riKi(α)

0

)
,(3.9)

we have

H(α, x) = MTM −
[
H1 H2

HT
2 0

]
,

where

H1 =
∑m
i=1 riQi(α, x),

H2 =
∑m
i=1 riKi(α),

and

KT
i (α) = Jacobian of ith column of AT (α),

Qi(α, x) =
∑n
j=1 xj∇2

αaij(α).

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 21

Since the Hessian of aij(α) are all assumed bounded, ‖H1‖ and ‖H2‖ are of
O(‖r‖). Therefore, provided the residual vector r is small, the positive definite ma-
trix MTM is a good approximation to H(α, x). The iteration (3.5) is therefore a good
approximation to Newton’s method, and in fact is equivalent to the Gauss–Newton
method (see, for example, section 6.1 in [9]). Based on the known convergence proper-
ties of the Gauss–Newton method, we can say that the SNTLN algorithm with p = 2
will converge to αc, provided ‖α̂−αc‖ and the residual norm ‖r‖ are both sufficiently
small. Convergence of the SNTLN algorithm for p = 1 or ∞ is shown elsewhere [26].
To prove convergence, it is necessary to add a line search to the algorithm so that a
strict decrease in the norm (2.3) can be shown at each iteration. The algorithm will
then converge to a stationary point of (2.3). The computational results obtained so
far show, however, that a line search is not required in order to obtain convergence
of the algorithm to αc, provided that the initial parameter estimate α̂ is reasonably
close to αc.

We now give explicit expressions for the increments (∆α,∆x) as computed at
each iteration of the SNTLN algorithm. From (3.5) and (3.2) we have

(JTJ +D2)∆α+ JTA∆x = JT r −D2(α− α̂),
ATJ∆α+ATA∆x = AT r.

(3.10)

Since A(α) has full rank, we can solve for ∆α and ∆x. These increments are given by

(JTPJ +D2)∆α = JTPr −D2(α− α̂),(3.11)

∆x = (ATA)−1AT (r − J∆α),(3.12)

where

P = I −A(ATA)−1AT

is the projection onto the orthogonal complement of the range space of A. Note
that ∆x is given by the least squares solution to the linearized approximation to
r(α+ ∆α, x+ ∆x), as given by (2.4). That is

min
∆x
‖r − J∆α−A∆x‖2.

Also note that the first-order optimality conditions ∇αϕ = ∇xϕ = 0 are satisfied
when the increments (∆α,∆x) given by (3.11) and (3.12) are zero. This is seen from
(3.2) and the fact that AT r = 0 implies Pr = r.

The need to choose positive diagonal elements for the diagonal matrix D, and its
relationship to m, n, and s, will now be summarized. Since rank(A) = n, the m×m
projection matrix P has rank m − n. Therefore, rank(PJ) ≤ m − n. Recall that
∆α ∈ Cs, so if s > rank(PJ) and D = 0, the value of ∆α is not uniquely determined
by (3.11). However, since JTPJ is always positive semidefinite, the matrix JTPJ+D2

is always positive definite for any diagonal matrix D with positive diagonal elements,
even when the diagonal elements of D are very small. Therefore, (3.11) will always
give a unique ∆α for D > 0. If J has full rank (= s) and s ≤ m − n, then JTPJ is
positive definite, and ∆α is uniquely determined even with D = 0. To illustrate the
lack of uniqueness in α, when s > m−n and D = 0, we give a simple example, where

22 J. ROSEN, H. PARK, AND J. GLICK

m = 3, n = 2, and s = 2. Let r(α, x) be given by (2.2) and consider the minimization
problem (2.3) with D = 0 and p = 2. Also, let

A(α) =

(
a1(α)
B

)
, b =

 b1
b2
b3

 ,

where a1(α) = (a11 + α1 a12 + α2) ∈ R1×2, B ∈ R2×2 is a nonsingular, constant
matrix, and (b2b3) 6= 0 ∈ R2×1. Choosing x∗ = B−1 (b2b3) will make r2 = r3 = 0 and
also give

r1 = (b1 − a11x
∗
1 − a12x

∗
2)− (α1x

∗
1 + α2x

∗
2).

Therefore, any values of α1 and α2 that give r1 = 0 will produce a minimum solution
to (2.3), with value zero.

The effect of the choice of D on the minimum solution to (2.3) is best understood
by the requirement that∇αϕ = 0, with∇αϕ given by (3.2). To simplify the discussion,
let D = µI, with µ > 0. First we observe that as µ is increased from zero, the term
D(α − α̂) increasingly dominates the minimization, so the norm ‖ᾱ − α̂‖ will go to
zero, where ᾱ is the value of α obtained by the SNTLN algorithm. Therefore, relative
large values of µ should be used only when the initial estimate α̂ is known to be
reliable. The optimality conditions (3.2) require that

JT (ᾱ, x)r = D2(ᾱ− α̂) = µ2(ᾱ− α̂),(3.13)

which gives

‖r‖ ≥ µ2

‖JT ‖‖ᾱ− α̂‖.(3.14)

It follows from (3.14) that unless a very good initial estimate α̂ is known, a value of
µ� ‖JT ‖ should be used.

For problems where s > m− n and a reliable estimate α̂ is known, larger values
for the elements of D may be chosen. Typical of such problems is STLN, as given
by (1.1), where α̂ = 0. For these cases the elements of D are positive integers giving
the multiplicity of the occurrence of each αi. Other examples include problems where
A(α) has a structure (such as Vandermonde) to be preserved, and the values of its
elements (possibly subject to error) are known.

4. SNTLN for Vandermonde matrices. In this section, we give a detailed
description of the SNTLN algorithm for solving overdetermined systems with a Van-
dermonde structure,

A(α̂)x ≈ b,(4.1)

where

A(α) =

1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n
...

αm−1
1 αm−1

2 · · · αm−1
n

 , m ≥ n,(4.2)

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 23

and the parameter vector α is

α =

α1

α2
...
αn

 .

The Vandermonde structure is one of the most frequently occurring nonlinear
structures in applications [3, 8, 15, 22]. For example, in the exponential data modeling
problems, m uniformly sampled data points yi are given and are to be fitted to the
following model function:

yi ≈
n∑
j=1

xjα
i
j =

n∑
j=1

(aje
√−1φj)e(−dj+2π

√−1fj)i∆t, i = 0, . . . ,m− 1,

where n is the model order and ∆t is the constant sampling interval. The objective
is to estimate the frequencies fj , damping factors dj , amplitudes aj , and phases
φj , j = 1, . . . , n. The frequencies and damping factors can be found using one of
several existing methods, e.g., the linear prediction method with the singular value
decomposition [8] or the state–space-based method due to Kung et al. [8, 3, 15], which
circumvents polynomial root finding and root selection. Improved versions of both
methods, based on total least squares (TLS), are presented in [29]. In [21], we have
shown that the STLN method further improves the accuracy of estimated frequencies
and damping factors when it is used in the linear prediction method to preserve the
Toeplitz structure. Once frequency and damping factors are found by using any of
the methods mentioned above, they provide the estimate α̂ for the parameter vector
α. Then the linear parameters xj , which contain the amplitudes aj and phases φj ,
1 ≤ j ≤ n, are estimated from solving the overdetermined Vandermonde system

A(α̂)x ≈ b, where b =

 y0
...

ym−1

 .

We may also start the SNTLN iteration without using the methods mentioned above
which provide the estimate α̂. However, as in any nonlinear problem, a good initial
estimate is needed to obtain convergence.

In solving (4.1) using SNTLN, the perturbation on A will be found so that each α̂i
is perturbed to αi = α̂i+hi for some value hi and the perturbed matrix A(α) keeps the

Vandermonde structure. The solution vector x and the perturbation h = (h1 · · ·hn)
T

on the parameter α̂, which satisfy

A(α)x = A(α̂+ h)x = b− r,
will be found while minimizing ‖ (r

Dh) ‖p.
For the Vandermonde matrix A, the Jacobian J(α, x) for A(α)x is

J(α, x) =

0 0 · · · 0
x1 x2 · · · xn

2α1x1 2α2x2 · · · 2αnxn
...

(m− 1)αm−2
1 x1 (m− 1)αm−2

2 x2 · · · (m− 1)αm−2
n xn

 .(4.3)

24 J. ROSEN, H. PARK, AND J. GLICK

Therefore, in Step 2(a) of Algorithm SNTLN, we need to solve a minimization prob-
lem with the (m + n) × 2n matrix (A(α) J

0 D), where J and A(α) are given in (4.3)
and (4.2), respectively. Note that we have chosen not to perturb the first row of the
matrix A(α).

In the next section, we present the numerical test results that compare the per-
formance of SNTLN with p = 2 to that of LS and TLS for solving the Vandermonde
overdetermined system. We also present results for two problems of the form (2.6)
to show the effect of errors in the initial estimate α̂ and the ability of SNTLN with
p = 1 to handle outliers in the data.

5. Computational test results. The SNTLN algorithm has been implemented
in MATLAB in order to investigate its computational performance. We denote by
SNTLN1 and SNTLN2 the SNTLN algorithm with p = 1 and p = 2, respectively.
First, the accuracy of the solution computed by the SNTLN2 algorithm was compared
to that of the LS and TLS methods in solving an overdetermined system A(α̂)x ≈ b,
where A(α̂) is a Vandermonde matrix. In this test, we assume that the matrix A(α̂),
i.e., the initial value α̂, is given, since this is required in applying the LS and TLS
methods. Therefore, the SNTLN2 algorithm is used to solve a linear overdetermined
system while preserving the nonlinear structure of the given matrix. Second, we
present the computational test results that illustrate the effect on the convergence of
the initial choice of α̂ and Lp norm on nonlinear parameter estimation problems.

5.1. Comparison of SNTLN2 to LS and TLS for Vandermonde overde-
termined system. The computational tests were performed to compare the SNTLN2
solutions with the TLS and LS solutions for Vandermonde overdetermined systems.
The initial value for A(α) is assumed to be given, and also it is assumed that there
exists a “correct” Vandermonde matrix A(αc) and vector bc such that

A(αc)xc = bc(5.1)

for some “correct” vector xc. In other words, error-free values exist such that the
overdetermined system has a solution xc with zero residual. Since actual data contains
noise, only the perturbed Vandermonde matrix A(αc+δα) = A(α̂) and the perturbed
vector bp are assumed to be known, instead of A(αc) and bc. The objective is to
compare the three methods LS, TLS, and SNTLN2 in recovering the actual solution
xc by solving the perturbed system A(α̂)xp ≈ bp. Specifically, the error vector h for
the parameter α, and residual vector r, are computed by solving

min
r,α

∥∥∥∥(r
Dh

)∥∥∥∥
2

such that A(α)xp = A(α̂+ h)xp = bp − r.(5.2)

The test problems are constructed so that A(αc), bc, and xc are known. Then
random perturbations δα on αc and δb on bc are generated to give a Vandermonde
matrix A(αc + δα) and bp = bc + δb, where the components of δα and δb are uniformly
distributed random variables in a given interval. The matrix A(α) and r, xp, satisfying
(5.2) are then computed via LS, TLS, and SNTLN2. For LS, α = α̂; i.e., A(α) = A(α̂),
since the matrix is not perturbed. For TLS, A(α) = A(α̂) + E for some matrix E
since TLS does not preserve the structure or take the nonlinear dependence of A on
α into account in computing the solution.

In Table 5.1, we present the test results of the following problem. Each data point
shown represents the average of 100 solutions, each with different random values in

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 25

(i) b is unperturbed (ii) | pert. in bi| ≤1.0e-8 (iii) | pert. in bi| ≤ γ
γ LS TLS SNTLN2 LS TLS SNTLN2 LS TLS SNTLN2

1.0e-8 4.8e-8 4.8e-8 4.9e-15 4.5e-8 4.5e-8 2.5e-8 4.6e-8 4.6e-8 2.5e-8
1.0e-6 4.5e-6 4.5e-6 2.2e-16 5.0e-6 5.0e-6 2.5e-8 4.6e-6 4.6e-6 2.5e-6
1.0e-4 4.9e-4 4.9e-4 1.7e-14 5.0e-4 5.0e-4 2.7e-8 4.6e-4 4.6e-4 2.3e-4
1.0e-3 5.0e-3 5.0e-3 3.5e-16 4.2e-3 4.2e-3 2.7e-8 4.7e-3 4.7e-3 2.5e-3
1.0e-2 4.5e-2 4.6e-2 2.1e-14 4.9e-2 4.9e-2 2.4e-8 4.3e-2 4.3e-2 2.7e-2
1.0e-1 4.2e-1 4.2e-1 5.1e-2 4.7e-1 5.7e-1 1.1e-1 5.1e-1 5.1e-1 3.4e-1

Table 5.1
Solution error

‖xp−xc‖2
‖xc‖2 of xp computed by LS, TLS, and SNTLN2.

the range [−γ, γ]. In the test, A(αc) is a 15× 3 Vandermonde matrix where

αc =

 e−0.1+2π
√−1∗0.5

e−0.2+2π
√−1∗0.4

e−0.3+2π
√−1∗0.3

 , xc =

 1
1
1

 , bc = A(αc)xc.

Then αc is perturbed by δα to give α̂ = αc + δα, where the components of δα are
uniformly distributed random variables in the interval [−γ, γ]. For the perturbation in
bc, we have tested three different cases: (i) when bc is unperturbed, (ii) bc is perturbed
by uniformly distributed random variables in the interval [-1.0e-8, 1.0e-8], and (iii)
bc is perturbed by uniformly distributed random variables in the interval [−γ, γ] like
αc. These three cases were tested to study how well the SNTLN2 recovers the correct
solution xc when the given data α̂ and b are affected by errors of different kind. The
matrix D was chosen to be diag(1.0e-8) in this test.

The iteration in the SNTLN2 algorithm was continued until both

‖∆α‖ ≤ e-6 and ‖∆x‖ ≤ e-6

were satisfied. When this convergence test is not satisfied within 20 iterations, then
the iteration was terminated and the result obtained at the 20th iteration is taken as
the final solution. For most values of γ, this stopping criterion was always satisfied.
However, when γ =1.0e-1, in 3 problems for case (i), 8 problems for case (ii), and 7
problems for case (iii), out of 100 test problems each, the iteration was terminated
after 20 iterations since the convergence test was not satisfied. This explains the
sudden deterioration of the performance of SNTLN2 in tests (i) and (ii) for γ =1.0e-
1. However, the performance of SNTLN2 is still better than that of LS or TLS. When
the average relative error of SNTLN2 was computed only for the cases converged
within 20 iterations, the accuracy was increased to 8.6e-15 and 2.5e-8 in tests (i) and
(ii), respectively, even for γ =1.0e-1.

5.2. Effect of errors in data and parameter estimates. As discussed in the
previous section, the SNTLN algorithm will converge to the desired minimum vector
αc from an initial estimate α̂ if α̂ is sufficiently close to αc. However, the practical
question of how large a value of ‖α̂− αc‖ will give convergence can only be answered
by computational testing. The preliminary computational testing summarized in this
section was carried out to explore this property of SNTLN. In addition, we wanted
to study two related properties:

1. The effect of data errors on the computed estimate α of the parameter vector.
Specifically, the effect of the data errors on ‖α− αc‖.

2. The robustness of the L1-norm with respect to outliers in the data.

26 J. ROSEN, H. PARK, AND J. GLICK

ε Outlier Norm ‖α− αc‖/‖αc‖ from SNTLN2 ‖α− αc‖/‖αc‖ from SNTLN1
0 5e-3 9.6e-3 0

5e-9 5e-3 9.6e-3 2.7e-7
5e-8 5e-3 9.6e-3 2.7e-6
5e-7 5e-3 9.6e-3 1.7e-5
5e-6 5e-3 9.6e-3 1.6e-4
5e-5 5e-3 1.1e-2 2.1e-3
5e-5 0 9.0e-3 1.9e-3

Table 5.2
Effect of errors in data on parameter estimate—type 1 Signal.

We now present computational results which show the ability of the SNTLN
algorithm to determine good values of the parameter vector α and the coefficient
vector x, in spite of noise in the data and relatively poor estimates of αc. In order
to carry out these computational tests, two different parameter estimation problems
were used. For each test problem it is assumed that a noiseless signal f(t) is of the
form given below. The measured signal at m values of t is assumed to have the form

fi = f(ti) + ηi, i = 1, . . . ,m,(5.3)

where the ηi represent noise or error in the measurement. The following two types of
signal were chosen:

1. f(t) =
∑n
j=1 xje

−αjt,
2. f(t) =

∑n
j=1 xje

−(t−αj)2/σ2

.

Given the corresponding noisy data fi, i = 1, . . . ,m, it is desirable to get the best
estimate of the true parameter vector αc and linear coefficient vector xc, which de-
termine the undistorted signal f(t). We also know an initial estimate α̂ of αc, which
may also be in error.

The data for the signal of type 1 was obtained from that used by Osborne and
Smyth [19]. Specifically, the values αc = (0 4 7)

T
and xc = (0.5 2 −1.5)

T

were used to give f(t) over the interval t ∈ [0, 1]. A total of 30 points ti were used so
that m = 30, n = 3, and s = 3.

The sum of Gaussian functions, type 2 signal, is similar to that used in [13]. For

this test, the values σ2 = 0.05, αc = (0.1 0.3 0.5 0.9)
T

, and xc = (1.0 0.5 2.0 0.25)
T

were used. The values of αj and xj were to be determined (σ is assumed to be known).
The 64 values of ti were chosen to be equally spaced in [0, 1] so that m = 64, n = 4,
and s = 4. Since n + s < m for both signal types, a small value (1.0e-8) was again
chosen for the diagonal elements of D.

We used the type 1 signal to measure the effect of errors in the data vector fi
on the computed parameter estimate ᾱ. First, uniformly distributed random errors
ηi, i = 1, . . . ,m, in the interval [−ε, ε] were added to f(ti) to give fi as in (5.3).

With ε =5.0e-5, the relative error ‖ᾱ−αc‖‖αc‖ was 1.9e-3 using SNTLN1 and 9.0e-3 using

SNTLN2. This is shown in the last row of Table 5.2. Additional tests with uniformly
distributed random errors showed that the relative error in ᾱ is proportional to ε for
both p = 1 and p = 2 and that the relative error for p = 1 is somewhat less than the
relative error for p = 2. For ε = 0, as expected, we get ᾱ = αc. The initial estimate
α̂ = αc was used for all these tests, so the error in ᾱ was due entirely to the error in
the data.

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 27

The next set of tests were to determine the effect of outliers in the data on
the computed parameter estimate. In addition to the random errors ηi at each ti,
a single outlier was introduced at one of the points ti. Its magnitude was 5.0e-3.
The parameter estimate ᾱ was then computed for a sequence of increasing values
of ε. The value of ε was increased from 5.0e-9 to 5.0e-5. For each value of ε, the
parameter estimate was computed using SNTLN with p = 1 and p = 2. The results
are summarized in the first six rows of Table 5.2. It is seen that for p = 2, the effect
of the outlier dominated the error in the parameter estimate. In contrast, the use
of SNTLN1 produces a parameter estimate which ignores the outlier and depends
only on the size of the random errors ηi. In particular, the parameter estimate error
is essentially proportional to ε and is the same whether an outlier is present or not.
Changing the location of the outlier had only a small effect on these results. Changing
the magnitude of the outlier had no effect on the results with p = 1. This shows that
SNTLN1 is very robust with respect to a single large error in the data.

Additional tests were made using more than one outlier with the type 1 signal.
Outliers were introduced at randomly chosen time points ti, with all other values of
fi = f(ti), that is, without error. Surprisingly, it was found that up to 10 outliers
could be added, in some cases, with no adverse effect on the estimate α, using p = 1.
That is, SNTLN1 almost always gave α = αc. However, when there were more than
10 outliers, the error ‖α− αc‖ was comparable to the norm of the outliers.

The effect of error in the initial parameter estimate α̂ was investigated using a
signal of type 2. In addition, the robustness, with respect to outliers, of SNTLN1 was
further confirmed with this larger, and very different, type of test problem.

The ability of both SNTLN1 and SNTLN2 to converge to αc from different initial
parameter estimates α̂ was tested. This was done by choosing

α̂ = αc + δ,(5.4)

where each δi, i = 1, . . . q, is a uniformly distributed random variable in the interval
[−γ, γ]. In addition, a uniformly distributed random error ηi was added to fi, with
|ηi| ≤e-7, for all cases. Convergence to αc becomes more difficult as γ increases.
For the purposes of this test we say SNTLN has converged if both ‖∆α‖ ≤e-6 and
‖∆x‖ ≤e-6, in 10 iterations or less. The results for SNTLN1 and SNTLN2 are shown
in Figure 5.1. Each data point shown represents the result of 20 solutions, each with
different random values of the δi. The percentage of the solutions which converged
is plotted as a function of the maximum value of |δi|, as given by γ. Six values of γ
were used, γ = (0, .01, .02, .03, .05, .07), and since the smallest α1 = 0.1, the initial
estimate error in α1 could be as large as 70%. The upper plot (denoted by o) shows
the results for no outliers and represents both SNTLN1 and SNTLN2. It is seen that
the percentage of convergence is the same for both, and in fact, all cases converged
for γ ≤ .02. For γ = .07, the percentage of convergence drops to 75%. For no outliers,
the error in the final computed estimate ᾱ, is determined by the random errors ηi in
fi and was never greater than 3.3e-6 for either SNTLN1 or SNTLN2.

In order to investigate the effect of outliers, the values of γ used above were
repeated, with 10 and then 25 outliers. The outliers each had a value of ±0.1 and
were added to fi (in addition to ηi) at randomly selected positions. Thus the total
error in the signal fi at ti consisted of a small random perturbation ηi at every point
ti and a much larger outlier at either 10 or 25 of the 64 total points. The results are
shown in the lower two curves in Figure 5.1. The SNTLN2 algorithm did not satisfy
the convergence criterion in many cases so the results shown represent the SNTLN1
algorithm only.

28 J. ROSEN, H. PARK, AND J. GLICK

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

1

10
2

 %
 c

on
ve

rg
ed

 gamma = maximum error in estimate of alpha

Fig. 5.1. Effect of initial α̂ estimate error and number of outliers on convergence of SNTLN1
and SNTLN2. Random error in f = 1.0e-7, outlier magnitude = 0.1. Key: o (no outliers, L1
and L2), × (10 outliers, L1 only), + (25 outliers, L1 only). Maximum number of iterations for
convergence: L1 (6 iterations) and L2 (9 iterations). Maximum error in computed α = 7.8e-6, using
SNTLN1.

The results show that for 10 outliers, the percentage of convergence is 100% for
γ ≤ .02 and drops to 60% for γ = .07. For 25 outliers, the percentage of convergence
is 100% for γ ≤ .01, and it drops to 50% for γ = .07. It is important to note that
the converged value of ᾱ never had an error greater than 7.8e-6, even with 25 out-
liers. This means that when SNTLN1 converges, the error in the final estimate of
α is determined completely by the values of the random errors ηi and is unaffected
by the outliers. Furthermore, when convergence took place it never required more
than 6 iterations of SNTLN1. Based on these computational results, it appears that
SNTLN1 is very robust with respect to outliers, provided that the total number of
outliers is somewhat less than (m− n)/2. The explanation of this robust behavior is
being investigated, both theoretically and computationally [26].

Acknowledgments. We would like to thank Mr. Lei Zhang for carrying out the
numerical tests, and the anonymous reviewers for valuable comments which made it
possible to improve the paper.

REFERENCES

[1] T. J. Abatzoglou, J. M. Mendel, and G. A. Harada, The constrained total least squares
technique and its application to harmonic superresolution, IEEE Trans. Signal Processing,
39 (1991), pp. 1070–1087.

[2] A. A. Anda and H. Park, Self-scaling fast rotations for stiff least squares problems, Linear
Algebra Appl., 234 (1996), pp. 137–161.

[3] H. Barkhuijsen, R. De Beer, and D. Van Ormondt, Improved algorithm for noniterative
time-domain model fitting to exponentially damped magnetic resonance signals, J. Mag-

STRUCTURED TOTAL LEAST NORM FOR NONLINEAR PROBLEMS 29

netic Resonance, 73 (1987), pp. 553–557.
[4] I. Barrodale and A. Young, Algorithms for best L1 and L∞ linear approximations on a

discrete set, Numer. Math., 8 (1966), pp. 295–306.
[5] I. Barrodale, L1 approximation and the analysis of data, Appl. Statistics, 17 (1968), pp.

51–57.
[6] D. Bates and M. Lindstrom, Nonlinear least squares with conditionally linear parameters,

in Proceedings of the Statistical Computing Section, American Statistical Association,
Washington, DC, 1986, pp. 152–157.

[7] H. Chen, S. Van Huffel, and J. Vandewalle, Exponential Data Fitting Using the Structured
Total Least Norm Technique, Technical report TR 95-18, Departement Elektrotechniek
ESAT-SISTA, University of Leuven, Belgium, March, 1995.

[8] R. De Beer and D. Van Ormondt, Analysis of NMR data using time-domain fitting proce-
dures, in In-vivo Magnetic Resonance Spectroscopy I: Probeheads, Radiofrequency Pulses,
Spectrum Analysis, NMR Basic Principles and Progress 26, M. Rudin, ed., Springer-Verlag,
Berlin, Heidelberg, 1992, pp. 201–248.

[9] R. Fletcher, Practical Methods of Optimization, John Wiley, New York, 1987.
[10] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least

squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413–432.
[11] T. A. Grandine, Generating Surface Lofts to Scattered Data, Engineering Computing and

Analysis Technical report ECA-TR-157, Boeing Computer Services, Seattle, WA, 1991.
[12] L. Kaufman, A variable projection method for solving separable nonlinear least squares prob-

lems, BIT, 15 (1975), pp. 49–57.
[13] L. Kaufman and G. Sylvester, Separable nonlinear least squares with multiple right-hand

sides, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 68–89.
[14] R. Kumaresan and D. W. Tufts, Estimating the parameters of exponentially damped sinu-

soids and pole-zero modeling in noise, IEEE Trans. Acoust. Speech Signal Proc., 30 (1982),
pp. 833–840.

[15] S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao, State-space and singular value
decomposition-based approximation methods for the harmonic retrieval problem, J. Opt.
Soc. Amer., 73 (1983), pp. 1799–1811.

[16] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice–Hall, Englewood
Cliffs, NJ, 1974.

[17] Yuying Li, Solving Lp-norm Problems and Applications, Cornell Theory Center report
CTC93TR122, Cornell University, Ithaca, NY, 1993.

[18] M. R. Osborne, Some special nonlinear least squares problems, SIAM J. Numer. Anal., 12
(1975), pp. 571–592.

[19] M. R. Osborne and G. K. Smyth, A modified Prony algorithm for exponential function fitting,
SIAM J. Sci. Comput., 16 (1995), pp. 119–138.

[20] H. Park, J. B. Rosen, and J. Glick, Structure preserving total least norm method and
application to parameter estimation, in Proceedings of the 1995 International Conference
on Acoustics, Speech and Signal Processing, Vol. 2, 1995, pp. 1141–1144.

[21] H. Park, J. B. Rosen, and S. Van Huffel, Structure preserving total least squares method
and its application to parameter estimation, SVD and Signal Processing, III: Algorithms,
Architectures and Applications, M. Moonen and B. De Moor, eds., Elsevier, New York,
1995, pp. 399–406.

[22] M. A. Rahman and K. B. Yu, Total least squares approach for frequency estimation using
linear prediction, IEEE Trans. Acous. Speech Signal Proc., 35 (1987), pp. 1440–1454.

[23] J. R. Rice and J. S. White, Norms for smoothing and estimation, SIAM Rev., 6 (1964), pp.
243–256.

[24] J. B. Rosen, H. Park, and J. Glick, Total least norm formulation and solution for structured
problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 110–128.

[25] J. B. Rosen, H. Park, and J. Glick, Total least norm for linear and nonlinear structured
problems, in Recent Advances in Total Least Squares Techniques and Errors-in-Variables
Modeling, S. Van Huffel, ed., SIAM, Philadelphia, 1996, pp. 203–214.

[26] J. B. Rosen, H. Park, J. Glick, and L. Zhang, Accurate Solution to Overdetermined Systems
with Errors, Using L1 Norm Minimization, Tech. report 98-7, Department UCSD, La Jolla,
CA, January 13, 1988 (submitted for publication).

[27] H. Späth and G. A. Watson, On orthogonal linear l1 approximation, Numer. Math., 51
(1996), pp. 531–543.

[28] S. Van Huffel, H. Park, and J. B. Rosen, Formulation and solution of structured total
least norm problems for parameter estimation, IEEE Trans. Signal Process., (1996), pp.
2464–2474.

30 J. ROSEN, H. PARK, AND J. GLICK

[29] S. Van Huffel, L. Aerts, J. Bervoets, J. Vandewalle, C. Decanniere, and P. Van Hecke,
Improved quantitative time-domain analysis of NMR data by total least squares, in Signal
Processing VI: Theories and applications, J. Vandewalle, R. Boite, M. Moonen and A.
Oosterlinck, eds., Elsevier–North Holland, 1992, pp. III:1721–1724.

[30] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem, Computational Aspects
and Analysis, SIAM, Philadelphia, 1991.

[31] G. A. Watson and K. F. C. Yiu, On the solution of the errors in variables problem using the
l1 norm, BIT, 31 (1991), pp. 697–710.

ASYMPTOTIC RESULTS ON THE SPECTRA OF BLOCK TOEPLITZ
PRECONDITIONED MATRICES∗

STEFANO SERRA†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 31–44

Abstract. It is well known that the generating function f ∈ L1([−π, π],R) of a class of Her-
mitian Toeplitz matrices An(f) describes very precisely the spectrum of each matrix of the class
[U. Grenader and G. Szegö, Toeplitz Forms and Their Applications, 2nd ed., Chelsea, New York,
1984; E. E. Tyrtyshnikov, Linear Algebra Appl., 232 (1996), pp. 1–43]. In this paper we consider
n×n block Toeplitz matrices with m×m blocks generated by a Hermitian matrix-valued generating
function f ∈ L1([−π, π],Cm×m) and, in particular, we analyze the associated problem of precondi-
tioning. Using previous results on this topic [P. Tilli and M. Miranda, SIAM J. Matrix Anal. Appl.,
to appear], we extend some theorems to this case that were proved in the one-level Toeplitz case [F.
Di Benedetto, G. Fiorentino, and S. Serra, Comput. Math. Appl., 25 (1993), pp. 35–45; S. Serra,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1007–1019; S. Serra, Calcolo, 32 (1995), pp. 153–176]
as well as in the two-level Toeplitz case [S. Serra, Linear Algebra Appl., 270 (1998), pp. 109–129].
This idea seems promising when dealing with linear systems arising from control theory and Markov
chains theory [R. Preuss, Workshop on Toeplitz matrices in Filtering and Control, Santa Barbara,
CA, August 1996; M. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,
Dekker, New York, 1989; E. Cinlar, Introduction to Stochastic Processes, Prentice–Hall, Englewood
Cliffs, NJ, 1975].

Key words. Toeplitz matrix, generating function, preconditioning, conjugate gradient method

AMS subject classifications. 65F10, 65F15

PII. S0895479896310160

1. Introduction. In this paper we are interested in the efficient solution of a
linear system of the form

An,m(f)x = b,(1)

where An,m(f) is generated by an integrable Hermitian matrix-valued function f ∈
L1([−π, π],Cm×m) defined on the fundamental interval I = [−π, π] and extended
periodically to the whole real axis. More precisely, the blocks of the matrix An,m(f)
along the kth diagonal are all given by

Ak ≡ Ak(f) =
1

2π

∫ π

−π
f(x)e−ikxdx, i2 = −1, k ∈ Z.(2)

For the scalar case the spectral properties of these matrices have been deeply
studied in this century (see, for instance, [19, 41, 39]). In the case where m > 1, we
obtain a kind of matrix which characterizes applications like the ones connected to
industrial control theory [23] and Markov chains [22, 12, 7]. We restrict our atten-
tion to the case where f(x) is a Hermitian matrix-valued function; in [36, 33] some
results regarding the localization and asymptotic extreme behavior of the spectra
are obtained. Moreover, in the following, we make use of a worthwhile theorem [36]
which gives information about the asymptotical behavior of the spectra of the family

∗Received by the editors October 7, 1996; accepted for publication (in revised form) by S. Van
Huffel August 13, 1997; published electronically September 15, 1998.

http://www.siam.org/journals/simax/20-1/31016.html
†Dipartimento di Energetica, Via Lombroso 6/17, 50100 Firenze, Italy; Dipartimento di Infor-

matica, Corso Italia 40, 56100 Pisa, Italy (serra@mail.dm.unipi.it).

31

32 STEFANO SERRA

{An,m(f)}n,m and which can be viewed as an elegant block version of the classical
Szegö–Tyrtyshnikov theorem [19, 39].

Theorem 1.1 (see [36]). Let f ∈ L2([−π, π],Cm×m) and let λ
(n,m)
i be the eigen-

values of An,m(f) (which are real since f is Hermitian matrix valued and the matrix
An,m(f) is Hermitian). Then, for any continuous function F ∈ C(R), with bounded
support, the asymptotic formula

lim
n→∞

1

nm

nm∑
i=1

F (λ
(n,m)
i) =

1

2π

∫ π

−π

1

m
trace(F (f(x)))dx(3)

holds.
When f is also nonnegative definite and is not essentially singular, the related

matrix An,m(f) is positive definite for any choice of the external dimension n and we
can solve the associated systems by means of preconditioned conjugate gradient (PCG)
methods. Since one of the most successful preconditioning strategies for the scalar
case is the one based on (simple) Toeplitz matrices [6, 14, 10, 28, 27, 8, 21, 7, 29], in
[33] we generalized this idea by obtaining “optimal” preconditioners where “optimal”
is intended in the classical sense described, for instance, in [2].

The preconditioners will have the form of the original coefficient matrix: in ef-
fect, we consider the positive definite matrix An,m(g) generated by a nonnegative
definite, not essentially singular, matrix-valued function g and then, by following
a known approach [14, 6], the preconditioned matrix takes the form Pn,m(f ; g) =
A−1
n,m(g)An,m(f). In order to take advantage of this technique, we will choose the

generating function in such a way that a generic system, having as coefficient matrix
An,m(g), is “simple to solve.” If g−1/2fg−1/2 is associated with a well-conditioned
quadratic form, that is, the m eigenvalues of p = g−1f range essentially in a positive
interval [r,R], then the preconditioned matrix Pn,m(f ; g) has eigenvalues in (r,R)
[33, 36]. Here, by making heavy use of Theorem 1.1 and some simple consequences,
we show that the union of all the spectra of {Pn,m(f ; g)} has a usual topological clo-
sure which contains the union of the essential ranges of the m eigenvalues of g−1f (see
Theorem 3.6). This is a natural extension of the density results obtained previously
for the scalar Toeplitz case [14, 27, 26]. Furthermore, by making use of generalized
Rayleigh quotients associated with Pn,m(f ; g), we obtain some partial results on the
asymptotic behavior of the condition numbers of An,m(f).

In addition, if R/r � 1, we expect a number of iterations [1] to reach the solution
of (1), within an accuracy ε, less than

N1(f, g, ε) =
1

2

√
R

r
log

(
2

ε

)
+ 1.(4)

Otherwise the estimate takes the following form:

N2(f, g, ε) =
log
(
2ε−1

)
log(δ)

+ 1,(5)

with

δ =
1 +

√
r
R

1−√ r
R

.

A consequence of the analysis performed in the following is the “unrigorous” con-
firmation of the tightness of the previous bounds (for a rigorous analysis see [18]).

ASYMPTOTIC SPECTRAL RESULTS 33

Actually, owing to the “uniform” distribution of the eigenvalues of An,m in the es-
sential range of the eigenvalues of g−1f (Theorem 3.6), when

⋃
i≤m ER(λi(g

−1f))
coincides with [r,R], we expect that the previous upper bounds are tight. This fact
is fully confirmed in the numerical experiments at the end of section 4.

The paper is organized as follows. In section 2 we summarize the known theory
on this kind of unstructured block Toeplitz matrix. In section 3 we derive the den-
sity result for the preconditioned matrices and we introduce a tool to evaluate the
asymptotic condition numbers of An,m(f). Finally, in the last section, we discuss the
applications to the related PCG methods for solving systems of the form (1).

2. Spectral properties of An,m(f). We denote by An,m(f) the n × n block
Toeplitz matrix with m×m blocks defined in equation (2).

If (j, k) indicates the block in the matrix An,m = An,m(f) and (p, q) the position
of the entry in the block, then we have

(An,m)(j,k)(p,q) = (Ak−j)p,q

for j, k = 1, . . . , n, p, q = 1, . . . ,m.

Some properties of An,m are easily obtained as stated in the following lemma.

Lemma 2.1. Let f : I → Cm×m be an L1 Hermitian matrix-valued function in
the sense that, for any couple (p, q), (f(x))p,q is an L1 scalar complex-valued function

and (f(x))p,q = (f(x))q,p. Under these assumptions, Ak = AH−k and therefore the
matrix An,m is globally Hermitian.

In addition, if f is symmetric then An,m is further specified in the sense that
An,m is a symmetric real matrix with symmetric blocks.

As in the scalar case, the spectrum is localized by considering the range of the
generating function f .

Theorem 2.2 (see [33]). If f : I → Cm×m is a Hermitian matrix-valued func-
tion, then the eigenvalues of An,m(f) lie in the interval [mf ,Mf], where

mf = essinfI min
1,...,m

(λ(f(x)))

and

Mf = esssupI max
1,...,m

(λ(f(x))).

When m = 1 there exists a stronger result [19] which assures that if mf < Mf

then all the eigenvalues of An(f) belong to the open interval (mf ,Mf).

In the scalar case, when mf = 0 and Mf is positive, the associated Toeplitz
matrices are positive definite and ill conditioned. The positive definiteness is an im-
portant property because it allows us to define the basic Toeplitz preconditioners first
considered in [6, 14] and then applied in modified ways to several different problems
[10, 27, 28, 7, 25].

Unfortunately, the situation is a bit different in this block case as demonstrated
in the following elementary example. Let m = 2 and f(x) be a constant Hermitian
matrix-valued function B:

B =

[
1 0
0 0

]
.

34 STEFANO SERRA

Evidently, the associated matrices An,m(f) have the simple form of block diagonal
matrices, that is, An,m(f) =diag(B,B, . . . , B). In this case mf = 0 and Mf = 1 and
the eigenvalues actually coincide with 0 or with 1.

The following is an important refinement of Theorem 2.2 and, actually, gives
conditions in order to state that all the eigenvalues of An,m(f) are in the open interval
(mf ,Mf).

Theorem 2.3 (see [33]). Let mf and Mf be as in Theorem 2.2 and let us define

m̂f as esssupI min1,...,m(λ(f(x))) and M̂f as essinfI max1,...,m(λ(f(x))). Then the
following facts are true:

1. if mf < m̂f (that is, the minimal eigenvalue is not essentially constant when
x varies in I), then all the eigenvalues λ lie in the interval (mf ,Mf].

2. if Mf > M̂f (that is, the biggest eigenvalue is not essentially constant when
x varies in I), then all the eigenvalues λ lie in the interval [mf ,Mf).

3. The preconditioned Toeplitz matrices Pn,m(f ; g). The aim of this sec-
tion is to extend some results concerning Toeplitz preconditioning for scalar Toeplitz
linear systems to the block case. For the scalar case, this strategy is very successful
because of its great flexibility in applications to a large variety of different situations
[6, 14, 26, 7, 10, 29, 27, 25].

Here and in the following, by preconditioned Toeplitz matrix, we define a matrix
of the form A−1

n,m(g)An,m(f), which is also indicated by the shorter symbol Pn,m(f ; g),
where f and g are two L1 Hermitian matrix-valued functions with g essentially non-
negative definite and not everywhere singular. We observe that, from the assumptions,
the matrices An,m(f) and An,m(g) are well defined and An,m(g) is positive definite
(see Theorem 2.3); therefore the preconditioned matrix A−1

n,m(g)An,m(f) exists and is
well defined.

The localization result is a very important one because it represents the main tool
for defining Toeplitz preconditioners for Toeplitz linear systems, similar to the scalar
case.

Theorem 3.1 (see [33]). Let {An,m(g)}n,m and {An,m(f)}n,m be two sequences
of Toeplitz matrices generated by two Lebesgue integrable Hermitian matrix-valued
functions f and g, where g is essentially nonnegative definite and not identically
singular. Let us suppose that, for any real value α, mf−αg < m̂f−αg, M̂f−αg <
Mf−αg. Then, for any positive integer n, the preconditioned matrix

Pn,m(f ; g)

has eigenvalues in the set (r,R), where

r = essinfx∈I min{λ(g−1f)}, R = esssupx∈I max{λ(g−1f)},

and r < R. Otherwise, if r = R then the preconditioned matrix has the form
Pn,m(f ; g) = r · I.

Now we are going to prove a density result which allows one to evaluate very
precisely a priori the number of iterations of the PCG method when a block Toeplitz
preconditioning is used. For the sake of completeness, we introduce the definition of
the essential range of a Lebesgue measurable function.

Definition 3.2. Given a real-valued measurable function h defined on I, the
essential range ER(h) of h is the closed set of all the real numbers y such that ∀ε > 0,
the Lebesgue measure of {x ∈ I : h(x) ∈ (y − ε, y + ε)} is positive.

ASYMPTOTIC SPECTRAL RESULTS 35

Furthermore, in order to simplify the proof of the density result of Theorem 3.6,
we premise three technical lemmas concerning the distribution of the eigenvalues of
Toeplitz matrices.

Lemma 3.3. If h ∈ L2(I, Cm×m) is a Hermitian-valued function and

m∑
j=1

m{x ∈ I : λj(h(x)) = a} = 0,

then

lim
n→∞

#{i : λi(An,m(h)) < a}
n

=
1

2π

m∑
j=1

m{x ∈ I : λj(h(x)) < a}.

Proof. First observe that the relation we want to prove is the relation (3) with
Fa = Ch[0,a], where ChX indicates the characteristic function of the set X. The
difficulty is that Fa is not continuous as requested by Theorem 1.1. Therefore we
consider two families of continuous approximations of Fa, namely, {F+

δ }δ and {F−δ }δ.
The function F−δ is continuous piecewise linear and is identically 1 over [0, a − δ]
and identically zero over [a,∞). The function F+

δ is continuous piecewise linear
and is identically 1 over [0, a] and identically zero over [a + δ,∞). It follows that
F−δ ≤ Fa ≤ F+

δ . Now we use relation (3) with F = F−δ and with F = F+
δ by

obtaining that

lim
n→∞

∑
i F
−
δ (λi(An,m(h)))

n
=

1

2π

m∑
j=1

m{x ∈ I : λj(h(x)) < a}+ k1(δ)

and

lim
n→∞

∑
i F

+
δ (λi(An,m(h)))

n
=

1

2π

m∑
j=1

m{x ∈ I : λj(h(x)) < a}+ k2(δ),

with k1 ≤ 0 ≤ k2. Moreover, from the construction of F±δ , it follows that

lim
δ→0

ki(δ) = 0, i = 1, 2.

But from the inequality F−δ ≤ Fa ≤ F+
δ , we easily deduce that∑

i F
−
δ (λi(An,m(h)))

n
≤ #{i : λi(An,m(h)) < a}

n
≤
∑
i F

+
δ (λi(An,m(h)))

n
.

Since δ can be chosen arbitrarily small the claimed result follows.
By using the same arguments, the following result is straightforward.
Lemma 3.4. If h ∈ L2(I, Cm×m) is a Hermitian-valued function and

m∑
j=1

m{x ∈ I : λj(h(x)) = a}+
m∑
j=1

m{x ∈ I : λj(h(x)) = b} = 0,

then

lim
n→∞

#{i : λi(An,m(h)) ∈ (a, b)}
n

=
1

2π

m∑
j=1

m{x ∈ I : λj(h(x)) ∈ (a, b)}.

36 STEFANO SERRA

When the assumption of the latter two results is not verified, i.e., when
∑m
j=1m{x ∈

I : λj(h(x)) = a} > 0, it is interesting to remark that there exist infinitely many
values ak converging to a so that

∑m
j=1m{x ∈ I : λj(h(x)) = ak} = 0.

This fact is implied by the following lemma.
Lemma 3.5. If h ∈ L2(I, Cm×m) and

∑m
j=1m{x ∈ I : λj(h(x)) = a} > 0, then,

∀δ > 0, there exist two values a+ and a− so that

a− δ ≤ a− < a < a+ ≤ a+ δ

and

m∑
j=1

m{x ∈ I : λj(h(x)) = a− or a+} = 0.

Proof. For notational simplicity, we prove the result under the assumption that
m = 1. The general case follows from this. By contradiction, if the claimed thesis is
not true, it means that there exist an uncountable number of points y belonging to
[a− δ, a+ δ] such that m{x ∈ I : h(x) = y} > 0. Call W the set of these points and
By = {x ∈ I : m{x : h(x) = y} > 0}. Then we have

• By ⊂ I,
• By ∩Bw = ∅ for y 6= w, y, w ∈W ,
• By is measurable.

From standard functional analysis techniques (see [24, pp. 88–89]), due to the un-
countability of the set W , it follows that m{⋃y∈W By}=

∑
y∈W m{By} = ∞ while⋃

y∈W By is a subset of the interval I whose Lebesgue measure is 2π.
Theorem 3.6. Let {An,m(g)}n,m and {An,m(f)}n,m be two sequences of Toeplitz

matrices generated by two square integrable Hermitian matrix-valued functions f and
g, where g is essentially nonnegative definite, and such that the Lebesgue measure
m{·} of the set {x ∈ [−π, π] : λ1(g(x)) = 0} is zero (λ1 is understood to be the
minimal eigenvalue of g). By taking into account the essential bounds r and R as in
Theorem 2.3 and calling S the union of all the spectra of Pn,m(f ; g), we obtain that
S̄ contains

⋃
i≤m ER(λi(g

−1f)) and is contained in [r,R].

Proof. The inclusion S̄ ⊂ [r,R] is a consequence of the localization Theorem
2.3. The nontrivial part is to prove that the topological closure S̄ of S contains⋃
i≤m ER(λi(g

−1f)). Hereby we demonstrate this general result under the only hy-
pothesis that g is essentially nonnegative and m{x ∈ I : λ1(g(x)) = 0} = 0. Actually,
the claimed thesis is equivalent to the following statement: ∀α ∈ ⋃i≤m ER(λi(g

−1f))
and ∀ε > 0,

∃n ∈ N and λα ∈ S such that |λα − α| < ε.

To prove the latter, for any n, we call Inm the nm × nm identity matrix and we
introduce some auxiliary matrices having the same inertia of the matrix Pn,m(f ; g)−
αInm, that is, having the same number of negative, positive, and zero eigenvalues as
Pn,m(f ; g)−αInm. The matrix Pn,m(f ; g)−αInm is similar to the Hermitian matrix

Zn,α = A
−1/2
n,m (g)An,m(f)A

−1/2
n,m (g)− αInm since

Zn,α = A1/2
n,m(g) (Pn,m(f ; g)− αInm)A−1/2

n,m (g).

ASYMPTOTIC SPECTRAL RESULTS 37

Therefore Zn,α and Pn,m(f ; g) − αInm have the same eigenvalues. Now, let Hn,α =
An,m(f)− αAn,m(g). This matrix is obtained by Zn,α in the following way:

Hn,α = A1/2
n,m(g)Zn,αA

1/2
n,m(g).

Owing to the positive definiteness of A
1/2
n,m(g), we can conclude that the matrices

Pn,m(f ; g)−αInm, Zn,α, and Hn,α have the same inertia: therefore, if Hn,α is singular
for some value n then there exists λα ∈ S such that λα = α and there is nothing further
to be proved.

Otherwise, Hn,α is nonsingular for any positive integer n. Hn,α is a block Toeplitz
matrix generated by cα(x) = f(x) − αg(x). On the other hand, the assumption
that α ∈ ⋃i≤m ER(λi(g

−1f)) implies the existence of at least an index j̄ such that

α ∈ ER(λj̄(g
−1f)) and, therefore, it is understood that the matrix g−1f − αIm is

essentially singular, in the sense that 0 ∈ ER(λj̄(g
−1f)− α) or, equivalently, for any

δ > 0, the measure of {x ∈ I : λj̄(g
−1f)− α ∈ (−δ, δ)} is positive.

Now, let us set

mα
ε (i) = m{x ∈ I : λi(g

−1f)− (α+ ε) < 0}
and

mα
−ε(i) = m{x ∈ I : λi(g

−1f)− (α− ε) < 0}.
Since 0 ∈ ER(λj̄(g

−1f) − α) and g is positive definite almost everywhere, it
naturally follows that

mα
ε (j̄) > mα

−ε(j̄)

and, for any i 6= j̄, we have

mα
ε (i) ≥ mα

−ε(i).

Moreover, in the light of the Sylvester inertia law [17], we observe that the matrices
g−1f − (α ± ε)Im, g−1/2fg−1/2 − (α ± ε)Im and f − (α ± ε)g have the same inertia:
therefore, it follows that

mα
ε (i) = m{x ∈ I : λi(f − (α+ ε)g) < 0}

and

mα
−ε(i) = m{x ∈ I : λi(f − (α− ε)g) < 0}.

The latter two relationships are the crucial ones in order to apply Lemma 3.4 with
h = cα−ε = f − (α− ε)g and h = cα+ε = f − (α+ ε)g.

Therefore, we assume that

m∑
i=1

m{x ∈ I : λi(f − (α+ ε)g) = 0}+m{x ∈ I : λi(f − (α− ε)g) = 0} = 0,

and we invoke Lemma 3.4. Consequently we find that

#{i : λi(An,m(cα+ε)) < 0} = n

∑m
i=1m

α
ε (i)

2π
+ o(n),(6)

#{i : λi(An,m(cα−ε)) < 0} = n

∑m
i=1m

α
−ε(i)

2π
+ o(n).

38 STEFANO SERRA

By virtue of the relation mα
ε (j̄) > mα

−ε(j̄) it follows that, for n large enough, “many”
eigenvalues of An,m(cz) move from positive values to negative values when the param-
eter z moves from α− ε to α+ ε. As a consequence, using a continuity argument, we
have found λα(n) ∈ (α−ε, α+ε) such that the matrix An,m(cλα(n)(x)) is singular. But
An,m(cλα(n)(x)) and Pn,m(f ; g) − αInm have the same inertia, i.e., λα(n) is a value
for which Pn,m(f ; g)−αInm is singular. Finally, the latter is equivalent to write that
λα(n) is an eigenvalue of the preconditioned matrix Pn,m(f ; g), namely, λα(n) ∈ S.
Therefore the theorem is proved.

Notice that in equations (6) we assumed that
∑m
i=1m{x ∈ I : λi(f − (α+ ε))g =

0} + m{x ∈ I : λi(f − (α − ε)g) = 0} = 0. In the case where this assumption is not
verified, by virtue of Lemma 3.5, we can choose s, 0 < s < ε, such that

m∑
i=1

m{x ∈ I : λi(f − (α+ s)g) = 0}+m{x ∈ I : λi(f − (α− s)g) = 0} = 0.

Therefore, by repeating the same proof with s in place of ε, we find a value of
S belonging to the set (α − s, α + s) ⊂ (α − ε, α + ε). The claimed thesis still
holds.

Observe that the previous result is a generalization of the density theorems proved
for the scalar case [14, 27, 26], under the weaker assumption that f, g belong to L1.
This fact is a consequence of the Szegö formula, originally stated in L∞, but recently
extended to the L1 case (see [37]).

However, it should be stressed that if an “ergodic” theorem like Theorem 1.1 is
to be proved for functions ranging in L1, then an extension of Theorem 3.6 with f
and g in L1 may be naturally obtained by repeating the same proof almost word for
word. Finally we point out that the proof of Theorem 3.6 has been used very recently
to find a more general result: in fact, in [34], a Szegö formula like the one displayed
in (3) has been proved for the eigenvalues of the class of the preconditioned matrices
{Pn,m(f ; g)}n.

3.1. The asymptotic condition numbers of An,m(f). First we define a
relation of “asymptotical equivalence” between two nonnegative sequences (Definition
3.7) and between two nonnegative integrable functions (Definition 3.8). This allows
us to state an equivalence theorem which furnishes a tool to evaluate the asymptotic
behavior of the extreme eigenvalues of the block Toeplitz matrices considered here.

Definition 3.7. Let an and bn be two nonnegative sequences; we say that an is
asymptotical equivalent to bn and we write an ∼ bn if there exist two positive constant
values c, C and an integer n̄ such that

can ≤ bn ≤ Can ∀n ≥ n̄.

Definition 3.8. Let f(x) and g(x) be two nonnegative definite integrable matrix-
valued functions defined on I; we say that f(x) is asymptotical equivalent to g(x) and
we write f ∼ g if there exist two positive constant values c and C such that g−1f has
eigenvalues in [c, C] almost everywhere on I.

The following result holds true.
Theorem 3.9. Let Rf be the class of equivalence of all the L1 functions g such

that g ∼ f in the sense previously given. If g1 and g2 belong to Rf and if λmin(i;n),
λmax(i;n), k(i;n) are the minimal and the maximal eigenvalues and the Euclidean

ASYMPTOTIC SPECTRAL RESULTS 39

condition number of An,m(gi), then

λmin(1;n) ∼ λmin(2;n), λmax(1;n) ∼ λmax(2;n),

and therefore

k(1;n) ∼ k(2;n).

Proof. By the hypothesis g1 ∼ g2 and Theorem 3.1, we find that the quadratic
form related to g−1/2fg−1/2 is well conditioned in the sense that there exist two
positive constants r and R such that its numerical range is contained in (r,R). More
precisely, given a nonzero vector z ∈ Cm, we find

r <
zHAn,m(g1)z

zHAn,m(g2)z
< R.(7)

Let zi be the eigenvector of An,m(gi) related to the smallest eigenvalue λmin(i;n),
i = 1, 2. Then, by applying equation (7) with z = z2 and with z = z1, we find

λmin(2;n) >
zH2 An,m(g1)z2

R
≥ λmin(1;n)

R

and

rλmin(2;n) ≤ rzH1 An,m(g2)z1 < λmin(1;n),

i.e., λmin(1;n) ∼ λmin(2;n). For the greatest eigenvalue the argument is very sim-
ilar, while the statement for the Euclidean condition number is a simple conse-
quence.

For a practical application of this theorem, let us consider f(x) ∈ Cm×m having
the eigenvalues λ1(f(x)) ∼ |x− x0|2 and A ≥ λj(f(x)) ≥ a > 0, j = 2, . . . ,m a.e. in
I. Therefore we have

Q(x)Hdiag(λ1(f(x)), . . . , λm(f(x)))Q(x)

with Q(x) orthogonal matrix. Let us suppose, for simplicity, that Q(x) and λi(f(x))
are continuous functions in x = x0. Then, by choosing

g(x) = Q(x0)Hdiag(|x− x0|2, 1, . . . , 1)Q(x0),

∀z ∈ C2 we have limx→x0

zHf(x)z
zHg(x)z

= δ > 0, while for any ε > 0, for any x ∈ I/B(x0, ε),

the quadratic form associated with g(x) is well separated from zero. Therefore we
deduce that there exist two positive constants r and R for which, for any z and any
x ∈ I,

r ≤ λ(g−1f) ≤ R,
which means that f ∼ g (g ∈ Rf). Now the study of the asymptotic behavior of
the extreme eigenvalues of An,m(f) is easily reduced to the same study regarding
An,m(g). Since Q(x0) is a constant m×m matrix, by direct calculation of the Fourier
coefficients of g, we deduce that there exists a permutation matrix P for which

An,m(g) = In ⊗Q(x0)HPTdiag(An(|x− x0|2), In(m−1))PIn ⊗Q(x0).

Owing to the fact that the condition number of the scalar Toeplitz matrix An(|x−x0|2)
behaves like n2 [6, 31], we directly deduce the same thing for An,m(f).

40 STEFANO SERRA

4. The preconditioning strategies. Concerning the preconditioning strate-
gies, it seems quite natural to follow the same ideas as those for the scalar case.
When f is positive definite, a simple block band Toeplitz (BBT) preconditioner is
easily defined by g(x) =

∑q
k=−q Ake

ikx: the cost of the solution of a system with

coefficient matrix An,m(g) is asymptotic to O(nq2m3) by using a generalized band
solver [17] or O(nqm3) by adapting the algorithm proposed in [15] to this kind of
block Toeplitz matrix with m×m unstructured blocks. The matrix algebra approach
(for instance, based on circulant τ , Hartley [9, 11, 20, 38, 4, 32, 5]) assures a good
clustering (only O(m) outliers) with an asymptotic cost per iteration of O([n log n]m3)
ops.

On the other hand, in the nonnegative case, the clustering properties of the ma-
trix algebra preconditioned matrices are not so satisfactory. By following an argument
such as that in [35], it follows that the clusters are weak, while the BBT precondi-
tioning (when the preconditioner is easy to construct) is better since, in many cases,
the optimality of the resulting PCG method is preserved.

4.1. Distribution and clustering. From the density result stated in Theorem
3.6, it follows that the spectrum of Pn,m(f ; g) is asymptotically “distributed” in E =⋃
i≤m ER(λi(g

−1f)) and is strictly contained in its convex hull. However, if E = [a, b],
0 < a < b < ∞, then the spectral condition number of the preconditioned matrix
Pn,m(f ; g) that is bounded by b/a describes very precisely the convergence rate of the
PCG method owing to the distribution of the eigenvalues—a distribution which does
not allow the presence of a cluster neither proper nor general. We stress that this
situation is not academic but frequently occurs since, in general, the set E can be
looked at as a nontrivial closed interval or as the union of a finite collection of closed
nontrivial intervals.

As a consequence, if we want to devise PCG methods showing superlinear conver-
gence, or, in other words, if we want to obtain a strong cluster around the unity, then
we have to slightly modify the definition of the preconditioner by allowing the degree
q to become dependent on n. In effect, it is sufficient to extend the preconditioning
technique developed in [28, 32] for the scalar case. More precisely, the generating
function of the preconditioner is defined as gn(x) =

∑q
k=−q Bke

ikx, q = q(n), where

1. limn→∞ q(n) =∞, gn is positive definite a.e.
2. The cost of the solution of a system An,m(gn)y = c must be bounded by
O(m3n log n) ops (that is, by the asymptotic cost of a product between
An,m(f) by a generic vector when a block fast Fourier transform is used
[40]).

3. limn→∞ ‖g−
1
2

n fg
− 1

2
n − Im‖2 = 0.

To meet requirement (2), we can choose q(n) =
√

log n if we use a classic band
solver [17] or q(n) = logn if we use a specialized multigrid method like the one de-
scribed in [15, 16]. The requirement (3) is a delicate task when the minimal eigenvalue
of f(x) has essential zeros. In the strictly positive definite case, the Fourier choice

given by gn(x) =
∑q(n)
k=−q(n)Ake

ikx, i.e., Bk = Ak, can be a suitable one when the

function f is regular enough.

4.2. A numerical experiment. In this paragraph we perform some numerical
tests in order to make evident the effectiveness of the theoretical scheme. Let us

ASYMPTOTIC SPECTRAL RESULTS 41

consider the following generating function (with m = 2):

f(x) =

[
20 sin2(x/2) |x|5/2
|x|5/2 20 sin2(x/2)

]
.

We may prove that 0 = mf < m̂f , M̂f < Mf = 20 + π
5
2 , and the eigenvalues, for x

in a neighborhood of 0, are both asymptotical to |x|2. Therefore An,2(f) is positive
definite and ill conditioned and, in light of Theorem 3.1, we choose

g(x) =

[
20 sin2(x/2) 0

0 20 sin2(x/2)

]
.

It is easy to verify that, for any z and any x ∈ I, the Rayleigh quotient related to
f and g is contained in a positive bounded interval [r,R], where r = 1 − π 5

2 /20 and

R = 1 + π
5
2 /20. Then the eigenvalues of the preconditioned matrix A−1

n,2(g)An,2(f)
are in the open set (r,R). Therefore, we expect that the number of iterations Nit
in order to reach the solution of a linear system An,2(f)x = b, by using the PCG
method with An,2(f) as preconditioner, is constant with respect to n. In addition,
since both the eigenvalues have a zero of order two and are positive for x 6= 0 we find
that the condition number of An,2(f), up to a positive constant (see Theorem 3.9),
grows like n2. Finally, in light of the powerful results of Axelsson and Lindskog [1],
we expect that the conjugate gradient method, when applied with no preconditioning,
requires O(n) iterations in order to find the solution within a preassigned accuracy.
All of these theoretical foresights are fully confirmed by the following numerical com-
putations:

• For n = 64, m = 2 (dimension equal to 128), we have

k2(An,2(f)) = 3395.5, k2(A−1
n,2(g)An,2(f)) = 12.4.

• For n = 256, m = 2 (dimension equal to 512), we have

k2(An,2(f)) = 51745.6, k2(A−1
n,2(g)An,2(f)) = 14.2.

It is evident that the condition number of the preconditioned matrix is practically
constant while the condition number of the original coefficient matrix grows like n2

and, in fact, the ratio

k2(A4∗n,2(f))

k2(An,2(f))

for n = 64 is equal to 15.2, which is close, as predicted, to 42 = 16. We point out
that the preconditioning matrix is a block tridiagonal matrix whose related systems
can be very efficiently solved by using classical band solvers [17] or multigrid schemes
[15, 16]. Finally, Table 1 illustrates the optimality of the proposed PCG method in
the sense of the invariance of the number of iterations with regard to the dimension
n. On the other hand, for the nonpreconditioned system, as the quantity Nit behaves
asymptotically as in

√
k2(An,2(f)), we expect the related number of iterations to grow

as in
√
k2(An,2(f)) ∼ cn. This expectation also is fully confirmed in the subsequent

table, where we report the number of iterations Nit to reach the solution within an
accuracy ε = 10−7 with the zero vector as initial guess and the vector of all ones as
data vector b.

42 STEFANO SERRA

Table 1

Dim Nonpreconditioned system Preconditioned system
128 33 10
256 72 10
512 150 10

Table 2

Dim Nonpreconditioned system Preconditioned system
128 154 26
256 324 29
512 666 30

In light of Theorem 3.6, since the two eigenvalue functions of g−1f are continuous
and cover the range [r,R], we know that the eigenvalues of Pn,2(f ; g) are distributed
“uniformly” as per a sampling of λ1(g−1f) and λ2(g−1f) on a uniform mesh of [0, π].
Since the estimates (4) and (5) are derived [1] by minimizing the Chebyshev norm of
a class of polynomials on the continuous set [r,R], it is natural to think that in our
case, wherein the eigenvalues are well distributed on [r,R], these estimates are tight.

By calculating N1 and N2, we found 33.5 and 31.7, respectively.

Surprisingly enough, the actual number of iterations is, for all the considered di-
mensions, equal to 10, which is far from N1 and N2. However, the previous numerical
experiment was done with a special choice of the data vector b. Actually, this vector
has a “nongeneric” decomposition with respect to the frequency basis (eigenvectors
of the circulant class [13] or eigenvectors of the τ algebra [3]), because it has strong
components in low frequency and negligible components in high frequency.

Therefore, we considered as b a random vector which has substantial components
in high frequency, and the results are in Table 2.

The observed number of iterations tends to the value indicated by the finer esti-
mate N2, so this is also an unrigorous confirmation of the tightness of the Axelsson
and Lindskog bounds when the eigenvalues are uniformly distributed.

Acknowledgments. I am thankful to Professor Buttazzo for illuminating con-
versations. Last but not least, this paper is dedicated to the mathematicians of my
family: Giovanni, Ottavio, and Wanda.

REFERENCES

[1] O. Axelsson and G. Lindskog, The rate of convergence of the preconditioned conjugate gra-
dient method, Numer. Math., 52 (1986), pp. 499–523.

[2] O. Axelsson and M. Neytcheva, The algebraic multilevel iteration methods—Theory and
applications, Proc. 2nd Int. Coll. on Numerical Analysis, D. Bainov, ed., Plovdiv, Bulgaria,
August 1993, pp. 13–23.

[3] D. Bini and M. Capovani, Spectral and computational properties of band symmetric Toeplitz
matrices, Linear Algebra Appl., 52/53 (1983), pp. 99–126.

[4] D. Bini and F. Di Benedetto, A new preconditioner for the parallel solution of positive
definite Toeplitz linear systems, Proc. 2nd SPAA, Crete, Greece, July 1990, pp. 220–223.

[5] D. Bini and P. Favati, On a matrix algebra related to the discrete Hartley transform, SIAM
J. Matrix Anal. Appl., 14 (1993), pp. 500–507.

[6] R. H. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating func-
tions, IMA J. Numer. Anal., 11 (1991), pp. 333–345.

ASYMPTOTIC SPECTRAL RESULTS 43

[7] R. H. Chan and W. Ching, Toeplitz–circulant preconditioners for Toeplitz systems and their
applications to queueing network with batch arrivals, SIAM J. Sci. Comput., 17 (1996),
pp. 762–772.

[8] R. H. Chan and M. Ng, Conjugate gradient method for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[9] R. H. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant precon-
ditioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104–119.

[10] R. H. Chan and P. Tang, Fast band–Toeplitz preconditioners for Hermitian Toeplitz systems,
SIAM J. Sci. Comput., 15 (1994), pp. 164–171.

[11] T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 766–771.

[12] E. Cinlar, Introduction to Stochastic Processes, Prentice–Hall, Englewood Cliffs, NJ, 1975.
[13] P. Davis, Circulant Matrices, John Wiley and Sons, New York, 1979.
[14] F. Di Benedetto, G. Fiorentino, and S. Serra, C.G. Preconditioning for Toeplitz Matrices,

Comput. Math. Appl., 25 (1993), pp. 35–45.
[15] G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991),

pp. 283–305.
[16] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite block

Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comput., 17 (1996),
pp. 1068–1081.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1983.

[18] A. Greenbaum, Comparison of splittings used with the conjugate gradient algorithm, Numer.
Math., 33 (1979), pp. 181–194.

[19] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd Edition, Chelsea,
New York, 1984.

[20] T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 767–777.

[21] X. Jin, Fast iterative solvers for symmetric Toeplitz systems - A survey and an extension, J.
Comput. Appl. Math., 66 (1996), pp. 315–321.

[22] M. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel
Dekker, New York, 1989.

[23] R. Preuss, Toeplitz matrices and control theory, in Workshop on Toeplitz Matrices in Filtering
and Control, Santa Barbara, CA, August 1996.

[24] W. Rudin, Real and Complex Analysis, McGraw–Hill, NY, 1985.
[25] S. Serra, Preconditioning strategies for asymptotically ill–conditioned block Toeplitz systems,

BIT, 34 (1994), pp. 579–594.
[26] S. Serra, Conditioning and solution of Hermitian (block) Toeplitz systems by means of pre-

conditioned conjugate gradient methods, in Proc. Advanced Signal Processing Algorithms,
Architectures, and Implementations—SPIE conference, F. Luk, ed., San Diego, CA, July
1995, pp. 326–337.

[27] S. Serra, Preconditioning strategies for Hermitian Toeplitz systems with nondefinite generat-
ing functions, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1007–1019.

[28] S. Serra, Optimal, quasi-optimal and superlinear preconditioners for asymptotically ill-
conditioned positive definite Toeplitz matrices, Math. Comp., 66 (1997), pp. 651–665.

[29] S. Serra, New PCG based methods for Hermitian Toeplitz systems, Calcolo, 32 (1995), pp. 153–
176.

[30] S. Serra, The extension of the concept of generating function to a class of preconditioned
Toeplitz matrices, Linear Algebra Appl., 267 (1997), pp. 139–161.

[31] S. Serra, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra
Appl., 270 (1998), pp. 109–129.

[32] S. Serra, Superlinear PCG Methods for Symmetric Toeplitz Systems, Math. Comp., to appear.
[33] S. Serra, A Note on the Preconditioning for Block Toeplitz Systems having Nonnegative Def-

inite Matrix-Valued Generating Functions, Technical report 342, Dept. of Mathematics,
Univ. of Genova, 1997.

[34] S. Serra, Spectral and Computational Analysis of Preconditioned Block Toeplitz Matrices
having Nonegative Definite Matrix-Valued Generating Functions, manuscript.

[35] V. Strela and E. E. Tyrtyshnikov, Which circulant preconditioner is better?, Math. Comp.,
65 (1996), pp. 137–150.

[36] P. Tilli and M. Miranda, Asymptotical Spectrum of Hermitian Block Toeplitz Matrices and
Preconditioning Results, SIAM J. Matrix Anal. Appl., to appear.

[37] E. E. Tyrtyshnikov and N. L. Zamarashkin, Spectra of multilevel Toeplitz matrices: Ad-

44 STEFANO SERRA

vanced theory via simple matrix relationships, Linear Algebra Appl., 270 (1998), pp. 15–27.
[38] E. E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix

Anal. Appl., 13 (1992), pp. 459–473.
[39] E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and

clustering, Linear Algebra Appl., 232 (1996), pp. 1–43.
[40] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia,

1992.
[41] H. Widom, Toeplitz matrices, In Studies in Real and Complex Analysis, I. Hirshman Jr., Math.

Assoc. Amer., 1965.

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS OF
VANDERMONDE SYSTEMS ∗

JI-GUANG SUN†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 45–59

Abstract. Consider the primal Vandermonde system V (a)x = b and the dual Vandermonde
system V (a)T x = b, where V (a) is the Vandermonde matrix defined in terms of the vector a =
(α1, . . . , αn)T with distinct scalars α1, . . . , αn ∈ C. In view of the special structure of the matrix
V (a), we define structured backward errors (SBEs) of the Vandermonde systems and describe a
technique for obtaining upper and lower bounds for the SBEs. The results are illustrated by numerical
examples.

Key words. stability, Vandermonde systems, backward perturbations

AMS subject classifications. 15A06, 15A60, 65F05, 65F35

PII. S0895479897314759

1. Introduction. Let x̃ be an approximate solution to the linear system Ax = b.
In general, there are many perturbations ∆A and ∆b such that x̃ is the solution to
the perturbed systems (A + ∆A)x = b + ∆b. It may well be asked, how close is the
nearest system for which x̃ is the solution? It is known [5], [7], [8], [9] that there
are various approaches to define backward errors (BEs) for measuring the distance
between the perturbed systems and the original system, such as the BE η(x̃) defined
by

η(x̃) = min

{∥∥∥∥(∆A

‖A‖F ,
∆b

‖b‖2

)∥∥∥∥
F

: (A+ ∆A)x̃ = b+ ∆b

}
,

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖2 defines the Euclidean vector norm.
Note that a BE also can be called an optimal backward perturbation bound [9].

An algorithm for computing the solution x to the system Ax = b is called back-
ward stable if, for any A and b, it produces a computed x̃ with a small BE (see, e.g.,
[3], [7]). Consequently, to find an explicit expression of a BE may be very useful for
testing the stability of practical algorithms. It has been proved [9, Remark 3.5] that
the BE η(θ)(x̃) defined by

(1.1) η(θ)(x̃) = min{‖(∆A, θ∆b)‖F : (A+ ∆A)x̃ = b+ ∆b}
has the expression

(1.2) η(θ)(x̃) =
θ‖x̃‖2√

1 + θ2‖x̃‖22
· ‖r̂‖2‖x̃‖2 with r̂ = b−Ax̃.

Taking θ = ‖A‖F /‖b‖2 ≡ θA in (1.1) and (1.2), from η(x̃) = η(θA)(x̃)/‖A‖F we get
an expression of η(x̃).

∗Received by the editors January 2, 1997; accepted for publication (in revised form) by N. J.
Higham September 19, 1997; published electronically September 15, 1998.

http://www.siam.org/journals/simax/20-1/31475.html
†Department of Computing Science, Ume̊a University, S-901 87 Ume̊a, Sweden (jisun@cs.umu.se).

The research of this author was supported by Swedish Natural Science Research Council contract
M-AA/MA 06952-303 and by the Department of Computing Science, Ume̊a University.

45

46 JI-GUANG SUN

In this paper, we consider the following Vandermonde systems:

(1.3) Primal : V (a)x = b;

and

(1.4) Dual : V (a)Tx = b,

where V (a) ∈ Cn×n with a = (α1, . . . , αn)T ∈ Cn is the Vandermonde matrix defined
by

V (a) =

1 1 · · · 1
α1 α2 · · · αn
...

...
...

αn−1
1 αn−1

2 · · · αn−1
n

 ,

in which α1, . . . , αn are distinct scalars.

Let x̃ be an approximate solution to (1.3) or (1.4). Since the matrix V (a) has a
special structure, it is pertinent to define a BE by using a restricted class of pertur-
bations ∆V that V (a) + ∆V are Vandermonde matrices too. We now define the SBE

η
(θ)
P (x̃) of the system (1.3) by

(1.5) η
(θ)
P (x̃) = min{‖(V (ã)− V (a), θ∆b)‖F : V (ã)x̃ = b+ ∆b}

and the SBE η
(θ)
D (x̃) of the system (1.4) by

(1.6) η
(θ)
D (x̃) = min{‖(V (ã)− V (a), θ∆b)‖F : V (ã)T x̃ = b+ ∆b},

where the matrices V (ã) are Vandermonde matrices defined in terms of the vectors ã
and θ is a positive parameter. The parameter θ allows us some flexibility.

An algorithm for computing the solution x to the structured system (1.3) or (1.4)
is called backward stable (or strongly stable [3]) if, for any V (a) and b, it produces a
computed x̃ with a small SBE. Consequently, finding explicit expressions or lower and

upper bounds for the SBEs η
(θ)
P (x̃) and η

(θ)
D (x̃) may be useful for testing the stability

of practical algorithms.

We start with the simplest case: n = 2. Let x̃ be an approximate solution to the
system (1.3) or (1.4). For the system (1.3), by (1.5) and n = 2 we have

η
(θ)
P (x̃) = min{‖(∆a, θ∆b)‖F : V (a+ ∆a)x̃ = b+ ∆b}.

Write

∆a =

(
ε1
ε2

)
, ∆b =

(
δ1
δ2

)
, x̃ =

(
ξ1
ξ2

)
, r̂ = b− V (a)x̃ =

(
ρ1

ρ2

)
.

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 47

Then
(1.7)

η
(θ)
P (x̃) = min

{
‖(ε1, ε2, θδ1, θδ2)‖2 :

(
0 0
ε1 ε2

)(
ξ1
ξ2

)
=

(
ρ1 + δ1
ρ2 + δ2

)}

=

θ2ρ2
1 + min

ε1,ε2,δ2∈C

∥∥∥∥∥∥
 ε1

ε2
θδ2

∥∥∥∥∥∥
2

2

:

(
ξ1, ξ2,−1

θ

) ε1
ε2
θδ2

 = ρ2

1/2

=

θρ2
1 +

∥∥∥∥∥
(
ξ1, ξ2,−1

θ

)†
ρ2

∥∥∥∥∥
2

2

1/2

=
θ‖x̃‖2√

1 + θ2‖x̃‖22

√
‖r̂‖22
‖x̃‖22

+ θ2ρ2
1.

Similarly, for the system (1.4), by (1.6) and n = 2 we have
(1.8)

η
(θ)
D (x̃) = min{‖(∆a, θ∆b)‖F : V (a+ ∆a)T x̃ = b+ ∆b}

= min

‖(ε1, ε2, θδ1, θδ2)‖2 :

(
ξ2I2, −1

θ
I2

)
ε1
ε2
θδ1
θδ2

 =

(
ρ1

ρ2

)
=

∥∥∥∥∥
(
ξ2I2, −1

θ
I2

)†(
ρ1

ρ2

)∥∥∥∥∥
2

=
θ‖x̃‖2√
1 + θ2ξ2

2

· ‖r̂D‖2
‖x̃‖2 ,

where r̂D = b− V (a)T x̃ = (ρ1, ρ2)T . From (1.2) and (1.7)–(1.8) we get

η(θ)(x̃) ≤ η(θ)
P (x̃), η

(θ)
D (x̃) ≤

√
1 + θ2‖x̃‖22η(θ)(x̃),

which shows that the SBEs η
(θ)
P (x̃) and η

(θ)
D (x̃) may be larger than the BE η(θ)(x̃) by

a factor of about θ‖x̃‖2, and in some cases the scalar θ‖x̃‖2 may be extremely large.
Consequently, for the Vandermonde systems, it is necessary to study the SBEs

η
(θ)
P (x̃) and η

(θ)
D (x̃). Note that if n > 2, then the objective functions and the con-

straints in (1.5) and (1.6) are no longer linear, as in the symmetric case [9] or in the
Toeplitz case [5], [10]; for this reason, the problem of finding explicit expressions of

the SBEs η
(θ)
P (x̃) and η

(θ)
D (x̃) becomes very complicated.

For simplicity, we now linearize the objective functions in (1.5) and (1.6). Let x̃

be an approximate solution to (1.3). Define the linearized SBE β
(θ)
P (x̃) by

(1.9) β
(θ)
P (x̃) = min{‖(∆a, θ∆b)‖F : V (a+ ∆a)x̃ = b+ ∆b}.

Similarly, the linearized SBE β
(θ)
D (x̃) for the system (1.4) is defined by

(1.10) β
(θ)
D (x̃) = min{‖(∆a, θ∆b)‖F : V (a+ ∆a)T x̃ = b+ ∆b}.

Obviously, the linearized SBE β
(θ)
P (x̃) (or β

(θ)
D (x̃)) and the SBE η

(θ)
P (x̃) (or η

(θ)
D (x̃))

have different meanings. But in the case of n = 2, the SBEs β
(θ)
P (x̃) and β

(θ)
D (x̃)

coincide with η
(θ)
P (x̃) and η

(θ)
D (x̃), respectively.

48 JI-GUANG SUN

The problem of finding explicit expressions of the linearized SBEs β
(θ)
P (x̃) and

β
(θ)
D (x̃) is also a difficult one. In this paper, we shall describe a technique for obtaining

upper and lower bounds for the SBEs β
(θ)
P (x̃), β

(θ)
D (x̃), η

(θ)
P (x̃), and η

(θ)
D (x̃). The

corresponding bounds will be given in sections 2 through 4, respectively, and the
results will be illustrated by numerical examples in section 5.

Bartels and Higham [1] already considered linearized SBEs for Vandermonde sys-
tems, including for componentwise measures of the perturbations. In section 5 we
shall give a comparison between our results and those of [1].

2. The linearized SBE β
(θ)
P (x̃). In this section, we describe a technique for

obtaining upper and lower bounds for the SBE β
(θ)
P (x̃). An upper bound for β

(θ)
P (x̃)

is derived with an appropriate use of the Brouwer fixed-point theorem, and a lower

bound for β
(θ)
P (x̃) is obtained using standard linear algebra technique. The same

technique will be used for obtaining upper and lower bounds for the SBEs β
(θ)
D (x̃),

η
(θ)
P (x̃), and η

(θ)
D (x̃) in sections 3 through 4, where we shall omit details.

2.1. An equivalent form of the constraint V (a+ ∆a)x̃ = b+ ∆b. Let

(2.1)
a = (α1, . . . , αn)T ∈ Cn, ∆a = (ε1, . . . , εn)T ∈ Cn,

∆V = V (a+ ∆a)− V (a), r̂ = b− V (a)x̃.

Then the constraint V (a+ ∆a)x̃ = b+ ∆b in (1.9) can be written as

(2.2) ∆V x̃ = r̂ + ∆b,

where

(2.3) ∆V = (νlj) with νlj =

0, l = 1,

l−1∑
k=1

(
l − 1
k

)
αl−1−k
j εkj , l > 1,

in which the coefficients
(

l − 1
k

)
= (l−1)!

(l−1−k)!k! for k = 0, 1, . . . , l − 1.

Let
(2.4)
∆b = (δ1, . . . , δn)T , ∆b2 = (δ2, . . . , δn)T , r̂ = (ρ1, . . . , ρn)T , r̂2 = (ρ2, . . . , ρn)T ,

x̃ = (ξ1, . . . , ξn)T , ∆a(j) = (εj1, . . . , ε
j
n)T , j = 2, . . . , n− 1,

and define the matrices G1, . . . , Gn−1 ∈ C(n−1)×n and TP ∈ C(n−1)×(2n−1) by
(2.5)

G1 =

1

2
. . .

n− 1

1 1 · · · 1
α1 α2 · · · αn
...

...
...

αn−2
1 αn−2

2 · · · αn−2
n

ξ1
ξ2

. . .

ξn

 ,

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 49

(2.6) Gj = D
(n−1)
j

0 0 · · · 0
...

...
...

0 0 · · · 0
1 1 · · · 1
α1 α2 · · · αn
...

...
...

αn−1−j
1 αn−1−j

2 · · · αn−1−j
n

ξ1

ξ2
. . .

ξn

 ,

with the (n− 1)× (n− 1) diagonal matrices

D
(n−1)
j = diag

(
0, . . . , 0,

(
j
j

)
,

(
j + 1
j

)
, . . . ,

(
n− 1
j

))
, j = 2, . . . , n− 1,

and

(2.7) TP =

(
G1, −1

θ
In−1

)
.

Then (2.2) is equivalent to

(2.8)

δ1 = −ρ1,

TP

(
∆a
θ∆b2

)
= r̂2 − (G2∆a(2) + · · ·+Gn−1∆a(n−1)).

2.2. Upper bounds for β
(θ)
P (x̃). Let t = θ∆b2, and consider the nonlinear

system

(2.9)

(
∆a
t

)
= T †P

[
r̂2 − (G2∆a(2) + · · ·+Gn−1∆a(n−1))

]
,

where ∆a,∆b2, r̂2,∆a
(2), . . . ,∆a(n−1), G2, . . . , Gn−1, and TP are defined by (2.1) and

(2.4)–(2.7). Since the (n− 1)× (2n− 1) matrix TP is full rank, we have TPT
†
P = In−1,

so multiplying (2.9) on the left by TP yields the second equation of (2.8). This shows
that any solution to the equation (2.9) is a solution to the second equation of (2.8).

For this reason, if (∆̂a
T
, t̂T)T is a solution to (2.9), then

(2.10) β
(θ)
P (x̃) ≤

√
θ2ρ2

1 + ‖(∆̂aT , t̂T)‖22.

Let z = (∆aT , tT)T ∈ C2n−1, and regard the elements of z as independent vari-
ables. Then the function F (z), defined by

(2.11) F (z) = T †P
[
r̂2 − (G2∆a(2) + · · ·+Gn−1∆a(n−1))

]
,

can be regarded as a continuous mapping MP : C2n−1 → C2n−1, and any fixed point
of the mappingMP is a solution to the nonlinear system (2.9). Thus, the problem of

finding an upper bound for β
(θ)
P (x̃) reduces to the problem of showing the existence

of a fixed point of the continuous mapping MP and determining a bound on its size.

50 JI-GUANG SUN

Let

(2.12) ρP = ‖T †Pr̂2‖2, γj = ‖T †PGj‖2, j = 2 : n− 1, γ = γ2 + · · ·+ γn−1.

It can be verified that if ρP satisfies

(2.13) ρP < 1/(4γ),

then the quadratic equation

(2.14) γζ2 − ζ + ρP = 0

has two positive roots, and the smallest positive root ζP can be expressed by

(2.15) ζP = 2ρP/(1 +
√

1− 4γρP).

We now define

SζP = {z ∈ C2n−1 : ‖z‖2 ≤ ζP}

and assume

(2.16) ζP ≤ 1, i.e., 2ρP/(1 +
√

1− 4γρP) ≤ 1.

SζP is obviously a bounded closed convex set of C2n−1. Moreover, from (2.11) and
(2.14) we see that if z ∈ SζP , then

‖F (z)‖2 ≤ ρP + γ‖z‖22 ≤ ρP + γζ2
P = ζP,

which shows that the continuous mapping MP expressed by (2.11) maps SζP into
SζP . Thus, by the Brouwer fixed-point theorem, the mapping MP has a fixed point
in SζP ; i.e., under the hypotheses (2.13) and (2.16), the equation (2.9) has a solution

(∆̂a
T
, t̂T)T satisfying ‖(∆̂aT , t̂T)T ‖2 ≤ ζP. Combining this fact with (2.10) gives

(2.17) β
(θ)
P (x̃) ≤

√
θ2ρ2

1 + ζ2
P ≡ u(β

(θ)
P).

Note that the relation

(2.18) ρP < min{1/(4γ), 1/2}

implies (2.13) and (2.16). Consequently, we have proved that under the condition
(2.18) the estimate (2.17) holds.

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 51

2.3. Lower bounds for β
(θ)
P (x̃). Assume that the minimum β

(θ)
P (x̃) of (1.9)

achieves at ∆a∗ and ∆b∗. Then from (1.9) and (2.8),

(2.19) β
(θ)
P (x̃) =

√
θ2ρ2

1 + ‖(∆aT∗ , θ∆bT2∗)‖22,

where ∆a∗ and ∆b2∗ satisfy the second equation of (2.8). By the results of section
2.2,

(2.20) ‖∆a∗‖2 ≤ ‖(∆aT∗ , θ∆bT2∗)‖2 ≤ ζP,
where ζP is expressed by (2.15).

Let TP be the (n− 1)× (2n− 1) matrix defined by (2.7), and let

(2.21) TP = U(Σ, 0)QH with Σ =

 σ1

. . .

σn−1

 , σ1 ≥ · · · ≥ σn−1 > 0

be a singular value decomposition of TP, where U and Q are unitary. Substituting
(2.21) and ∆a∗, ∆b2∗ into the second equation of (2.8) and letting

(2.22) QH
(

∆a∗
θ∆b2∗

)
=

(
w
∗
)

with w ∈ Cn−1,

we get

w = Σ−1UH r̂2 − Σ−1UH(G2∆a
(2)
∗ + · · ·+Gn−1∆a

(n−1)
∗).

Combining it with (2.20)–(2.22) gives

(2.23)

∥∥∥∥(∆a∗
θ∆b2∗

)∥∥∥∥
2

≥ ‖w‖2

≥ ∥∥Σ−1UH r̂2

∥∥
2
−
∥∥∥Σ−1UH

(
G2∆a

(2)
∗ + · · ·+Gn−1∆a

(n−1)
∗

)∥∥∥
2

≥
∥∥∥T †Pr̂2

∥∥∥
2
−
(
‖T †PG2‖2‖∆a∗‖22 + · · ·+ ‖T †PGn−1‖2‖∆a∗‖n−1

2

)
≥ ρP − (γ2ζ

2
P + · · ·+ γn−1ζ

n−1
P) ≡ ωP.

Consequently, we have β
(θ)
P (x̃) ≥√θ2ρ2

1 + ω2
P ≡ l(β(θ)

P) if ωP ≥ 0.

2.4. Estimates of β
(θ)
P (x̃). Overall, we have the following results.

Theorem 2.1. Let x̃ be a computed solution to the primal Vandermonde system

(1.3), and let β
(θ)
P (x̃) be the SBE defined by (1.9). Moreover, let γ2, . . . , γn−1 and ρP

be defined by (2.12). If ρP satisfies

(2.24) ρP < min{1/(4γ), 1/2} with γ = γ2 + · · ·+ γn−1,

then

(2.25) β
(θ)
P (x̃) ≤

√
θ2ρ2

1 + ζ2
P ≡ u(β

(θ)
P),

52 JI-GUANG SUN

where ζP is defined by (2.15). Moreover, let ωP be defined by (2.23). Then under the
conditions (2.24) and ωP ≥ 0, we have

(2.26) β
(θ)
P (x̃) ≥

√
θ2ρ2

1 + ω2
P ≡ l(β(θ)

P).

The estimates (2.25) and (2.26) imply β
(θ)
P (x̃) ≈√θ2ρ2

1 + ρ2
P if ρP � 1.

3. The linearized SBE β
(θ)
D (x̃). In this section we present upper and lower

bounds for the SBE β
(θ)
D (x̃).

Let ∆V be defined by (2.1). Then the constraint V (a+ ∆a)T x̃ = b+ ∆b in (1.10)
can be written as

(3.1) ∆V T x̃ = r̂D + ∆b with r̂D = b− V (a)T x̃.

Let x̃ and ∆a(j) (j = 2, . . . , n− 1) be as in (2.4), and let

(3.2)
Hj = ξj+1In +

(
j + 1
j

)
ξj+2Da + · · ·+

(
n− 1
j

)
ξnD

n−1−j
a

with Da = diag(α1, . . . , αn), j = 1, 2, . . . , n− 1,

and

(3.3) TD =

(
H1, −1

θ
In

)
.

Then by the expression (2.3), the equation (3.1) is equivalent to

(3.4) TD

(
∆a
θ∆b

)
= r̂D − (H2∆a(2) + · · ·+Hn−1∆a(n−1)).

Consider the nonlinear system

(3.5)

(
∆a
θ∆b

)
= T †D[r̂D − (H2∆a(2) + · · ·+Hn−1∆a(n−1))].

Note that the n×2n matrix TD is full rank. By the same argument as above in section

2.2, if (∆̂a
T
, θ∆̂b

T
)T is a solution to (3.5), then it is also a solution to (3.4), and so

we have β
(θ)
D (x̃) ≤ ‖(∆̂aT , θ∆̂bT)T ‖2.

Using the technique described in sections 2.2 through 2.3, we get the following
results.

Theorem 3.1. Let x̃ be a computed solution to (1.4), and let β
(θ)
D (x̃) be the SBE

defined by (1.10). Define ρD and ηj by

(3.6) ρD = ‖T †Dr̂D‖2, ηj = ‖T †DHj‖2, j = 2, . . . , n− 1,

where Hj and TD are the matrices defined by (3.2) and (3.3). If ρD satisfies

(3.7) ρD < min{1/(4η), 1/2} with η = η2 + · · ·+ ηn−1,

then

(3.8) β
(θ)
D (x̃) ≤ 2ρD/(1 +

√
1− 4ηρD) ≡ u(β

(θ)
D).

Moreover, under the condition (3.7), we have

(3.9) β
(θ)
D (x̃) ≥ ρD −

(
η2u(β

(θ)
D)2 + · · ·+ ηn−1u(β

(θ)
D)n−1

)
≡ l(β(θ)

D).

The estimates (3.8) and (3.9) imply β
(θ)
D (x̃) ≈ ρD if ρD � 1.

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 53

4. The SBEs η
(θ)
P (x̃) and η

(θ)
D (x̃). In this section we present upper and lower

bounds for the SBEs η
(θ)
P (x̃) and η

(θ)
D (x̃).

Let V (a) and V (ã) be the Vandermonde matrices, and let ∆V and ∆a be as in
(2.1). Then

(4.1) ‖(V (ã)− V (a), θ∆b)‖F =
√
‖∆V ‖2F + θ2‖∆b‖22.

By the expression (2.3), the matrix ∆V can be expressed by

(4.2) ∆V = ∆V (1) + ∆V (2) + · · ·+ ∆V (n−1),

where ∆V (j) (j = 1, 2, . . . , n− 1) ∈ Cn×n are defined by

(4.3) ∆V (j) = Aj [diag(ε1, . . . , εn)]j

with

(4.4) Aj = D
(n)
j

0 0 · · · 0
...

...
...

0 0 · · · 0
1 1 · · · 1
α1 α2 · · · αn
...

...
...

αn−1−j
1 αn−1−j

2 · · · αn−1−j
n

∈ Cn×n,

in which D
(n)
j are n× n diagonal matrices expressed by

D
(n)
j = diag

(
0, . . . , 0,

(
j
j

)
,

(
j + 1
j

)
, . . . ,

(
n− 1
j

))
.

Observe that (4.3) and (4.4) imply that

‖∆V (1)‖F = ‖M∆a‖2,
where

(4.5) M = diag(µ1, . . . , µn) with µk =

√√√√n−1∑
l=1

(l|αk|l−1)
2 ≥ 1, k = 1, . . . , n.

Moreover, from (4.3),

‖∆V (j)‖F ≤ ‖AjM−j‖2‖M∆a‖j2, j = 2, . . . , n− 1.

Hence, we have

(4.6)

√
‖∆V ‖2F + θ2‖∆b‖22 ≤

√√√√√‖∆V (1)‖F +
n−1∑
j=2

‖∆V (j)‖F
2

+ θ2‖∆b‖22

≤
√
‖∆V (1)‖2F + θ2‖∆b‖22 +

n−1∑
j=2

‖∆V (j)‖F

≤ ‖(M∆a, θ∆b)‖F +
n−1∑
j=2

‖AjM−j‖2‖(M∆a, θ∆b)‖jF

54 JI-GUANG SUN

and

(4.7)

√
‖∆V ‖2F + θ2‖∆b‖22 ≥

√√√√√‖∆V (1)‖F −
n−1∑
j=2

‖∆V (j)‖F
2

+ θ2‖∆b‖22

≥
√
‖∆V (1)‖2F + θ2‖∆b‖22 −

n−1∑
j=2

‖∆V (j)‖F

≥ ‖(M∆a, θ∆b)‖F −
n−1∑
j=2

‖AjM−j‖2‖(M∆a, θ∆b)‖jF .

Define β̂
(θ)
P (x̃) by

(4.8) β̂
(θ)
P (x̃) = min{‖(M∆a, θ∆b)‖F : V (a+ ∆a)x̃ = b+ ∆b}.

From (4.6)–(4.7) and (1.5) we see that if l(β̂
(θ)
P) ≤ β̂(θ)

P (x̃) ≤ u(β̂
(θ)
P), then

l(β̂
(θ)
P)−

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
P)j ≤ η(θ)

P (x̃) ≤ u(β̂
(θ)
P) +

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
P)j ,

where Aj and M are defined by (4.4) and (4.5), respectively.

We now consider the problem of finding upper and lower bounds u(β̂
(θ)
P) and

l(β̂
(θ)
P) for β̂

(θ)
P (x̃). By section 2.1, the constraint V (a + ∆a)x̃ = b + ∆b in (1.5) is

equivalent to (2.8). Using the nonsingular diagonal matrix M defined by (4.5), we
rewrite (2.8) as

(4.9)

 δ1 = −ρ1,

T̂P

(
M∆a
θ∆b2

)
= r̂2 − (Ĝ2M

2∆a(2) + · · ·+ Ĝn−1M
n−1∆a(n−1)),

where

(4.10) T̂P = TP

(
M−1 0

0 In−1

)
, Ĝj = GjM

−j , j = 2, . . . , n− 1.

Comparing (4.8) with (1.9) and comparing (4.9) with (2.8), we see that the problem

of finding upper and lower bounds for β̂
(θ)
P (x̃) is quite similar to that for β

(θ)
P (x̃).

Consequently, we can apply Theorem 2.1 to obtain corresponding bounds for β̂
(θ)
P (x̃),

and so we have the following result.
Theorem 4.1. Let x̃ be a computed solution to the primal Vandermonde system

(1.3), and let β̂
(θ)
P (x̃) and η

(θ)
P (x̃) be defined by (4.8) and (1.5), respectively. Moreover,

let ρ1 be the first element of the vector r̂ = b− V (a)x̃, the matrices Aj ,M be defined
by (4.4)–(4.5), and let

(4.11) ρ̂P = ‖T̂ †Pr̂2‖2, γ̂j = ‖T̂ †PĜj‖2, j = 2, . . . , n− 1,

where r̂2 is defined by (2.4) and T̂P, Ĝj are defined by (4.10). If ρ̂P satisfies

(4.12) ρ̂P < min{1/(4γ̂), 1/2} with γ̂ = γ̂2 + · · ·+ γ̂n−1,

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 55

then

β̂
(θ)
P (x̃) ≤

√
θ2ρ2

1 + ζ̂2
P ≡ u(β̂

(θ)
P)

and

(4.13) η
(θ)
P (x̃) ≤ u(β̂

(θ)
P) +

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
P)j ≡ u(η

(θ)
P),

where ζ̂P = 2ρ̂P/(1 +
√

1− 4γ̂ρ̂P). Moreover, let

ω̂P = ρ̂P − (γ̂2ζ̂
2
P + · · ·+ γ̂n−1ζ̂

n−1
P).

Then under the conditions (4.12) and ω̂P ≥ 0, we have

β̂
(θ)
P (x̃) ≥

√
θ2ρ2

1 + ω̂2
P ≡ l(β̂(θ)

P)

and

(4.14) η
(θ)
P (x̃) ≥ l(β̂(θ)

P)−
n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
P)j ≡ l(η(θ)

P).

Similarly, we define β̂
(θ)
D (x̃) by

(4.15) β̂
(θ)
D (x̃) = min{‖(M∆a, θ∆b)‖F : V (a+ ∆a)T x̃ = b+ ∆b}.

From (4.6)–(4.7) and (1.6) we see that if l(β̂
(θ)
D) ≤ β̂(θ)

D (x̃) ≤ u(β̂
(θ)
D), then

l(β̂
(θ)
D)−

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
D)j ≤ η(θ)

D (x̃) ≤ u(β̂
(θ)
D) +

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
D)j .

We now consider the problem of finding upper and lower bounds u(β̂
(θ)
D) and

l(β̂
(θ)
D) for β̂

(θ)
D (x̃). By section 3.1, the constraint V (a + ∆a)T x̃ = b + ∆b in (1.6) is

equivalent to (3.4). Using the nonsingular diagonal matrix M defined by (4.5), we
rewrite (3.4) as

(4.16) T̂D

(
M∆a
θ∆b

)
= r̂D − (Ĥ2M

2∆a(2) + · · ·+ Ĥn−1M
n−1∆a(n−1)),

where r̂D = b− V (a)T x̃ and

(4.17) T̂D = TD

(
M−1 0

0 In

)
, Ĥj = HjM

−j , j = 2, . . . , n− 1,

in which Hj and TD are defined by (3.2)–(3.3). Comparing (4.15) with (1.10) and
comparing (4.16) with (3.4), we see that the problem of finding upper and lower

bounds for β̂
(θ)
D (x̃) is quite similar to that for β

(θ)
D (x̃). Consequently, we can apply

Theorem 3.1 to obtain corresponding bounds for β̂
(θ)
D (x̃), and so we have the following

result.

56 JI-GUANG SUN

Theorem 4.2. Let x̃ be a computed solution to the dual Vandermonde system

(1.4), and let β̂
(θ)
D (x̃) and η

(θ)
D (x̃) be defined by (4.15) and (1.6), respectively. Moreover,

let the matrices Aj ,M be defined by (4.4)–(4.5), and

(4.18) ρ̂D = ‖T̂ †Pr̂D‖2, η̂j = ‖T̂ †DĤj‖2, j = 2, . . . , n− 1,

where r̂D = b− V (a)T x̃, and T̂D, Ĥj are defined by (4.17). If ρ̂D satisfies

(4.19) ρ̂D < min{1/(4η̂), 1/2} with η̂ = η̂2 + · · ·+ η̂n−1,

then

β̂
(θ)
D (x̃) ≤ 2ρ̂D/(1 +

√
1− 4η̂ρ̂D) ≡ u(β̂

(θ)
D)

and

(4.20) η
(θ)
D (x̃) ≤ u(β̂

(θ)
D) +

n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
D)j ≡ u(η

(θ)
D).

Moreover, under the condition (4.19), we have

β̂
(θ)
D (x̃) ≥ ρ̂D −

(
η̂2u(β̂

(θ)
D)2 + · · ·+ η̂n−1u(β̂

(θ)
D)n−1

)
≡ l(β̂(θ)

D)

and

(4.21) η
(θ)
D (x̃) ≥ l(β̂(θ)

D)−
n−1∑
j=2

‖AjM−j‖2u(β̂
(θ)
D)j ≡ l(η(θ)

D).

5. Numerical examples. In this section, we use numerical examples to illus-

trate the estimates for the SBEs β
(θ)
P (x̃), β

(θ)
D (x̃), η

(θ)
P (x̃), and η

(θ)
D (x̃). All computa-

tions were performed using MATLAB, version 4.2c. The relative machine precision is
2.22× 10−16.

Consider the Vandermonde systems (1.3) and (1.4), where V = V (a) is a 10× 10
Vandermonde matrix with a = (α1, . . . , α10) and b = (β1, . . . , β10)T .

Example 5.1 (see [2]). αi = 1/(i+ 2), βi = 1/2i−1, i = 1 : 10.
Example 5.2. αi = 1/(i+ 2), βi = (−1)i+1/2i−1, i = 1 : 10.
Example 5.3. αi = 1 + i/10, β = i+ 1/i, i = 1 : 10.
Example 5.4. αi = 1 + i/10, β = (−1)i+1i+ 1/i, i = 1 : 10.
The computed solutions are obtained by using the Björck–Pereyra algorithms [2],

[4, section 4.6], [6].
Taking θ = ‖V (a)‖F /‖b‖2 ≡ θV in (1.5), we get the SBE ηP(x̃):

ηP(x̃) ≡ η
(θV)
P (x̃)

‖V (a)‖F = min

{∥∥∥∥(‖∆V ‖F‖V (a)‖F ,
‖∆b‖2
‖b‖2

)∥∥∥∥
2

: (V (a) + ∆V)x̃ = b+ ∆b

}
.

Taking θ = ‖a‖2/‖b‖2 ≡ θa in (1.9), we get the linearized SBE βP(x̃):

βP(x̃) ≡ β
(θa)
P (x̃)

‖a‖2 = min

{∥∥∥∥(‖∆a‖2‖a‖2 ,
‖∆b‖2
‖b‖2

)∥∥∥∥
2

: V (a+ ∆a)x̃ = b+ ∆b

}
.

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 57

Table 1

Example l(βP) u(βP) l(ηP) u(ηP) η(x̃)
5.1 1.61e-09 1.61e-09 2.82e-10 2.82e-10 3.97e-18
5.2 2.48e-06 2.48e-06 — — 9.36e-18
5.3 2.32e-10 2.32e-10 2.55e-10 2.55e-10 6.20e-18
5.4 1.24e-08 1.24e-08 1.37e-08 1.37e-08 6.41e-18

Similarly, we can define the SBE ηD(x̃), the linearized SBE βD(x̃), and the BE η(x̃):

ηD(x̃) ≡ η
(θV)
D (x̃)

‖V (a)‖F , βD(x̃) ≡ β
(θa)
D (x̃)

‖a‖2 , η(x̃) ≡ η(θV)(x̃)

‖V (a)‖F .

Further, define l(ηP), u(ηP), l(βP), and u(βP) by

l(ηP) =
l(η

(θV)
P)

‖V (a)‖F , u(ηP) =
u(η

(θV)
P)

‖V (a)‖F , l(βP) =
l(β

(θa)
P)

‖a‖2 , u(βP) =
u(β

(θa)
P)

‖a‖2 ,

respectively, where l(η
(θV)
P), u(η

(θV)
P), l(β

(θa)
P), and u(β

(θa)
P) can be computed by the

formulas (4.14), (4.13), (2.26), and (2.25), respectively. Similarly, we can define and
compute l(ηD), u(ηD), l(βD), and u(βD). By Theorems 4.1, 4.2, 2.1, and 3.1, we have

(5.1)
l(ηP) ≤ ηP(x̃) ≤ u(ηP), l(ηD) ≤ ηD(x̃) ≤ u(ηD),

l(βP) ≤ βP(x̃) ≤ u(βP), l(βD) ≤ βD(x̃) ≤ u(βD),

respectively.
Some numerical results on lower and upper bounds for the SBEs βP(x̃), ηP(x̃),

βD(x̃), and ηD(x̃), and on the BE η(x̃), are listed in Tables 1–2.
From the results listed in Table 1, we see the following facts. For any one of

Examples 5.1–5.4, the Björck–Pereyra algorithm produces a computed x̃ with small
SBEs βP(x̃) and ηP(x̃) (except Example 5.2) and a very small BE η(x̃) (which is much
smaller than βP(x̃) and ηP(x̃)); that is, x̃ is the solution to a Vandermonde system

V (ã)x = b̃ and a linear system Âx = b̂, where ã, V (ã) (except Example 5.2), and b̃

are relatively close to a, V (a), and b, respectively, and Â and b̂ are relatively much
closer to V (a) and b. Note that for Example 5.2, the formulas (4.13)–(4.14) cannot be

used to get upper and lower bounds for the SBE η
(θ)
P (x̃) because the condition (4.12)

is violated.

Table 2

Example l(βD) u(βD) l(ηD) u(ηD) η(x̃)
5.1 1.50e-18 1.50e-18 3.27e-19 3.27e-19 3.65e-20
5.2 1.99e-19 1.99e-19 4.35e-20 4.35e-20 1.16e-20
5.3 7.05e-15 7.05e-15 7.51e-14 7.51e-14 5.85e-18
5.4 4.91e-15 4.91e-15 3.82e-14 3.82e-14 3.11e-18

The results listed in Table 2 show that for any one of Examples 5.1–5.4, the
Björck–Pereyra algorithm produces a computed x̃, which is the solution to a linear
system Âx = b̂ and a Vandermonde system V (ã)Tx = b̃, where ã and b̂, b̃ are relatively
very close to a and b, respectively, and Â and V (ã) are relatively very close to V (a).

Remark 5.5. It is worth pointing out two facts: (i) The assumptions (2.24), (3.7),
(4.12), and (4.19) are somewhat harsh terms; e.g., the assumption (4.12) is violated

58 JI-GUANG SUN

for Example 5.2 (see Table 1), but by our technique, the assumptions are difficult

to remove. (ii) For the dual problem, the expressions (3.8) (for u(β
(θ)
D)), (3.9) (for

l(β
(θ)
D)), (4.20) (for u(η

(θ)
D)), and (4.21) (for l(η

(θ)
D)) can be computed in O(n2) flop

operations, but in the primal case, the expressions (2.25) (for u(η
(θ)
P)), (2.26) (for

l(β
(θ)
P)), (4.13) (for u(η

(θ)
P)), and (4.14) (for l(η

(θ)
P)) require O(n3) flop operations.

Finally, we give a comparison between our results and those of [1]. For simplicity
and convenience, we only consider the dual system (1.4) and take the linearized SBE
bedual
∞ (a, b, x̃), defined by [1, Equation (3.1)],

(5.2) bedual
∞ (a, b, x̃) = min

{∥∥∥∥∥
(

∆̂a

∆̂b

)∥∥∥∥∥
∞

: V (a+ ∆a)T x̃ = b+ ∆b

}
,

where x̃ is an approximate solution to (1.4), and

(5.3) ∆̂a = (ε1/|α1|, . . . , εn/|αn|)T , ∆̂b = (δ1/|β1|, . . . , δn/|βn|)T ,

in which αi, βi, εi, and δi are the components of a, b,∆a, and ∆b, respectively. (Note
that by [1, section 3], the denominators |αi| and |βi| in (5.3) can be replaced by any
nonnegative scalars.) If we linearize the constraint in (5.2), then we get the further
linearized SBE linbedual

∞ (a, b, x̃), defined by [1, Equation (3.4)],

linbedual
∞ (a, b, x̃) = min

i

{
max

{ |εi|
|αi| ,

|δi|
|βi|
}

: εiζ̃i − δi = ρi

}
,

where (ρ1, . . . , ρn)T = b− V (a)T x̃ and (ζ̃1, . . . , ζ̃n)T = V ′(a)T x̃, in which the matrix

V ′(a) is defined by V ′(a) =
(

d
dαj

(V (a))ij

)
. By [1, Equation (3.6)],

(5.4) linbedual
∞ (a, b, x̃) = max

i

{ |ρi|
|ζ̃i||αi|+ |βi|

}
≡ linbe.

Moreover, define ∆a∗ and ∆b∗∗ by [1, section 3]

∆a∗ =

(
sign(ζ̃1)ρ1|α1|
|ζ̃1||α1|+ |β1|

, . . . ,
sign(ζ̃n)ρn|αn|
|ζ̃n||αn|+ |βn|

)T
≡ (ε∗1, . . . , ε

∗
n)T ,

∆b∗∗ = V (a+ ∆a∗)T x̃− b ≡ (δ∗∗1 , . . . , δ∗∗n)T .

Then by [1, Equation (3.7)], we have

(5.5) bedual
∞ (a, b, x̃) ≤ max

{
max
i

|ε∗i |
|αi| , max

i

|δ∗∗i |
|βi|

}
≡ uBH(bedual

∞).

Note that by the definitions of bedual
∞ (a, b, x̃) and βD(x̃) and using the relation l(βD) ≤

βD(x̃) ≤ u(βD) (see (5.1)), we get

(5.6)

bedual
∞ (a, b, x̃) ≥ 1√

2
min

{
‖a‖2√

nmax |αi| ,
‖b‖2√

nmax |βi|
}
l(βD) ≡ l(bedual

∞),

bedual
∞ (a, b, x̃) ≤ max

{
‖a‖2

min |αi| ,
‖b‖2

min |βi|
}
u(βD) ≡ u(bedual

∞).

BOUNDS FOR THE STRUCTURED BACKWARD ERRORS 59

Table 3

Example linbe uBH(bedual∞) l(bedual∞) u(bedual∞)
5.1 7.74e-14 1.66e-13 3.87e-19 8.85e-16
5.2 1.80e-10 1.58e-08 5.12e-20 1.18e-16
5.3 6.84e-11 1.15e-10 3.15e-15 7.11e-14
5.4 6.18e-08 3.16e-06 2.37e-15 6.44e-14

Some numerical results on linbedual
∞ (a, b, x̃) and lower and upper bounds for

bedual
∞ (a, b, x̃) are listed in Table 3.

Two comments: (i) From the results listed in Table 3, we see that the further
linearized SBE linbedual

∞ (a, b, x̃) defined by [1, Equation (3.4)] (which linearizes not
only the objective function but also the constraint!) is a rough measure. (ii) The
SBE bedual

∞ (a, b, x̃), as a componentwise SBE defined by [1], ought to give a more
satisfactory measure of the distance between the perturbed systems V (ã)T x̃ = b+ ∆b
and the original system V (a)Tx = b. However, the results listed in Table 3 show that
the upper bounds uBH(bedual

∞) computed by [1, Equation (3.7)] (see (5.5)) are con-
servative. (Note that l(bedual

∞) and u(bedual
∞) (see (5.6)) are lower and upper bounds

for bedual
∞ (a, b, x̃) obtained by applying our results.) The question of how to derive a

sharper bound for bedual
∞ (a, b, x̃) merits further investigation.

Acknowledgments. I am grateful to Nick Higham and the referees for construc-
tive comments and suggestions. Nick Higham and one of the referees also pointed out
that Bartels and D. J. Higham [1] already considered structured backward error for
Vandermonde systems, including for componentwise measures of the perturbations.

REFERENCES

[1] S. G. Bartels and D. J. Higham, The structured sensitivity of Vandermonde-like systems,
Numer. Math., 62 (1992), pp. 17–33.

[2] Å. Björck and V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp.,
24 (1970), pp. 893–903.

[3] J. R. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Linear
Algebra Appl., 88/89 (1987), pp. 49–66.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, and London, 1996.

[5] D. J. Higham and N. J. Higham, Backward error and condition of structured linear systems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162–175.

[6] N. J. Higham, Error analysis of the Björck-Pereyra algorithms for solving Vandermonde sys-
tems, Numer. Math., 50 (1987), pp. 613–632.

[7] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[8] J. L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear

system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.
[9] J.-G. Sun, Optimal Backward Perturbation Bounds for Linear Systems and Linear Least

Squares Problems, UMINF 96.15, ISSN-0348-0542, Department of Computing Science,
Ume̊a University, Ume̊a, Sweden, 1996.

[10] J. M. Varah, Backward error estimates for Toeplitz systems, SIAM J. Matrix Anal. Appl., 15
(1994), pp. 408–417.

A COMPRESSION ALGORITHM FOR PROBABILITY
TRANSITION MATRICES∗

WILLIAM M. SPEARS†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 60-77

Abstract. This paper describes a compression algorithm for probability transition matrices.
The compressed matrix is itself a probability transition matrix. In general the compression is not
error free, but the error appears to be small even for high levels of compression.

Key words. probability transition matrix, transient behavior, compression, lumping, aggrega-
tion

AMS subject classifications. 15A51, 15A04

PII. S0895479897316916

1. Introduction. Many discrete systems can be described by a Markov chain
model in which each state of the Markov model is some discrete state of the dynam-
ical system. If there are N states, then the Markov chain model is defined by an
N ×N matrix Q called the “1-step probability transition matrix,” where Q(i, j) is
the probability of going from state i to state j in one step. The n-step behavior is
described by the nth power of Q, Qn. For many systems, the number of states is
enormous and there is a computational advantage in reducing N .

Previous methods for reducing the number of states (referred to as compression,
aggregation, or lumping methods) have focused on techniques that provide good esti-
mations of the steady-state behavior of the Markov model. The focus of this paper,
however, is on transient behavior, and the goal is to produce an algorithm for com-
pressing Q matrices in a way that yields good estimates of the transient behavior
of the Markov model. The algorithm described in this paper compresses a Q ma-
trix into a smaller Q matrix with less states. In general, the compression will not
be without error, so the goal is to provide an algorithm that compresses the orig-
inal Q matrix without significant error. Although computing a compressed matrix
might take some time, the savings resulting from using this compressed matrix in all
subsequent computations can more than offset the compression time.

The organization of this paper is as follows. Section 2 introduces the compres-
sion algorithm, which compresses pairs of states by taking a weighted average of the
row entries for those two states, followed by summing the two columns associated
with those two states. Section 2 also introduces the important concepts of row and
column equivalence, which are important for identifying pairs of states that can be
compressed with no error. Section 3 provides mathematical justification for taking
the weighted average of row entries and shows that the weights are simply column
sums of probability mass. Section 4 proves that pairs of states that are row or column
equivalent lead to perfect compression. Section 5 introduces an analysis of error and
uses this to define a metric for row and column similarity which can be used to find
pairs of states that yield almost perfect compression. Later sections illustrate the
utility of the compression algorithm through experiments.

∗Received by the editors February 25, 1997; accepted for publication (in revised form) January
7, 1998; published electronically September 15, 1998. This work was supported by ARPA Order
D106/03.

http://www.siam.org/journals/simax/20-1/31691.html
†AI Center - Code 5514, Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC

20375 (spears@aic.nrl.navy.mil).

60

COMPRESSING PROBABILITY TRANSITION MATRICES 61

2. The compression algorithm at a high level. The entries in the Q matrix,
pi,j ≡ Q(i, j), represent the conditional probability that the system will transition to
state j in one step, given that it currently is in state i.1 Now suppose that states i
and j have been chosen for compression. The new compressed state is referred to as
state {i ∨ j}. Compressing states i and j together means that the combined state
represents being in either state i or state j. Since this is a disjunctive situation, the
probability of transition from state k into the compressed state is simply the sum
pk,{i∨j} = pk,i + pk,j . Stated another way, part of the compression algorithm is to
sum columns of probability numbers.

However, in general, transitions from a compressed state are more complicated
to compute. Clearly, the probability of transitioning from the compressed state to
some other state p{i∨j},k must lie somewhere between pi,k and pj,k, depending on
how much time is spent in states i and j. Thus a weighted average of row entries
appears to be called for, where the weights reflect the amount of time spent in states
i and j. Precisely how to do this weighted average is investigated in section 3.

The algorithm for compressing two states i and j together is as follows:2

Compress-states(i,j)
(a) Compute a weighted average of the ith and jth rows.

Place the results in rows i and j.
(b) Sum the ith and jth columns.

Place the results in column i. Remove row j and column j.
The compression algorithm has two steps. It takes as input a matrix Qu (an un-
compressed Q matrix). Step (a) averages the row entries, producing an intermediate
row-averaged matrix Qr. Step (b) sums column entries to produce the final com-
pressed matrix Qc. Step (a) is the sole source of error, since in general it is difficult
to estimate the amount of time spent in states i and j.

Now that the compression algorithm has been outlined, it is important to define
what is meant by “perfect” compression. As mentioned before, analysis of n-step
transition probabilities (i.e., transient behavior of the Markov chain) can be realized
by computingQn. For largeQmatrices this is computationally expensive. It would be
less expensive to compress Q and to then raise it to the nth power. If the compression
algorithm has worked well, then the nth power of the compressed matrix Qc should
be (nearly) identical to compressing the nth power of the uncompressed matrix Qu.
In other words, perfect compression has occurred if (Qnu)c = Qnc .

It turns out that there are two situations under which perfect compression can
be obtained. The first situation is referred to as “row equivalence,” in which the two
states i and j have identical rows (i.e., ∀k, pi,k = pj,k). In this case the weighted
averaging cannot produce any error, since the weights will be irrelevant. The second
situation is referred to as “column equivalence,” in which state i has column entries
that are a real multiple q of the column entries for state j (i.e., ∀k, pk,i = qpk,j). The
intuition here is that when this situation occurs, the ratio of time spent in state i to
state j is precisely q. The details of this can be found in section 4.

However, for arbitrary matrices, compressing an arbitrarily chosen pair of states
will not necessarily lead to good results. Thus, the goal is to identify pairs of states i
and j upon which the above compression algorithm will work well. It turns out that
pairs of states that are row or column similar are good candidates for compression.
The justification for these measures will be provided in section 5.

At a high level, of course, this simple compression algorithm must be repeated

1The notation p
(n)
i,j ≡ Qn(i, j) denotes the entries of the n-step probability transition matrix Qn.

2The algorithm is written this way because it makes it amenable to mathematical analysis.

62 WILLIAM M. SPEARS

for many pairs of states if one wants to dramatically reduce the size of a Q matrix.
The high-level compression algorithm is simply:

Compress()
Repeat as long as possible

(i) Find the pair of states i and j most similar to each other
(ii) Compress-states(i,j)

3. The compression algorithm in more detail. In the previous section the
compression algorithm was described in two steps. Step (a) is where error can occur,
and care must be taken to mathematically justify the weighted averaging of rows. This
can be done by attempting to force (Q2

u)c to be as similar as possible to Q2
c (later

sections will generalize this to higher powers). This is mathematically difficult, but
fortunately it suffices to force Q2

u to be as similar as possible to QuQr, which is much
simpler and focuses on the row-averaged matrix Qr explicitly. The intuition behind
this is that if compression is done correctly, passage through the new compressed
state should affect the 2-step transition probabilities as little as possible.3 This will be
shown with a 4× 4 Q matrix and then generalized to an arbitrary N ×N matrix. The
result will be the weighted row averaging procedure outlined earlier. This particular
presentation has been motivated by a concern for comprehension and hence is not
completely formal. A completely formal presentation is in the appendix.

3.1. Weighted averaging with a 4× 4 matrix. Consider a general uncom-
pressed 4× 4 matrix Qu for a Markov chain model of 4 states, as well as the general
intermediate matrix Qr:

Qu =

p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4

p3,1 p3,2 p3,3 p3,4

p4,1 p4,2 p4,3 p4,4

 , Qr =

r1,1 r1,2 r1,3 r1,4

r2,1 r2,2 r2,3 r2,4

r3,1 r3,2 r3,3 r3,4

r4,1 r4,2 r4,3 r4,4

 .
The notation ri,j ≡ Qr(i, j) is used to prevent confusion with the pi,j in Qu.

Without loss of generality, the goal will be to compress the 3rd and 4th states (rows
and columns) of this matrix. Since the 3rd and 4th states are being compressed, rows
1 and 2 of Qr must be the same as Qu (i.e., averaging rows 3 and 4 will not affect
rows 1 and 2). Denoting {3∨ 4} to be the compressed state, the intermediate matrix
is

Qr =

p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4

r{3∨4},1 r{3∨4},2 r{3∨4},3 r{3∨4},4
r{3∨4},1 r{3∨4},2 r{3∨4},3 r{3∨4},4

 .
The r{3∨4},k represent the weighted average of rows 3 and 4 of Qu. Recall that

step (a) of Compress-states(3,4) will place that average in both rows 3 and 4, which
is why rows 3 and 4 of Qr are the same. The trick now is to determine what r{3∨4},1,
r{3∨4},2, r{3∨4},3, and r{3∨4},4 should be in order to produce a reasonable compression.
This is done by considering Q2

u and QuQr:

Q2
u =

p

(2)
1,1 p

(2)
1,2 p

(2)
1,3 p

(2)
1,4

p
(2)
2,1 p

(2)
2,2 p

(2)
2,3 p

(2)
2,4

p
(2)
3,1 p

(2)
3,2 p

(2)
3,3 p

(2)
3,4

p
(2)
4,1 p

(2)
4,2 p

(2)
4,3 p

(2)
4,4

 , QuQr =

a

(2)
1,1 a

(2)
1,2 a

(2)
1,3 a

(2)
1,4

a
(2)
2,1 a

(2)
2,2 a

(2)
2,3 a

(2)
2,4

a
(2)
3,1 a

(2)
3,2 a

(2)
3,3 a

(2)
3,4

a
(2)
4,1 a

(2)
4,2 a

(2)
4,3 a

(2)
4,4

 .
3More formally, it can be shown that if Q2

u = QuQr, then (Q2
u)c = Q2

c for row- or column-
equivalent situations; see section 4.

COMPRESSING PROBABILITY TRANSITION MATRICES 63

The notation a
(2)
i,j is used to prevent confusion with the p

(2)
i,j in Q2

u. Since the goal

is to have Q2
u = QuQr, it is necessary to have p

(2)
i,j be as similar as possible to a

(2)
i,j .

The p
(2)
i,j values can be computed using pi,j values, while the a

(2)
i,j values require the

unknowns r{3∨4},1, r{3∨4},2, r{3∨4},3, and r{3∨4},4.

For example, p
(2)
1,1 can be computed by multiplying Qu by itself:

p
(2)
1,1 = p1,1p1,1 + p1,2p2,1 + p1,3p3,1 + p1,4p4,1.

However, a
(2)
1,1 is computed by multiplying Qu and Qr:

a
(2)
1,1 = p1,1p1,1 + p1,2p2,1 + (p1,3 + p1,4)r{3∨4},1.

In the ideal situation we would like both of these to be equal. This implies that

r{3∨4},1 =
p1,3p3,1 + p1,4p4,1

p1,3 + p1,4
.

But we can write another formula for r{3∨4},1 by considering p
(2)
2,1 and a

(2)
2,1:

p
(2)
2,1 = p2,1p1,1 + p2,2p2,1 + p2,3p3,1 + p2,4p4,1,

a
(2)
2,1 = p2,1p1,1 + p2,2p2,1 + (p2,3 + p2,4)r{3∨4},1.

Again, we would like both of these to be equal. This implies that

r{3∨4},1 =
p2,3p3,1 + p2,4p4,1

p2,3 + p2,4
.

Similarly, consideration of p
(2)
3,1 and a

(2)
3,1 yields

r{3∨4},1 =
p3,3p3,1 + p3,4p4,1

p3,3 + p3,4
,

while consideration of p
(2)
4,1 and a

(2)
4,1 yields

r{3∨4},1 =
p4,3p3,1 + p4,4p4,1

p4,3 + p4,4
.

What has happened here is that the four elements in the first column of QuQr
lead to four expressions for r{3∨4},1. In general, all four expressions for r{3∨4},1 can
not hold simultaneously (although we will investigate conditions under which they
will hold later). The best estimate is to take a weighted average of the four expressions
for r{3∨4},1 (this is related to the concept of “averaging” probabilities — see appendix
for more details). This yields

r{3∨4},1 =
(p1,3 + p2,3 + p3,3 + p4,3)p3,1 + (p1,4 + p2,4 + p3,4 + p4,4)p4,1

(p1,3 + p2,3 + p3,3 + p4,3) + (p1,4 + p2,4 + p3,4 + p4,4)
.

Note how the final expression for r{3∨4},1 is a weighted average of the row entries
p3,1 and p4,1, where the weights are column sums for columns 3 and 4. In general the
elements of QuQr in the kth column will constrain r{3∨4},k:

r{3∨4},k =
(p1,3 + p2,3 + p3,3 + p4,3)p3,k + (p1,4 + p2,4 + p3,4 + p4,4)p4,k

(p1,3 + p2,3 + p3,3 + p4,3) + (p1,4 + p2,4 + p3,4 + p4,4)
.

Once again, note how the expression for r{3∨4},k is a weighted average of the row
entries p3,k and p4,k, where the weights are column sums for columns 3 and 4.

64 WILLIAM M. SPEARS

3.2. Weighted averaging with an N ×N matrix. The previous results for
a 4× 4 matrix can be extended to an N ×N matrix. Without loss of generality,
compress states N − 1 and N . Then the N elements of column k yield N expressions
for each r{N−1∨N},k. The best estimate is (see appendix for details)

r{N−1∨N},k =
(p1,N−1 + · · ·+ pN,N−1)pN−1,k + (p1,N + · · ·+ pN,N)pN,k

(p1,N−1 + · · ·+ pN,N−1) + (p1,N + · · ·+ pN,N)
.

Note again how the weights are column sums for columns N − 1 and N . Gener-
alizing this to compressing two arbitrary states i and j yields

r{i∨j},k =
(
∑
l pl,i)pi,k + (

∑
l pl,j)pj,k∑

l pl,i +
∑
l pl,j

or

r{i∨j},k =
mipi,k +mjpj,k

mi +mj
,(3.1)

where mi and mj are the sums of the probability mass in columns i and j of Qu.
Equation (3.1) indicates how to compute the r{i∨j},k entries in Qr. Note how

they are computed using the weighted average of the row entries in rows i and j.
The weights are simply the column sums. This justifies the row averaging component
of the compression algorithm described in the previous section. Intuitively stated,
the column mass for columns i and j provide good estimates of the relative amount
of time spent in states i and j. The estimates are used as weights to average the
transitions from i to state k and from j to k, producing the probability of transition
from the combined state {i ∨ j} to k.

3.3. Mathematical restatement of the compression algorithm. Now that
the weighted averaging of rows i and j has been explained, it is only necessary to
sum columns i and j in order to complete the compression algorithm. The whole
algorithm can be expressed simply as follows. Assume that two states have been
chosen for compression. Let S denote the set of all N states, and let the nonempty
sets S1, . . . , SN−1 partition S such that one Si contains the two chosen states while
each other Si is composed of exactly one state. Let mi denote the column mass of
state i. Then the compressed matrix Qc is

Qc(x, y) =
1∑

i∈Sx mi

∑
i∈Sx

mi

∑
j∈Sy

pi,j

 .(3.2)

This corresponds to taking a weighted average of the two rows corresponding
to the two chosen states while summing the two corresponding columns. The other
entries in the Q matrix remain unchanged. Consider an example in which states 2
and 3 are compressed. In that case S1 = {1} and S2 = {2, 3}. Qc is described by

Qc(1, 1) = p1,1,

Qc(1, 2) = p1,2 + p1,3,

Qc(2, 1) = 1
m2+m3

[m2p2,1 +m3p3,1],

Qc(2, 2) = 1
m2+m3

[m2(p2,2 + p2,3) +m3(p3,2 + p3,3)].

COMPRESSING PROBABILITY TRANSITION MATRICES 65

Applying this to the following column equivalent matrix Qu produces perfect
results ((Q2

u)c = Q2
c):

Qu =

 .7 .1 .2
.4 .2 .4
.1 .3 .6

⇒ Q2
u =

 .55 .15 .30
.40 .20 .40
.25 .25 .50

⇒ (Q2
u)c =

[
.55 .45
.30 .70

]
,

Qc =

[
.7 .3
.2 .8

]
⇒ Q2

c =

[
.55 .45
.30 .70

]
.

In summary, this section has justified the use of column mass as weights in the row
averaging portion of the compression algorithm. The whole compression algorithm
is stated succinctly as a mathematical function which can compress any arbitrary
pair of states. However, as stated earlier, compression of arbitrary pairs of states
need not lead to good compression. The goal, then, is to identify such states. This
is investigated in the next section and relies upon the concepts of row and column
equivalence.

4. Special cases in which compression is perfect. If compression is working
well, then the compressed version of Qnu should be (nearly) identical to Qnc . As
suggested in section 2, there are two situations under which perfect compression will
occur. The first situation is when two states are row equivalent. The intuition here
is that the row average of two identical rows will not involve any error, and thus
the compression will be perfect. The second situation is when two states are column
equivalent. The intuition for this situation is that if the column ci is equal to qcj , then
the ratio of time spent in state i to state j is exactly q. Under these circumstances
the weighted row average will also produce no error.

This section will prove that (Qnu)c = Qnc when the two states being compressed
are either row equivalent or column equivalent. This will hold for any n and for any
Qu matrix of size N ×N . The method of proof will be to treat the compression
algorithm as a linear transformation f and then to show that f(Qnu) = (f(Qu))n,
where f(Qu) = Qc.

4.1. Row equivalence and the compression algorithm. This subsection
will prove that when two states are row equivalent, compression of those states can
be described by a linear transformation (matrix multiplication). The compression al-
gorithm compresses an N ×N matrix Qu to an (N − 1)× (N − 1) matrix Qc. How-
ever, for the sake of mathematical convenience, all of the matrix transformations will
be with N ×N matrices. Without loss of generality, it is assumed that states N − 1
and N are being compressed. When it comes time to express the final compression,
the Nth row and column will simply be ignored, producing the (N − 1)× (N − 1)
compressed matrix. The “•” notation is used to denote entries that are not important
for the derivation.

Assume that states N − 1 and N are row equivalent. Thus ∀k, pN−1,k = pN,k.
Using (3.1) to compute the row averages yields

r{N−1∨N},k =
mN−1pN−1,k +mNpN,k

mN−1 +mN
=
pN−1,k(mN−1 +mN)

mN−1 +mN
= pN−1,k,

and the compressed matrix should have the form

Qc =

p1,1 · · · p1,N−2 p1,N−1 + p1,N

p2,1 · · · p2,N−2 p2,N−1 + p2,N

...
...

...
pN−1,1 · · · pN−1,N−2 pN−1,N−1 + pN−1,N

 .

66 WILLIAM M. SPEARS

Theorem 4.1. If states N and N−1 in Qu are row equivalent, then Qc = TQuT
and TT = I, where

T =

 I 0

0
1 0
1 −1

 .
Proof. Qc = TQuT can be expressed as follows:

Qc = T

p1,1 · · · p1,N−2 p1,N−1 p1,N

p2,1 · · · p2,N−2 p2,N−1 p2,N

...
...

...
...

pN−1,1 · · · pN−1,N−2 pN−1,N−1 pN−1,N

pN,1 · · · pN,N−2 pN,N−1 pN,N

 I 0

0
1 0
1 −1

=

 I 0

0
1 0
1 −1

p1,1 · · · p1,N−2 p1,N−1 + p1,N •
p2,1 · · · p2,N−2 p2,N−1 + p2,N •

...
...

...
...

pN−1,1 · · · pN−1,N−2 pN−1,N−1 + pN−1,N •
pN−1,1 · · · pN−1,N−2 pN−1,N−1 + pN−1,N •

=

p1,1 · · · p1,N−2 p1,N−1 + p1,N •
p2,1 · · · p2,N−2 p2,N−1 + p2,N •

...
...

...
...

pN−1,1 · · · pN−1,N−2 pN−1,N−1 + pN−1,N •
• · · · • • •

 .
This is precisely what Qc should be. Thus the compression of two row-equivalent

states can be expressed simply as TQuT . The first T performs row averaging (which
is trivial) and the second T performs column summing. The reader will also note that
some elements of T do not appear to be important for the derivation thatQc = TQuT .
This is true; however, the purpose of these elements is to ensure that TT = I, since
this fact will also be used to help prove that (Qnu)c = Qnc :

TT =

 I 0

0
1 0
1 −1

 I 0

0
1 0
1 −1

 = I.

4.2. Column equivalence and the compression algorithm. This subsec-
tion will prove that when two states are column equivalent, compression of those
states can be described by a linear transformation. Assume without loss of generality
that states N − 1 and N are column equivalent. Thus ∀k, pk,N−1 = qpk,N , and
mN−1 = qmN . Using (3.1) to compute the row averages yields

r{N−1∨N},k =
mN−1pN−1,k +mNpN,k

mN−1 +mN
=
qpN−1,k + pN,k

q + 1
,

and the compressed matrix should have the form

Qc =

p1,1 · · · p1,N−2 p1,N−1 + p1,N

p2,1 · · · p2,N−2 p2,N−1 + p2,N

...
...

...
qpN−1,1+pN,1

q+1 · · · qpN−1,N−2+pN,N−2

q+1
qpN−1,N−1+pN,N−1+qpN−1,N+pN,N

q+1

 .
Theorem 4.2. If states N and N − 1 in Qu are column equivalent, then Qc =

XQuY and Y X = I, where

Y =

 I 0

0
1 1

q

1 −1

 , X =

 I 0

0
q
q+1

1
q+1

q
q+1 − q

q+1

 .

COMPRESSING PROBABILITY TRANSITION MATRICES 67

Proof. Qc = XQuY can be expressed as follows:

Qc = X

p1,1 · · · p1,N−2 p1,N−1 p1,N

p2,1 · · · p2,N−2 p2,N−1 p2,N

...
...

...
...

pN−1,1 · · · pN−1,N−2 pN−1,N−1 pN−1,N

pN,1 · · · pN,N−2 pN,N−1 pN,N

 I 0

0
1 1

q

1 −1

=

 I 0

0
q
q+1

1
q+1

q
q+1 − q

q+1

p1,1 · · · p1,N−2 p1,N−1 + p1,N •
p2,1 · · · p2,N−2 p2,N−1 + p2,N •

...
...

...
...

pN−1,1 · · · pN−1,N−2 pN−1,N−1 + pN−1,N •
pN,1 · · · pN,N−2 pN,N−1 + pN,N •

=

p1,1 · · · p1,N−2 p1,N−1 + p1,N •
p2,1 · · · p2,N−2 p2,N−1 + p2,N •

...
...

...
...

qpN−1,1+pN,1
q+1 · · · qpN−1,N−2+pN,N−2

q+1
qpN−1,N−1+pN,N−1+qpN−1,N+pN,N

q+1 •
• · · · • • •

 .
This is precisely what Qc should be. Thus the compression of two column-

equivalent states can be expressed simply as XQuY . X performs row averaging and
Y performs column summing. The reader will note that some elements of X and Y
are not important for the derivation that Qc = XQuY (e.g., T could be used instead
of Y). This is true; however, the purpose of these elements is to ensure that Y X = I,
since this fact will be used to help prove that (Qnu)c = Qnc at the end of this section:

Y X =

 I 0

0
1 1

q

1 −1

 I 0

0
q
q+1

1
q+1

q
q+1 − q

q+1

 = I.

4.3. Some necessary lemmas. Before proving that (Qnu)c = Qnc for row- or
column-equivalent states, it is necessary to prove some simple lemmas. The idea is
to show that if Qu is row or column equivalent, so is Qnu. This will allow the previous
linear transformations to be applied to Qnu as well as Qu.

Let square matrices A and B be defined as matrices of row and column vectors,
respectively:

A =

 a1,1 · · · a1,N

...
...

aN,1 · · · aN,N

 =

 a1

...
aN

 ,

B =

 b1,1 · · · b1,N
...

...
bN,1 · · · bN,N

 =
[

b1 · · · bN
]
.

Then the matrix product AB can be represented using dot product notation:

AB =

 a1 · b1 · · · a1 · bN
...

...
aN · b1 · · · aN · bN

 .
Lemma 4.3. Row equivalence is invariant under postmultiplication.
Proof. Suppose states i and j of A are row equivalent (ai = aj). Then ∀k, ai·bk =

aj · bk. So, states i and j in AB must be row equivalent.
Lemma 4.4. Column equivalence is invariant under premultiplication.

68 WILLIAM M. SPEARS

Proof. Suppose states i and j of B are column equivalent (bi = qbj). Then
∀k, ak · bi = qak · bj . So, states i and j in AB must be column equivalent.

Lemma 4.5. Row and column equivalence are invariant under raising to a
power.

Proof. Qn = QQn−1. Thus, if states i and j are row equivalent in Q, they are
row equivalent in Qn by Lemma 4.3. Similarly, Qn = Qn−1Q. Thus, if states i and
j are column equivalent in Q, they are column equivalent in Qn by Lemma 4.4.

Lemma 4.5 indicates that the previous linear transformations can be applied to
Qnu to produce (Qnu)c when two states in Qu are row or column equivalent.

4.4. Theorems for perfect compression. Given the previous theorems con-
cerning the linear transformations and Lemma 4.5, it is now possible to state and
prove the theorems for perfect compression. The Q matrix can be considered to be
Qu in these theorems.

Theorem 4.6. If Q is row equivalent, then Qn = QQn−1
r implies (Qn)r = Qnr ,

and (Qn)c = Qnc .
Proof. If Q is row equivalent, then so is Qn by Lemma 4.5. If Qn = QQn−1

r ,
then (Qn)r = (QQn−1

r)r = TQQn−1
r = Qnr , and (Qn)c = (QQn−1

r)c = T (QQn−1
r)T =

TQQn−1
c = TQTTQn−1

c = QcTQ
n−1
c = Qnc .

Theorem 4.7. If Q is column equivalent, then Qn = QQn−1
r implies (Qn)r =

Qnr , and (Qn)c = Qnc .
Proof. If Q is column equivalent, then so is Qn by Lemma 4.5. If Qn =

QQn−1
r , then (Qn)r = (QQn−1

r)r = XQQn−1
r = Qnr , and (Qn)c = (QQn−1

r)c =
X(QQn−1

r)Y = XQQn−1
c = XQTTQn−1

c = QcTQ
n−1
c = Qnc .

These two theorems illustrate the validity of trying to force Q2
u to be as similar

as possible to QuQr in section 3.
Theorem 4.8. If Q is row equivalent, then (Qn)c = Qnc .
Proof. If Q is row equivalent, then so is Qn by Lemma 4.5. Then (Qn)c =

TQnT = TQ · · ·QT . Since TT = I, then (Qn)c = TQTTQ · · ·QTTQT = Qnc .
Theorem 4.9. If Q is column equivalent, then (Qn)c = Qnc .
Proof. If Q is column equivalent, then so is Qn by Lemma 4.5. Then (Qn)c =

XQnY = XQ · · ·QY . Since Y X = I, then (Qn)c = XQYXQ · · ·QYXQY = Qnc .
These theorems hold for all n and for all row- or column-equivalent N ×N Q

matrices and highlight the importance of row and column equivalence. If two states
are row or column equivalent, then compression of those two states is perfect (i.e.,
(Qn)c = Qnc).

5. Error analysis and a similarity metric. The previous sections have
explained how to merge pairs of states and have explained that row- or column-
equivalent pairs will yield perfect compression. Of course, it is highly unlikely that
pairs of states will be found that are perfectly row equivalent or column equiva-
lent. The goal then is to find a similarity metric that measures the row and column
similarity (i.e., how close pairs of states are to being row or column equivalent). If
the metric is formed correctly, those pairs of states that are more similar should yield
less error when compressed. This section will derive an expression for error and then
use this as a similarity metric for pairs of states.

We will useQuQr andQ2
u to estimate error. As mentioned before, it is desirable to

have the entries in those two matrices be as similar as possible. Consider compressing
two states i and j. Then the entries in Q2

u are

p(2)
x,y = px,ipi,y + px,jpj,y +

∑
k 6=i,j

px,kpk,y.

COMPRESSING PROBABILITY TRANSITION MATRICES 69

The entries in QuQr are

a(2)
x,y = (px,i + px,j)r{i∨j},y +

∑
k 6=i,j

px,kpk,y.

Then the error associated with the (x, y)th element of QuQr is

Errori,j(x, y) = a(2)
x,y − p(2)

x,y = (px,i + px,j)r{i∨j},y − px,ipi,y − px,jpj,y.

Using (3.1) for r{i∨j},k (and substituting y for k) yields

Errori,j(x, y) = (px,i + px,j)

[
mipi,y +mjpj,y

mi +mj

]
− px,ipi,y − px,jpj,y.

Now denote αi,j(y) = pi,y − pj,y. This is a measure of the row similarity for rows
i and j at column y (and will be explained further below). Then

Errori,j(x, y) = (px,i+px,j)

[
mi(pj,y + αi,j(y))+mjpj,y

mi+mj

]
−px,i(pj,y+αi,j(y))−px,jpj,y.

This simplifies to

Errori,j(x, y) =
(mipx,j −mjpx,i)αi,j(y)

mi +mj
.

Denote βi,j(x) = (mipx,j −mjpx,i)/(mi +mj). Then

Errori,j(x, y) = βi,j(x)αi,j(y).

Now βi,j(x) can be considered to be a measure of column similarity for columns
i and j at row x (this will be shown more explicitly further down). Since only the
magnitude of the error is important, and not the sign, the absolute value of the error
should be considered:

|Errori,j(x, y)| = |βi,j(x)αi,j(y)|.

Recall that Errori,j(x, y) is the error associated with the (x, y)th element of
QuQr if states i and j are compressed. The total error of the whole matrix is

Errori,j =
∑
x

∑
y

|Errori,j(x, y)| =
∑
x

∑
y

|βi,j(x)αi,j(y)|.

But this can be simplified to

Errori,j =

(∑
x

|βi,j(x)|
)(∑

y

|αi,j(y)|
)
.

To understand this equation consider the situation where states i and j are row
equivalent. Then ∀y, pi,y = pj,y. This indicates that ∀y, αi,j(y) = 0 and Errori,j =
0. Thus there is no error associated with compressing row-equivalent states i and j,
as has been shown in earlier sections.

Consider the situation where states i and j are column equivalent. Then ∀x, px,i =
qpx,j and mi = qmj . It is trivial to show that ∀x, βi,j(x) = 0, and as a consequence,

70 WILLIAM M. SPEARS

Errori,j = 0. Thus there is no error associated with compressing column-equivalent
states i and j, as has been shown in earlier sections.

Given this, a natural similarity metric is the expression for error:

Similarityi,j =

(∑
x

|βi,j(x)|
)(∑

y

|αi,j(y)|
)
.(5.1)

If the similarity is close to zero, then error is close to zero, and pairs of states
can be judged as to the amount of error that will ensue if they are compressed.4 The
compression algorithm can now be written as follows:

Compress()
Repeat as long as possible

(i) Find pair of states i and j such that Similarityi,j < ε
(ii) Compress-states(i,j)

The role of ε is as a threshold. Pairs of states that are more similar than this threshold
can be compressed. By raising ε one can compress more states, but with a commen-
surate increase in error.

The paper thus far has fully outlined the compression algorithm for pairs of
states and identified situations under which compression is perfect — namely, when
the pairs of states are row or column equivalent. By performing an error analysis,
a natural measure of similarity was derived in which pairs of states that are row
or column similar yield small amounts of error in the compression algorithm. The
following section outlines some experiments showing the degree of compression that
can be achieved in practice.

6. Some experiments. In order to evaluate the practicality of the compres-
sion algorithm, it was tested on some Markov chains derived from the field of genetic
algorithms (GAs). In a GA, a population of individuals evolves generation by gener-
ation via Darwinian selection and perturbation operators such as recombination and
mutation. Each individual in the population can be considered to be a point in a
search space (see [8] for an overview of GAs).

Each different population of the GA is a state in the Markov chain, and pi,j
is the probability that the GA will evolve from one population i to another j in
one generation (time step). The number of states grows extremely fast as the size
of the population increases and as the size of individuals increases. The details of
the mapping of GAs to Markov chains can be found in [6]. Their use in examining
transient behavior can be found in [2].5

6.1. Accuracy experiments. The first set of experiments examines the accu-
racy of the compressed Markov chains by using both Qnu and Qnc to compute the
probability distribution p(n) over the states at time n. To answer such questions, Qnu
must be combined with a set of initial conditions concerning the GA at generation

0. Thus, the a priori probability of the GA being in state i at time 0 is p
(0)
i .6 Given

this, the probability that the GA will be in a particular state j at time n is

p
(n)
j =

∑
i

p
(0)
i p

(n)
i,j .

4It is useful to think of this as a “dissimilarity” metric.
5For the GA, Q has no zero entries and is thus ergodic.
6If states i and j have been compressed, then p

(0)

{i∨j} = p
(0)
i + p

(0)
j .

COMPRESSING PROBABILITY TRANSITION MATRICES 71

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

pJ
(n)

n
Search Space 1

•

•

•
•
••••••••••••••••••••••••••

••••••••••••
••••••••••••••

•••••••••••••••••
•••••••••••••••••••••••

•••

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

pJ
(n)

n
Search Space 2

•
•
•
•
•
••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••

•••

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

pJ
(n)

n
Search Space 3

•
•
•
•
•
••

••••••••••••••••••••••••
••••••••••••••••••••••••••••

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

pJ
(n)

n
Search Space 4

•
•
•
•
•••

••••••••••••••••••••••
•••••••••••••••••••••••••••

•••••

Fig. 6.1. p
(n)
J , where ε is 0.0 and 0.15 for N = 455. The bold curves represent the exact values,

while the nonbold curves represent the values computed from the compressed matrix.

It is also possible to compute probabilities over a set of states. Define a predicate
PredJ and the set J of states that make PredJ true. Then the probability that the
GA will be in one of the states of J at time n is

p
(n)
J =

∑
j∈J

p
(n)
j .

In this paper, J represents the set of all states which contain at least one copy
of the optimum (i.e., the set of all populations which have at least one individual

with the optimum function value). The Markov model is used to compute p
(n)
J , the

probability of having at least one copy of the optimum in the population at time n.
The compression algorithm can thus be evaluated by using both Qnu (ground

truth) and Qnc (the estimate) to compute p
(n)
J for different values of n. The closer

the estimate is to ground truth, the better the compression algorithm is working.
Since the goal is to compute probabilities involving states containing the optimum

(the J set), J states should not be compressed with non-J states. Consequently, the
compression algorithm is run separately for both sets of states. The algorithm is

Repeat until no new compressed states are created
(a) For each state i in the J set of the current compressed model

(i) find the most similar state j in the J set;
(ii) if Similarityi,j < ε, Compress-states(i,j).

(b) For each state i in the non-J set of the current compressed model
(i) find the most similar state j in the non-J set;
(ii) if Similarityi,j < ε, Compress-states(i,j).

In theory this compression algorithm could result in a two state model involving
just J and non-J . In practice this would require large values of ε and unacceptable

72 WILLIAM M. SPEARS

Table 6.1
The percentage of states removed when ε = 0.15.

N = 286 N = 455 N = 680 N = 969
Search space 1 85% 88% 90% 92%
Search space 2 71% 76% 81% 84%
Search space 3 65% 73% 79% 82%
Search space 4 64% 73% 79% 82%

error in p
(n)
J computations.

Four different search spaces were chosen for the GA. This particular set of four
search spaces was chosen because experience has shown that it is hard to get a
single compression algorithm to perform well on all. Also, in order to see how well
the compression algorithm scales to larger Markov chains, four population sizes were
chosen for the GA (10, 12, 14, and 16). These four choices of population size produced
Markov chains of 286, 455, 680, and 969 states, respectively. Thus, the compression
algorithm was tested on 16 different Markov chains.7

Naturally, the setting of ε is crucial to the success of the experiments. Exper-
iments indicated that a value of 0.15 yielded good compression with minimal error
for all 16 Markov chains. The results for N = 455 are shown in Figure 6.1. The
results for the other experiments are omitted for the sake of brevity, but they are

almost identical. The values p
(n)
J are computed for n ranging from 2 to 100, for both

the compressed and uncompressed Markov chains, and graphed as curves. The bold

curves represent the exact p
(n)
J values, while the nonbold curves represent the values

computed from the compressed matrix.

The figures clearly indicate that the compressed matrix is yielding negligible
error. To see how the amount of compression is affected by the size of the Markov
chain, consider Table 6.1, which gives the percentage of states removed for each of the
16 chains. What is interesting is that, for these particular search spaces, the amount
of compression is increasing as N increases (while still yielding negligible error). For
N = 969, over 80% of the states have been removed, yielding Qc matrices roughly
3% the size (in terms of memory requirements) of the original Qu matrix. It is also
interesting to note that different search spaces are consistently compressed to different
degrees. For example, the third and fourth search spaces are consistently compressed
less than the first search space. Further investigation into the nature of these search
spaces may help characterize when arbitrary Markov chains are hard/easy to compress
with this algorithm.

6.2. Timing experiments. It is now necessary to examine the computational
cost of the compression algorithm. Our prior work, [2] and [9], focused heavily on the
insights gained by actually examining Qnu, which involved computations on the order
of N3 (to multiply Qu repeatedly). Thus the primary motivation for producing the
compression algorithm was to gain the same insights more efficiently by dramatically
reducing N . Since the second search space is quite representative in terms of the
performance of the compression algorithm, we draw our timing results from the ex-
periments with that particular search space. Table 6.2 gives the amount of CPU time
(in minutes) needed to compute Qnu as n ranges from 2 to 100. Table 6.3 gives the
amount of time needed to compress Qu to Qc as well as the time needed to compute

7See [2] for a definition of these search spaces.

COMPRESSING PROBABILITY TRANSITION MATRICES 73

Table 6.2
The time (in minutes) to compute Qnu for n = 2 to n = 100.

N = 286 N = 455 N = 680 N = 969
Computation time 27 125 447 1289

Table 6.3
The time (in minutes) to compress Qu and to compute Qnc for n = 2 to n = 100.

N = 286 N = 455 N = 680 N = 969
Compression time 0.2 0.9 3.0 9.5
Computation time 2.4 7.6 17.9 38.1

Qnc as n ranges from 2 to 100.8 Clearly, the compression algorithm achieves enormous
savings in time when it is actually necessary to compute powers of Qu.

Another common use of Qnu is to compute the probability distribution p(n) over
the states at time n (as we did in the previous subsection). If the prior distribution
p(0) is known in advance, however, this is more efficiently done by multiplying p(0)

by Qu repeatedly (i.e., this is repeated n times to produce p(n)). The computation is
of order N2 instead of N3.

Tables 6.4 and 6.5 give the amount of time needed to compute p(n) (from Qu
and Qc, respectively). Despite the obvious benefits of computing p(n) from Qc, the
compression algorithm is not advantageous in this case since the time needed to
compress Qu exceeds the time to produce p(n) from Qu. However, there are still
occasions when compressing Qu and then using Qc to compute p(n) will in fact be
more efficient. The first is when it is necessary to compute p(n) for a large number of
different prior distributions (recall that Qc does not depend on the prior information
and hence need not be recomputed). The second occasion is when it is necessary
to compute p(n) for large n (e.g., [10] indicates that times on the order of 108 are
sometimes required). In both of these situations the cost of the compression algorithm
is amortized. Finally, compression is also advantageous when the prior distribution
is not known in advance.9

In summary, the compression algorithm is most advantageous when it is nec-
essary to actually examine the powers of Qu directly. For computing probability
distributions over the states, the compression algorithm will be advantageous if the
prior distribution is initially unknown, if a large number of prior distributions will be
considered, or if the transient behavior over a long period of time is required.

7. Related work. The goal of this paper has been to provide a technique for
compressing (or aggregating) discrete-time Markov chains (DTMCs) in a way that
yields good estimates of the transient behavior of the Markov model. This section
summarizes the work that is most closely related.

There is a considerable body of literature concerning the approximation of tran-
sient behavior in Markov chains. Techniques include the computation of matrix expo-
nentials, the use of ordinary differential equations, and Krylov subspace methods [7].
However, all of these techniques are for continuous-time Markov chains (CTMCs),
which use an infinitesimal generator matrix instead of a probability transition ma-
trix. It is possible to discretize a CTMC to obtain a DTMC such that the stationary

8All timing results are on a Sun Sparc 20. The code is written in C and is available from the
author.

9It is also important to emphasize that it is very likely that the compression algorithm can be
extensively optimized, producing much better timing results.

74 WILLIAM M. SPEARS

Table 6.4
The time (in minutes) to compute p(n) for n = 2 to n = 100.

N = 286 N = 455 N = 680 N = 969
Computation time 0.1 0.3 0.7 1.4

Table 6.5
The time (in minutes) to compress Qu and to compute p(n) for n = 2 to n = 100.

N = 286 N = 455 N = 680 N = 969
Compression time 0.2 0.9 3.0 9.5
Computation time 0.02 0.02 0.03 0.05

probability vector of the CTMC is identical to that of the DTMC. However, [10] notes
that the transient solutions of DTMCs are not the same as those of the correspond-
ing CTMCs, indicating that these techniques will be problematic for computing the
transient behavior of DTMCs.

There is also considerable work in aggregation of DTMCs. Almost all theoretical
analyses of aggregation (e.g., “block aggregation” [5]) utilize the same functional
form:

f(Qu) = Qc = AQuB (AB = I),

where A and B are matrices that determine the partitioning and the aggregation
of the states [3], [4]. This functional form must satisfy two axioms: “linearity” and
“state partitioning.” Linearity implies that A and B do not depend explicitly on the
entries inQu. State partitioning implies that the “aggregated” transition probabilities
should depend only upon the probabilities associated with the aggregated states (e.g.,
the aggregation of states i and j should only depend on pi,i, pi,j , pj,i, and pj,j).

Neither axiom is true for compression of column-equivalent states in this paper.
This is reflected in the fact that, in general, AB = XY 6= I. Instead, in this paper
BA = I for both row and column equivalence, yielding desirable properties with
respect to the powers of Qu. The current results indicate that the relevance of both
axioms should be reexamined.

The aggregation technique most closely related to the work in this paper is de-
scribed by [10], [11], and [12]. This aggregation technique partitions the set of states
S into s nonempty sets S1, . . . , Ss. Denoting the steady-state probability of state i
as πi, then πy =

∑
i∈Sy πi if

Qc(x, y) =
1∑

i∈Sx πi

∑
i∈Sx

πi∑
j∈Sy

pi,j

 .(7.1)

If compression is performed in this manner, the steady-state behavior of the
compressed system is the same as the original system. The aggregated matrix can
be computed via the method of “stochastic complementation” or via “iterative ag-
gregation/disaggregation” methods. The former will work on arbitrary matrices but
is generally computationally expensive. The latter is most efficient for “nearly com-
pletely decomposable” (NCD) matrices (e.g., see [1]). However, the emphasis is always
on steady-state behavior and not on transient behavior. This difference in emphasis
can be seen by noting the difference in the choice of weights—the focus in this paper
has been on column mass instead of steady-state values.

COMPRESSING PROBABILITY TRANSITION MATRICES 75

In a sense, the compression algorithm presented in this paper is a generalization of
steady-state aggregation. The steady-state matrix is column equivalent for every pair
of states, and the column masses, when renormalized, are the same as the steady-state
probabilities. Thus the compression algorithm is a generalization of the aggregation
formula to transient behavior.10 This leads to the intriguing hypothesis that this
new compression algorithm will be more accurate when describing transient behavior
and less accurate for describing steady-state behavior. Preliminary results appear to
confirm this hypothesis.

8. Summary and discussion. This paper has introduced a novel compression
algorithm for probability transition matrices. The output from the algorithm is a
smaller probability transition matrix with less states. The algorithm is designed to
aggregate arbitrary (not necessarily NCD) probability transition matrices of DTMCs
in order to obtain accurate estimations of transient behavior. Thus it appears to fill
the gap between existing transient techniques (which focus on CTMCs) and existing
aggregation techniques for DTMCs (which focus on steady-state behavior).

There are a number of potential avenues for further expansion of this research.
The first possibility is to compress more than two states at once. Multiple-state
compression may yield better results by allowing for a more accurate estimation of
error. Another avenue is to derive estimates of how error propagates to higher powers
of Qc. The current similarity metric is not necessarily a good indicator of the error at
higher powers of Qc, although empirically the results are quite good. However, both
of these avenues greatly increase the computational complexity of the algorithm.

The comparison with the related work indicates that this new compression algo-
rithm can be considered to be a generalization of the more traditional aggregation
formulas. This indicates yet a third avenue for research. If, in fact, column mass
turns out to yield better weights for the weighted average during transient behavior,
then it may be possible to smoothly interpolate between column mass and steady-
state probabilities as the transient behavior approaches steady state. Of course, this
presupposes the existence of the steady-state distribution, but efficient algorithms do
exist to compute these distributions.

The current algorithm also quite deliberately ignores the roles of the priors p
(0)
i

in order to have as general an algorithm as possible. However, if priors are known,
then it may be possible to use this information to improve the weighted averaging
procedure (see appendix), thus once again reducing the error in some situations.

Finally, the amount of compression that can be achieved with negligible error
is a useful indicator of whether the system is being modeled at the correct level of
granularity. If the probability transition matrix is hard to compress, then the system
is probably modeled at a reasonable level of granularity. However, ease of compres-
sion indicates that the system is being modeled in too much detail. In these cases
monitoring the states that are chosen for compression by the similarity metric can
yield important information about the characteristics of the system. This approach
could be used to characterize systems that are defined by a probability transition
matrix but are still not well understood at a higher level.

Appendix. This appendix formally computes r{i∨j},k. Let St be the random
variable for the Markov chain, which can take on any of the N state values at time

t. Then the shorthand notation pi,j is really P [St = j|St−1 = i], and p
(t)
i is really

P [St = i]. Recall the definition of conditional probability: P [A|B] = P [A∧B]/P [B].
Recall also the definition for “averaging” probabilities: P [A] =

∑
l P [A ∧Bl], where

10Note that Lemma 4.5 implies that if bi = qbj for states i and j in Qu, then πi = qπj .

76 WILLIAM M. SPEARS

the Bl’s are mutually exclusive and exhaust the space. The computation of r{i∨j},k
is straightforward. By definition,

r{i∨j},k = P [St = k|St−1 = (i ∨ j)].
By definition of conditional probability and by expanding the disjunctions,

r{i∨j},k =
P [St = k ∧ St−1 = (i ∨ j)]

P [St−1 = (i ∨ j)] ,

r{i∨j},k =
P [St = k ∧ St−1 = i] + P [St = k ∧ St−1 = j]

P [St−1 = i] + P [St−1 = j]
.

Expanding via the “averaging” of probabilities yields

r{i∨j},k =

∑
l P [St = k ∧ St−1 = i ∧ St−2 = l] +

∑
l P [St = k ∧ St−1 = j ∧ St−2 = l]∑

l P [St−1 = i ∧ St−2 = l] +
∑
l P [St−1 = j ∧ St−2 = l]

.

Using the definition of conditional probability several times and the fact that the
process is Markovian yields (in shorthand notation)

r{i∨j},k =
pi,k

∑
l pl,ip

(t−2)
l + pj,k

∑
l pl,jp

(t−2)
l∑

l pl,ip
(t−2)
l +

∑
l pl,jp

(t−2)
l

.

What is interesting to note is the time-dependence of this expression. Since

the p
(t−2)
l values are not known in advance, one can only make an assumption of

“uniformity” (i.e., that the p
(t−2)
l values are the same for all l). If this is done, the

time-independent expression obtained is

r{i∨j},k =
mipi,k +mjpj,k

mi +mj
,

where mi and mj are the sums of the probability mass in columns i and j. This is
what was obtained more intuitively in section 3.

Now clearly the uniformity assumption will be wrong in general, which explains
why the averaging procedure can lead to errors in numerical computations. However,
under conditions of row or column equivalence it is trivial to show that both the time-
dependent and time-independent forms lead to the same time-independent answers.
Thus, under row or column equivalence the uniformity assumption is irrelevant, and
the averaging procedure yields no error. Under row and column similarity the unifor-
mity assumption is nearly irrelevant and the time-independent expression is a good
approximation for the time-dependent expression. The error of this approximation is
computed in section 5.

Acknowledgments. I thank Diana Gordon for pointing out that a method
for evaluating the compression algorithm was to show that (Qnu)c = Qnc . Diana
also pointed out sections that needed mathematical refinement. I also thank the
anonymous reviewers for their very constructive comments.

REFERENCES

[1] T. Dayar and W. J. Stewart, Quasi lumpability, lower-bounding coupling matrices and
nearly completely decomposable Markov chains, SIAM J. Matrix Anal. Appl., 18 (1997),
pp. 482–498.

COMPRESSING PROBABILITY TRANSITION MATRICES 77

[2] K. De Jong, W. Spears, and D. F. Gordon, Using Markov chains to analyze GAFOs, in
Foundations of GAs Workshop, Morgan-Kaufmann, San Francisco, 1994, pp. 115–137.

[3] E. C. Howe and C. R. Johnson, Aggregation of Markov processes: Axiomatization, J. The-
oret. Probab., 2 (1989), pp. 201–208.

[4] E. C. Howe and C. R. Johnson, Linear aggregation of input-output models, SIAM J. Matrix
Anal. Appl., 10 (1989), pp. 65–79.

[5] J. Kemeny and J. Snell, Finite Markov Chains, D. Van Nostrand, New York, 1960.
[6] A. E. Nix and M. D. Vose, Modelling genetic algorithms with Markov chains, Ann. Math.

Artificial Intelligence, 5 (1992), pp. 79–88.
[7] R. Sidje and W. J. Stewart, A survey of methods for computing large sparse matrix expo-

nentials arising in Markov chains, J. Comput. Statist. Data Anal., to appear.
[8] W. Spears, K. De Jong, T. Baeck, D. Fogel, and H. de Garis, An overview of evolutionary

computation, in Proc. European Conference on Machine Learning, Springer-Verlag, Berlin,
1993, pp. 442–459.

[9] W. Spears and K. De Jong, Analyzing GAs using Markov models with semantically ordered
and lumped states, in Foundations of GAs Workshop, Morgan-Kaufmann, San Francisco,
1996, pp. 85–100.

[10] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

[11] W. J. Stewart and W. Wu, Numerical experiments with iteration and aggregation for Markov
chains, ORSA J. Comput., 4 (1992), pp. 336–350.

[12] M. Vose, Modeling simple genetic algorithms, Evolutionary Computation, 3 (1995), pp. 453–
472.

COMPUTATION OF DERIVATIVES OF REPEATED EIGENVALUES
AND THE CORRESPONDING EIGENVECTORS OF

SYMMETRIC MATRIX PENCILS∗

ALAN L. ANDREW† AND ROGER C. E. TAN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 78–100

Abstract. This paper presents and analyzes new algorithms for computing the numerical values
of derivatives, of arbitrary order, and of eigenvalues and eigenvectors of A(ρ)x(ρ) = λ(ρ)B(ρ)x(ρ) at
a point ρ = ρ0 at which the eigenvalues considered are multiple. Here A(ρ) and B(ρ) are hermitian
matrices which depend analytically on a single real variable ρ, and B(ρ0) is positive definite. The
algorithms are valid under more general conditions than previous algorithms. Numerical results
support the theoretical analysis and show that the algorithms are also useful when eigenvalues are
merely very close rather than coincident.

Key words. multiple eigenvalues, close eigenvalues, eigenvalue and eigenvector sensitivities

AMS subject classifications. 65F15, 15A22

PII. S0895479896304332

1. Introduction. Let A and B be mappings from the real field, R, to the set of
n × n (real or complex) matrices. In this paper, we study the dependence on ρ ∈ R
of the eigenvalues λi(ρ) and corresponding eigenvectors, xi(ρ), of

A(ρ)xi(ρ) = λi(ρ)B(ρ)xi(ρ).(1)

Except where stated otherwise, we consider only the case in which
(i) A(ρ), B(ρ), and the inverse B−1(ρ) of B(ρ) are analytic functions of ρ

throughout some open interval I0 containing ρ0;
(ii) A(ρ) and B(ρ) are hermitian for all ρ ∈ I0 and B(ρ0) is positive definite;

and
(iii) (1) has an eigenvalue, λ1(ρ0), of multiplicity r when ρ = ρ0.

The specialization to the finite dimensional case of a known result on self-adjoint
linear operators on Hilbert spaces [6, sect. 3.6.2, Thm. 1] ensures that under these
hypotheses there exist r analytic functions λ1, . . . , λr : R→ C and r linearly indepen-
dent analytic vector-valued functions x1, . . . ,xr : R→ Cn, satisfying (1) throughout
some open interval I ⊂ I0 such that ρ0 ∈ I and λ1(ρ0) = · · · = λr(ρ0). (For B = I
this was proved in [20].) In the case (r = 1) of simple eigenvalues, these sufficient
conditions for the existence of analytic eigenvalue and eigenvector functions can be
relaxed considerably [2]. The extent to which they can be relaxed when r > 1 is
considered in section 2.

In several important problems in engineering, for example, the optimum design
of structures [9], [10], and model updating [17], it is useful to know the derivatives,
λ′i and x′i, of the eigenvalues and eigenvectors of (1), and many papers (see [7], [9],
[10], [25] for some references) are devoted to methods for the numerical computation

∗Received by the editors May 28, 1996; accepted for publication (in revised form) December 2,
1997; published electronically September 15, 1998.

http://www.siam.org/journals/simax/20-1/30433.html
†School of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia (a.andrew@

latrobe.edu.au).
‡Department of Mathematics and Programme in Computational Science, National University of

Singapore, 10 Kent Ridge Crescent, Singapore 119260 (mattance@nus.edu.sg). Part of this work was
done while this author was on sabbatical leave at La Trobe University.

78

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 79

of these derivatives. Some also consider the computation of higher derivatives which
are used, for example, in reanalysis. Most of these papers deal only with the simple
eigenvalue case (r = 1), but it is known [10], [19] that eigenvalues often coalesce
for an optimum design, and even before optimizing, repeated eigenvalues may occur
when a structure has certain symmetry properties [21]. First derivatives of repeated
eigenvalues are relatively easy to compute [12], but, as we hope to discuss elsewhere
(see also [16]), many methods which have been proposed for computing derivatives of
the corresponding eigenvectors are flawed.

Since our hypotheses ensure that the eigenvalues are analytic in I, it follows that,
for every pair of eigenvalues, λi, λj , either

(a) λi(ρ) = λj(ρ) for all ρ in I and λ
(k)
i (ρ0) = λ

(k)
j (ρ0) for all k = 0, 1, 2, . . . ,

where the superscript (k) denotes the kth derivative; or
(b) there is no open neighborhood of ρ0 throughout which λi(ρ) = λj(ρ), and

there exists an integer k such that λ
(k)
i (ρ0) 6= λ

(k)
j (ρ0).

In the first case, if, for example, λ1(ρ) = · · · = λs(ρ) for all ρ in I, then, for i =
1, . . . , s, x′i(ρ) has an indeterminate component in sp{x1(ρ0), . . . ,xs(ρ0)}, the space
spanned by x1(ρ0), . . . ,xs(ρ0), although it is still possible to compute derivatives of
the corresponding invariant subspaces [8].

This paper is concerned only with the more common second case. Specifically,
we consider the case in which r > 1, λ1(ρ0) = · · · = λr(ρ0) 6= λi(ρ0) for all i > r,
but, for all ρ 6= ρ0, in some neighborhood of ρ0, the λi(ρ) are all simple. In this case
the corresponding eigenvectors are uniquely defined (to within a normalizing factor)
for all ρ 6= ρ0 in I, and hence, continuity requires a unique basis for the eigenspace
corresponding to the repeated eigenvalue λ1(ρ0) = · · · = λr(ρ0). This basis will not
normally be the same as that computed by standard methods, which use values at
ρ0 only. Moreover, the uniqueness of the eigenvectors ensures that, in contrast to
case (a), the only possible indeterminate component of x′i(ρ) is the xi(ρ0) component,
which depends on the normalizing condition. As in the case of simple eigenvalues [2],
this condition may be chosen to define each x′i(ρ0) uniquely. Also since, for simple
eigenvalues,

x∗i (ρ)B(ρ)xj(ρ) = 0 for all i 6= j,(2)

continuity of the eigenvectors ensures that, in this case, (2) holds for all ρ in I.
Not surprisingly, derivatives of eigenvectors corresponding to multiple eigenvalues

are easiest to compute when the derivatives of these eigenvalues are well separated. A
good algorithm for first derivatives in this case is given in [15]. A (rather inefficient)
extension of this method to some cases where repeated eigenvalues have repeated first
derivatives, provided second derivatives are well separated, is given in [22], and a more
efficient algorithm for these cases is given in [26]. An algorithm for the case where an
eigenvalue of multiplicity r(> 1) has first and second derivatives of multiplicity r and
well-separated third derivatives was announced in [4]. Other approaches for special
cases are given in [5] and [11]. In [5], [11], and [26] the symmetry requirement made
here is relaxed, but the numerical stability problems arising in the nonsymmetric case
are not considered.

In this paper, we present and analyze practical algorithms, which do not require
the derivatives of any particular order of a repeated eigenvalue to be distinct and
which compute the numerical values at ρ0 of the derivatives (of any desired order) of
the repeated eigenvalues and the corresponding suitably normalized eigenvectors. For
simplicity we first examine an important special case in section 3, while in section 4

80 ALAN ANDREW AND ROGER TAN

we show how our algorithm may be adapted to the general case and discuss practical
implementation details. Some simple numerical examples are considered in section 5.

In numerical calculations the difference between equality and near equality is
blurred. Even in the symmetric case, although eigenvalues are well conditioned, eigen-
vectors corresponding to very close eigenvalues are ill conditioned. As data are often
uncertain, it is common in engineering practice to regard very close eigenvalues as
equal and, instead of computing individual eigenvectors, to compute an orthonormal
basis for the (well-conditioned) invariant subspace corresponding to a cluster of very
close eigenvalues which are relatively well separated from the remaining eigenvalues.
In this paper we propose a similar approach to the problem considered here. That
is, very close eigenvalues are treated by the methods developed for repeated eigen-
values, and very close derivatives (including higher-order derivatives) are treated by
the methods developed for repeated derivatives. For simplicity, section 3 deals with
exact computation involving exactly repeated eigenvalues, while section 4.1 considers
roundoff and the relationship between equality and near equality.

It is important to note that the problem considered here is not the same as the
classical problem in which the only available data are A(ρ0) and B(ρ0). We are dealing
here with matrix-valued functions. As pointed out in section 4.1, there are many im-
portant problems in engineering design in which A′(ρ0), B′(ρ0), and higher derivatives
A(k)(ρ0) and B(k)(ρ0) are known with much the same accuracy as A(ρ0) and B(ρ0).
It turns out that, although the eigenvectors of A(ρ0)xi(ρ0) = λi(ρ0)B(ρ0)xi(ρ0) cor-
responding to very close eigenvalues are ill conditioned, the problem may often be
replaced by a well-conditioned one by regarding the close eigenvalues as equal and us-
ing information about A′(ρ0) and B′(ρ0) to determine the corresponding eigenvectors.
Basically, this is possible if (and only if) those eigenvalues of (1) which are close at ρ0

have derivatives which are well separated at ρ0. Our approach could be regarded as a
sort of regularization technique which, instead of putting a penalty on the magnitude
of solutions as in the classical approach, uses information about the matrix derivatives.
Similarly, the problem of computing the derivatives of eigenvectors corresponding to
close eigenvalues is ill conditioned if the only data available are A(ρ0), B(ρ0), A′(ρ0),
and B′(ρ0). However, if (and only if) the derivatives of these close eigenvalues are
well separated, the problem becomes well conditioned when A′′(ρ0) and B′′(ρ0) are
also specified. These questions are considered in more detail in section 4.1.

When close eigenvalues also have close derivatives, the eigenvectors can be made
well conditioned by using also A′′(ρ0) and B′′(ρ0), and the derivatives of these eigen-
vectors can be made well conditioned by using also A′′′(ρ0) and B′′′(ρ0), provided, in
each case, that the second derivatives of these close eigenvalues are well separated. In
the (less common) case, in which both first and second derivatives of the eigenvalues
are also close, the process can be continued, using successively higher derivatives of A
and B, until well-separated eigenvalue derivatives of some order are encountered. Al-
gorithms 1 and 2 of section 3 involve a parameter m (defined just before Algorithm 1)
which indicates the number of times we must go through this cycle. It is important to
note that m is usually small in applications, with values of m greater than two being
relatively rare, and that Algorithms 1 and 2 simplify considerably when m is small.
The algorithm of [15] is included in the case m = 1 of Algorithm 1. However, the
problem in which eigenvalues are merely very close rather than equal is not considered
in [15]. Indeed, we are not aware of any of the large number of recent papers in the
engineering literature on computation of derivatives of eigenvectors corresponding to
repeated eigenvalues which deal adequately with close eigenvalues and the associated

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 81

stability problems.

Our approach uses readily available data (the higher derivatives of A and B)
not utilized by classical methods to replace an important ill-conditioned problem by a
well-conditioned problem and provides stable algorithms to solve that well-conditioned
problem. Following the approach of [15] for repeated eigenvalues, we do not use the
(ill-conditioned) eigenvectors corresponding to close eigenvalues as input for our al-
gorithms. Instead we use an arbitrary basis of the corresponding (well-conditioned)
invariant subspace. The eigenvectors are obtained as output from Algorithm 1, which
uses derivatives of A and B in a way that ensures stability (see section 4.1). The
theoretical predictions of section 4.1 are supported by our numerical results (sum-
marized in section 5). For problems with repeated eigenvalues and a known closed
form solution, our methods consistently computed these solutions with accuracy close
to machine precision. Table 1 of section 5 demonstrates the clear superiority of our
approach over classical methods when eigenvalues are very close (but not equal).

The contributions of this paper include the following. (i) Although methods for
computing derivatives of eigenvectors corresponding to repeated eigenvalues with re-
peated derivatives have been proposed before, this paper appears to be the first to
give complete proofs for any such method. (ii) We believe the method suggested here
is more efficient than methods previously proposed for this problem. For example,
the method of [11] requires computation of all eigenvalues and eigenvectors of (1),
not just those required here. The method of [22] requires, among other things, the
solution of an equation of the form P1Z

′P2 + P3Z
′P4 + P5Z

′ = P6 (equation (15) of
[22]) for the n × r matrix Z′, where P1 (n × n), P2 (r × r), P3 (n × n), P4 (r × r),
P5 (n × n), and P6 (n × r) are given. This is not required in our method. (Al-
though there have been methods proposed for this problem which require even less
computation than ours, all such methods known to us produce the wrong answers
except in very special circumstances.) (iii) Apart from the special case considered
in [4] (which refers to the present paper for proofs and generalizations), we are not
aware of any previously published method for problems in which both first and sec-
ond derivatives of repeated eigenvalues are repeated, though the possibility of such
methods was mentioned, without any details, in [11] and [26]. By not requiring the
derivatives of any specific order to be well separated, we have been able to give a
more unified treatment of the problem than in previous papers. (iv) Unlike previous
papers on computing derivatives of eigenvectors corresponding to repeated eigenval-
ues, this paper considers questions of numerical stability for this problem and the
related problem in which eigenvalues, and perhaps also their derivatives, are merely
very close rather than exactly equal. (v) Although several papers have been devoted
to methods for computing second derivatives of eigenvectors corresponding to simple
eigenvalues, our Algorithm 2 appears to be the first published method for computing
these derivatives in the case of repeated eigenvalues (even when these eigenvalues have
well-separated derivatives), and it also provides the first stable method for the case
of very close eigenvalues. Moreover, Algorithm 2 remains valid when the repeated (or
close) eigenvalues have repeated (or close) derivatives, and it allows the computation
of eigenvalue and eigenvector derivatives of arbitrarily high order.

2. Existence of derivatives. Analytic eigenvalue and eigenvector functions ex-
ist in many cases not covered by the simple sufficient conditions of section 1. For exam-
ple, if A(ρ) = S(ρ) D(ρ) S−1(ρ) and B is the identity matrix I, where S(ρ), D(ρ),
and S−1(ρ) are analytic functions of the (real or complex) k-tuple ρ={ρ1, . . . , ρk}
and D(ρ) is diagonal, then, whatever their multiplicity, the eigenvalues of (1) will be

82 ALAN ANDREW AND ROGER TAN

the (analytic) diagonal elements of D(ρ) and the corresponding (linearly independent
and analytic) eigenvectors will be the corresponding columns of S(ρ), although in this
case, A(ρ) is not generally hermitian and the restriction made in section 1 that ρ be
a single real number is not satisfied. Since, as pointed out in [13, p. 400], a hermitian
matrix-valued analytic function of a complex variable must be constant, and since ρ
is generally real (though not always scalar-valued) in engineering applications, we do
not consider complex ρ further, except to mention that the Taylor series of an eigen-
value or eigenvector function which is analytic in a real neighborhood of ρ0 may be
used to define a function analytic in a complex neighborhood of ρ0. (See also [6, sect.
3.5.3].) However, even when B = I, A(ρ) is hermitian, and ρ is a real k-tuple with
k > 1, there are well-known examples [2], [6], [10], [20] in which neither the eigenval-
ues nor the eigenvectors are even once differentiable, although directional derivatives
are known to exist in this case [10], and our methods can be used to compute partial
derivatives. The case k > 1 is discussed further in [23].

The key requirement of our methods is that the eigenvalues and r corresponding
linearly independent eigenvectors must be analytic (or at least sufficiently differen-
tiable). The stronger conditions (i)–(iii) of section 1 are important, as they are suf-
ficient conditions which are easy to check. Our methods can often be adapted for
problems not satisfying conditions (i)–(iii) of section 1 provided this key differentia-
bility requirement is guaranteed. However, even in the case when ρ is a real scalar,
ρ, it is hard to find readily checked sufficient conditions much weaker than those
mentioned in section 1 (although a result for A(ρ) normal and B = I is given in [6,
sect. 3.5.1 Thm. 1]). The effect of replacing the requirement that B(ρ0) be positive
definite by the weaker requirement that it be nonsingular is similar to the effect, in
the case B = I, of allowing A(ρ) to be nonhermitian. For example, if, for some α > 0,

A(ρ) =

[
1 0
0 ρα

]
and B =

[
0 1
1 0

]
,

then at ρ0 = 0, where (1) has a repeated eigenvalue, it has continuous linearly in-
dependent eigenvectors. The eigenvalues and eigenvectors (normalized, for example,
by x∗x = 1) are analytic if and only if α is an even integer, while if α is an odd
integer, they are differentiable only (α − 1)/2 times. (Note the normalizations used
in section 3 are appropriate only for B(ρ0) positive definite.)

Although much progress [19] has been made in the development of methods for
solving optimization problems in the nondifferentiable case, we believe that the class of
problems where repeated eigenvalues and the corresponding eigenvectors are analytic
is sufficiently large for the algorithms developed in this paper to be important.

3. The basic algorithms. Let Λ = diag(λ1, . . . , λr), and let X be the n × r
matrix function whose columns are x1, . . . ,xr, where the analytic eigenvalue functions,
λi, and the linearly independent analytic eigenvector functions, xi, are those defined
in section 1. Then, by (1), AX = BXΛ, and hence, since A,B,X,Λ are analytic
on I,

(AX−BXΛ)(k) = 0, k = 0, 1, 2,(3)

This result plays a key role in the formulation of our algorithms.
To ensure uniqueness of the eigenvector derivatives, we require some normalizing

condition for the eigenvectors. Two important examples are

x∗iBxi = 1(4)

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 83

and

x∗i (ρ0)B(ρ0)xi = 1.(5)

In [2], where the relationship between (4) and (5) is discussed in some detail for
B = I, the eigenvector functions produced by (4), which are favorite choices in the
engineering literature, are called “uniformly normed,” and those produced by (5),
which are common in theoretical literature, are called “orthogonally constrained.”
The combination of either (4) or (5) with (2) gives

X∗(ρ0)B(ρ0)X(ρ0) = I.(6)

In the real case, (4) and (5) give the same result for x′i(ρ0) if B′(ρ0) = 0 (and, in
particular, if B is constant), but, in general, (4) and (5) give different results for

x
(k)
i (ρ0). In the complex case, (4) does not determine x′i(ρ0) uniquely but leads (since

B′(ρ) is hermitian) to the result Re
(
x∗i (B

′xi + 2Bx′i)
)

(ρ0) = 0. It is customary to
impose the stronger condition(

x∗i (B
′xi + 2Bx′i)

)
(ρ0) = 0.(7)

Like (5), this specifies xi to within a constant scalar factor of unit modulus (±1 in the
real case), which, in practice, is determined by the numerical process of computing
C0 below. For higher derivatives the results for (4) become increasingly complicated,
but (5) gives the simple result

(x∗iBx
(k)
i)(ρ0) = 0, k = 1, 2, 3,(8)

Together with (3), once xi(ρ0) has been fixed, (7) determines x′i(ρ0) uniquely and (8)

determines each x
(k)
i (ρ0) uniquely. Our Algorithm 1 gives the results obtained with

both (7) and (8). For higher derivatives we give the result for (8) only.
Solution of (1) at ρ = ρ0 by a standard computer package gives Λ(ρ0) but,

instead of X(ρ0), gives an n × r matrix X̂ whose columns give a different basis for
sp{x1(ρ0), . . . ,xr(ρ0)}, so that

X(ρ0) = X̂C0(9)

for some unknown r × r matrix C0. Often (especially when B(ρ0) = I), X̂ also
satisfies (6), and, if the package produces some other basis, we can easily use the
Gram–Schmidt process, with the inner product induced by B(ρ0), to obtain a basis
with this property. Since this simplifies the analysis slightly, we assume (as in [15]
and [22]) that this has been done; that is, we assume

X̂∗B(ρ0)X̂ = I.

It then follows from (6) that C0 is unitary. The two main tasks in the calculation of
X′(ρ0) that do not arise with simple eigenvalues are that we must calculate C0 and
we must find the component of each x′i(ρ0) in sp{x1(ρ0), . . . ,xr(ρ0)}.

In this section we consider the case in which, for some positive integer m,

Λ(k)(ρ0) = λ(k)(ρ0)I, k = 0, . . . ,m− 1,
but

λ
(m)
i (ρ0) 6= λ

(m)
j (ρ0) for all i 6= j.

(10)

84 ALAN ANDREW AND ROGER TAN

This condition is satisfied in most applications involving repeated eigenvalues, usually,
but by no means always, with m = 1. Our results for m = 1 include the results of
[15], but many of our results (including Algorithm 2 and our observations concerning
numerical stability) appear to be new even for m = 1. In applications involving
multiple eigenvalues, the most common value of r is 2, and (10) is always satisfied
when r = 2. (This is because when we have only two numbers to compare, either
they are equal or they are not.) However, the situation can be more complicated
when r > 2. For example, if r = 3 we may have λ1(ρ0) = λ2(ρ0) = λ3(ρ0) and
λ′1(ρ0) = λ′2(ρ0) 6= λ′3(ρ0). (Geometrically, in this example, three eigenvalue curves
intersect at ρ0, where two of them are tangential to each other but not the third.)
The modification to the algorithms presented in this section, required when (10) is
not satisfied, is described in section 4.3. The parameter m defined in condition (10)
plays a key role in Algorithms 1 and 2 below.

When m > 1, Algorithm 1 uses the fact that, since (A − λB)X′ = (λB′ −
A′)X + BXΛ′, it is easily shown (see Theorem 3.1) that, for each solution V1 of

(A − λB)(ρ0)V1 = (λB′ −A′)(ρ0)X̂ + B(ρ0)X̂Λ′(ρ0), there exists an r × r matrix
C1 such that X′(ρ0) = V1C0 + X(ρ0)C1, where C0 is defined in (9). Unlike some
previous methods, our method does not depend on making a special choice of V1, but
a different V1 will produce a different C1. This is important for the stability analysis
of section 4.1. Although V1 has an arbitrary component in sp{x1(ρ0), . . . ,xr(ρ0)},
its component outside that space is well conditioned provided |λ1(ρ0) − λi(ρ0)| is
not small for any i > r. Our methods also do not use the value of A or B or
eigenvalues or eigenvectors of (1) at any point except ρ0. In particular, numerical
differentiation (a notoriously unstable process) is not used. Instead, Algorithm 1

uses X̂ and V1 and provides a method for computing C0 and C1, which is stable
provided the derivatives, A(k)(ρ0) and B(k)(ρ0), k = 1, . . . ,m + 1, can be computed
with much the same accuracy as A(ρ0) and B(ρ0) (as is usual in applications) and the
mth derivatives of λ1, . . . , λr are well separated at ρ0 (see section 4.1). The method
of [15] cannot be used to compute C0 and C1 unless the derivatives of the repeated
eigenvalues are well separated. We use the fact that condition (10) ensures that, for all
C1, Λ(k)(ρ0)C1 = C1Λ

(k)(ρ0) for k = 0, . . . ,m−1 and that, if Λ(m)(ρ0) is known, the
off-diagonal elements of C1 can easily be computed from the corresponding elements
of Λ(m)(ρ0)C1 − C1Λ

(m)(ρ0). This is used in Algorithm 1 (step 7) to compute C1

by a generalization of a method used in [15] and in step 3 of the first algorithm of
[24]. Although the primary purpose of Algorithm 1 is to compute X′, it also gives
the first m + 1 derivatives of Λ as a free bonus. In some applications, Λ′′(ρ0) is
required but X′(ρ0) is not. This requires only the first few steps of Algorithm 1. Of
course, Λ(m)(ρ0) cannot be computed immediately using (3), as this would require
knowledge of the eigenvector derivatives. A key idea of Algorithm 1 is that, instead of
using X′(ρ0),X′′(ρ0), . . . , we use matrices V1,V2, . . . , which may easily be computed
sequentially (see step 3.3) and which are related to X′(ρ0),X′′(ρ0), . . . , as shown in
Theorem 3.1 (iv).

Algorithm 1 computes X(ρ0),Λ′(ρ0), . . . ,Λ(m+1)(ρ0), and X′(ρ0) when (10) is

satisfied, using only λ(ρ0) (= λ1(ρ0) = · · · = λr(ρ0)), X̂, and A(k)(ρ0),B(k)(ρ0), k =
0, 1, . . . ,m + 1. Indeed, Theorem 3.1 shows that, for k = 1, . . . ,m − 1, Λ(k)(ρ0) is
computed at step 3.1, Λ(m)(ρ0) and X(ρ0) are computed at step 4, Λ(m+1)(ρ0) is
computed at step 6, and finally, X′(ρ0) is computed at step 8. In order to keep
its theoretical analysis as simple as possible, Algorithm 1 is written as though m
in (10) is already known, but, as shown in section 4.2, when (10) is satisfied the

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 85

algorithm is easily modified so that it calculates m automatically. This value of
m is then available for use in Algorithm 2, which consequently needs no modifi-
cation.

Notation. Throughout the rest of this section and throughout section 4, all func-
tions are assumed to be evaluated at ρ0 unless explicitly stated otherwise, and the
summation operator

∑i
k=j is defined to be null if j > i.

Algorithm 1.
1. Set T0 = 0, V0 = X̂, and µ0 = λ, where T0 is n× r.
2. Compute Z0 = A′ − λB′, M1 = X̂∗Z0X̂, and W0 = A− λB.
3. If m > 1, then, for i = 1 to m− 1, do

3.1. Compute µi, the average of the diagonal elements of Mi.
3.2. Compute Wi = Zi−1 − µiB.
3.3. Compute a solution Vi of

W0Vi = −Ti−1 −WiV0.(11)

(Existence of a solution is ensured by Theorem 3.1, and methods for
computing Vi are discussed in section 4.1.)

3.4. Compute

Zi = A(i+1) −
i∑

j=0

(
i+ 1
j

)
µjB

(i+1−j) and

Ti =
i∑

j=1

(
i+ 1
j

)
Wi+1−jVj .

3.5. Compute Mi+1 = X̂∗(ZiX̂ + Ti).
4. Solve the eigenvalue problem for Mm (which is hermitian by Theorem 3.1

(v)). Using MATLAB, for example, this immediately gives a diagonal matrix
Λm = diag(γ1, . . . , γr), whose diagonal elements are the eigenvalues of Mm,
and a unitary matrix U, whose columns are the corresponding normalized
eigenvectors. Compute X̂U. This is the accepted value of X and is denoted
by X in the rest of the statement of this algorithm.

5. Compute a solution Vm of

W0 Vm = −Zm−1X̂ + BXΛmU∗ − Tm−1.(12)

6. Compute

Mm+1 = X∗
{(

A(m+1) −
m−1∑
i=0

(
m+ 1
i

)
µiB

(m+1−i)
)

X

+ (m+ 1)(−B′XΛm − BV1UΛm + Zm−1V1U)

+

m∑
i=2

(
m+ 1
i

)
Wm+1−iViU

}
.

7. Compute the matrix C, whose off-diagonal elements are given by

cij =
mij

[(m+ 1)(γj − γi)] , i 6= j, i, j = 1, . . . , r,

86 ALAN ANDREW AND ROGER TAN

where cij and mij are the elements in the ith row and jth column of C
and Mm+1, respectively, and whose diagonal elements are the corresponding
diagonal elements of

− (X∗BV1U + 4),

where 4 = X∗B′X/2 if (7) is used and 4 = 0 if (5) is used.
8. Compute V1U + XC. This is the accepted value of X′.

Theorem 3.1. Let X̂∗B(ρ0)X̂ = I, and let (3), (6), (9), and (10) be satisfied.
Then, with the notation of Algorithm 1, there exist matrices V0, . . . ,Vm as required in
Algorithm 1, and, for each choice of these, there exist matrices C0, . . . ,Cm satisfying
(iv) below. Moreover,

(i) U = (U−1)∗ = C0, and hence, step 4 defines the required matrix X;
(ii) C1 = C and X′ = V1C0 + XC1 = V1U + XC;

(iii) Mi = λ(i)I for i = 1, . . . ,m− 1;

(iv) X(i) = ViC0 +
i∑

p=1

(
i
p

)
X(i−p)Cp for i = 0, . . . ,m;

(v) Λm = C∗0MmC0 = Λ(m); and
(vi) Λ(m+1)is the matrix obtained from Mm+1 by replacing its off-diagonal ele-

ments by zero.
Proof. It follows from (3) and (10) that

(A− λB)X(i) = −
i−1∑
p=0

(
i
p

)
(A− λB)(i−p)X(p), i = 0, 1, . . . ,m− 1,(13)

and, from (3), (10), and (6), since also X∗A = ΛX∗B, that

Λ(i) = X∗

(A(i) −
i−1∑
j=0

(
i
j

)
λ(j)B(i−j))X

+

i−1∑
j=1

(
i
j

)
(A− λB)(i−j)X(j)

 , i = 0, 1, . . . ,m.(14)

Make the inductive hypothesis that, for some integer i ≤ m, V0, . . . ,Vi−1 as defined
in Algorithm 1 exist, and, for each choice of V0, . . . ,Vi−1, there exist C0, . . . ,Ci−1,
with C∗0 = C−1

0 , such that, for j = 0, 1, . . . , i− 1,

X(j) = VjC0 +

j∑
p=1

(
j
p

)
X(j−p)Cp(15)

and

µj = λ(j).(16)

In the case i = 1 (when (15) and (16) reduce to X = V0C0 and µ0 = λ), this is true

by (9), (6), and the definitions in step 1 of Algorithm 1, since X̂∗B(ρ0)X̂ = I. A
straightforward calculation, using the definitions of Ti,Wi,Zi, and Mi in step 3 of
Algorithm 1, shows that (16) implies that (11) is equivalent to

(A− λB)Vi = −
i−1∑
j=0

(
i
j

)
(A− λB)(i−j)Vj(17)

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 87

and that

Mi = X̂∗

A(i) −
i−1∑
j=0

(
i
j

)
λ(j)B(i−j)

 X̂ +
i−1∑
j=1

(
i
j

)
(A− λB)(i−j)Vj

 .(18)

Postmultiplying (17) by the nonsingular matrix C0 and subtracting (13), and later
changing the order of summation and using standard combinatorial equalities, shows
that (15) implies that (17) is equivalent to

(A− λB)(ViC0 −X(i)) =
i−1∑
j=0

(
i
j

)
(A− λB)(i−j)(X(j) −VjC0)

=

i−1∑
j=0

(
i
j

)
(A− λB)(i−j)

j∑
p=1

(
j
p

)
X(j−p)Cp

=

i−1∑
p=1

(
i
p

) i−1∑
j=p

(
i− p
j − p

)
(A− λB)(i−j)X(j−p)Cp(19)

=

i−1∑
p=1

(
i
p

) i−p−1∑
j=0

(
i− p
j

)
(A− λB)(i−p−j)X(j)Cp

=
i−1∑
p=1

(
i
p

)
(λB−A)X(i−p)Cp,

by (13) again. Since the right-hand side of (19) is clearly in the range of (A − λB),
and since the columns of X form a basis for the kernel of (A − λB), it follows that
(19), and hence also (11), has a solution and that, for each such solution, there exists
a matrix Ci such that

X(i) = ViC0 +

i∑
p=1

(
i
p

)
X(i−p)Cp;

that is, (15) also holds for j = i. Similarly, (14), (18), (9), (15), (10), and (3) imply
that

Λ(i) −C∗0MiC0 = X∗
i−1∑
j=1

(
i
j

)
(A− λB)(i−j)

j∑
p=1

(
j
p

)
X(j−p)Cp

= X∗
i−1∑
p=1

(
i
p

) i−1∑
j=p

(
i− p
i− j

)
(A− λB)(i−j)X(j−p)Cp(20)

= X∗
i−1∑
p=1

(
i
p

)
(AX−BXΛ)(i−p)Cp = 0.

Since C∗0 = C−1
0 , it follows from (10) and (20) that if i < m, then (16) is also true

when j = i. Hence, by induction, the required Vi and Ci all exist and (iii) and (iv)
are true. Since we have also now proved (20) when i = m, (v) is also true. Since, by
(10), the diagonal elements of the diagonal matrix Λ(m) are distinct, (i) now follows
from (v) and the definition of U.

88 ALAN ANDREW AND ROGER TAN

It follows from (i), (iii), (iv), (v), and the definition of Mm+1 in step 6 of
Algorithm 1 that

Mm+1 = X∗
{(

A(m+1) −
m−1∑
i=0

(
m+ 1
i

)
λ(i)B(m+1−i)

)
X

+ (m+ 1)

[
−B′XΛ(m) −B(X′ −XC1)Λ(m)

+

(
A(m) −

m−1∑
i=0

(
m
i

)
λ(i)B(m−i)

)
(X′ −XC1)

]

+

m∑
i=2

(
m+ 1
i

)
(A− λB)(m+1−i)

(
X(i) −

i∑
p=1

(
i
p

)
X(i−p)Cp

)}
.

Also it follows from (3), (10), and (6) that

Λ(m+1) = X∗
{[

A(m+1) −
m−1∑
i=0

(
m+ 1
i

)
λ(i)B(m+1−i)

]
X

− (m+ 1)B′XΛ(m) + (m+ 1)

[
A(m) −

m−1∑
i=0

(
m
i

)
λ(i)B(m−i)

]
X′

− (m+ 1)BX′Λ(m) +
m∑
i=2

(
m+ 1
i

)
(A− λB)(m+1−i)X(i)

}
.

Hence, by (3) and an argument similar to that used in the proof of (20), taking care
with the change of order of summation, it is easily shown that

Λ(m+1) −Mm+1

= (m+ 1)X∗
[(

A(m) −
m−1∑
i=0

(
m
i

)
λ(i)B(m−i)

)
XC1

+
m∑
i=2

(
m
i− 1

)
(A− λB)(m+1−i)X(i−1)C1

]
− (m+ 1)C1Λ

(m)(21)

+ X∗
m∑
p=2

(
m+ 1
p

) m∑
i=p

(
m+ 1− p
i− p

)
(A− λB)(m+1−i)X(i−p)Cp

= (m+ 1)(Λ(m)C1 −C1Λ
(m)).

Since Λ(m) = Λm = diag(γ1, . . . , γr), the (i, j)th element of the right-hand side of
(21) is (m + 1)(γi − γj) times the (i, j)th element of C1. In particular, the diagonal
elements are zero. Since Λ(m+1) is also diagonal, (vi) follows and it also follows that
the off-diagonal elements of C1 are the corresponding elements of C defined in step 7
of Algorithm 1. The only constraint on the diagonal elements of C1 is the normalizing
condition used for the eigenvectors, and it is readily deduced from (iv), (7), and (8)
that the appropriate choice has been made. Hence, C1 = C, and (ii) follows from (i)
and (iv).

Methods for computing higher derivatives of eigenvectors corresponding to simple
eigenvalues are known [2] for much more general problems than (1), but even for

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 89

(1), we are not aware of any satisfactory methods in the literature for the general
case of repeated eigenvalues. The following algorithm, which enables the successive
computation of derivatives of arbitrarily high order, is intended to fill this gap. For
arbitrary k ∈ N, it computes X(k) and Λ(m+k) using the values of X,X′, . . . ,X(k−1)

and Λ,Λ′, . . . ,Λ(m+k−1), as well as the quantities Z0, . . . ,Zm−1 and W0, . . . ,Wm−1,
computed in Algorithm 1, and the first m+ k derivatives of A and B.

Algorithm 2.
1. For i = k, . . . ,m+ k − 1, compute a solution Vik of

W0Vik =
k−1∑
j=0

(
i
j

)[(i−j∑
p=0

(
i− j
p

)
B(i−j−p)X(j)Λ(p)

)
−A(i−j)X(j)

]

−
i−1∑
j=k

(
i
j

)
Wi−jVjk.

2. Compute

Mm+k = X∗
{

A(m+k)X−
m+k−1∑
p=0

(
m+ k
p

)
B(m+k−p)XΛ(p)

+
k−1∑
j=1

(
m+ k
j

)A(m+k−j)X(j)

−
m+k−j∑
p=0

(
m+ k − j

p

)
B(m+k−j−p)X(j)Λ(p)

]

+

m+k−1∑
j=k

(
m+ k
j

)(
Zm+k−j−1Vjk −BVjkΛ

(m+k−j)
) .

3. Compute the matrix Ckk, whose diagonal elements are the corresponding
diagonal elements of −X∗BVkk and whose remaining elements are given by

cij;k = mij;k

/[(
m+ k
k

)(
γj − γi

)]
, i 6= j, i, j = 1, . . . , r,

where cij;k and mij;k are the elements in the ith row and jth column of Ckk

and Mm+k, respectively, and the γi are as in Algorithm 1.
4. Compute Vkk + XCkk and Λm+k = diag(m11;k, . . . ,mrr;k). These are the

accepted values of X(k) and Λ(m+k), respectively.
Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied, and let the eigen-

vectors satisfy (5). Then
(i) for i = k, . . . ,m+ k− 1 the equation in step 1 of Algorithm 2 has a solution,

Vik, and, for each choice of the Vik, there exist matrices Cpk, p = k, . . . ,m+
k − 1, such that

X(i) = Vik +
i∑

p=k

(
i
p

)
X(i−p)Cpk, i = k, . . . ,m+ k − 1; and

(ii) Ckk is the matrix defined in step 3 of Algorithm 2, and step 4 gives the exact
values of X(k) and Λ(m+k).

90 ALAN ANDREW AND ROGER TAN

Proof. The case i = k of (i) is readily deduced from (3) and the general case is
easily proved by induction (following closely the proof of Theorem 3.1 (iv)). Similarly,
an argument exactly analogous to that used in the proof of (21) shows that it follows
from (i) that

Mm+k −Λ(m+k)

= X∗
m+k−1∑
j=k

(
m+ k
j

) j∑
p=k

(
j
p

)[(m+k−j−1∑
s=0

(
m+ k − j

s

)
λ(s)B(m+k−j−s)

−A(m+k−j)
)

X(j−p)Cpk + BX(j−p)CpkΛ
(m+k−j)

]

=

m+k−1∑
p=k

(
m+ k
p

)
X∗

 (BXΛ−AX)(m+k−p)Cpk

+
m+k−1∑
j=p

(
m+ k − p
j − p

)
BX(j−p)

(
CpkΛ

(m+k−j) −Λ(m+k−j)Cpk

)
=

(
m+ k
k

)(
CkkΛ

(m) −Λ(m)Ckk

)
, by (3), (6), and (10).

The result now follows by the argument used in the last paragraph of the proof of
Theorem 3.1.

Note that Algorithm 2 simplifies considerably in the common case m = 1. In
particular, only one equation needs to be solved in step 1, and the last term on the
right-hand side of that equation vanishes since i = k.

4. Practical considerations. We now consider the removal of three key sim-
plifying assumptions made in section 3, namely: (i) all arithmetic operations are
carried out without roundoff error, and there is no uncertainty in the initial data, (ii)
equation (10) is satisfied, and (iii) m in (10) is known a priori. The first of these is
crucial. Because of roundoff and uncertain data, the true multiplicities of eigenvalues
and their derivatives are often not known in practice. Hence, before (ii) and (iii) can
be addressed, some mechanism is required for deciding whether two very close but
inexactly computed quantities should be regarded as equal. Once this is available,
then, as shown in sections 4.2 and 4.3, (ii) and (iii) are not too hard to deal with.
Numerical stability problems associated with close eigenvalues were discussed briefly
in [1] but have received remarkably little attention in the engineering literature on
the computation of derivatives of eigenvalues and eigenvectors, even in those papers
dealing with the nonsymmetric problem in which both eigenvectors and eigenvalues
are often ill conditioned. Numerical stability and the question of when close values
should be regarded as equal are discussed in section 4.1, which also considers methods
for the solution of (11) and (12). The case of eigenvalues of multiplicity r = 2, when
(10) is automatically satisfied, is considered in section 4.2, while section 4.3 concerns
the more difficult (and less common) case r > 2.

4.1. Very close eigenvalues. Roundoff errors and uncertain data both effec-
tively perturb A and B in (1) by small but unknown amounts. In engineering ap-
plications, A(ρ) and B(ρ) normally depend in a known way on ρ [10]. They may,
for example, be polynomials in ρ, with the coefficients involving quantities subject

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 91

to small errors in measurement. Because the matrix elements can be differentiated
in closed form, the errors in A(i)(ρ0) and B(i)(ρ0) for i > 0 are usually of the same
order of magnitude as those in A(ρ0) and B(ρ0). Roundoff errors have a similar effect.
Hence, the numerical stability of this problem may be analyzed by methods similar to
those used for the classical eigenvalue problem. The problem would have been much
less tractable had we been forced to rely on approximate numerical values of A(ρ)
and B(ρ) throughout a neighborhood of ρ0 to estimate A(i)(ρ0) and B(i)(ρ0).

Consider first the solution of (11) (and of (12)). Since the solution has an arbitrary
component in the r-dimensional kernel of W0, we may expect different methods of
solving (11) and (12) to give different solutions. However, as shown by Theorem 3.1,
it does not matter which solution is obtained as long as the component of the solution
outside the kernel of W0 is computed accurately.

There are several possible methods for computing a solution of (11). We used a
method described in [15], which is a generalization of a method described in [18] for
the case r = 1, and found it to be very satisfactory. Another suitable method is the
bordered matrix method whose numerical properties in the case r = 1 are analyzed
in [2]. For example, since the columns of X̂ are assumed linearly independent, it is
easily shown that the equation[

A− λB −BX̂

X̂∗ 0

] [
V1

M

]
=

[
(λB′ −A′)X̂

0

]
has a unique solution and that V1, given by that solution, is the particular solution of
(11), with i = 1, which is orthogonal to sp{x1, . . . ,xr}, and (with exact computation)
the eigenvalues of M are the same as those of M1. This last observation gives a useful
check on the accuracy of the calculations. Solutions of (11) may also be computed
using generalized inverses, as described for r = 1 in [2] and [14]. A comparison of
several methods for computing solutions of a system of equations with a singular
coefficient matrix is made in a different context in [3].

Whichever method is used, the accuracy of the component of the computed so-
lution outside the kernel of W0 depends partly on the accuracy with which W0 and
the right-hand side of (11) are computed and partly on the ratio σ1/σn−r, where
σ1 ≥ · · · ≥ σn are the singular values of W0. Also σ1/σn−r depends, in turn, on how
close λ is to the nearest of the remaining n − r eigenvalues of (1) at ρ0. If λ is well
separated from the other eigenvalues of (1), the error in the computed solution of (11)
will normally be small, but if the uncertainty in the computed value of W0 is such
that its rank could be computed as n − (r + 1), then the computed solution of (11)
will usually be highly inaccurate. The same remarks apply to (12).

The other main sources of error in the computation of X and X′ in Algorithm
1 are in the computation of U (in step 4) and C (in step 7). Both of these will be
computed much more accurately if the eigenvalues of Mm are well separated, as the
columns of U are eigenvectors of Mm, and computation of the elements of C involves
division by the differences between eigenvalues of Mm. (Recall that the eigenvalues of

Mm are λ
(m)
1 , . . . , λ

(m)
r .) Since Mm is hermitian, its eigenvalues are well conditioned

and small changes in an eigenvalue of Mm will not significantly affect the final results
unless it is close to another eigenvalue of Mm. The accuracy of X(i) (i > 1) computed
in Algorithm 2 is even more sensitive to both the closeness of the eigenvalues of Mm

(as errors in the computation of lower X(j) are fed back into the computation of the
right-hand side in step 1) and the closeness of λ to other eigenvalues of (1) (as more
equations with coefficient matrix W0 must be solved in step 1).

92 ALAN ANDREW AND ROGER TAN

Our numerical results suggest that the right-hand sides in Algorithms 1 and 2
can normally be evaluated with high relative accuracy and that roundoff and small
inaccuracies in the data do not normally cause serious errors in the results unless
either the repeated eigenvalues of (1) are very close to another eigenvalue or some
of the repeated eigenvalues have very close mth derivatives. In the important case
B = constant (or more generally when the required derivatives of B vanish at ρ0),
the right-hand sides simplify considerably, and this usually reduces roundoff errors.
Moreover, although n (the order of A and B) is often (though not always) quite
large in applications, r (the multiplicity of the eigenvalue) and m (defined in (10)) are
nearly always very small, and this substantially simplifies the calculation, especially
for nonconstant B, thus further reducing the scope for growth of roundoff errors in
the right-hand sides.

These observations have important implications for the decision on whether two

close derivatives, λ
(s)
i , λ

(s)
j , should be regarded as equal. It is because eigenvec-

tors corresponding to very close eigenvalues are ill conditioned that it is common
to regard sufficiently close eigenvalues as equal and to compute, instead, some ar-
bitrary orthonormal basis of the corresponding invariant subspace. This replaces
an ill-conditioned problem by a well-conditioned one. When (1) is known to have
differentiable eigenvectors, and two very close eigenvalues have well-separated deriva-
tives, then there is an additional reason for regarding the close eigenvalues as equal,
since Algorithm 1, with m = 1, then enables us to compute the specific orthonor-
mal basis which makes the eigenvectors differentiable. It may be useful to know this
basis even when eigenvector derivatives are not required. When the eigenvalues and
eigenvectors of (1) are sufficiently differentiable (and, in particular, when they are
analytic), Algorithm 1, with m > 1, frequently allows us to compute X and X′ sta-
bly, even when very close eigenvalues also have very close derivatives. Specifically, if,

for some m, λ
(s)
i (ρ0) and λ

(s)
j (ρ0) are very close for s = 0, . . . ,m − 1, but λ

(m)
i (ρ0)

and λ
(m)
j (ρ0) are well separated, we advocate replacing both λ

(s)
i (ρ0) and λ

(s)
j (ρ0) by

[λ
(s)
i (ρ0) + λ

(s)
j (ρ0)]/2 for s = 0, . . . ,m− 1 and using Algorithm 1 to compute xi and

xj and, if desired, x′i, x′j and, for s = 1, . . . ,m + 1, λ
(s)
i and λ

(s)
j . This replaces the

original (ill-conditioned) problem by a well-conditioned problem. Just as any regu-
larization procedure changes the original problem, the new problem is not exactly
the same as the original one. Indeed it cannot be so, as a well-conditioned problem
cannot be identical to an ill-conditioned one. However, we claim that the computed
solutions of the new (well-conditioned) problem are likely to be much closer to the true
solution of the physical problem modelled by (1) than solutions obtained by classical
methods will be. When the reliability of the data and the accuracy of the computa-

tion are such that the uncertainties in λ
(s)
i and λ

(s)
j are greater than |λ(s)

i − λ(s)
j |, no

significant information is lost by replacing our estimates of λ
(s)
i and λ

(s)
j by the mean

of these estimates. Unless the difference between eigenvalues can be computed with
small relative error, classical methods cannot generally give good estimates of the
corresponding eigenvectors. To compute derivatives of these eigenvectors by classical
methods, we should also be able to compute the difference between the derivatives
of the corresponding eigenvalues with low relative error. Our method makes no use

of the (generally inaccurate) estimates of |λ(s)
i − λ

(s)
j | for s < m. Instead, it uses

information from the higher derivatives of A and B. When, for s = 0, . . . ,m− 1, λ
(s)
i

and λ
(s)
j are very close and λ

(s)
i − λ(s)

j is computed with a much greater relative error

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 93

than λ
(m)
i − λ(m)

j , our methods should perform much better than classical methods.
Trouble will also be experienced if Algorithm 1 is used with too small a value

of m, as we will then encounter the problems described above, which arise when
eigenvalues of Mm are very close. However, if the appropriate choice of m is used,
then Mm will have no close eigenvalues and, consequently, Algorithm 1 will be stable.
There remains the difficulty, noted in section 3, that, in general, the appropriate
value of m is not known a priori, as it requires knowledge of higher derivatives of
the eigenvalues. A modification of Algorithm 1, which allows m to be calculated, is
described in section 4.2. It makes use of the fact that Algorithm 1 computes these
higher derivatives. The more complicated (and rarer) problem, in which some, but
not all, members of a set of very close eigenvalues have very close derivatives, is
described in section 4.3. When (10) is not satisfied, the stability requirement that
the eigenvalues of Mm are all well separated is replaced by the requirement that, for

all i, j, s for which a decision is made not to regard λ
(s)
i (ρ0) and λ

(s)
j (ρ0) as equal,

these two quantities should be well separated. There is just one class of problems for
which our algorithms are not suitable. These are the problems for which, for some

eigenvalues λi, λj , |λ(s)
i − λ(s)

j | is very small for all s = 0, 1, 2, Computationally,
such problems are like those for which eigenvalues coincide throughout some open
neighborhood of ρ0.

The definition of µi in Algorithm 1 is made to minimize the effect of roundoff,
as µi is the average of the eigenvalues of Mi. When Λ(i) = λ(i)I in exact arithmetic,
this will provide a more stable measure of λ(i) in the presence of roundoff than will
a single eigenvalue, or a single diagonal element, of Mi. We recommend a similar
approach whenever a decision is made to regard some set of close eigenvalues (or close
eigenvalue derivatives) as equal. Each member of the set should be redefined as the
mean of all the original members of the set. When we mention “multiple” eigenvalues
of Mi in sections 4.2 and 4.3, this is taken to include close eigenvalues that have been
redefined in this manner.

4.2. Computing m. We now consider the remaining points (ii) and (iii) men-
tioned at the beginning of this section. The common special case r = 2 is worth
considering separately, as, in this case, (10) is always satisfied and the only modifi-
cation required in Algorithm 1 is that a method for computing m, defined in (10), is
needed. We can no longer ask that the loop in step 3 be done “for i = 1 to m − 1”
since m is not known. The problem is overcome by selecting a small number ε > 0
and replacing step 3 of Algorithm 1 by the following new step 3 starting with i = 1:

3.1. Compute µi, the average of the diagonal elements of Mi. If

‖Mi − µiI‖ ≥ ε,

then set m = i and go to step 4.
3.2, 3.3, 3.4, 3.5. (These are the same as in Algorithm 1.)
3.6. Increment i by 1, and go to 3.1.
Any convenient matrix norm may be used in step 3.1, and the choice of ε will

depend on how willing the user is to regard close eigenvalues of Mi (ith derivatives
of eigenvalues of (1)) as equal in cases of uncertainty. Our numerical results suggest
that, when n is small and there is no uncertainty in the initial data, best results are
obtained when ε is slightly less than the square root of the machine epsilon. Since
errors are likely to increase as n increases, we suggest that a larger ε is appropriate
when n is large or when the initial data are uncertain. Our methods are most accurate

94 ALAN ANDREW AND ROGER TAN

when there are no borderline values of ‖Mi − µiI‖ in step 3.1. For such problems, a
wide range of values of ε will give the same result.

4.3. Problems with r > 2. When r > 2 we can no longer tell a priori whether
(10) is satisfied, but in the majority of cases, (10) is satisfied and m = 1. These cases
may be recognized by initially proceeding in Algorithm 1 as if m = 1, so that step 3
is omitted. Clearly M1 is hermitian, and it is well known (and easily proved) that
Λ′ = Λ1, defined in step 4 with m = 1. Hence, when the eigenvalues of M1 are well
separated, (10) is satisfied and Theorem 3.1 applies. The only modification required
in Algorithm 1, in this case, is that step 3 is omitted and that in step 4 we must
check whether the eigenvalues of M1 are sufficiently well separated to be regarded as
distinct.

Consider now the remaining case in which r > 2 and some of the diagonal elements
of Λ1 are sufficiently close to be regarded as equal. In this case, (10) is not usually
satisfied and Algorithm 1 requires more substantial modification, although, of course,
if (10) is satisfied, the above method may still be used. To illustrate the procedure
when (10) is not satisfied, we describe below the method in the most common such
case, that in which all repeated eigenvalues with repeated first derivatives have well-
separated second derivatives.

First solve the eigenvalue problem for the r× r hermitian matrix M1 = X̂∗(A′−
λB′)X̂; that is, compute r × r matrices U1 (unitary) and Λ1 (diagonal) such that
M1U1 = U1Λ1. Again it is known that Λ′ = Λ1. Consider first the usual case in which
M1 has only one multiple eigenvalue. Let its multiplicity be s. For convenience, we
choose U1 and Λ1 so that the repeated eigenvalues of M1 occupy the bottom right
s × s diagonal block of Λ1. Then the first r − s columns of X̂U1 are columns of X
which, for convenience, we label x1, . . . ,xr−s. Also there exists a unitary matrix U2,
which differs from I only in the bottom right s× s block, such that X = X̂U1U2.

Next compute T1 = (λB′ − A′)X̂U1 + BX̂U1Λ1. The block structure of U2

and Λ1 ensures that U2Λ1 = Λ1U2, and hence, T1 = [(λB′ −A′)X + BXΛ′] U∗2 =
(A− λB)X′U∗2. Hence,

(A− λB)V1 = T1(22)

is solvable, and to each solution V1 of (22), there exists a matrix C such that

X′ = V1U2 + XC.(23)

Compute a solution V1 of (22), using one of the methods described in section 4.1 or
otherwise. Then compute

M2 = U∗1X̂∗
{

(A′′ − λB′′)X̂U1 + 2
[
(A′ − λB′)V1 −BV1Λ1 −B′X̂U1Λ1

]}
.

Since Λ′ = Λ1, X = X̂U1U2, and Λ′U2 = U2Λ
′, the argument used in the proof of

Theorem 3.1 shows that

Λ′′ −U∗2M2U2 = 2(Λ′C−CΛ′).(24)

Since the bottom right s× s block of the right-hand side is zero, it follows that M−
2 ,

the bottom right s×s block of M2, is hermitian. Compute s×s matrices U−2 (unitary)
and Λ−2 (diagonal) such that M−

2 U−2 = U−2 Λ−2 . Since the second derivatives of the
eigenvalues are well separated, it follows from (24) and the block structure of U2 that

U2 =

[
Ir−s 0
0 U−2

]
,

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 95

so that X = X̂U1U2 can now be computed. To compute X′ it remains only to find
C in (23). The diagonal elements of C are computed using the normalizing condition
as in step 7 of Algorithm 1. Since Λ′′ is diagonal and the diagonal elements of the
right-hand side of (24) are zero, both Λ′′ and (Λ′C − CΛ′) are readily computed
from (24), and the off-diagonal elements in the first r − s rows and columns of C are
computed from Λ′C−CΛ′, as in step 7 of Algorithm 1, since the first r−s eigenvalues
of M1 are simple. Since X,V1,U2,Λ

′,Λ′′, and Λ′C −CΛ′ are now all known, it is
easy to compute

T2 = (λB′′ −A′′)X + 2(λB′ −A′)V1U2 + 2(B′X + BV1U2)Λ′

+BXΛ′′ − 2BX(Λ′C−CΛ′).

It follows from (3) and (23) that T2 = (A− λB)(X′′ − 2X′C), and hence,

(A− λB)V2 = T2(25)

is solvable, and to each solution V2 of (25) there exists a matrix C2 such that

X′′ = V2 + 2X′C + XC2.(26)

Compute a solution V2 of (25) and then compute

M3 = X∗ {(A′′′ − λB′′′)X + 3(A′′ − λB′′)V1U2 + 3(A′ − λB′)V2

−3(B′′X + 2B′V1U2 + BV2)Λ′ − 3(B′X + BV1U2)Λ′′} .

By (23), the method used in the proof of Theorem 3.1 shows that

Λ′′′ −M3 = 3 {[2X∗(B′X + BV1U2) + 2C] (Λ′C−CΛ′)
+(Λ′′C−CΛ′′) + (Λ′C2 −C2Λ

′)} .(27)

Now C and (Λ′C−CΛ′) have the block structure

Λ′C−CΛ′ =

[
D1 D2

D3 0

]
and C =

[
D4 D5

D6 D7

]
,

where D1 and D4 are (r − s) × (r − s) and only D7 is unknown. In particular, the
bottom right s × s corner of C(Λ′C − CΛ′) is the known matrix D6D2. Since also
the bottom right s× s corner of Λ′C2−C2Λ

′ is zero, the bottom right s× s corner of
Λ′′C−CΛ′′ is now readily computed from (27). Since the diagonal elements of Λ′′ are
well separated, the remaining elements of C (those in this bottom right s× s corner)
are readily computed from this block of Λ′′C−CΛ′′ as in step 7 of Algorithm 1. The
final simple step is to compute X′ from (23).

A bonus is that, since Λ′′′ is diagonal and the diagonal elements of Λ′C2−C2Λ
′

are all zero, both Λ′′′ and Λ′C2 −C2Λ
′ are readily computed from (27) now that all

other quantities in (27) are known. The off-diagonal elements in the first r − s rows
and columns of C2 can then be computed as in step 7 of Algorithm 1 and the diagonal
ones (which depend on the normalizing condition) as in step 3 of Algorithm 2. Hence,
x′′1 , . . . ,x

′′
r−s can be computed from (26). Computation of second derivatives of the

remaining eigenvectors requires an extra cycle of the process.
The above procedure is easily modified to deal with the case in which M1 has

p (> 1) distinct multiple eigenvalues. Then, instead of one eigenvalue problem for

96 ALAN ANDREW AND ROGER TAN

M−
2 , p distinct eigenvalue problems must be solved, and U2 will be constructed from

(p + 1) diagonal blocks, one for each of the p multiple eigenvalues and one for the
simple eigenvalues. There are then p of the p + 1 diagonal blocks of C whose values
are determined from (27) rather than (24).

The related, but more complicated, method announced without complete analysis
in [26] requires a special choice of V1 and V2 for its validity, but our method is valid
for all solutions of (22) and (25) and is able to use the most efficient possible method
for obtaining these solutions. Superficially, our method is easily generalized to the
nonsymmetric case as in [26]. The main change is that instead of premultiplying by

X̂∗, we premultiply by Y∗, where Y∗A(ρ0) = Λ(ρ0)Y∗B(ρ0) and Y∗B(ρ0)X̂ = I,
and instead of the unitary matrices Ui, we compute matrices ULi and URi of left and
right eigenvectors satisfying U∗LiURi = I. It appears to us that similar orthogonality
relations are required in the method of [26] if it is to cope with less special examples
than those reported there. However, the real challenge of the nonsymmetric case is
that questions of numerical stability and of existence of the higher order derivatives
used in the calculations are more difficult than in the symmetric case. These questions
are not considered in [11] or [26].

5. Numerical examples. We tested our algorithms on a number of simple
examples with known closed form solution, and highly accurate results were obtained
in all cases. In the first example, B = I and A = SDS−1, where

√
3S =

cos ρ 1 sin ρ −1
−sin ρ −1 cos ρ −1

1 −sin ρ 1 cos ρ
−1 cos ρ 1 sin ρ

 ,

D = diag(3ρ− 1, 4ρ2− 3ρ, δ(− 1
2ρ

3 + 2ρ2− 3
2ρ+ 1) + (ρ3 +ρ2− 1), ρ2−ρ+ 1

2), and δ is
a constant. Since S is orthogonal, A is symmetric. The eigenvalues of A (and hence,
of (1) since B = I) are diagonal elements of D, and the corresponding eigenvectors,
normalized by (4), are the corresponding columns of S. (Permuting the diagonal
elements of D does not change A provided the columns of S are permuted the same
way. Also (4) determines eigenvectors only to within a factor ±1.) When ρ0 = 1 and
δ = 0 this example has a repeated eigenvalue (λ2 = λ3) satisfying condition (10) with
m = 3. When the normalizing condition (5), with ρ0 = 1, is used instead of (4), all the
eigenvectors of this example are exactly 3/[cos(ρ−1)+2] times those obtained with (4).
For general δ, the eigenvalues at ρ0 = 1 satisfy λ1 = 2, λ2 = 1, λ3 = 1 + δ, λ4 = 1/2;
λ′1 = 3, λ′2 = 5, λ′3 = 5 + δ, λ′4 = 1; λ′′1 = 0, λ′′2 = 8, λ′′3 = 8 + δ, λ′′4 = 2; λ′′′1 =
λ′′′2 = λ′′′4 = 0, and λ′′′3 = 6− 3δ. When δ is small but nonzero, there are no repeated
eigenvalues. Consequently, eigenvector derivatives can theoretically be obtained by
classical methods. However, our numerical results show that, for δ less than about
10−7 (roughly the square root of the machine epsilon used in our calculations, which
were done with MATLAB on a PC), more accurate results are obtained by making the

approximation λ
(k)
2 = λ

(k)
3 for k = 0, 1, and 2 and using the new algorithms described

in this paper.

First we describe the calculations with δ = 0 (and ρ0 = 1). For ease of display, all
results shown are rounded to 3 decimal places. The eigenvectors of (1) corresponding

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 97

to the repeated eigenvalue computed by MATLAB were already orthogonal, giving

X̂ =

0.671 −0.345
−0.494 −0.432
−0.345 −0.671

0.432 −0.494

 .
With these starting data and with V1 computed by the method of [15] mentioned in
section 4.1, Algorithm 1 gives

M1 =

[
5.000 0.000
0.000 5.000

]
, M2 =

[
8.000 0.000
0.000 8.000

]
, M3 =

[
0.296 −1.300
−1.300 5.704

]
,

Λ3 =

[−0.000 0
0 6.000

]
, U =

[
0.975 −0.222
0.222 0.975

]
,

V1 =

0 0

0.160 0.433
0 0

−0.433 0.160

 , X = X̂U =

0.577 −0.486
−0.577 −0.312
−0.486 −0.577

0.312 −0.577

 ,

M4 =

[−0.000 −7.592
−7.592 0.000

]
, and C =

[
0.266 −0.316
0.316 0.266

]
.

Since B is constant, (4) and (5) give the same value of C. The diagonal elements of

M4 give λ
(4)
2 and λ

(4)
3 , while the columns of

V1U + XC =

0.000 −0.312
−0.000 0.486
−0.312 0.000
−0.486 0.000

give the derivatives of the corresponding eigenvectors, normalized by either (4) or (5).

Table 1 compares two methods of computing eigenvector derivatives (again with
ρ0 = 1) when δ 6= 0. The first was the classical method of Nelson [18] which depends
on the fact that the eigenvalues are not exactly equal. The second was Algorithm 1,
with m = 3 and µ0 chosen as the computed value of [λ2(ρ0) + λ3(ρ0)] /2. For each
of the two methods, and for i = 2 and 3, Table 1 gives the value of ||x′i(true) −
x′i(app)||2/||x′i(true)||2, where x′i(true) is the true value of x′i(ρ0) and x′i(app) is the
computed value. Calculations using another classical method (the bordered matrix
method studied for example in [2]) gave much the same error as Nelson’s method.
Note that the error with our algorithm was approximately δ, whereas with the classical
methods (with mantissa length of approximately 14 decimal digits), it was close to
10−14/δ.

To test Algorithms 1 and 2 on an example with nonconstant B, we considered the
example A = SD1S

−1, B = SD2S
−1, where D1 = diag(2ρ+ 1, 4ρ2−4ρ+ 1, ρ3 +ρ2−

1, ρ2− ρ+ 1
2), D2 = diag(3ρ+ 1, 1, ρ, ρ2 + 1

2), and S is the same as before, so that the
eigenvectors of (1) (and of A and of B) are also the same as before. The eigenvalues
are the diagonal elements of D−1

2 D1. Again we took ρ0 = 1, so that again (1) has

98 ALAN ANDREW AND ROGER TAN

Table 1
Relative errors in computed eigenvector derivatives.

Relative errors in computed x′2 Relative errors in computed x′3
δ Nelson’s method Algorithm 1 Nelson’s method Algorithm 1

10−13 3.8× 10−2 8.4× 10−14 1.8× 10−2 1.5× 10−13

10−11 1.8× 10−4 9.0× 10−12 2.7× 10−4 1.6× 10−11

10−9 3.6× 10−6 9.1× 10−10 1.9× 10−6 1.6× 10−9

10−7 2.5× 10−8 9.1× 10−8 2.1× 10−8 1.6× 10−7

repeated eigenvalues (λ2 = λ3) satisfying condition (10), this time with m = 2. In
fact, λ2 = λ3 = 1, λ′2 = λ′3 = 4, λ′′2 = 8 6= λ′′3 = 0. We first solved (1) at ρ0 = 1
using the command eig(a,b) of MATLAB. This produced a basis for the eigenspace
corresponding to λ2 = λ3, which, although approximately orthogonal, was not exactly
so. We then used the Gram–Schmidt process to obtain the orthonormal basis

X̂ =

0.751 0.068
−0.295 0.586
−0.068 0.751

0.586 0.295

 .
Algorithm 1 then gave estimates for x′2 and x′3 with relative errors (as defined above)
of 4.7×10−14 and 4.5×10−14, respectively, using (4) and 4.7×10−14 and 5.7×10−14

using (5).
We next computed x′′2 and x′′3 for this example using Algorithm 2 with m = 2

and k = 2. It gave the results

V22 =

0.577 −0.486
−0.577 −0.312

0 0
0 0

 , V32 =

0.955 −0.312
0.200 0.486

0 0
0 0

 ,

M4 =

[
0.000 0.000
−0.000 −24.000

]
, C22 =

[−0.667 0.000
0.000 0.333

]
,

and

V22 + XC22 =

0.192 −0.324
−0.192 −0.208

0.324 0.192
−0.208 0.192

 .
The final relative errors for x′′2 and x′′3 were 1.1× 10−12 and 3.4× 10−12, respectively,
using (5). If (4) is used for second derivatives in the real case, the formula for the ith
diagonal element in C22 given by Algorithm 2 is replaced by −(x∗iBvi + 2x′∗i B′xi +
x′∗i Bx′i + x∗iB

′′xi/2), where vi is the ith column of V22. With this normalization, we
obtained relative errors of 9.0× 10−13 and 2.0× 10−12 in x′′2 and x′′3 , respectively.

Numerical examples are included in several recent papers on the numerical com-
putation of derivatives of multiple eigenvalues and the corresponding eigenvectors in
the case where eigenvalue derivatives may also be repeated, but the only published
example we have seen where our condition (10) is not satisfied is the second example

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 99

of [26]. In that example, X̂ (which contains entries involving
√

2 and
√

3) appears
not to have been calculated numerically using only A(ρ0) and B(ρ0), as must be done
in real applications, but rather to have been constructed from the known solution in
such a way that U1 = I. However, when we computed X̂ using MATLAB, which uses
only A(ρ0) and B(ρ0), we obtained accurate results for this problem by the method

described here in section 4.3, although U1 6= I with that X̂. More importantly, that
example, in which A and B are real and B is a constant diagonal matrix, does not
satisfy condition (ii) of section 1, as there is no neighborhood of ρ0 throughout which
A(ρ) is symmetric. The reason why the method of section 4.3 can be used without
modification is that A(ρ0), A′(ρ0), A′′(ρ0), M1, and M−

2 are all symmetric, and the
other important conditions (analytic eigenvalues and eigenvectors and distinct second
derivatives of eigenvalues) are all satisfied.

The example considered in [26] is a little special because the columns of V1 corre-
sponding to the eigenvalues with repeated derivatives are all zero. To test our method
for less special problems not satisfying (10), we applied the method of section 4.3 to the
example A = S−1D3S, B = I at ρ0 = 2, where D3 = diag(2ρ2−3ρ+1, 4ρ−5, ρ2−1, ρ)
and S is the same as before. This example has λ1 = λ2 = λ3 = 3, λ4 = 2,
λ′1 = 5, λ′2 = λ′3 = 4. With this example, we first computed a basis for the eigenspace
corresponding to the multiple eigenvalue using MATLAB. Since this basis was not
orthonormal we used the Gram–Schmidt method to obtain the orthonormal basis

X̂ =

−0.735 0.053 0.353

0.655 −0.190 0.448
0.176 0.940 −0.168
−0.007 0.279 0.804

 .
The method of section 4.3 then gave

V1 =

0 0 0
0 0 0
0 0 0

0.313 −0.423 0.965

 , U2 =

 1.000. 0 0
0 −0.973 −0.231
0 0.231 −0.973

 ,

X =

−0.240 −0.577 −0.525
−0.525 0.577 0.240

0.577 0.525 −0.577
−0.577 0.240 −0.577

 , and C =

 0.181 −0.075 −0.819
0.367 −0.153 0.367
0.514 0.202 −0.486

 .
It gave relative errors of 1.8× 10−14, 8.8× 10−15, and 1.3× 10−14 in x′1, x′2, and x′3,
respectively, using either (4) or (5), and gave estimates of the first three derivatives
of λ1, λ2, and λ3, all with errors less than 10−14.

Acknowledgments. We thank the referees for comments which helped improve
the presentation of our results.

REFERENCES

[1] A. L. Andrew, Iterative computation of derivatives of eigenvalues and eigenvectors, J. Inst.
Math. Appl., 24 (1979), pp. 209–218.

[2] A. L. Andrew, K.-W. E. Chu, and P. Lancaster, Derivatives of eigenvalues and eigenvectors
of matrix functions, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 903–926.

100 ALAN ANDREW AND ROGER TAN

[3] A. L. Andrew, K.-W. E. Chu, and P. Lancaster, On the numerical solution of nonlinear
eigenvalue problems, Computing, 55 (1995), pp. 91–111.

[4] A. L. Andrew and R. C. E. Tan, Computation of derivatives of repeated eigenvalues and the
corresponding eigenvectors, Z. Angew. Math. Mech., 76 (Suppl. 2) (1996), pp. 467–468.

[5] A. L. Andrew and R. C. E. Tan, Computation of derivatives of repeated eigenvalues and
corresponding eigenvectors by simultaneous iteration, AIAA J., 34 (1996), pp. 2214–2216.

[6] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Birkhäuser Verlag,
Basel, Switzerland, 1985.

[7] J.-G Béliveau, S. Cogan, G. Lallement, and F. Ayer, Iterative least-squares calculation
for modal eigenvector sensitivity, AIAA J., 34 (1996), pp. 385–391.

[8] K.-W. E. Chu, On multiple eigenvalues of matrices depending on several parameters, SIAM
J. Numer. Anal., 27 (1990), pp. 1368–1385.

[9] R. T. Haftka and H. M. Adelman, Recent developments in structural sensitivity analysis,
Structural Optimization, 1 (1989), pp. 137–151.

[10] E. J. Haug, K. K. Choi, and V. Komkov, Design Sensitivity Analysis of Structural Systems,
Academic Press, New York, 1986.

[11] J. N. Juang, P. Ghaemmaghami, and C. B. Lim, Eigenvalue and eigenvector derivatives of
a nondefective matrix, J. Guidance Control Dynam., 12 (1989), pp. 480–486.

[12] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964),
pp. 377–387.

[13] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, New
York, 1985.

[14] C. D. Meyer and G. W. Stewart, Derivatives and perturbation of eigenvectors, SIAM J.
Numer. Anal., 25 (1988), pp. 679–691.

[15] W. C. Mills-Curran, Calculation of eigenvector derivatives for structures with repeated eigen-
values, AIAA J., 26 (1988), pp. 867–871.

[16] W. C. Mills-Curran, Comment on “eigenvector derivatives with repeated eigenvalues”, AIAA
J., 28 (1990), p. 1846.

[17] J. E. Mottershead and M. I. Friswell, Model updating in structural dynamics: A survey,
J. Sound Vibration, 167 (1993), pp. 347–375.

[18] R. B. Nelson, Simplified calculation of eigenvector derivatives, AIAA J., 14 (1976), pp. 1201–
1205.

[19] M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues of
symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 697–718.

[20] F. Rellich, Störungstheorie der Spektralzerlegung, I: Analytische Störung der isolierten Punkt-
eigenwerte eines beschränkten Operators, Math. Ann., 113 (1937), pp. 600–619.

[21] A. P. Seyranian, E. Lund, and N. Olhoff, Multiple eigenvalues in structural optimization
problems, Structural Optimization, 8 (1994), pp. 207–227.

[22] J. Shaw and S. Jayasuriya, Modal sensitivities for repeated eigenvalues and eigenvalue deriva-
tives, AIAA J., 30 (1992), pp. 850–852.

[23] J. G. Sun, Multiple eigenvalue sensitivity analysis, Linear Algebra Appl., 137/138 (1990), pp.
183–211.

[24] R. C. E. Tan and A. L. Andrew, Computing derivatives of eigenvalues and eigenvectors by
simultaneous iteration, IMA J. Numer. Anal., 9 (1989), pp. 111–122.

[25] R. C. E. Tan, A. L. Andrew, and F. M. L. Hong, Iterative computation of second-order
derivatives of eigenvalues and eigenvectors, Comm. Numer. Methods Engrg., 10 (1994),
pp. 1–9.

[26] Y.-Q. Zhang and W.-L. Wang, Eigenvector derivatives of generalized nondefective eigenprob-
lems with repeated eigenvalues, Trans. ASME J. Engrg. Gas Turbines Power, 117 (1995),
pp. 207–212.

AN ALGORITHM FOR COMPUTING THE DISTANCE TO
INSTABILITY ∗

C. HE† AND G. A. WATSON‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 101–116

Abstract. An algorithm is developed for computing the distance to instability of an n × n
matrix. It is aimed primarily at sparse matrices and can be used for any value of n provided that
an eigenvalue problem for a (2n) × (2n) Hamiltonian matrix can be solved on the computer being
used. The algorithm gives both a lower bound and an upper bound for the distance in guaranteed
accuracy. The method is faster than other currently available methods.

Key words. stable matrices, distance to instability, inverse iteration, global minimum searching

AMS subject classifications. 65.68

PII. S0895479897314838

1. Introduction. Let A be a real or complex n× n matrix. We call A a stable
matrix if all eigenvalues of A are in the open left half of the complex plane. The
stability of matrices has many important applications in physics, chemistry and engi-
neering [14]. For example, stability is a fundamental concept in linear control systems
having the form

ẋ = Ax+Bu,(1)

where A is considered as a system matrix [12, 10, 11, 5]. The position of the eigen-
values of A may not give satisfactory information in practical computations, since a
small perturbation may cause the eigenvalues of A to cross the imaginary axis if the
eigenvalues are ill conditioned. A practical measure of the distance to instability was
defined in [17] and is given by the following expression:

dus(A) = min
s∈R

σmin(A− siI),

where σmin(A− siI) is the smallest singular value of A− siI and i =
√−1. Define

f(s) = σmin(A− siI).(2)

Then the problem of finding dus(A) is a one-variable optimization problem. Unfor-
tunately, f(s) is not convex, there may be local minima, and we require to find and
identify the global minimum value. The distance defined here is, in fact, normally
called the complex stability radius; recently a characterization of the real stability
radius was given in [16].

An alternative way of looking at this problem is to consider Lyapunov stability.
Let AH denote the complex conjugate transpose of A, and let the separation of A to
−AH , sep(A), be defined as follows:

sep(A) = min{∣∣∣∣AHY + Y A
∣∣∣∣ , Y ∈ Cn×n, ||Y || = 1}.

∗Received by the editors January 17, 1997; accepted for publication (in revised form) by A. Bunse-
Gerstner December 30, 1997; published electronically September 15, 1998.

http://www.siam.org/journals/simax/20-1/31483.html
†Department of Mathematics, University of Kansas, Snow Hall 405, Lawrence, KS 66045

(che@zeus.cstp.umkc.edu).
‡Department of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland (gawat-

son@dundee.ac.uk).

101

102 C. HE AND G. WATSON

Here || || denotes the 2-norm rather than the Frobenius norm which is conventionally
used [7, 17]. The quantity sep(A) based on the 2-norm is easily computed [13]. In
fact, if X is the positive definite solution of the Lyapunov equation ATX+XA = −I,
where I denotes the identity, then sep(A) = 1/||X|| [13]. Moreover, the separation
and the distance were proved to be equivalent in [8] in the sense that

1

2
sep(A) ≤ dus(A) ≤

√
2 ||A||√sep(A)√

π
√

(||A|| − sep(A))
.

Thus one solver of the Lyapunov equation yields rough bounds for the distance to
instability. An algorithm has recently been given to compute the Lyapunov stability
for sparse matrices under some restrictions [15].

The conventional method for computing dus(A) is the bisection method, which
was presented in [4]. The method gives both a lower bound and an upper bound of
dus(A) which are as tight as required. However, each step of the bisection method
requires the solution of an eigenvalue problem of the Hamiltonian matrix

H(α) =

[
A −αI
αI −AH

]
(3)

for a positive number α. For matrices of small size, the method can be very efficient.
However, when n increases much beyond 50, then the method can start to become
quite expensive. A suitable variant of the bisection method was proved to have a
quadratic convergence rate and can be extended to solve the H∞-norm problem; see
[2, 3].

Here a new method is developed for computing the distance to instability. The
method consists of two major steps:

1. Use a method based on inverse iteration to descend to a stationary point of
f(s).

2. Solve an eigenvalue problem for H(α) to check whether the point reached is a
global minimum or not. If it is not, an improved initial vector is found so that step
1 can be repeated to give movement away from the current point toward the global
minimum value.

A similar two-level method has been developed for computing the numerical radius
and shown to be successful [9, 18]. The motivation for using a method based on inverse
iteration rather than relying primarily on eigenvalue computations is twofold. First,
for a sparse matrix A, solving the linear system Ax = b is much faster than solving
the eigenvalue problem Ax = λx. Second, the powerful checking step (step 2) not
only checks for a global minimum, but also provides a good initial vector for inverse
iteration to give further improvement if that is appropriate.

A better understanding of how the method can work is illustrated by the example
shown in Figure 1, where the s axis is in a horizontal direction. If the algorithm is
started from the initial point P0 = (s0, f(s0)), the inverse iteration method may
descend to the local minimum value P1 = (s1, f(s1)). An improved point suggested
by step 2 that is used as the initial approximation for the inverse iteration method can
then lead to P2 = (s2, f(s2)) and from there to P3 = (s3, f(s3)), the global minimum
point of the function f(s).

The paper is organized as follows: the new method is given in section 2, and the
numerical behavior of the method is discussed in section 3. In fact, the condition num-
ber of the eigenvalues of H(α) is explicitly given, and it is proved that the eigenvalues

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 103

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
the curve of the function f(s)

o

o

o
P0

o
P1

P2
P3

Fig. 1

of H(α) which are on the imaginary axis are at most perturbed by half precision if
the original data are perturbed by full precision. Numerical examples are given in
section 4 to demonstrate that the method is generally more efficient and faster than
the quadratically convergent method.

2. The algorithm. Calculating f(s) requires computing the smallest singular
value of A− siI. This can be achieved by inverse iteration as follows:

choose an initial x0;
for j = 1, 2, . . . ,
yj = (A− siI)−1(A− siI)−Hxj−1,
xj = yj/ ||yj || ,

where throughout the paper ‖.‖ denotes the l2-norm. Then we have f(s) = 1/
√||y∞||,

where y∞ denotes a limit point of the iteration.
Methods other than inverse iteration can also be used for computing the smallest

singular value, for example, Rayleigh quotient iteration, although inverse iteration is
normally favored. Based on function values, any systematic method of adjusting s
can now be used, for example, a direct search method based on bracketing a minimum
and systematic reduction of its size. Because derivatives of f are normally available
(see Theorem 2.1), more sophisticated methods are possible.

Another way of adjusting s is based on the observation that the problem

min
s
||(A− siI)x∞||

is solved by

s+ = imag(xH∞Ax∞).(4)

This choice of s is in some ways a natural one (being locally the best possible). If
this is used in conjunction with a computation for the smallest singular value, then

104 C. HE AND G. WATSON

because minima are being calculated in both parts of this process, the sequence of
pairs of steps results in a descent process. It is, in fact, a special case of the alternating
algorithm, and any limit point at which f is differentiable is a stationary point of f .

We choose here to use an iteration scheme which modifies the above idea in the
following way. Rather than compute a sequence of accurate smallest singular values,
combined with a separate adjustment of s at each iteration, we prefer to compute
a sequence of pairs of values of x and s which achieves an accurate value of f(s)
simultaneously with satisfaction of the stationary point conditions only in the limit.
This can be achieved, by analogy with the method of [3], by taking just one inverse
iteration step in step 1. The modified iteration process is as follows:

(0) Choose x0.
For k = 1, 2, . . . until convergence do:
(1) sk−1 = imag(xHk−1Axk−1),

(2) yk = (A− sk−1iI)−1(A− sk−1iI)−Hxk−1,
(3) xk = yk/ ||yk||.
Experience suggests that this choice of sk, xk is such that the sequence {‖(A −

skiI)xk‖} is descending. Of course this can always be ensured by including extra
inverse iteration steps (without changing sk) if necessary. Consider the problem of
minimizing ‖(A−siI)Hx‖ with respect to s ∈ R and x ∈ Cn with respect to xHx = 1.
The system of equations satisfied at a solution is

(A− siI)H(A− siI)x = λx, xHx = 1,(5)

s = imag(xHAx),(6)

where λ is a Lagrange multiplier. The above iteration may therefore be interpreted
as simple iteration (with renormalization) applied to (5) and (6). Further, let s∗ be a
fixed point of the iteration, and let sk−1 = s∗ + εk−1. Then

(A− s∗iI)H(A− s∗iI)yk = xk−1 +O(εk−1).

Thus, to first order, a step of simple iteration is just a step of inverse iteration applied
to the matrix (A− s∗iI)H(A− s∗iI). We would expect, therefore, the simple iteration
process to inherit the convergence properties of inverse iteration in this case. We also
have the following result.

Theorem 2.1. Let s∗, x∗ be a fixed point of the iteration. Then σ∗ is a singular
value of (A− s∗iI) such that

σ∗ = ‖(A− s∗iI)x∗‖ = min
s∈R

‖(A− siI)x∗‖.(7)

If σ∗ is the smallest singular value which is simple and greater than zero, then f is
differentiable and

f ′(s∗) = 0.(8)

Proof. The relationship (7) is an immediate consequence of the iteration, so we
prove (8).

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 105

For any s in a neighborhood of s∗ such that the smallest singular value σ > 0 of
(A− siI) is simple, we can write

f(s) = vH(A− siI)u,

where vHv = 1, uHu = 1, with v and u, respectively, corresponding to left and right
singular vectors. Thus

real((v′)Hv) = 0, real(uHu′) = 0,

where the dash denotes differentiation with respect to s. Further,

f ′(s) = (v′)H(A− siI)u− i(vHu) + vH(A− siI)u′,

or equivalently (because f ′(s) is real),

f ′(s) = real(σ(v′)Hv − i(vHu) + σuHu′)
= −real(ivHu).(9)

Now

ivHu =
i

σ
uH(A− siI)Hu

=
i

σ
uHAHu − 1

σ
s.

Thus

f ′(s∗) = −real

(
i

σ∗
(x∗HAHx∗) − 1

σ∗
s∗
)

=
1

σ∗
(−imag(x∗HAx∗) + s∗)

= 0,

and the result is proved.
A fixed point of the iteration need not, of course, give dus(A) but may be at best

a local minimum. It is necessary to make a check on this, and the following theorem
given in [4] may be used for this purpose.

Theorem 2.2. H(α) defined by (3) has an eigenvalue whose real part is zero if
and only if α ≥ dus(A).

We now give a supplementary result which augments Theorem 2.2 and indicates
how it can be used in practice.

Theorem 2.3. Let sk, xk be given by the modified inverse iteration procedure.
Let α = ‖(A− skiI)xk‖ − tol, where tol is a small positive number, and assume that
H(α) has a pure imaginary eigenvalue si with corresponding eigenvector w ∈ C2n,
where w is partitioned so that its first n elements are represented by u and its last n
elements are represented by v. Then we can normalize so that ‖u‖ = ‖v‖ = 1, and
further,

‖(A− siI)u‖ < ‖(A− skiI)xk‖.(10)

106 C. HE AND G. WATSON

Proof. We have, by assumption,[
A −αI
αI −AH

] [
u
v

]
= si

[
u
v

]
.(11)

It follows that

(A− siI)u = αv

and

(A− siI)Hv = αu.

Thus ‖u‖ = ‖v‖, and further,

(A− siI)H(A− siI)u = α2u.

The result follows.
Theorem 2.3 is important because (10) shows that an improved vector can be

obtained for restarting the modified inverse iteration process, provided that dus(A)
has not been found, as a by-product of the eigenvalue calculation. The most natural
place to apply the result is, of course, when sk and xk are in fact limit points, but
obviously it can be used as a restart procedure in other situations. We can now state
the details of our algorithm.

Algorithm for computing dus(A).
INPUT: A; tol, a tolerance; and x0, a random complex vector.
OUTPUT: lb and ub, the lower and upper bounds of dus(A) satisfying ub−lb ≤ tol.
0. Set lb = 0, ub = ||A||1, and s0 = imag(xH0 Ax0)/(xH0 x0).
1. For k = 1, 2, . . . , do until convergence
yk = (A− sk−1iI)−1(A− sk−1iI)−Hxk−1,
xk = yk/ ||yk||,
sk = imag(xHk Axk),

σk = 1/
√||yk||.

2. While ub− lb > tol, do
Solve the eigenvalue problem of H(σ − tol) using the ordinary QR method,
where σ is a limit point of {σk} from step 1.
If H(σ−tol) does not have a pure imaginary eigenvalue, then stop and return
ub = σ and lb = σ − tol.
Otherwise if si is the pure imaginary eigenvalue of H(σ−tol) and u the vector,
as in (11), then set ub = min{ub, σ− tol} and x0 = u, s0 = s, and repeat step
1.

The storage required by the algorithm is roughly (2n)2 floating point numbers,
which is required by the QR method for solving the eigenvalue problem of the (2n)×
(2n) Hamiltonian matrix H(α). Here the Hamiltonian matrix is treated as an un-
structured matrix.

Let us discuss the computational aspects of our algorithm. Let A be a sparse
matrix of size n, with number of nonzero elements n0 with density η, where the
density of a sparse matrix, η, is defined by n0 = ηn2. We assume here that the
computational cost of the sparse LU factorization of A is 2(ηn/2)2n flops by a direct
method; at least, this is true for a band matrix with lower bandwidth 0.5ηn and upper
bandwidth 0.5ηn (see [7, p. 151]). The computational cost of the modified inverse

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 107

iteration is dominated by that of the LU factorization of A− skiI. Since the modified
inverse iteration uses complex arithmetic which is 4 times as costly as real arithmetic,
the total cost of N modified inverse iterations is N ∗ 4 ∗ 2 ∗ (η/2)2 ∗ n3 = 2Nη2n3

flops. Suppose that η = 0.2 (so that the density is 20%). Then the total cost of
the N modified inverse iterations is 0.08Nn3 flops. Now the cost of one eigenvalue
solver of a (2n)× (2n) matrix using the QR method is 10(2n)3 = 80n3 flops (see [7, p.
380]). Thus, roughly speaking, 1000 modified inverse iterations for this kind of sparse
matrix costs as much as one eigenvalue solver of a (2n) × (2n) Hamiltonian matrix.
This number reduces to 30 if sparsity cannot be exploited.

We now compare the computational cost of our algorithm with that of the quadrat-
ically convergent algorithm for this problem. The latter is directly translated from
the algorithm in [2] which was originally used to compute the L∞-norm of a transfer
function.

Boyd/Balakrishnan algorithm for computing dus(A).
INPUT: A; tol, a tolerance.
OUTPUT: γ, the computed distance within the tolerance tol.

Until l = 0, do
1. Find the frequency intervals I1, . . . , Il, where γ(1 − tol) < σmin(A − siI) for

each Ik.
2. Set sk = midpoint(Ik), k = 1, 2, . . . , l, and γ = maxk σmin(A− skiI).

Any comparison clearly depends on how many steps of each method have to be
taken. Let us assume that to achieve the same accuracy the new algorithm requires n1

modified inverse iteration steps and n2 eigenvalue solvers and the Boyd/Balakrishnan
algorithm requires n3 eigenvalue solvers. Then (ignoring extras and overheads) the
new algorithm will be faster provided that

n1

1000
+ n2 < n3.

For example, if n1 = 300, n2 = 1, and n3 = 4, then based on these figures the new
algorithm will be about 3 times as fast.

3. Computational considerations. Inverse iteration is one of the most pow-
erful methods for computing the smallest modulus eigenvalue and the corresponding
eigenvector of a matrix [7]. It is normally used to obtain the eigenvector when the
eigenvalue is known, which requires one or two inverse iterations. It is also well known
that if the eigenvalue to be computed lies in a cluster of eigenvalues, then this may
result in a slowing down of the convergence of the inverse iterations. Let s∗ be a
limiting value of the sequence {sk}. Then, as already observed, the convergence of
the modified inverse iteration suggested here (step 1 of the Algorithm) is asymptoti-
cally the same as that of the usual inverse iteration procedure applied to the matrix
(A− s∗iI)H(A− s∗iI) and therefore inherits properties of that iteration.

In the numerical computation, our stopping criterion is

|sk−1 − sk| ≤ min{10−8, tol ∗ ||A||1},

where 10−8 is based on the observation that the local minimizer s∗ is usually half
as accurate (measured by the number of decimal places) as the value f(s∗). We will
elaborate on that later. The use of ‖A‖1 is primarily for convenience of computation.
To improve the convergence, a good initial value of s0 can be chosen. Usually good
choices for s0 are the imaginary parts of the eigenvalues close to the imaginary axis.

108 C. HE AND G. WATSON

The step which checks for a global minimum value (step 2 of the Algorithm) plays
a vital role. Deciding whether H(α) for some α has a pure imaginary eigenvalue or
not is crucial. The condition number of the pure imaginary eigenvalue will, in turn,
play an important part in the criterion for that decision. Suppose for the moment
that α = σ, that λ is an eigenvalue of H(σ), and x and y are the corresponding right
and left eigenvectors, i.e.,

H(σ)x = λx, yHH(σ) = λyH .

Then the condition number of λ is defined in [19] as

κ =
||x|| ||y||
|yHx| .(12)

Theorem 3.1. Suppose that σ = f(s) is a simple singular value of A − siI and
u and v are the corresponding singular vectors such that (A − siI)u = σv. If si is a
simple eigenvalue of H(σ) and κ is defined in (12), then

κ =
1

|f ′(s)| .

Proof. We start from the equation

H(σ)

[
u
v

]
= si

[
u
v

]
.

Since H(σ) is a Hamiltonian matrix, we obtain

[vH ,−uH]H(σ) = si[vH ,−uH].

It follows from the fact that si is simple that [vH ,−uH] is the left eigenvector of H(σ).
Thus

κ =

∣∣∣∣∣∣∣∣[u
v

]∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣[v
−u

]∣∣∣∣∣∣∣∣∣∣∣∣[vH ,−uH]

[
u
v

]∣∣∣∣ .
From the argument following (11), we can normalize so that ||u|| = 1 and ||v|| = 1.
Then we have

κ =
2

|vHu− uHv|
=

1

|real(ivHu)| .(13)

The result follows using (9).
The significance of Theorem 3.1 is that if si is a simple eigenvalue of H(σ), then it

is safe to separate the eigenvalues on the imaginary axis from those off the imaginary
axis numerically due to its robust condition number κ = 1/ |f ′(s)|. It is always the
case that there are at least two pure imaginary eigenvalues of H(σ) when σ > dus(A).
The two pure imaginary eigenvalues are merged to be one when σ = dus(A). We are

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 109

interested in the case that σ = dus(A) so that H(σ) has a double eigenvalue whose
real parts are zeros. Let us examine how f ′(s) behaves in a neighborhood of s∗, a
local minimizer. In [2], the function f(s) was proved to be twice differentiable at s∗;
i.e., there is a constant c such that

f(s) = f(s∗) + c(s− s∗)2 + o((s− s∗)2).

Thus

(s− s∗) =

(
f(s)− f(s∗)

c

)1/2

+ o((s− s∗)).

This yields

f ′(s) = 2c(s− s∗) + o((s− s∗))
= 2(c(f(s)− f(s∗)))1/2 + o((s− s∗)).(14)

Suppose that f(s) = f(s∗)+ε, where ε is the machine precision. Then f ′(s) ≈ 2(cε)1/2

and Theorem 3.1 implies that

κ ≈ 1√
ε
.

Since

H(σ) = H(f(s∗)) +

[−ε
ε

]
,

the perturbed eigenvalue of H(σ) with respect to s∗i has at least half precision accu-
racy. In the case of c = 0, we may count the third term (s−s∗)3. Then the perturbed
eigenvalue has at least one-third precision accuracy.

This observation leads to a stopping criterion for the checking step. Suppose that
λj(H(σ)), j = 1, 2, . . . , 2n, are the eigenvalues of H(σ) and λ0 is the eigenvalue with
the smallest absolute value of real part. Then if

|real(λ0)| ≤ √ε,(15)

we say that the eigenvalue λ0 is on the imaginary axis. Otherwise we say that there are
no eigenvalues of H(σ) on the imaginary axis. The standard perturbation theory for
the eigenvalues corresponding to a nonlinear elementary divisor [19] also suggests the
above criterion. (In the case of c = 0, we say that the eigenvalue λ0 is on the imaginary
axis if |real(λ0)| ≤ ε2/3 and not on the the imaginary axis if |real(λ0)| ≥ ε1/3.) The
following example illustrates that the criterion works well.

Example 1. Let

A =

−0.4 + 6i 1

1 −0.1 + i 1
1 −1− 3i 1

1 −5 + i

 .
The eigenvalues of A are all in the left open half-plane so that A is stable. The

function f(s) is shown in Figure 1 with dus(A) = 0.03188701430309. Table 2 shows

110 C. HE AND G. WATSON

Table 1.

tol 1.0e− 3 1.0e− 6 1.0e− 9 1.0e− 12 −1.0e− 13
|real(λ0)| 1.8e− 15 6.3e− 14 3.0e− 12 6.1e− 11 3.0e− 8
tol 1.0e− 14 1.0e− 15 0 −1.0e− 15 −1.0e− 14
|real(λ0)| 9.7e− 8 1.0e− 7 1.0e− 7 1.0e− 7 1.0e− 7
tol −1.0e− 13 −1.0e− 12 −1.0e− 9 −1.0e− 6 −1.0e− 3
|real(λ0)| 1.4e− 7 3.2e− 7 9.7e− 6 3.08e− 4 9.6e− 2

that the smallest absolute value of the real parts of the eigenvalues of H(σ), where
σ = dus(A)+tol with varying tol. For the purposes of this experiment, tol simply plays
the role of a perturbation of dus(A), and we allow it to take negative values. Numerical
computations were carried out using MATLAB version 4.2a with eps ≈ 2.22e − 16.
For this example,

√
eps ≈ 1.4901e− 8.

From Table 1, the stopping criterion (15) correctly makes a decision that, for
tol in (10−12, 10−3), H(σ) has an eigenvalue on the imaginary axis and for tol in
(−10−3,−10−13), H(σ) has no eigenvalue on the imaginary axis.

For this example, and for most starting points, our algorithm typically converges
in about 20 iterations to the global solution. Thus, treating A as a full matrix, and
assuming 4 iterations of the Boyd/Balakrishnan method are required for comparable
accuracy, the new method is about twice as fast.

Finally in this section, we discuss the “flat curve” of f(s) in a neighborhood of
the global minimizer s∗. When σ > dus(A), H(σ) has at least two pure imaginary
eigenvalues. Suppose that sai and sbi are the two of those which bracket s∗. In
[2], the quadratic convergence of the bisection method was proved if the next value
of the parameter is chosen as the average of sa and sb. The same idea is applied
here. The average of sa and sb, where sa and sb are specified as the first and second
smallest imaginary parts of all pure imaginary eigenvalues of H(σ), is chosen as the
s0 for reentering step 1 and repeating the modified inverse iteration procedure, but
the vector x0 remains the same as part of the eigenvector corresponding to sai.

4. Further numerical examples. Several stable matrices are chosen here to
test the Algorithm. The second example is from [1], which was originally suggested by
Y. Saad, the third example is from [14, 15]; and the fourth example from [6]. They are
all sparse matrices. The numerical computations are performed in MATLAB on the
machine Digital Alpha 2100 with 4 processors. The computation of the eigenvalues in
our code is achieved via MATLAB command schur, which is more accurate than the
command eig but takes a longer time. A comparsion of the CPU times of our code with
the Boyd/Balakrishnan code is also reported here, though some caution is necessary
in accepting these results, as MATLAB timings may be different due to different
types of implementations. Usually a good (guaranteed) accuracy of the solution is
given by the Boyd/Balakrishnan method after 4 iterations. So the CPU time for the
Boyd/Balakrishnan code is specified for a maximum number of 4 iterations. Note
that the restriction of s∗ ≥ 0 is removed in the Boyd/Balakrishnan code so that it
can work for Example 3. Here niter denotes the number of inverse iteration steps.

Example 2. This matrix is the discretized Jacobian of the Brusselator wave
mode for reaction and transport interaction of chemical solutions in a tubular reactor.
The dimension of the matrix is 200, and the number of nonzero elements is 796.

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 111

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5
−5

−4

−3

−2

−1

0

1

2

3

4

5
the 32 rightmost eigenvalues of 200*200 Brusselator matrix

Fig. 2

Table 2
The CPU times for Example 2.

Code Performance CPU times
H/W Step 1. niter = 94 12.25s

Step 2. 63.70s
B/B 4 iterations 346.86s

The spectrum of the matrix is shown in Figure 2.
The two eigenvalues closest to the imaginary axis are

−0.00001819987683± 2.13949752207585i.

Setting tol = 10−10, it took the modified inverse iteration niter = 94 steps to compute
the local minimizer s = 2.13949748735869. From the checking step the local minimizer
is identified as being global, and the following lower bound and upper bound of dus(A)
are returned:

lb = 8.240895352524869e− 06,(16)

ub = 8.240995352524870e− 06.(17)

The Boyd/Balakrishnan code after 4 iterations delivers an estimated distance which
agrees with lb and ub in the first 10 digits and an estimated minimizer which agrees
with s in the first 7 digits. (The estimated distance which is delivered by the
Boyd/Balakrishnan code after 3 iterations agrees with lb and ub in the first 4 digits
and the estimated minimizer agrees with s in the first 4 digits.) The CPU times for
both codes are reported in Table 2.

Thus on the basis of these numbers, the new algorithm is 4.5 times as fast as the
Boyd/Balakrishnan algorithm for this example.

Example 3. The next example is the Orr–Sommerfeld operator for planar Poiseuille

flow. Let L = d2

dx2 − α2, α and R be positive parameters, and U = 1 − x2; then the

112 C. HE AND G. WATSON

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
eigenvalues of the Orr−Sommerfeld operator

Fig. 3

Orr–Sommerfeld operator is given as follows:

1

αR
L2v − i(UL− U ′′)v = λLv,

where λ is a spectral parameter and v is a function defined on [−1, 1], with v(±1) =
v′(±) = 0 (see [14, 15]). We discretize the operator as in [15]:

xk = −1 + k ∗ h, k = 1, 2, . . . , n and h = 2
n+1 .

Ln = 1
h2 tridiag(1,−(2 + α2h2), 1).

Un = diag(1− x2
1, . . . , 1− x2

n).

The discretized problem is the following generalized eigenvalue problem:

Bnun = µLnun,

where

Bn =
1

αR
L2
n − i(UnLn − 2I).

Let α = 1, R = 1000, n = 400, and An = L−1
n Bn.

Both Bn and Ln are sparse matrices. It follows that (An − siI)x = b is easily
converted to (Bn − siLn)x = Lnb, which can be solved by calling sparse system
solvers. The spectrum of An is shown in Figure 3. The eigenvalue of An closest to
the imaginary line is

−0.03355288542026− 0.19343672527540i.

Since the imaginary parts of the eigenvalues close to the imaginary line
are usually good choices for s0, we start the algorithm with tol = 10−6 and

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 113

Table 3
The CPU times for Example 3.

Code Performance CPU times
H/W s0 149.91s

Step 1. niter = 2404 1566.60s
Step 2. 4198.55s

B/B 4 iterations 16217.05

s0 = −0.19343672527043. It takes 2404 inverse iteration steps to reach s =
−0.19975279875886. and one checking step to get the

lb = 0.00197717232071,

ub = 0.00197817232071.

The Boyd/Balakrishnan code after 4 iterations delivered an estimated distance which
agrees with ub in the first 10 digits and an estimated minimizer which agrees with
s in the first 5 digits. Table 3 shows the CPU time (seconds) for both codes, and
shows that based on these numbers, the new algorithm is about 2.7 times as fast as
the Boyd/Balakrishnan algorithm for this problem. Note that here at the optimal s,
‖A− siI‖1 is about 160 and the 10 smallest singular values range from 0.74668. . . to
0.00197. . ., which may be considered clustered.

Example 4. This matrix is called the Tolosa92 matrix and arises in the stability
analysis of a model of an airplane in flight. The dimension of the matrix is 1000. It
is a highly nonnormal matrix with

∣∣∣∣AAH −AHA∣∣∣∣
1

= 2.1e+ 12. The two eigenvalues
of the Tolosa92 matrix closest to the imaginary line are

−1.060000000000000e− 01± 1.059999500000000e+ 02i.

Figure 4 shows the spectrum of the Tolosa92 matrix.
For the Tolosa92 matrix, the smallest singular values of A − siI are clustered.

For example, with σ = 0.065, H(σ) has 128 pure imaginary eigenvalues, indicating
that the singular value curves of A − siI have at least 64 local minima. We start
the algorithm with tol = 10−6 and s0 = 1.0599995e + 02. Then it took 1939 inverse
iteration steps for sk to reach s = 1.059999220823240e+02. One checking step returns
lower bound and upper bound of dus(A) as

lb = 0.00199856927749,

ub = 0.00199956927749.

For this example, the CPU time for 1939 modified inverse iterations is 435.25 seconds,
for computing s0 is 113.68 seconds, and for the checking step is 7947.54 seconds. For
this example, we have no comparison with the Boyd/Balakrishnan method because it
exhausts the memory of the computer.

5. Concluding remarks. We have developed an algorithm for computing the
distance of a stable matrix to instability which appears to improve computationally
on previous methods for a range of medium to large matrices. It is based on the
application of a modification of inverse iteration to descend to a stationary point of
the function f(s) = σmin(A−siI). This is then either identified as the value of dus(A)
(to a prescribed tolerance) or a further sequence of modified inverse iteration steps
is initiated, leading to an improved stationary point. A crucial part of the process

114 C. HE AND G. WATSON

−10
3

−10
2

−10
1

−10
0

−10
−1

−1500

−1000

−500

0

500

1000

1500
Eigenvalues of Tolosa92

Fig. 4

is the checking stage, which involves computing the eigenvalues of a Hamiltonian
matrix and making a judgement about which, if any of these, lie on the imaginary
axis. Computational and theoretical considerations have shown that this is a perfectly
reasonable computation which can be carried out effectively.

Any method which uses Theorem 2.2 has a limitation on the size of matrices being
treated by the requirement for the eigenvalue calculation. However, approximations
to the distance to instability can be obtained for very large matrices if the checking
step is omitted. Although convergence to a limit point which is the global minimum
is common, the possibility of running the method from different starting points would
decrease the chances of failure in finding the correct value. However, this cannot be
ruled out if Theorem 2.2 is not used.

The fact that, in practice, the global minimum is an attractor for the iteration
process, coupled with the cheapness of the iterations, makes the present strategy an
appealing one. However, the iteration process can be very slowly convergent. One
modification is to limit the number of iterations before the checking step is taken, when
the restart procedure gives a relatively large kick off in the right direction. This can
reduce the total number of iteration but at the cost of more eigenvalue calculations,
so that the total computational cost is not necessarily reduced. Another modification
in the spirit of the present approach would be to work with a subset of the singular
vectors which might help if the singular values are clustered. For example, one might
be able to modify the calculation so that it is based on orthogonal iteration or Krylov
subspaces. It is clear, however, that this would also bring additional computational
cost to this part of the calculation which might offset any benefits.

It may be that completely different ways of finding a local minimum of f would
be more effective, based on computing a sequence of values of f(s) and applying
an optimization method, possibly involving derivative values also. For any value
of s, the calculation of f(s) is the calculation of the smallest singular value of the

AN ALGORITHM FOR COMPUTING THE DISTANCE TO INSTABILITY 115

matrix A − siI. If that singular value is simple, then f ′(s) is also available through
(7). Based on these quantities, it would be possible to implement, say, the secant
method to find a local minimum. However, the situation in which slow convergence
of the present method occurs is precisely the situation in which we would expect
slow convergence of inverse iteration, and although other possibilities exist, the slow
convergence of the basic algorithm might be expected to effectively be passed on to
any other method through difficulties in the calculation of values of f(s) (and possibly
f ′(s)). Nevertheless, this may be an unnecessarily pessimistic view, and it would seem
that such an optimization-based approach deserves further consideration.

To conclude, our main objective here has been to provide a method which im-
proves existing methods and applies in a satisfactory way to a wide range of matrices.
The attraction of the present approach is that it is simple and yet can be effective.
However, there are issues concerning its performance that are of concern and should
be addressed, and some of the ideas mentioned above might lead to improvement.
This will be considered at a later date.

Acknowledgment. We are grateful to the referees for their constructive criti-
cism, which included many helpful suggestions.

REFERENCES

[1] Z. Bai, R. Barrett, D. Day, J. Demmel, and J. Dongarra, Test Matrix Collection (Non-
Hermitian Eigenvalue Problem), manuscript, 1995.

[2] S. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfer matrix
and a quadratically convergent algorithm for computing its L∞-norm, Systems Control
Lett., 15 (1990), pp. 1–7.

[3] N. A. Bruinsma and M. Steinbuch, A fast algorithm to compute the H∞-norm of a transfer
function matrix, Systems Control Lett., 14 (1990), pp. 287–293.

[4] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable
matrices, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 875–881.

[5] J. W. Demmel, On the condition numbers and the distance to the nearest ill-posed problem,
Numer. Math., 51 (1987), pp. 251–289.

[6] S. Godet-Thobie, Eigenvalues of Large Highly Nonnormal Matrices. Ph.D. thesis, Paris IX
Dauphine University, Paris, 1993.

[7] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, MD, 1989.

[8] C. He, On the distance to uncontrollability and the distance to instability and their relation to
some condition numbers in control, Numer. Math., 76 (1997), pp. 463–477.

[9] C. He and G. A. Watson, An algorithm for computing the numerical radius, IMA J. Numer.
Anal., 17 (1997), pp. 329–342.

[10] D. Hinrichsen and M. Motscha, Optimization problems in the robustness analysis of linear
state space systems. Tech. Report 169, Institute of Dynamic Systems, Bremen University,
Germany, 1987.

[11] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems Control Lett.,
7 (1986), pp. 1–10.

[12] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N J, 1980.
[13] C. Kenney and G. Hewer, The sensitivity of the algebraic and differential Riccati equations,

SIAM J. Control Optim., 28 (1990), pp. 50–69.
[14] W. Kerner, Large-scale complex eigenvalue problem, J. Comput. Phys., 85 (1989), pp. 1–85.
[15] A. N. Malyshev and M. Sadkane, On the Lyapunov stability of large matrices, manuscript,

1996.
[16] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle,

A formula for computation of the real stability radius, Automatica J. FAC, 31 (1995),
pp. 879–890.

[17] C. F. Van Loan, How near is a stable matrix to an unstable matrix?, in Linear Algebra and
Its Role in Systems Theory, Contemp. Math. 47, B. N. Datta, ed., American Mathematical
Society, Providence, KL, 1985, pp. 465–478.

116 C. HE AND G. WATSON

[18] G. A. Watson, Computing the numerical radius, Linear Algebra Appl., 234 (1996), pp. 163–
172.

[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

CRITICAL GRAPHS FOR THE POSITIVE DEFINITE
COMPLETION PROBLEM∗

WAYNE W. BARRETT† , CHARLES R. JOHNSON‡ , AND RAPHAEL LOEWY§

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 117–130

Abstract. Among various matrix completion problems that have been considered in recent
years, the positive definite completion problem seems to have received the most attention. Indeed,
in addition to being a problem of great interest, it is related to various applications as well as other
completion problems. It may also be viewed as a fundamental problem in Euclidean geometry.

A partial positive definite matrix A is “critical” if A has no positive definite completion, though
every proper principal submatrix does. The graph G is called critical for the positive definite com-
pletion problem if there is a critical partial positive definite matrix A, the graph of whose specified
entries is G. Complete analytical understanding of the general positive definite completion problem
reduces to understanding the problem for critical graphs. Thus, it is important to try to characterize
such graphs. The first, crucial step toward that understanding is taken here. A novel and restrictive
topological graph theoretic condition necessary for criticality is identified. The condition, which
may also be of interest on pure graph theoretic grounds, is also shown to be sufficient for criticality
of graphs on fewer than 7 vertices, and the authors suspect it to be sufficient in general. In any
event, the condition, which may be efficiently verified, dramatically narrows the class of graphs for
which completability conditions on the specified data are needed. The concept of criticality and the
graph theoretic condition extend to other completion problems, such as that for Euclidean distance
matrices.

Key words. critical graph, critical positive definite matrix, matrix completion problem, positive
definite completion, ultraconnected graph

AMS subject classifications. 15A48, 05C50, 05C75

PII. S0895479897324573

1. Introduction. A partial matrix is a rectangular array in which some entries
are specified, while the remaining, unspecified entries are free to be chosen from an
agreed-upon set. A completion of a partial matrix is a choice of values for the un-
specified entries, resulting in a conventional matrix. Given a matricial property P , a
matrix completion problem then asks which partial matrices have a completion with
property P . It is convenient to describe the positions of the specified entries in a
partial matrix A = (aij) with a graph G in which edges correspond to the specified
entries: A is a G-partial matrix if aij is specified exactly when (i, j) is an edge of G.
The focus then becomes, for each G, to determine conditions upon the specified entries
in a G-partial matrix that characterize completability to a matrix with property P .
For a wide variety of properties P (including positive definiteness), it may be shown
[J2] that, for each graph G, there are finitely many conditions on the specified data
(that depend upon G) that characterize completability to a matrix with property P .

∗Received by the editors July 16, 1997; accepted for publication by R. Brualdi November 4, 1997;
published electronically September 14, 1998.

http://www.siam.org/journals/simax/20-1/32457.html
†Department of Mathematics, Brigham Young University, Provo, UT 84602-6539 (wayne@

math.byu.edu).
‡Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187

(crjohnso@math.wm.edu). The work of this author was supported in part by National Science
Foundation grant DMS-92-00899 and by Office of Naval Research contract N00014-90-J-1739.
§Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel

(loewy@techunix.technion.ac.il). The work of this author was supported by the Fund for the Pro-
motion of Research at the Technion. Part of the research was done while visiting Brigham Young
University.

117

118 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

Although the concepts we introduce here are relevant to many properties P , we
focus upon the real positive definite completion problem. Thus, we assume that A
is square (n by n), has real specified entries, is partial symmetric (aji is specified, as
aij , if and only if aij is specified), and is partial positive definite (all diagonal entries
are specified, and all fully specified principal submatrices are positive definite). The
positive definite completion problem asks when a partial symmetric matrix can be
completed to a positive definite matrix. It has attracted a lot of attention in recent
years. Indeed, in addition to being a problem of great interest, it is related to appli-
cations in probability and statistics, image enhancement, and systems engineering as
well as other completion problems, like the Euclidean distance completion problem.
One may also view the positive definite completion problem as a fundamental prob-
lem in Euclidean geometry, namely which potential geometric configurations of vectors
are realizable in a Euclidean space. For the positive definite completion problem the
graph G of the specified entries of A may be taken to be an undirected graph on n
vertices, but we adopt the convention of omitting any explicit mention of self-edges
at vertices. We note that there is no loss of generality in restricting attention to the
real positive definite completion problem. By a variant of the conventional dimension
doubling argument, understanding of positive definite completability conditions for
each graph in the real case implies understanding for each graph in the complex case
[K].

Our central purpose here is to show that to understand positive definite com-
pletability for all graphs, it suffices to understand it for a modest special subset of
graphs. To this end we introduce the notion that a graph is critical for the positive
definite completion problem. (An analogous concept for other completion problems
could be defined similarly.)

An n-by-n G-partial matrix A is called critical if every (n−1)-by-(n−1) principal
submatrix of A has a positive definite completion but A itself does not. In this event
A constitutes critical data for the graph G. If there exists critical data for G, then G
is called a critical graph (for the positive definite completion problem). Importantly,
we show that relatively few graphs are critical by identifying a novel graph theoretic
condition (perhaps of interest by itself) they must have. The import of this is the
following. If we wish to show that a given G-partial matrix A has a positive definite
completion, it is an immediate logical consequence of the definition that we need only
check for completability of the principal submatrices of A associated with maximal
induced critical subgraphs of G. Thus, the problem of understanding positive definite
completability for all graphs is reduced to that of critical graphs. This is the first
major step in a natural program to fully mathematically understand the positive def-
inite completion problem. The remaining two steps would be the efficient recognition
of maximal critical subgraphs in a given graph and the understanding of completabil-
ity conditions for critical graphs. (As preliminary evidence suggests that they fall
into a modest number of topologically similar classes, conditions might be found for
many critical graphs at once, e.g., for all cycles [BJT].) We note that computational
approaches to the positive definite completion problem are also emerging [GHJT],
[JKW].

In the next section we provide a review of relevant results and the graph theoretic
background and notation necessary for the remainder of the discussion. Then, in
section 3, we identify the 5-vertex critical graphs in order to motivate the graph
theoretic condition for criticality we have discovered. This also affords an opportunity
to make several useful preliminary observations. In section 4 we state and prove

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 119

the main result that all critical graphs satisfy a graph theoretic condition we call
“ultraconnected.” We note, based upon the nature of the proof, that this graph
theoretic condition is also necessary for criticality with respect to other completion
problems, including the Euclidean distance completion problem. Finally, in the last
section we discuss 6-vertex graphs and find that all ultraconnected graphs are critical,
supporting the conjecture of the converse to our main result.

2. Background. We first recall some concepts and set some notation from graph
theory. Given a connected, undirected graph G = (N,E) and S ⊆ N , we denote by
GS the subgraph of G induced by the vertices of S. The edge deficiency of S, dG(S) =
d(S), is just the number of edges that must be added to GS to obtain the complete
graph on the vertices S. We say that S is a clique of G if d(S) = 0, and we call S
a k-clique if |S| = k. A maximal clique is one that is not a proper subset of another
clique. If G is connected, we denote the number of components of GN−S = G− S by
c(S). The vertex set S is called a separator if c(S) ≥ 2; a clique separator is both a
clique and a separator.

The complete graph on n vertices and the cycle on n vertices will be denoted as
usual, by Kn and Cn, respectively, and the complement of Km ∪ Kn by Km,n, the
“complete bipartite” graph, on m and n vertices. The graph G is called chordal if
Ck, k ≥ 4, does not occur as an induced subgraph of G. Given a graph G, we denote
by G+ the graph obtained from G via addition of a new vertex adjacent to all vertices
of G. The n-wheel Wn, n ≥ 4, is the graph C+

n−1. Since C3 = K3, W4 = K4.
We abbreviate “positive definite” to PD and “positive semi-definite” to PSD

and recall that A[S] (A(S)) denotes the principal submatrix of the matrix A lying in
(obtained by deleting) the rows and columns indicated by the index set S. A G-partial
symmetric matrix A (with specified diagonal) is partial PD (PSD) if and only if A[S]
is PD (PSD) for every clique S of G. We refer to these as the clique conditions. The
fundamental chordal result for the PD (PSD) completion problem is found in [GJSW].

Theorem 2.1. Every G-partial matrix satisfying the clique conditions has a PD
(PSD) completion if and only if G is chordal.

It is no accident that the set of graphs for the PSD and PD completion problems
in Theorem 2.1 are the same. We note that, had we defined critical in terms of the
PSD completion problem, the same graphs would result. The n-by-n partial matrix
A is critical if and only if

max
Â completes A

λmin(Â) ≤ 0 < min
|α|=n−1

max
Ã[α] completes A[α]

λmin(Ã[α]),

which, up to translation by a scalar multiple of I, just means that there is a gap
between the left- and right-hand quantities. Thus, the critical graphs are those that
permit such a gap. Criticality for the PSD problem also means that there is such a
gap. Thus, as convenient, we may alternate between thinking of criticality for either
background problem.

We say that the G-partial matrix A is PD (PSD)-cycle completable if and only if
A[S] has a PD (PSD)-completion whenever GS is a cycle of G. Explicit PD (PSD)-
completability conditions for a single cycle of arbitrary length are given in [BJT]. We
refer to these as the cycle conditions.

Following [BJL], we call a graph G cycle completable if it has a chordal supergraph
that contains no 4-clique not present in G. The cycle completable graphs include not
only the chordal graphs and all cycles but much more [BJL, JM]. The main result of
[BJL] is the following.

120 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

Theorem 2.2. Every G-partial matrix that satisfies the clique and cycle condi-
tions has a PD (PSD) completion if and only if G is cycle completable.

We note that if the graph G is not connected, it cannot be critical, as the positive
definite completability of the principal submatrices of a G-partial matrix A associ-
ated with the components of G implies that A is completable by letting the remaining
unspecified entries be 0. Thus, we restrict our attention to connected graphs through-
out. On the other hand, the complete graphs Kn, n ≥ 2, are all critical, as the n-by-n
matrix

n− 2 −1 −1
−1 n− 2 −1 . . . −1

. . .

−1 −1 n− 2

is not PSD, though every proper principal submatrix is PSD. Because of Theorem 2.1,
no other chordal graphs can be critical.

3. The graphs on 5 vertices. We begin with some general observations about
critical graphs. First, we note that Cn is critical. Clearly, C3 is critical. For n ≥ 4, Cn
is nonchordal, so by Theorem 2.1 there is a Cn-partial matrix A satisfying the clique
conditions that is not PD-completable. Since every proper induced subgraph of Cn
is chordal, each proper principal submatrix of A is PD-completable by Theorem 2.1.
Thus, A is critical data for G.

We call a graph G minimally non-cycle completable (minimally non-cc) if every
proper induced subgraph of G is cycle completable but G itself is not.

Theorem 3.1. Any minimally non-cc graph is critical.
Proof. Suppose G is minimally non-cc. Then by Theorem 2.2 there exists a G-

partial matrix A satisfying the clique conditions and the cycle conditions that does
not have a PD completion. Any proper principal submatrix B of A also satisfies the
clique conditions and cycle conditions, and its graph is cycle completable, so B has a
PD completion by Theorem 2.2. Thus, A is critical data for G.

Our main result is a necessary condition for a graph G to be critical. Before
stating and proving this result, it is illuminating to give an important special case.

Theorem 3.2. If G is critical, then G does not have a clique separator.
Proof. Let G = (N,E) be a graph with a clique separator S. Let V be one

component of G−S, and let W be the union of the remaining components. We label
the vertices N of G so that the vertices V come first, then those of S, and then those
of W . Let A be a G-partial matrix for which every proper principal submatrix of A
has a PD completion. We write A in partitioned form:

A =

 A[V] A[V |S] A[V |W]
A[S|V] A[S] A[S|W]
A[W |V] A[W |S] A[W]

 .
Since S is a clique, A[S] consists entirely of specified entries. But since there are no
edges from V to W , A[V |W] and A[W |V] have only unspecified entries. Let B1[V ∪S]
be a PD completion of A[V ∪S], let B2[S ∪W] be a PD completion of A[S ∪W], and
let B be the partial matrix

B =

 B1[V] B1[V |S] ?
B1[S|V] A[S] B2[S|W]

? B2[W |S] B2[W]

 .

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 121

Then, if ij is any edge of G, aij = bij . Now, the graph of B has two maximal cliques,
V ∪ S and S ∪ W , so it is necessarily chordal. Since B[V ∪ S] = B1[V ∪ S] and
B[S ∪W] = B2[S ∪W] are PD, B has a PD completion by Theorem 2.1, and this
completion is a PD completion of A. This shows there are no critical data for G, so
G is not critical.

We now identify all critical graphs on n ≤ 5 vertices. The graphs K2,K3,K4,K5,
C4, C5 are critical. Any other critical graphs must be nonchordal. There are 5 of
these, all with 5 vertices (Fig. 3.1).

Fig. 3.1.

The first two of these have clique separators, so they are not critical by Theo-
rem 3.2. (A cut vertex is trivially a clique separator.) The fourth and fifth graphs are
minimally non-cc, and so are critical by Theorem 3.1. The remaining graph is K2,3,
which is a cycle completable graph. It follows from Theorem 2.2 that K2,3 is not
critical. Thus, the critical graphs on 5 vertices are K5, C5, and the last two graphs
displayed above.

As K2,3 does not have a clique separator, the converse of Theorem 3.2 is false.
This example points the way to a necessary condition we believe is precise, which will
be presented in the following section.

4. Main result. We begin by recalling a basic result on convex sets [E].
Helly’s theorem. Let E1, E2, . . . , Em be convex sets in Rn, and assume that

every collection of n+ 1 of the Ei’s has a nonempty intersection. Then ∩mk=1Ek 6= φ.
Definition. We call the graph G ultraconnected if

c(S) ≤ d(S) + 1

for each subset S of the vertices of G.
Taking S = φ shows that c(φ) ≤ 1; i.e., G is connected. Moreover, if S is any

clique of G, c(S) ≤ 0 + 1, so an ultraconnected graph has no clique separator.
The graph K2,3 is an instructive example (Fig. 4.1).

Fig. 4.1.

Let S be the set of darkened vertices in Figure 4.1. Then

c(S)− d(S) = 3− 1 = 2

122 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

so K2,3 is not ultraconnected.
It can be checked that each critical graph on 5 or fewer vertices is ultraconnected.

Our main result is as follows.
Theorem 4.1. If G is a critical graph for the real positive definite completion

problem, then G is ultraconnected.
Proof. We prove the contrapositive of the statement. Let S be a set of vertices

in G for which c(S) ≥ d(S) + 2. Let m = c(S) and k = d(S). If k = 0, then S is a
clique separator and G is not critical by Theorem 3.2. So we assume k > 0.

Let e1 = r1s1, e2 = r2s2, . . . , ek = rksk be the edges not present in GS . Let Gj =
GNj , j = 1, . . . ,m, be the components of G− S, and let Mj = Nj ∪ S, j = 1, . . . ,m.

Let A be a G-partial matrix such that every proper principal submatrix of A has
a PD completion. For each x = (x1, . . . , xk) ∈ Rk, let Ax be the partial symmetric
matrix obtained by replacing the risi and siri entries of A by xi, i = 1, . . . , k. Now,
let Ej = {x ∈ Rk : Ax[Mj] has a PD completion}, j = 1, . . . ,m. Then each Ej is a
convex set. Fix {i1, . . . , ik+1} ⊂ {1, 2, . . . ,m}, and let B be a PD completion of the
proper principal submatrix A[S ∪ Ni1 ∪ Ni2 ∪ · · · ∪ Nik+1

] of A. (It is proper since
m ≥ k + 2.)

Let xi = brisi , i = 1, . . . , k, and let x = (x1, . . . , xk). Then B[Mij] is a PD
completion of Ax[Mij], j = 1, . . . , k + 1. That is,

Ei1 ∩ Ei2 ∩ · · · ∩Eik+1
6= φ.

Therefore, each collection of k + 1 sets of {E1, . . . , Em} has a nonempty intersection.
By Helly’s theorem E1 ∩ E2 ∩ · · · ∩Em 6= φ.

Let x ∈ E1∩E2∩· · ·∩Em, and let Bj be a PD completion of Ax[Mj], j = 1, . . . ,m.
Define the n-by-n partial symmetric matrix B by

brs =

(Ax)rs if r, s ∈ S,
(Bi)rs if r, s ∈Mi but {r, s} 6⊂ S,
? otherwise.

Since N1, . . . , Nm are disjoint, the definition of B is unambiguous. Then the graph
of B has m maximal cliques M1,M2, . . . ,Mm with common intersection S. It follows
that this graph is chordal and that B satisfies the clique conditions. By Theorem 2.1,
B has a PD completion, which is a PD completion of A. This shows there are no
critical data for G. Thus G is not critical, which completes the proof.

We note that the proof of Theorem 4.1 hinges on three key facts about the prop-
erty of positive definiteness: (1) any principal submatrix of a PD matrix is PD; (2)
the fact that there is a chordal result (Theorem 2.1); and (3) the PD matrices form a
convex set. Otherwise the proof is graph theoretic and is independent of the specific
property of positive definiteness.

We can generalize Theorem 4.1 (including Theorem 3.2) as follows. We consider
combinatorially symmetric partial matrices, i.e., aji is specified if and only if aij is
specified, but we do not require them to be equal. Let P be a property that is
defined for matrices of all orders, and let D = {t : t is an entry of some matrix with
property P}. We say that P is an inherited property if each principal submatrix of
a matrix with property P has property P . Property P is said to be chordal if there
is a chordal theorem for P , analogous to Theorem 2.1. We say that P is implicitly
convex if there is a function f , 1− 1 on D, such that for each positive integer n, the
set {(f(aij)) : A = (aij) is an n-by-n matrix with property P} is convex. Of course

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 123

positive definiteness is inherited, chordal, and implicitly convex, but other properties
are also. An n-by-n matrix A = (aij) is called a Euclidean distance matrix [B] if there
exist points p1, p2, . . . pn ∈ Rk (for some positive integer k) such that aij = ||pi−pj ||2,
i, j = 1, . . . , n. The property of being a Euclidean distance matrix is clearly inherited
and is chordal [BJ]. If we set f(x) = x2, which is 1− 1 on D = [0,∞), the property is
seen to be implicitly convex because a matrix is a squared Euclidean distance matrix
if and only if it has zero diagonal and is negative semidefinite on the orthogonal
complement of the vector (1, 1, . . . , 1) [BJ]. Criticality for P is defined analogously.

Given x ∈ Rk, let f(x) = (f(x1), f(x2), . . . , f(xk)). Modifying the definition
of Ej in the proof of Theorem 4.1 to Ej = {f(x) : Ax[Mj] has a completion with
property P}, yields the following result.

Observation. Let P be an inherited, chordal, implicitly convex property. If G is
a critical graph for property P , then G is ultraconnected.

It follows that the critical graphs for the Euclidean distance completion problem
are ultraconnected.

If we examine a list of the graphs on n ≤ 5 vertices, we find that those that are
ultraconnected are precisely the critical graphs for n ≤ 5 identified in section 3. It is
thus natural to conjecture that the converse of Theorem 4.1 holds. This is an open
question; however, we examine the evidence for it in section 5.

5. Sufficiency for graphs on 6 vertices. Theorem 4.1 limits the search for
critical graphs to the ultraconnected graphs. We furthermore conjecture that every
ultraconnected graph is critical for the PD (PSD) completion problem. In this section
we resolve this conjecture for n = 6.

A table of the 112 connected graphs on 6 vertices can be found in [CP]. Exactly
19 of these are ultraconnected; we list them and their numbers in Figure 5.1.

Any graph on 6 vertices that is critical for the PD completion problem must be
one of these by Theorem 4.1.

We examine which of these is critical. Of course, the complete graph 1 and the
cycle 106 are critical.

We next show that the graphs 28, 47, 51, 52, 69, 72, and 74 are critical. The main
theorem (Theorem 3) in [BJL] gives 3 different graph theoretic conditions in order
that a graph be cycle completable. Condition (1.1) of this theorem implies that each
of these 7 graphs is not cycle completable, while it is straightforward to check that
every proper induced subgraph of each of them is. Thus, each is minimally non-cc,
and therefore critical by Theorem 3.1.

Criticality of two further graphs follows from the following general theorem.

Theorem 5.1. Let G be a connected graph on n vertices. Then G is critical if
and only if G+ is critical.

Proof. Suppose first that G is critical. If G = Kn, then G+ = Kn+1, so G+ is
critical. Thus, assume that G 6= Kn. Let B be a G-partial, critical matrix. Since
B({n}) is PD-completable, there exists α ∈ R such that the G-partial matrix

A11 = B + α2Enn

is PD-completable.

Now define a G+-partial matrix A by

A =

[
A11 αen
αetn 1

]
.

124 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

K6

W6

C6

K3,3

1 4 8 9 14

17 18 28 30 31

32 47 50 51 52

69 72 74 106

Fig. 5.1.

We claim that A is critical (with respect to G+). Indeed, A({n + 1}) = A11 is PD-
completable by assumption. A({n}) = A11({n}) ⊕ [1] is PD-completable because
A11({n}) is. Finally let 1 ≤ k ≤ n− 1. The partial matrix A({k}) is PD-completable
because the Schur complement of its main diagonal entry in the bottom right-hand
corner is equal to

A11({k})− α2En−1,n−1 = B({k}),
which is PD-completable by assumption.

We have shown that every n-by-n principal submatrix of A is PD-completable.
Now, let

Ã =

[
Ã11 αen
αetn 1

]
be any completion of A. Then the Schur complement of the (n+ 1, n+ 1) entry is

Ã11 − α2Enn,

which is a completion of B and therefore is not positive definite. Thus A is not PD-
completable, even though all its proper principal submatrices are. It follows that G+

is critical.
Suppose now that G = (N,E) is not critical, and let

A =

[
B c
ct d

]

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 125

be any (n+1)-by-(n+1)G+-partial matrix, each of whose n-by-n principal submatrices
is PD-completable. Motivated by Schur complements, we define a G-partial matrix
S. Let C = (cij) be the G-partial matrix defined by

cij =

{
cicj
d if i = j or ij ∈ E,

? otherwise,

and let S = B−C. (We are using the convention that the difference of two unspecified
entries is unspecified.) For each k, 1 ≤ k ≤ n, let

Âk =

[
Bk c({k})

c({k})t d

]
be a PD completion of A({k}). Here Bk is a completion of B({k}) and c({k}) is the
vector obtained from c by removing its kth component. Then Bk − 1

dc({k})c({k})t is
a PD-completion of S({k}). Thus, each (n − 1)-by-(n − 1) principal submatrix of S
is PD-completable. Since G is not critical S has a PD-completion Ŝ. Then[

Ŝ + 1
dcc

t c
ct d

]
is a PD-completion of A, which shows there are no critical data for G+.

An immediate corollary follows.
Corollary 5.2. The n-wheel Wn, n ≥ 4, is critical.
It also follows from Theorem 5.1 that the number of critical graphs on n vertices

is a strictly increasing function of n. The rate of growth is probably exponential but
likely much less than the rate of growth of the number of connected graphs.

Returning to our list of ultraconnected graphs on 6 vertices, we see that graph 4
is W+

5 and graph 8 is Ŵ+
4 , where Ŵ4 is the graph

Since W5 and Ŵ4 are critical graphs on 5 vertices, graphs 4 and 8 are critical by
Theorem 5.1.

At present we have no simple method for showing that the eight remaining ul-
traconnected graphs on 6 vertices are critical. Instead we have found critical data for
each one individually.

Before presenting this data, we recall some elementary, but useful, results about
completions.

Remark 5.1 (see [J1]). Let a, d ∈ R, b, c ∈ Rn−2, and let B be an (n−2)-by-(n−2)
PD matrix. Assume that [

a bT

b B

]
,

[
B c
cT d

]
are PSD. Then the matrix a bT z

b B c
z cT d

126 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

is PSD if and only if z ∈ [m− r,m+ r], in which m = bTB−1c and
r =

√
(a− bTB−1b)(d− cTB−1c).

Remark 5.2. The matrix

S =

1 1 z
1 1 a
z a 1

 ,
|a| ≤ 1, is PSD if and only if z = a. If we represent the matrix S graphically

1

2 3a

z , |a| ≤ 1,

1

then this graph represents a PSD matrix if and only if z = a. In checking for PSD
completions we will use this remark in the following form: if

a , |a| ≤ 1,1

occurs as an induced subgraph of a graph G corresponding to a G-partial matrix
A, the entry on the remaining edge must be chosen to be a if A is to have a PSD
completion.

Remark 5.3. The matrix
1 1 −1

2 − 1
2

1 1 − 1
2 − 1

2

− 1
2 − 1

2 1 − 1
2

− 1
2 − 1

2 − 1
2 1

is PSD.

Remark 5.4 (see [BJT]). Let G = C4, and let A be a C4-partial PSD matrix
whose diagonal entries are all 1’s. Let a be any specified entry of A. Then |a| ≤ 1,
and there exists 0 ≤ θ ≤ π such that a = cos θ. Doing likewise for any specified entry
of A and arranging the θ’s in decreasing order θ1 ≥ θ2 ≥ θ3 ≥ θ4, the cycle conditions
for completability of A to a PSD matrix are

θ1 ≤ θ2 + θ3 + θ4

and

θ1 + θ2 + θ3 ≤ 2π + θ4.

Theorem 5.3. The displayed data in each of the eight graphs in Figure 5.2 is
critical.

Proof. We will verify that the data for graphs 14, 30, and 31 are critical. The
data for the remaining graphs may be verified in a similar manner.

First consider graph 14 (Fig. 5.3). If the partial matrix A corresponding to the
displayed data is PSD-completable, the 2,3- and 3,2-entries must be equal to − 1

3
by Remark 5.2. But then the principal submatrix A[{2, 3, 4, 5, 6}] has −1

3 as an
eigenvalue. Therefore A has no PSD completion.

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 127

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

–

–

1
3

– 1
3

–

0

0

1
3

–
1
3

–

1
2

1
2

1
2

1
2

1
2

1
2

–

1
2

–
1
2

1

1

all remaining
edges are
equal to – 1

3

all remaining
edges are
equal to – 1

3

9 14

17 18

30 31

1

1

1

1

all remaining
edges are
equal to – 1

2

all remaining
edges are
equal to – 1

2

32 50

all remaining
edges are
equal to – 1

2

1
3

–

1
2

1
2

1
2

1
2

1
2

1
2

–

1
2

1
2

–

1
3

–

1
0

0

Fig. 5.2.

We now show that each principal submatrix of order 5 is PSD-completable. The
graphs G−{1}, G−{2}, and G−{3} are chordal. Since A({1}), A({2}), and A({3})
satisfy the clique conditions, each is PSD-completable by Theorem 2.1.

Now consider A({4}). Again the 2,3- and 3,2-entries must be chosen to be −1
3 ,

128 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

1
3

–1
1
3

–
1
3

–

1
3

–

1
3

–

1
3

–

1
3

–
1
3

–

1
3

–

1
3

–

1

2 3

4

5 6

Fig. 5.3.

and with this choice A[{2, 3, 5, 6}] becomes
1 −1

3 − 1
3 − 1

3

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

− 1
3 − 1

3 − 1
3 1

 ,
which is PSD. It now follows that A({4}) is completable by Theorem 2.1. The same
argument shows that the matrices A({5}) and A({6}) are PSD-completable.

Now consider graph 30 (Fig. 5.4).

1

1
1
2

–

1
2

–

1
2

–

1 2

3 4

5 6
1
2

–

1
2

–

1
2

–

1
2

–

1
2

–

Fig. 5.4.

If the partial matrix A corresponding to the displayed data is PSD-completable, then
all unspecified entries of A must be chosen to be −1

2 . But then the principal submatrix
A[{2, 3, 4, 5}] has − 1

2 as an eigenvalue. Therefore A has no PSD-completion.
We now show that each principal submatrix of order 5 has a PSD completion. The

graph G − {1} is cycle completable. The partial matrix A({1}) satisfies the clique
conditions and the cycle conditions (Remark 5.4) since the θ-values corresponding
to the cycle (3,4,6,5) are 2π

3 ,
2π
3 ,

2π
3 , 0. Therefore, A({1}) is PSD-completable by

Theorem 2.2. Now consider A({2}). The 3,6- and 6,3-entries must be chosen to
be − 1

2 ; let A′ be the matrix resulting from this choice. The graph of A′ is chordal
and A′ satisfies the clique conditions (Remark 5.3); thus A′ is PSD-completable by
Theorem 2.1, and so is A({2}). G − {3} and G − {4} are chordal, and A({3}) and

CRITICAL GRAPHS FOR POSITIVE DEFINITE COMPLETIONS 129

1
3

–

1
2

1
2

1
2

1
2

1
2

1
2

–

1
2

1
2

–

1

2 3 4 5

6

1
3

–

Fig. 5.5.

A({4}) satisfy the clique conditions and so are PSD-completable. We now come to
A({5}). If we set the 1,4-and 4,1-entries equal to −1

2 we obtain a matrix whose
graph is chordal and which satisfies the clique conditions. Therefore, A({5}) is PSD-
completable. Finally G−{6} is cycle completable and A({6}) satisfies the clique and
cycle conditions and so is PSD-completable by Theorem 2.2. This completes the proof
that graph 30 is critical.

Finally, we consider the graph 31 (Fig. 5.5). We show that the partial matrix
A corresponding to the displayed data is not PSD-completable. By Remark 5.1, the
partial matrix

1 1
2

1
2 ?

1
2 1 − 1

3
1
2

1
2 − 1

3 1 1
2

? 1
2

1
2 1

corresponding to G{1,2,3,6} becomes PSD if and only if a16 = a61 is chosen to be

in the interval [1
2 , 1] (m = 3

4 and r = 1
4). Now considering G{1,4,5,6}, a similar

argument shows that the corresponding partial matrix A[{1, 4, 5, 6}] becomes PSD if
and only if a61 = a16 is chosen in the interval [−1,−1

2]. This shows that A is not
PSD-completable.

We now show that each principal submatrix of order 5 has a PSD completion.
G − {1} is chordal, and the corresponding partial matrix A({1}) satisfies the clique
conditions. Hence, by Theorem 2.1, A({1}) is PSD-completable. A similar argument
shows that A({6}) is PSD-completable.

Now consider the partial matrix A({2}). Letting a16 = a61 = − 1
2 , the (ordinary)

matrix A[{1, 4, 5, 6}] is PSD, as indicated above. The graph corresponding to the new
partial matrix A′, obtained from A({2}) by making this choice, is chordal, and since A′

satisfies the clique conditions, it is PSD-completable by Theorem 2.1. Hence A({2})
is PSD-completable. The same reasoning shows that A({3}) is PSD-completable.

Now consider the partial matrix A{5}. Letting a16 = a61 = 1
2 , the (ordinary)

matrix A[{1, 2, 3, 6}] is PSD, as indicated above. The graph corresponding to the
new partial matrix A′, obtained from A({5}) by letting a16 = a61 = 1

2 , is chordal,
and since A′ satisfies the clique conditions, it is PSD-completable by Theorem 2.1.
Hence A({5}) is PSD-completable. The same reasoning shows that A({4}) is PSD-
completable, completing the proof that graph 31 is critical.

Theorem 5.3 and the preceding remarks establish that the converse of Theorem 4.1
holds for n = 6. The report [PZ] treats this question for n = 7. Of the graphs on
7 vertices, 136 were found to be ultraconnected, and critical data were produced for

130 WAYNE BARRETT, CHARLES JOHNSON, AND RAPHAEL LOEWY

many of them.

Acknowledgments. We thank Mohammad Omran for a chart he prepared of
all connected graphs on 6 vertices with no clique separator, which was helpful in
our initial investigation of this problem. Wayne Barrett gratefully acknowledges the
support of Brigham Young University for travel to Williamsburg and Haifa, where part
of this research was conducted. Raphael Loewy thanks Brigham Young University
for its support.

REFERENCES

[BJ] M. Bakonyi and C. R. Johnson, The Euclidean distance matrix completion problem,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 646–654.

[BJL] W. Barrett, C. R. Johnson, and R. Loewy, The real positive definite completion
problem: Cycle completability, Mem. Amer. Math. Soc., 584 (1996), 71 pp.

[BJT] W. Barrett, C. R. Johnson, and P. Tarazaga, The real positive definite completion
problem for a simple cycle, Linear Algebra Appl., 192 (1993), pp. 3–31.

[B] L. Blumenthal, Theory and Applications of Distance Geometry, 2nd ed., Chelsea, New
York, 1970.

[CP] D. Cvetković and M. Petrić, A table of connected graphs on six vertices, Discrete
Math., 50 (1984), pp. 37–49.

[E] H. G. Eggleston, Convexity, Cambridge University Press, London, 1958, p. 33.
[GHJT] W. Glunt, T. Mayden, C. R. Johnson, and P. Tarazaga, Positive definite completions

and determinant maximization, Linear Algebra Appl., to appear.
[GJSW] R. Grone, C. R. Johnson, E. Sá, and H. Wolkowicz, Positive definite completions of

partial Hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.
[J1] C. R. Johnson, Matrix completion problems: A survey, in Proc. Sympos. Appl. Math.,

40, AMS, Providence, RI, 1990, pp. 171–198.
[J2] C. R. Johnson, On the Solvability of Matrix Completion Problems, in preparation.
[JKW] C. R. Johnson, B. Kroschel, and H. Wolkowicz, Interior point methods for approxi-

mate positive semidefinite completions, Comput. Optim. Appl., 9 (1998), pp. 175–190.
[JM] C. R. Johnson and T. McKee, Structural conditions for cycle completable graphs, Dis-

crete Math., 159 (1996), pp. 155–160.
[K] B. K. Kroschel, Structured Eigenvectors, Interlacing, and Matrix Completions, Ph.D.

thesis, The College of William and Mary, Williamsburg, VA, 1996.
[PZ] S. Petrovic and S. Zepnick, Critical Data and Ultra-Connected Graphs, REU Report,

The College of William and Mary, Williamsburg, VA, 1995. Advisor: C.R. Johnson.

USING GENERALIZED CAYLEY TRANSFORMATIONS WITHIN
AN INEXACT RATIONAL KRYLOV SEQUENCE METHOD∗

R. B. LEHOUCQ† AND KARL MEERBERGEN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 131–148

Abstract. The rational Krylov sequence (RKS) method is a generalization of Arnoldi’s method.
It constructs an orthogonal reduction of a matrix pencil into an upper Hessenberg pencil. The RKS
method is useful when the matrix pencil may be efficiently factored. This paper considers ap-
proximately solving the resulting linear systems with iterative methods. We show that a Cayley
transformation leads to a more efficient and robust eigensolver than the usual shift-invert transfor-
mation when the linear systems are solved inexactly within the RKS method. A relationship with
the recently introduced Jacobi–Davidson method is also established.

Key words. generalized eigenvalue problem, rational Krylov sequence, Arnoldi method, eigen-
values, Cayley transformation

AMS subject classifications. 65F15, 65F50, 65N25, 65G05

PII. S0895479896311220

1. Introduction. Suppose that a few eigenvalues, near a complex number µ,
and possible corresponding eigenvectors of the generalized matrix eigenvalue problem

Ax = Bxλ(1.1)

are needed. Assume that both A and B are large complex matrices of order n.
Also, suppose that at least one of A or B is nonsingular so that equation (1.1) has
n eigenvalues. Without loss of generality, assume that B is invertible. Following
standard convention, we refer to (A,B) as a matrix pencil. For us, n is considered
large when it is prohibitive to compute all the eigenvalues such as a dense algorithm
in LAPACK [1] would attempt to do.

A standard approach is to perform inverse iteration [17, p. 386] with the matrix
A− µB. The sequence of iterates

v, (A− µB)−1Bv, [(A− µB)−1B]2v, . . .(1.2)

is produced. Under some mild assumptions, the sequence converges toward the desired
eigenvector with eigenvalue closest to µ, and a Rayleigh quotient calculation gives an
estimate of the eigenvalue. Another approach is to extract the approximate eigenpair
by using the information from the subspace defined by joining together m iterates
of the sequence (1.2). This leads to a straightforward extension [22] of the ideas
introduced by Ericsson and Ruhe [13] for the spectral (shift-invert) transformation

∗Received by the editors October 28, 1996; accepted for publication (in revised form) by A.
Greenbaum February 16, 1998; published electronically September 23, 1998.

http://www.siam.org/journals/simax/20-1/31122.html
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.

Current address: Sandia National Laboratories, MS 1110, P.O. Box 5800, Albuquerque, NM 87185-
1110 (rlehoucq@cs.sandia.gov). The work of this author was supported by the Mathematical, In-
formation, and Computational Sciences Division subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under contract W-31-109-Eng-38.
‡Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

(K.A.Y.Meerbergen@rl.ac.uk). The work of this author was supported by the project Itera-
tive Methods in Scientific Computing, contract HCM network CHRC-CT93-0420, coordinated by
CERFACS, Toulouse, France.

131

132 R. LEHOUCQ AND K. MEERBERGEN

Lanczos method. Starting with the vector v, Arnoldi’s method [2] builds, step by
step, an orthogonal basis for the Krylov subspace

Km(TSI , v) ≡ Span{v, TSIv, . . . , (TSI)m−1v} where TSI = (A− µB)−1B.

One improvement to the inverse iteration scheme given is to possibly vary the
shift µ ≡ µj at every step. For example, µj may be set to the Rayleigh quotient
zHAz/zHBz, where z is a unit vector in the direction of (TSI)jv. Ruhe [30, 32]
elegantly shows how to build an orthogonal basis for the rational Krylov subspace

Span{v, TSI1 v, . . . , (TSIm−1 · · ·TSI1)v}, where TSIj = (A− µjB)−1B.

The resulting algorithm is called a rational Krylov sequence (RKS) method and is a
generalization of the shift-invert Arnoldi method, where the shift is possibly varied
during each step.

All the methods considered require the solution of (A − µB)x = By for x. This
is typically accomplished by factoring A− µB. For example, when A− µB is sparse,
a direct method [7, 8, 9, 10, 12, 11] may be employed. If the shifts µj are not varied,
then use of one of these direct methods in conjunction with ARPACK [21] is a powerful
combination for computing a few solutions of the generalized eigenvalue problem (1.1).

However, for large eigenvalue problems (n > 10, 000), direct methods using the
RKS method may not provide an efficient solution because of the potentially pro-
hibitive storage requirements. The motivation for the current study is to investigate
the use of iterative methods for the linear systems of equations arising in the RKS
method. One benefit is that for the many eigenvalue problems arising from a dis-
cretization of partial differential equations, an intelligent preconditioner may often be
constructed. We shall call these methods inexact RKS methods because we no longer
have a rational Krylov space. In particular, we shall demonstrate that a Cayley trans-
formation TCj ≡ (A − µjB)−1(A − νjB) performs more robustly than a shift-invert

transformation TSIj ≡ (A − µjB)−1B when using iterative methods for the linear
solves.

Before we continue, some remarks are in order. Although combining an eigen-
solver (using one of the methods discussed previously) with an iterative method for
the linear solves is not a new (or even novel) idea, what is generally not appreciated
is that residuals of the linear systems must be small. To be precise, the matrix vector
product v = TSIj u must be applied so that ‖Bu − (A − µjB)v‖ ≈ εM‖A − µjB‖,
where v is the approximate solution of the linear system and εM is machine precision.
This is a necessary requirement for the correct representation of the underlying Krylov
subspace. If the linear systems are not solved with the above accuracy, there is no
guarantee that a Krylov space for TSIj has been generated. For example, if Arnoldi’s
method is used, there is no reason to expect that the Hessenberg matrix generated
represents the orthogonal projection of TSIj onto the Arnoldi vectors generated. If the
above assumption of accuracy is violated (as is often the case), any results produced
by such an eigensolver should be taken with caution.

Fittingly, the literature on approaches for finding a few solutions to the generalized
eigenvalue problem (1.1), where only approximate solutions to the linear systems are
available, is sparse. Bramble, Knyazev, and Pasciak [4], Knyazev [18], Knyazev and
Skorokhodov [19], Morgan [25], and Szyld [42] each consider the situation where the
matrix pencil is symmetric positive definite. (The papers [18, 19, 4] also contain nu-
merous citations of the Russian literature.) Algorithms based on the Jacobi–Davidson
method [38] introduced by Sleijpen and van der Vorst are discussed in [14, 39]. In

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 133

a recent report, Sorensen [41] discusses methods based on truncating a QZ iteration.
The recent paper by Meerbergen and Roose [23] provided motivation for the current
article. They demonstrate the superior numerical performance of a Cayley transfor-
mation over that of a shift-invert transformation within an Arnoldi method when
using an iterative linear solver.

Our paper is organized as follows. We introduce the RKS method in section 2.
The inexact RKS method is introduced in section 3, along with its connection with
inverse iteration, and some examples illustrating our ideas are presented. In section 4,
we illustrate our method for a generalized eigenvalue problem. In section 5, we show
that an appropriate (approximate) shift-invert transformation could be used. We
compare inexact RKS and Jacobi–Davidson methods in section 6. We conclude the
paper in section 7 with a summary of the main ideas and some remaining questions.

In this paper, matrices are denoted by uppercase Roman characters. Vectors are
denoted by lowercase Roman characters. The range of the matrix V is denoted by
R(V). The Hermitian transpose of the vector x is denoted by xH . Specific notation
will be introduced and employed in the next few sections. The norm ‖ · ‖ used is
Euclidean.

2. The rational Krylov sequence method. The method is outlined by the
algorithm listed in Figure 2.1. For the practical RKS algorithm given in [32], Ruhe
considers the shift-invert transformation TSIj = (A − µjB)−1B rather than TCj =

(A − µjB)−1(A − νjB). In exact arithmetic, both transformations lead to the same
rational Krylov space because

TCj = I + (µj − νj)TSIj .(2.1)

However, in finite-precision arithmetic and/or in conjunction with iterative methods
for linear systems, substantial differences may exist (see [23] for examples). We call the
µj ’s the poles, the νj ’s the zeros, and the Vjtj ’s the continuation vectors. A discussion
of some possible choices is postponed until section 3.2. This section will discuss some
relationships among quantities in steps 1–7 of Figure 2.1, the form of Gram–Schmidt
orthogonalization we employ, and finally the computation of approximate eigenpairs
and their convergence.

By eliminating w from steps 2–5, we obtain the relationship

(A− µjB)−1(A− νjB)Vjtj ≡ Vj+1h̃j ,(2.2)

where h̃j =
[
h1,j h2,j · · · hj+1,j

]T
. Let t̃j =

[
tTj 0

]T
. Rearranging equa-

tion (2.2) results in

(A− µjB)Vj+1h̃j = (A− νjB)Vj+1t̃j ,

AVj+1(h̃j − t̃j) = BVj+1(h̃jµj − t̃jνj).
By putting together the relations for j = 1, . . . ,m, we have that

AVm+1(H̃m − T̃m) = BVm+1(H̃mMm − T̃mNm),(2.3)

where h̃j and t̃j are associated with the jth columns of H̃m and T̃m, respectively, and
Mm = diag(µ1, . . . , µm), Nm = diag(ν1, . . . , νm).

A final simplification is to rewrite equation (2.3) as

AVm+1L̃m = BVm+1K̃m,(2.4)

134 R. LEHOUCQ AND K. MEERBERGEN

• Choose a starting vector v1 with ‖v1‖ = 1 and set V1 ← [v1] .
• For j = 1, 2, . . . ,m

1. Select a pole µj , a zero νj 6= µj and a vector tj ∈ Rj with ‖tj‖ = 1.
2. Form w = Vjtj (continuation vector).
3. Form w ← (A− µjB)−1(A− νjB)w.
4. Orthogonalize w := w − Vjhj with hj = V Hj w (Gram–Schmidt).

5. Set Vj+1 =
[
Vj w/hj+1,j

]
where hj+1,j = ‖w‖.

6. Set l̃j =

[
hj

hj+1,j

]
−
[
tj
0

]
and k̃j =

[
hj

hj+1,j

]
µj −

[
tj
0

]
νj .

7. If j > 1 set L̃j =

[
L̃j−1

0
l̃j

]
and K̃j =

[
K̃j−1

0
k̃j

]
.

8. Compute approximate eigenpairs of interest.
9. Check whether the approximate eigenpairs satisfy the convergence

criterion.

Fig. 2.1. Computing the Rational Krylov Sequence (RKS) for the matrix pencil (A,B).

where

L̃m ≡ H̃m − T̃m and K̃m ≡ H̃mMm − T̃mNm.(2.5)

We remark that as long as the subdiagonal elements (the hj+1,j ’s) are nonzero, both

H̃m and L̃m are unreduced upper Hessenberg (rectangular) matrices and hence are of
full rank.

2.1. Orthogonalization. The orthogonalization of step 3 of the algorithm in
Figure 2.1 is performed using an iterative classical Gram–Schmidt algorithm. This is
the same approach used by Sorensen [40] based on the analysis [5] of reorthogonaliza-
tion in the Gram–Schmidt algorithm.

2.2. Computing eigenvalue estimates. We now consider the calculation of
approximate eigenpairs for the RKS method and first discuss how to compute Ritz
pairs. The main purpose of this paper is to study the use of iterative linear sys-
tem solvers in RKS and not the various ways to extract eigenvalues. Therefore, we
use standard Ritz values throughout, although the theory can easily be extended to
harmonic [32, 39] Ritz values.

Consider a matrix C and a subspace R(X), where X ∈ Cn×k is of full rank. The
pair (θ, y≡Xz) is called a Ritz pair of C with respect to the subspace R(X) if and
only if

Cy − θy ⊥ R(X) .(2.6)

This is referred to as a Galerkin projection. Two important properties of a Galerkin
projection are the following. First, if R(X) ≡ Cn, the Ritz pairs are exact eigenpairs
of C. Second, if C is normal, the Ritz values lie in the convex hull of the eigenvalues
of C. For example, if C is Hermitian, the Ritz values lie between the smallest and
largest eigenvalue of C.

The following theorem shows how Ritz pairs may be computed from the RKS
method outlined by the algorithm listed in Figure 2.1.

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 135

Theorem 2.1. (θ, y ≡ Vm+1L̃mz) is a Ritz pair for B−1A with respect to
R(Vm+1L̃m) if and only if

L̃HmK̃mz = θL̃HmL̃mz.(2.7)

Proof. Following the definition (2.6) and equation (2.4), (θ, y) is a Ritz pair when

B−1AVm+1L̃mz − θVm+1L̃mz = Vm+1(K̃m − θL̃m)z ⊥ R(Vm+1L̃m).

Thus, (Vm+1L̃m)HVm+1(K̃m − θL̃m)z = 0, and the desired equivalence with (2.7)
follows.

We denote by θ
(m)
i the ith Ritz value available after m steps of the RKS algorithm

of Figure 2.1. Unless otherwise stated, we assume that the Ritz values are in increasing

distance from µm, that is, |θ(m)
1 −µm| ≤ |θ(m)

2 −µm| ≤ · · · ≤ |θ(m)
m −µm|. The associated

Ritz vector is denoted by y
(m)
i . The sub- and superscripts are omitted whenever their

meanings are clear from the context.

2.2.1. Computing Ritz pairs. The generalized eigenvalue problem (2.7) may
be solved as a standard one. Since L̃m is an unreduced upper Hessenberg matrix, L̃m
is of full rank, and hence L̃HmL̃m is invertible. Thus, the standard eigenvalue problem

L̃†mK̃mz = zθ, where L̃†m = (L̃HmL̃m)−1L̃m,

is solved giving the 1 ≤ i ≤ m eigenpairs (θ
(m)
i , z

(m)
i). We remark that L̃†m is the

Moore–Penrose generalized inverse of L̃m. The explicit formation of the inverse of
L̃HmL̃m is not required. Instead, L̃†mK̃m may be computed by least squares methods,

for example, with the LAPACK [1] software. The Ritz vector is y
(m)
i = Vm+1L̃mz

(m)
i ,

where ‖y(m)
i ‖ = 1. Sub- and superscripts are omitted when their meanings are clear

in the context.

2.3. Stopping criterion. The accuracy of a Ritz pair (θ, y = Vm+1Lmz) is
typically estimated by the residual norm ‖Ay−Byθ‖. From equation (2.4), it follows
that

f
(m)
i ≡ Ay(m)

i − θ(m)
i By

(m)
i = BVm+1(K̃m − θL̃m)z

(m)
i ≡ BVm+1g

(m)
i ,(2.8)

where g
(m)
i ≡ K̃mz

(m)
i −θL̃mz(m)

i . Thus, a simple check for convergence of a Ritz pair
in the algorithm in Figure 2.1 is when

‖g(m)
i ‖ ≤ tol

for a user-defined error tolerance tol.
For any Ritz pair (θ, y), it follows that (A + E)y = Byθ, where E = −fyH .

Hence if ‖B−1E‖ = ‖ − Vm+1gy
H‖ = ‖g‖ is small relative to ‖B−1A‖, then (θ, y) is

an eigenpair for a nearby problem. If θ is not a poorly conditioned eigenvalue of the
matrix pencil and if ‖B−1‖ is not large, then the size of ‖g‖ indicates the accuracy of
the computed Ritz value.

This conclusion motivates us to say that the sequence of Ritz pairs (θ
(m)
i , y

(m)
i),

(fixed i) converges toward an eigenpair of equation (1.1) if and only if ‖g(m)
i ‖ tends

to zero as m increases toward n. Although this convergence is not rigorously defined

(we necessarily have ‖g(n)
i ‖ = 0), it does allow us to track the progress of a Ritz pair

after step m of the algorithm in Figure 2.1.

136 R. LEHOUCQ AND K. MEERBERGEN

3. The inexact RKS method. At steps 3–5 of the RKS algorithm in Fig-
ure 2.1, the Cayley transformation

Vj+1h̃j = (A− µjB)−1(A− νjB)Vjtj

is computed by a two-step process. First, the linear system

(A− µjB)w = (A− νjB)Vjtj(3.1)

is solved for w. Next, w is orthogonalized against Vj , and the solution Vj+1h̃j results.
These two steps account for the largest source of errors arising when computing in
floating-point arithmetic. Since our interest is in using a (preconditioned) iterative
method for the solution of equation (3.1), we neglect the errors in the Gram–Schmidt
orthogonalization phase (but we assume that the columns of Vj+1 are orthogonal to
machine precision).

Let us formally analyze the errors arising from the solution of equation (3.1). Let
xj=Vj+1h̃j denote the computed solution and let sj ≡ (A− νjB)Vjtj − (A− µjB)xj
denote the associated residual. Thus,

(A− µjB + sjx
H
j /‖xj‖2)xj = (A− νjB)Vjtj .

Here, ‖sjxHj ‖/‖xj‖2 = ‖sj‖/‖xj‖. If ‖sj‖/(‖xj‖ ‖A − µjB‖) is a modest multiple of
machine precision, we say that the direct method computes a backward stable solution.
A robust implementation of a direct method gives a backward stable solution to a
linear system. Note that even if a backward stable solution xj is in hand, it may
share few, if any, digits of accuracy with w. Moreover, achieving such a backward
stable solution with an iterative method may be prohibitively expensive. Therefore,
we shall study the situation where a large backward error is allowed for the solution
of the linear system.

In order to give an indication of what we mean by large, a few words about
iterative linear system solvers are needed. A linear system Cx = b is said to be solved
with a relative residual tolerance τ when the solution x satisfies ‖b− Cx‖ ≤ τ‖b‖ for
any b. Krylov methods [15, 34] are typically used. GMRES [35], BiCGSTAB(`) [37],
and QMR [16] are among those most widely used; see [3] for templates for all of these
solvers. The performance of these solvers substantially improves when a suitable
preconditioner is employed. Hence what we mean by a large error is that 10−8 ≤ τ ≤
10−2.

By putting together all sj for j = 1, . . . ,m in Sm ≡
[
s1 · · · sm

]
, we have

AVm+1L̃m = BVm+1K̃m − Sm,(3.2)

which we call an inexact rational Krylov sequence (I-RKS) relation. This relation
may be rewritten as

(A+ Em)Vm+1L̃m = BVm+1K̃m with Em = SmL̃
†
mV

H
m+1,(3.3)

where L̃†m = (L̃HmL̃m)−1L̃Hm is the generalized Moore–Penrose inverse. In other words,
we have computed an exact RKS for the pencil (A+ Em, B). We caution the reader
not to confuse the Em’s with the unsubscripted E’s of subsection 2.3.

Denote by σ−1
min(L̃m) the reciprocal of the minimum singular value of L̃m. There-

fore, if

‖Em‖ ≤ ‖Sm‖ ‖L̃†m‖ = ‖Sm‖σ−1
min(L̃m)

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 137

• Choose a starting vector v1 with ‖v1‖ = 1 and set V1 ← [v1] .
• For j = 1, 2, . . . ,m

1. Select a pole µj . If j > 1 set the zero νj = θ
(j−1)
i and tj = l̃j−1/‖l̃j−1‖.

Otherwise, set ν1 = 0 and t1 = 1.
2. Compute the continuation vector r(j−1) = AVjtj − νjBVjtj .
3. Form by solving

{
(Cayley): (A− µjB)xj = r(j−1)

(Shift-invert): (A− µjB)xj = BVjtj

}
for xj and

set w = xj .
4. See steps 4–6 of the IC-RKS method listed in Figure 3.2.

Fig. 3.1. Inverse iteration via the inexact RKS method.

is large, then the Ritz pairs from subsection 2.2.1 may not be those of a pencil near
(A,B). This situation implies that even if we use a direct method for the linear
systems, a nearly rank deficient L̃m might lead to inaccurate Ritz pairs. The matrix
Em incorporates the backward error of the linear solution and is the distance to the
matrix pencil (A,B). We call the Ritz pairs for (A+ Em, B) (from subsection 2.2.1)
inexact Ritz pairs for (A,B).

We now define and discuss a few quantities that will prove helpful in the discussion
that follows.

• Cayley residual sCj : this is the residual of the linear system (3.1) at step j of
the rational Krylov method.

• RKS residual f
(j)
i : the RKS method computes a Ritz pair (θ

(j)
i , y

(j)
i) with

y
(j)
i = Vj+1L̃jz

(j)
i and ‖y(j)

i ‖ = 1 for (A + Ej , B), and so the RKS residual
satisfies

f
(j)
i ≡ BVj+1(K̃j − θ(j)

i L̃j)z
(j)
i = (A+ Ej)y

(j)
i − θ(j)

i By
(j)
i .

• True residual r
(j)
i : this is the residual defined by r

(j)
i = Ay

(j)
i − θ(j)By

(j)
i .

(The sub- and superscript of the true residual are dropped with those of f
(j)
i ,

y(j), z
(j)
i , and θ

(j)
i when convenient.)

These three residuals may be linked via the relationships

r(j) = f (j) − Sjz(j) = f (j) − Ejy(j) for j = 1, . . . ,m(3.4)

that follow from equation (3.2) and the definition (3.3) of Ej . We present numerical
evidence demonstrating that, although ‖f (j)‖ decreases in size for increasing j, r(j)

does not decrease when an inexact shift-invert transformation is employed. However,
when an inexact Cayley transformation is used instead, both ‖Sjz(j)‖ and ‖f (j)‖
decrease and the size of the true residual also decreases.

The continuation of this section is as follows. In subsection 3.1, we present a
relationship with inverse iteration that includes a theorem showing the convergence
for inexact inverse iteration. In subsection 3.2, we fix the various parameters of
the RKS method, i.e., the poles, zeros, and continuation vectors. This selection
makes a link with the generalized Davidson method [6, 25, 26]. In subsection 3.3, an
informal argument is given for the convergence of the inexact Cayley rational Krylov
sequence (IC-RKS) method, described in subsection 3.2, using the theoretical result
from subsection 3.1. We also illustrate this by a numerical example.

138 R. LEHOUCQ AND K. MEERBERGEN

3.1. Inverse iteration. We first exploit a direct relationship with inverse it-
eration that occurs with a special choice of the continuation vector when a Cayley
transformation is used. An example is then presented that compares this choice with
a shift-invert transformation. This subsection is concluded with a theorem is show-
ing that the numerical behavior observed is not just a fortuitous event. Although
the choice of continuation vector does not exploit the entire space of vectors, as in
IC-RKS, the theorem justifies the superior properties of combining an approximate
linear solve via a Cayley transformation.

From equation (2.2) and the matrix identity (2.1), it follows that

Vj+1h̃j = Vjtj + (µj − νj)(A− µjB)−1BVjtj .

Using (2.5) with l̃j = L̃jej , it follows that

Vj+1 l̃j = (µj − νj)(A− µjB)−1BVjtj ,(3.5)

and hence Vj+1 l̃j is the linear combination of the columns of Vj+1 obtained by per-
forming one step of inverse iteration on the vector Vjtj . An inductive argument easily
establishes the following property.

Lemma 3.1. If t1 = 1 and tj = l̃j−1/‖l̃j−1‖ for j > 1, then

Vj+1 l̃j = ζj

j∏
i=1

(
(A− µiB)−1B

)
v1,

where ζj is a scalar and v1 is the starting vector of RKS.
Lemma 3.1 indicates how to compute an approximate eigenvalue. If we denote

k̃j ≡ K̃jej , equation (2.4) gives the Rayleigh quotient

θ(j) =
(Vj+1 l̃j)

HB−1A(Vj+1 l̃j)

(Vj+1 l̃j)H(Vj+1 l̃j)
=
l̃Hj k̃j

l̃Hj l̃j
(3.6)

as an estimate of an eigenvalue without need to explicitly apply B−1A.
An algorithm for inverse iteration is given in Figure 3.1. The approximate eigen-

pair on iteration j is (θ(j), y(j) = Vj+1 l̃j/‖l̃j‖), so we can use the relationships (3.4)

with z(j) = ej/‖l̃j‖. Recall that we used νj = θ(j−1) and Vjtj = y(j−1). The entries
θ(0) and v1 determine the initial estimates for the eigenpair. We now compare inexact
inverse iteration, computed via the RKS method using the shift-invert and Cayley
transformations with an example.

Example 3.1. The Olmstead model [28] represents the flow of a layer of viscoelas-
tic fluid heated from below. The equations are

∂u

∂t
= (1− C)

∂2v

∂X2
+ C

∂2u

∂X2
+Ru− u3,

B
∂v

∂t
= u− v,

with boundary conditions u(0) = u(1) = 0 and v(0) = v(1) = 0. Here u represents
the speed of the fluid and v is related to viscoelastic forces. The equation was dis-
cretized with central differences with gridsize h = 1/(n/2). After the discretization,
the equation may be written as ẋ = f(x) with xT = [u1, v1, u2, v2, . . ., un/2, vn/2].

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 139

Table 3.1
Numerical results for inverse iteration in Example 3.1 using inexact Cayley and shift-invert

transformations. The table shows the norms of true residual r(j), Sjz
(j), and the RKS residual

f (j). The norm of l̃j is also displayed for the Cayley transformation.

Cayley shift-invert

j ‖r(j)‖ ‖Sjz(j)‖ ‖f (j)‖ ‖l̃j‖ ‖r(j)‖ ‖Sjz(j)‖ ‖f (j)‖

1 1·100 8·10−1 7·10−1 5.2 4·100 5·100 4·10−1

2 1·101 1·101 5·10−1 0.6 7·10−1 7·10−1 7·10−2

3 1·100 1·100 2·10−1 1.6 4·10−1 4·10−1 3·10−2

4 2·10−1 2·10−1 8·10−2 1.2 5·10−1 5·10−1 1·10−2

5 1·10−1 9·10−2 4·10−2 1.0 5·10−1 5·10−1 7·10−3

6 5·10−2 5·10−2 2·10−2 1.0 5·10−1 5·10−1 4·10−3

7 2·10−2 2·10−2 8·10−3 1.0 5·10−1 5·10−1 2·10−3

8 9·10−3 9·10−3 3·10−3 1.0 5·10−1 5·10−1 1·10−3

9 4·10−3 4·10−3 1·10−3 1.0 5·10−1 5·10−1 5·10−4

10 2·10−3 1·10−3 4·10−4 1.0 5·10−1 5·10−1 3·10−4

11 6·10−4 6·10−4 2·10−4 1.0 5·10−1 5·10−1 1·10−4

12 2·10−4 2·10−4 6·10−5 1.0 5·10−1 5·10−1 7·10−5

13 8·10−5 8·10−5 2·10−5 1.0 5·10−1 5·10−1 4·10−5

14 3·10−5 3·10−5 8·10−6 1.0 5·10−1 5·10−1 2·10−5

15 1·10−5 1·10−5 3·10−6 1.0 5·10−1 5·10−1 1·10−5

The size of the Jacobian matrix A = ∂f/∂x is n = 100. We consider the Jacobian
for the parameter values B = 2, C = 0.1, and R = 4.7 for the trivial steady state
[u, v] = 0. Thus, the interest is in the eigenvalue of largest real part.

We ran the algorithm in Figure 3.1. The linear systems were solved by 20 itera-
tions of Gauss–Seidel starting with a zero initial vector. Since this solver is stationary,
the relative residual norm is almost constant. The initial guess for the eigenvalue was
θ(0) = 0. The initial vector for RKS was v1 = [1, · · · , 1]T /

√
n. The poles µj were set

equal to five for all j. The residuals r(j), f (j), and Sjz
(j) are shown in Table 3.1. All

three sequences decrease when the Cayley transform is used.
We repeated the experiments using the shift-invert transformation. The results

are also shown in Table 3.1. Both ‖Sjz(j)‖ and ‖r(j)‖ stagnate near the same value.
Note, however, that ‖f (j)‖ tends to zero.

Table 3.1 shows that the true residual decreases when the Cayley transformation
is used but stagnates for the shift-invert transformation. The following result indicates
what occurs under some mild conditions when performing inexact inverse iteration
with either the shift-invert or the Cayley transformation.

Theorem 3.2. Assume that there is an integer k ≤ m and value γ > 0 such that
‖l̃j‖ ≥ γ for j > k. Assume that ‖f (j)‖ ≤ ρ‖f (j−1)‖ for j ≥ k and ρ > 0 and that
τ is the relative residual tolerance used for the linear solves (see equations (3.12) and
(3.13)).

If a Cayley transformation is used, then for j ≥ k + 1,

‖r(j)‖ ≤
(
ρ+

τ

γ

)j−k
‖f (k)‖+

(
τ

γ

)j−k
‖r(k)‖,(3.7)

and when a shift-invert transformation is used,

‖r(j)‖ ≤ ρj−k‖f (k)‖+

(
τ

γ

)
‖B‖ .(3.8)

140 R. LEHOUCQ AND K. MEERBERGEN

Proof. With z(j) = ej/‖l̃j‖, (3.4) becomes r(j) = f (j) − sj/‖l̃j‖. With ‖l̃j‖ ≥ γ,
it follows that

‖r(j)‖ ≤ ‖f (j)‖+ ‖sj‖/‖l̃j‖
≤ ‖f (j)‖+ ‖sj‖/γ .(3.9)

For the Cayley transform, we prove (3.7) by induction on j. We clearly have that

‖r(k)‖ ≤ ‖f (k)‖+ ‖r(k)‖ ,

which satisfies (3.7) for j = k. Suppose that (3.7) holds for some integer j − 1 ≥ k.
From the hypothesis of the theorem, we have that

‖f (j)‖ ≤ ρ‖f (j−1)‖ ≤ · · · ≤ ρj−k‖f (k)‖.

Combining this with equations (3.9) and (3.12) results in

‖r(j)‖ ≤ ‖f (j)‖+ ‖sj‖/γ ≤ ρj−k‖f (k)‖+ (τ/γ)‖r(j−1)‖.

Using our inductive hypothesis on ‖r(j−1)‖ gives

‖r(j)‖ ≤ (ρj−k + τ/γ(ρ+ τ/γ)j−k−1)‖f (k)‖+ (τ/γ)j−k‖r(k)‖
≤ (ρ+ τ/γ)j−k‖f (k)‖+ (τ/γ)j−k‖r(k)‖ ,

and (3.7) follows. For shift-invert, (3.8) follows from (3.9) and (3.13), which completes
the proof.

The theorem shows that if ρ + τ/γ < 1, inexact inverse iteration computed via
the Cayley transformation will produce a Ritz pair with a small direct residual. Since
ρ + τ/γ ≥ ρ, inexact inverse iteration can do no better than exact inverse iteration.
Although the term ‖f (j)‖ will decrease when using the shift-invert transformation, the
size of the direct residual ‖r(j)‖ may stagnate. This occurs because the contribution
from solving the linear systems inexactly (sSIj) to the true residual is constant. When
a direct method is used for the linear system of equations, τ is a multiple of machine
precision. Hence, whether a shift-invert or Cayley transformation is used, the true
residual ‖r(j)‖ decreases at a rate proportional to ρ.

For the exact Cayley transformation, we have

Vj+1h̃j = (A− µjB)−1f (j−1)

and l̃j = h̃j − t̃j and ‖tj‖ = 1. Hence, we have

1− δj ≤ ‖l̃j‖ ≤ 1 + δj where δj = ‖(A− µjB)−1f (j−1)‖ .

Thus, γ = max(0,minj≥k 1−δj). If ‖(A−µjB)−1f (j−1)‖ converges to zero, then 1±δj
tends to one for increasing j. Computation reveals that, quite often, ‖l̃j‖ ≈ 1 after a
very small number of steps. This also holds for inexact inverse iteration, because it can
be seen as exact inverse iteration applied to (A+ Ej , B), as Table 3.1 demonstrates.
Hence, for large enough k, γ ≈ 1 and the convergence rate of inverse iteration using
the Cayley transform is approximately ρ + τ. As the method progresses, ρ is easily
estimated and thus the largest relative residual tolerance that may be used is also
easily estimated.

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 141

3.2. Choosing a pole, zero, and continuation vector. A robust and efficient
strategy for selecting the poles during the RKS method is a subject of research. The
present situation is further complicated because we employ approximate methods for
the linear solves. A fixed pole is used for the numerical experiments because our
interest is in the Ritz pairs produced by K̃k and L̃k.

The choice of the zero of the Cayley transformation is crucial for computing a Ritz
pair with a small direct residual. This was demonstrated by the numerical examples
in [23]. First, we formally analyze the choice of the zero and continuation vector and
then give an example.

Suppose that (θ(j−1), y(j−1)) is an (inexact) Ritz pair computed during the j-1st
step of an (inexact) RKS method. We select the zero νj = θ(j−1) and continuation

vector Vjtj = y(j−1) (or equivalently, tj = L̃j−1z
(j−1)) for some Ritz pair of interest.

For a Cayley transformation, this leads to

(A− µjB)w = r(j−1)(3.10)

while a shift-invert transformation gives

(A− µjB)w = By(j−1)(3.11)

as the linear systems to be solved. Although both transformations use the same
continuation vector, the Cayley transformation also uses the Ritz value for its zero.
The only difference in the two linear systems (3.10) and (3.11) is in their right-hand
sides. When a preconditioner is used to solve the linear system (3.10), we have a
generalization of Davidson’s method [6, 26] for computing eigenvalues of a matrix
pencil.

Denote the computed solutions to (3.10) and (3.11) by xCj and xSIj , respectively.
If an iterative method with relative residual tolerance τ is used for the two linear
systems, then the residuals of the linear systems satisfy

‖sCj ‖ ≡ ‖r(j−1) − (A− µjB)xCj ‖ ≤ τ‖r(j−1)‖(3.12)

‖sSIj ‖ ≡ ‖By(j−1) − (A− µjB)xSIj ‖ ≤ τ‖By(j−1)‖ ≤ τ‖B‖(3.13)

for the Cayley and shift-invert transformation, respectively. (We drop the superscripts
that denote Cayley or shift-invert transformations when the context is clear.)

In view of the two bounds (3.12) and (3.13) on the computed solutions, a Cayley
transformation is preferred over a shift-invert transformation. It appears that use
of a Cayley transformation leads to better results with inexact linear solvers when
the zero and continuation vector are chosen, as in (3.10). Our experimental results
also support this conclusion. The algorithm in Figure 3.2 lists an inexact Cayley
RKS method (IC-RKS). We now illustrate a few properties of this algorithm with an
example that demonstrates: (1) the inexact rational Krylov method is not a Galerkin
projection method; (2) the method can only compute one eigenvalue at a time, just
as in Davidson methods.

Example 3.2. Consider the matrices A = diag(1, · · · , 5) and B = I. The pencil
(A, I) has eigenpairs (j, ej), j = 1, . . . , 5. The goal is to compute the smallest eigen-
value 1 and corresponding eigenvector e1 with the IC-RKS method using a fixed pole
µj = 0.7. The starting vector is set equal to v1 = [1, · · · , 1]T /

√
5. The Cayley system

(A− µjI)xj = r(j−1)

142 R. LEHOUCQ AND K. MEERBERGEN

• Choose a starting vector v1 with ‖v1‖ = 1 and set V1 ← [v1] .
• For j = 1, 2, . . . ,m

1. Select a pole µj . If j > 1 set the zero νj = θ
(j−1)
i and tj = L̃j−1z

(j−1).
Otherwise, set ν1 = 0 and t1 = 1.

2. Compute the continuation vector r(j−1) = AVjtj − νjBVjtj (the true
residual).

3. Form w ← (A− µjB)−1r(j−1).
4. See steps 4–7 of the RKS method listed in Figure 2.1.
5. Solve the eigenvalue problem L̃†jK̃jz = θz (see subsection 2.2.1).
6. Check whether the approximate eigenpairs satisfy the convergence

criterion.

Fig. 3.2. Computing eigenvalues of the pencil (A,B) by the inexact Cayley rational Krylov
sequence (IC-RKS) method.

is solved as xj = M−1r(j−1), where

M−1 =

(1− µj)−1 10−2

10−2 . . .
. . .

. . .
. . . 10−2

10−2 (5− µj)−1

 .

Note that M simulates a stationary iterative solver with residual tolerance τ = ‖I −
(A − µjI)M−1‖ ≈ 5·10−2. We performed m = n = 5 iterations, so R(V5L5) ≡ Cn,

which implies that f
(5)
i = 0 for i = 1, . . . , 5. Thus, the computed eigenpairs are exact

eigenpairs of A+ E5. We found that

A+ E5 =

1.0000 0.0120 −0.0697 0.3708 −0.4728
−0.0000 1.9987 −0.5981 4.4591 −5.6013
−0.0001 0.1003 0.4666 17.1897 −21.1757
−0.0002 0.0340 −4.4220 36.8172 −40.7251
−0.0002 0.0151 −3.7375 26.8228 −27.8127

and has eigenpairs

i = 1 2 3 4 & 5

θ
(5)
i = 1.0000 2.0123 2.5340 3.4618± 6.3095i

y
(5)
i =

1.0000
0.0000
0.0000
0.0000
0.0000

0.0165
0.9812
−0.1801
−0.0602
−0.0310

−0.0177
−0.1340

0.9229
0.3188
0.1681

0.0045± 0.0068i
0.0249± 0.0951i
0.0149± 0.3758i
−0.0826± 0.7214i
−0.1810± 0.5374i

 .

Since f
(5)
i = 0, the true residual has the form r

(5)
i = −E5y

(5)
i . For example,

‖r(5)
1 ‖ = 6·10−5, but 1·10−1 < ‖r(5)

i ‖ < 1·101 for i > 1.
This example shows that E5 is nearly rank deficient and that the desired eigen-

vector of (A, I) is nearly its null vector. Therefore, the desired eigenvalue, in this
case, λ1 = 1, can be computed with a small true residual. It should be noted that the

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 143

perturbation E5 is small in the direction of only one eigenspace, hence IC-RKS is not
able to compute several eigenvalues simultaneously. This is not the situation when
the linear systems are solved more accurately with, for instance, a direct method.

In this example, IC-RKS computes the exact eigenpairs of A + E5 after m = 5

steps. In general, however, r
(5)
i 6= 0, because the inexact Ritz pair is not computed

from a Galerkin projection with A. We also remark that θ
(5)
4 and θ

(5)
5 are nonreal, and

this would not be the case with a Galerkin projection because A is a real symmetric
matrix. This is in contrast with other iterative eigenvalue solvers, such as Arnoldi
and Jacobi–Davidson methods, where Galerkin projections with A are employed.

3.3. Inexact rational Krylov. We now informally discuss the algorithm listed
in Figure 3.2, including a comparison with inexact inverse iteration of the previous
section.

From (3.5), with the Ritz vector y(i−1) computed as in subsection 2.2.1, it follows
that

Vi+1 l̃i = ζi(A− µiB)−1By(i−1) with y(i−1) = ViL̃i−1z
(i−1) for i = 1, . . . , j .

Numerical experiments reveal that the jth component of z(j) is large relative to the
initial j − 1 components (see Table 3.2). This is because the best approximation of
the desired eigenvector among the columns of Vj+1L̃j is given by Vj+1 l̃j—the im-
provement of the previous Ritz vector by one step of inverse iteration. Thus, using
the continuation vector ViL̃i−1z

(i−1) should give better results because information
in the subspace R(Vi+1L̃i) is used. Inexact inverse iteration only uses information in
the space spanned by the last column of Vi+1L̃i.

The inexact Ritz pairs (θ(i), y(i)) lead to true residuals r(i) if the Cayley transform
is used. The Cayley residual on iteration i satisfies ‖si‖ ≤ τ‖r(i−1)‖. The true residual
on the jth iteration is decomposed as r(j) = f (j) − Sjz(j), where

‖Sjz(j)‖ ≤
j∑
i=1

‖si‖ |eTi z(j)| ≤ τ
j∑
i=1

‖r(i−1)‖ |eTi z(j)|

gives an upper bound to ‖Sjz(j)‖. In the right-hand side, ‖si‖ is independent of j and
can be quite large for small i. However, because |eTi z(j)| typically forms a decreasing
sequence for increasing j, we have a decreasing sequence ‖Sjz(j)‖.

Example 3.3. We now discuss an example for which eTi z
(j) and Sjz

(j) tend to zero
in the IC-RKS method. The matrix arises from the same problem as in Example 3.1,
but now n = 200. We ran algorithm IC-RKS from Figure 3.2 with fixed µj = 5,
starting with vector v1 = [1, · · · , 1]T /

√
n. The linear systems were solved by GMRES

preconditioned by ILU. The number of iterations of GMRES was determined by the
relative error tolerance, which was selected as τ = 10−4. Table 3.2 shows the residual
norm and the norm of the error term Sjz

(j). Both ‖Sjz(j)‖ and ‖r(j)‖ tend to zero.
For large j, ‖Sjz(j)‖ ≈ ‖r(j)‖. This is the case because f (j) converges more rapidly
to zero than Sjz

(j). Table 3.2 also illustrates the fact that eTi z
(j) decreases for a fixed

i and increasing j.

4. A numerical example. This example illustrates the use of inexact rational
Krylov methods for the solution of a generalized eigenvalue problem. We also compare
inexact inverse iteration with the Cayley transform and IC-RKS.

The simulation of flow of a viscous fluid with a free surface on a tilted plane
leads, with a finite element approach, to an eigenvalue problem Ax = Bxλ with

144 R. LEHOUCQ AND K. MEERBERGEN

Table 3.2
Numerical results for the Olmstead model of Example 3.3. The table shows the order of accuracy

for the residual norm of the rightmost Ritz pair, the norm of Sjz
(j), and the first four components

of z(j).

j ‖r(j)‖ ‖Sjz(j)‖ |eT1 z(j)| |eT2 z(j)| |eT3 z(j)| |eT4 z(j)|

1 6·10−1 1·10−1 2·10−1

2 2·100 3·10−1 5·10−1 3·100

3 2·10−2 1·10−2 5·10−3 6·10−1 1
4 2·10−2 1·10−2 3·10−3 6·10−1 1 2
5 8·10−4 7·10−4 1·10−4 4·10−2 6·10−2 3·10−1

6 3·10−4 3·10−4 2·10−5 2·10−2 3·10−2 3·10−1

7 2·10−5 2·10−5 2·10−6 1·10−3 2·10−3 2·10−2

8 5·10−7 5·10−7 7·10−8 2·10−5 5·10−5 1·10−3

9 3·10−8 3·10−8 4·10−9 2·10−6 2·10−6 6·10−5

Table 4.1
Numerical results for the tilted plane problem from section 4. The methods used are inexact

rational Krylov (IC-RKS) and inverse iteration with the Cayley transform. On iteration j, θ(j) is
the inexact Ritz value, sj the Cayley residual, and g(j) = (K̃j − θ(j)L̃j)z

(j).

IC-RKS (Figure 3.2) Inverse Iteration (Figure 3.1)

j (θ
(j)
1)−1 ‖sj‖ ‖r(j)

1 ‖ ‖g(j)
1 ‖ (θ

(j)
1)−1 ‖sj‖ ‖r(j)‖ ‖g(j)‖

1 −9.40554 5·10−9 1·10−6 3·10−3 −9.40554 5·10−9 1·10−6 2·10−3

2 −9.48481 1·10−10 3·10−8 5·10−6 −9.49928 1·10−10 2·10−7 4·10−4

3 −9.48825 1·10−12 1·10−9 8·10−8 −9.48705 2·10−11 4·10−9 6·10−6

4 −9.48831 6·10−13 2·10−11 1·10−9 −9.48845 3·10−12 4·10−9 8·10−7

5 −9.48832 2·10−15 6·10−13 6·10−11 −9.48831 3·10−13 5·10−10 8·10−8

6 −9.48832 5·10−17 2·10−14 1·10−12 −9.48832 5·10−14 5·10−11 8·10−9

7 −9.48832 4·10−14 5·10−12 6·10−10

8 −9.48832 5·10−15 4·10−13 3·10−11

9 −9.48832 3·10−17 3·10−14 6·10−12

A,B ∈ R536×536 nonsymmetric and B a singular matrix. The computation of the
eigenvalue nearest −10 is of interest. Since our theory is valid only for nonsingular
B, we interchange the role of A and B by computing the eigenvalue γ = λ−1 of
Bx = Axγ nearest µ = −10−1.

The fact that B is singular implies that γ = 0 is an eigenvalue. It has been shown
that the presence of this eigenvalue can disturb the calculation of a nonzero eigenvalue
when either the shift-invert Arnoldi method [29, 24] or the rational Krylov method
[36] is used. One way to reduce the impact of γ = 0 is to start the IC-RKS method
with an initial vector v1 that is poor in the eigenspace corresponding to γ = 0 [27].
This can be achieved by selecting v1 = (B − µA)−1Bv with v arbitrary.

The eigenvalue γ nearest −0.1 was computed using IC-RKS (Figure 3.2) with
fixed pole µj = −0.1. The linear systems were solved by GMRES preconditioned with
ILUT(lfil=40,tol=1.e-3) [33] with τ = 10−4. The initial vector v1 was computed
from the system (B − µA)v1 = Bv with v = [1, · · · , 1]T using the GMRES-ILUT

solver. The algorithm was stopped when ‖r(j)
1 ‖ ≤ tol = 10−13.

The numerical results are shown in Table 4.1 for inexact rational Krylov (IC-
RKS) and inexact inverse iteration using the Cayley transform. First, note that
‖f (j)‖ ≤ ‖A‖‖g(j)‖, so ‖g(j)‖ does not measure the RKS residual (see also (2.8)).
Also note that for both IC-RKS and inverse iteration, the sequences ‖r(j)‖, ‖sj‖, and

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 145

‖g(j)‖ decrease. Both methods converge to λ = γ−1 ≈ −9.486. Finally, note that
IC-RKS is faster than inverse iteration.

5. A relation between inexact shift-invert and Cayley transforms. In
the previous section, we showed that the inexact rational Krylov method can be used
for the computation of eigenvalues of a matrix pencil. The example shows a substantial
difference in convergence behavior between the shift-invert and Cayley transforma-
tions. In this section, we show that an appropriate shift-invert transformation may
also be employed.

During each step of IC-RKS, the following relationship

(A− µjB)xj = (A− νjB)y(j) − sj(5.1)

results, where sj is the residual of the linear system that is approximately solved.
Rearranging (5.1) and adding µjBy

(j) to both sides gives the equivalent shift-invert
system

(A− µjB)(xj − y(j)) = (µj − νj)By(j) − sj .

Hence, if the zero vector is used as the initial guess for the iterative method for linear
systems approximately solved via the Cayley transform, −y(j) should be used for the
shift-invert transformation formulation.

Assume that τ is a constant and that IC-RKS converges to some eigenpair. From
(3.13), it follows that when shift-invert is used, convergence to the same eigenpair is
attained for decreasing τ (as j increases). In the context of inexact inverse iteration,
Lai, Lin, and Lin [20] also observe that the approximate linear system solver requires
an increasingly tighter tolerance on the residual (of the linear system) as the number
of inverse iterations increases. In contrast, a Cayley transformation allows us to use
a fixed tolerance on the linear system residual.

6. A connection with the Jacobi–Davidson method. We now show a con-
nection between the Jacobi–Davidson [14, 39, 38] and RKS [32] methods.

Consider the linear system

(A− µjB)w = (A− ν̃jB)yj ,(6.1)

where yj = VjL̃j−1z
(j−1) is a Ritz vector of interest. This amounts to selecting the

jth continuation vector tj = L̃j−1z
(j−1) as in algorithm IC-RKS in Figure 3.2, with

associated Ritz value

ν̃j =
yHj Ayj

yHj Byj
.

The right-hand side in (6.1) is then the residual of the eigenpair (ν̃j , yj) and is or-
thogonal to yj . Since we are interested in expanding our search space (the span
of the columns of Vj), multiply both sides of equation (6.1) by the projector I −
Byjy

H
j /(y

H
j Byj). The fact that (A− ν̃jB)yj ⊥ yj results in(

I − Byjy
H
j

yHj Byj

)
(A− µjB)w = (A− ν̃jB)yj .

146 R. LEHOUCQ AND K. MEERBERGEN

Since yj ∈ R(Vj), the component of w in the direction of yj does not play a role
when w is added to the subspace R(Vj). Thus, we are interested in finding only the
component of w orthogonal to yj , and so the linear system(

I − Byjy
H
j

yHj Byj

)
(A− µjB)

(
I − yjy

H
j

yHj yj

)
w = (A− ν̃jB)yj(6.2)

is solved instead. The Jacobi–Davidson method calls equation (6.2) the correction
equation. Suppose that xj is a computed solution of equation (6.2) with residual sj ,
given by

sj = (A− ν̃jB)yj −
(
I − Byjy

H
j

yHj Byj

)
(A− µjB)

(
I − yjy

H
j

yHj yj

)
xj ,(6.3)

where sj is orthogonal to yj . Rewrite (6.3) with d ≡ (I − yjyHj /(yHj yj))xj ⊥ yj as

(A− µjB)d = εjByj + (A− ν̃jB)yj − sj = (A− (ν̃j − εj)B)yj − sj .(6.4)

The orthogonality of yj with d and sj leads to

εj =
yHj (A− µjB)d

yHj Byj
.(6.5)

Choosing the zero νj ≡ ν̃j − εj gives a relationship between the Jacobi–Davidson
and RKS methods when Cayley transformations are used. When εj is computed, the
solution of the Jacobi–Davidson correction equation xj = w can be inserted in the
RKS method. Note that, although the Ritz vector yj is orthogonal to the right-hand
side of the Jacobi–Davidson correction equation (6.2), yj is not orthogonal to the
right-hand side of (6.4).

An advantage of the inexact rational Krylov method is that the matrices L̃j and

K̃j do not require the explicit application of A and/or B as needed, as in the Jacobi–
Davidson method. An efficient implementation of the Jacobi–Davidson method re-
quires dot products (the first j − 1 elements in the last row of V Hj AVj and V Hj BVj).

We caution the reader to conclude that the Jacobi–Davidson method is an expen-
sive variant of IC-RKS because it fits an IC-RKS framework. A detailed numerical
comparison of the two methods requires examining the respective rates of convergence
and ability to obtain relative residual reductions during the linear solves. This is the
subject of future work.

7. Conclusions. This paper studied the use of approximate linear solves within
Ruhe’s rational Krylov sequence method. The analysis of the convergence of inexact
inverse iteration showed the importance of using the Cayley transformation instead of
the usual shift-invert transformation, when the linear systems are solved with a given
relative residual tolerance.

A theoretical link between the inexact rational Krylov method that uses general-
ized Cayley transformations and the Jacobi–Davidson methods was drawn resulting
in a connection between the correction equation and Cayley transformation.

We called the eigenpairs computed by IC-RKS inexact Ritz pairs because they
are Ritz pairs for a perturbed RKS method. The classical properties of Galerkin
projection are lost due to this inexactness. Since IC-RKS solves a perturbed problem,

INEXACT RATIONAL KRYLOV SEQUENCE METHOD 147

the application of techniques developed for the RKS method (using approximate linear
solves) may be employed. These techniques include the use of complex poles and zeros
for real A and B [31], harmonic Ritz pairs, deflation and purging [32, 36], and the
implicit application of a rational filter [36].

Acknowledgments. The authors thank Dirk Roose for the financial support
that allowed the first author to visit the second author. This visit initiated the col-
laboration that led to this paper. The authors also thank Gorik De Samblanx, Ger-
ard Sleijpen, and the referees for helpful comments and suggestions that improved the
quality of the paper. In particular, one of the referees provided numerous constructive
criticisms that improved the quality of the presentation.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[3] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1993.

[4] J. H. Bramble, A. V. Knyazev, and J. E. Pasciak, A subspace preconditioning algorithm
for eigenvector/eigenvalue computation, Adv. Comput. Math., 6 (1996), pp. 159–189.

[5] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and sta-
ble algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976),
pp. 772–795.

[6] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[7] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 140–158.

[8] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric
sparse matrices, ACM Trans. Math. Software, to appear.

[9] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., to appear.

[10] I. S. Duff, ME28 : A sparse unsymmetric linear equation solver for complex equations, ACM
Trans. Math. Software, 7 (1981), pp. 505–511.

[11] I. S. Duff and J. K. Reid, The design of MA48, a code for direct solution of sparse unsym-
metric linear systems of equations, ACM Trans. Math. Software, 22 (1996), pp. 187–226.

[12] I. S. Duff and J. A. Scott, The design of a new frontal code for solving sparse unsymmetric
systems, ACM Trans. Math. Software, 22 (1996), pp. 30–45.

[13] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical so-
lution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980),
pp. 1251–1268.

[14] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson style QR
and QZ algorithms for the partial reduction of matrix pencils, SIAM J. Sci. Comput., 20
(1999), pp. 94–125.

[15] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
in Acta Numerica, A. Iserles, ed., Cambridge University Press, Cambridge, UK, 1992, pp.
57–100.

[16] R. W. Freund and N. M. Nachtigal, QMRPACK: A package of QMR algorithms, ACM
Trans. Math. Software, 22 (1996), pp. 46–77.

[17] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[18] A. V. Knyazev, Convergence rate estimates for iterative methods for mesh symmetric eigen-
value problem, Soviet J. Numer. Anal. Math. Modelling, 2 (1987), pp. 371–396.

[19] A. V. Knyazev and A. L. Skorokhodov, Preconditioned gradient-type iterative methods in
a subspace for partial generalized symmetric eigenvalue problems, SIAM J. Numer. Anal.,
31 (1994), pp. 1226–1239.

148 R. LEHOUCQ AND K. MEERBERGEN

[20] Y.-L. Lai, K.-Y. Lin, and W.-W. Lin, An inexact inverse iteration for large sparse eigenvalue
problems, Numer. Linear Algebra Appl., 4 (1997), pp. 425–437.

[21] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,
PA, 1998.

[22] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost eigenvalues
of real nonsymmetric matrices, IMA J. Numer. Anal., 16 (1996), pp. 297–346.

[23] K. Meerbergen and D. Roose, The restarted Arnoldi method applied to iterative linear system
solvers for the computation of rightmost eigenvalues, SIAM J. Matrix Anal. Appl., 18
(1997), pp. 1–20.

[24] K. Meerbergen and A. Spence, Implicitly restarted Arnoldi with purification for the shift–
invert transformation, Math. Comp., 218 (1997), pp. 667–689.

[25] R. B. Morgan, Davidson’s method and preconditioning for generalized eigenvalue problems,
J. Comput. Phys., 89 (1990), pp. 241–245.

[26] R. B. Morgan, Generalizations of Davidson’s method for computing eigenvalues of large non-
symmetric matrices, J. Comput. Phys., 101 (1992), pp. 287–291.

[27] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen, How to implement the
spectral transformation, Math. Comp., 48 (1987), pp. 663–673.

[28] W. E. Olmstead, S. H. Davis, S. Rosenblat, and W. L. Kath, Bifurcation with memory,
SIAM J. Appl. Math., 46 (1986), pp. 171–188.

[29] B. Philippe and M. Sadkane, Improving the spectral transformation block Arnoldi method,
in Proc. Second IMACS Internat. Symposium on Iterative Methods in Linear Algebra,
Blagoevgrad, Bulgaria, 1995, IMACS Series in Computational and Applied Mathematics,
vol. 3, P. S. Vassilevski and S. D. Margenov, eds., pp. 57–63.

[30] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl.,
58 (1984), pp. 391–405.

[31] A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems, III: Complex
shifts for real matrices, BIT, 34 (1994), pp. 165–176.

[32] A. Ruhe, Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils,
SIAM J. Sci. Comput., 19 (1998), pp. 1535–1551.

[33] Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Technical Report
90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center,
Moffet Field, CA, 1990.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS, Boston, MA, 1996.
[35] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[36] G. De Samblanx, K. Meerbergen, and A. Bultheel, The implicit application of a rational

filter in the rks method, BIT, 37 (1997), pp. 925–947.
[37] G. L. G. Sleijpen, D. R. Fokkema, and H. A van der Vorst, BiCGstab(`) and other hybrid

Bi-CG methods, Numer. Algorithms, 7 (1994), pp. 75–109.
[38] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear

eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
[39] G. L. G. Sleijpen, J. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, Jacobi-

Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT,
36 (1996), pp. 595–633.

[40] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[41] D.C. Sorensen, Truncated QZ Methods for Large Scale Generalized Eigenvalue Problems,
Technical Report TR98-01, Rice University, Houston, TX, 1998.

[42] Daniel B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM J.
Numer. Anal., 25 (1988), pp. 1369–1375.

THREE ABSOLUTE PERTURBATION BOUNDS FOR MATRIX
EIGENVALUES IMPLY RELATIVE BOUNDS∗

STANLEY C. EISENSTAT† AND ILSE C. F. IPSEN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 149–158

Abstract. We show that three well-known perturbation bounds for matrix eigenvalues imply
relative bounds: the Bauer–Fike and Hoffman–Wielandt theorems for diagonalizable matrices, and
Weyl’s theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not
necessarily stronger than absolute bounds, and the conditioning of an eigenvalue in the relative sense
is the same as in the absolute sense.

We also show that eigenvalues of normal matrices are no more sensitive to perturbations than
eigenvalues of Hermitian positive-definite matrices. The relative error bounds are invariant under
congruence transformations, such as grading and scaling.

Key words. eigenvalues, relative perturbation bounds, conditioning

AMS subject classifications. 15A18, 15A42, 65F15

PII. S0895479897323282

1. Introduction. Let A be a complex square matrix and let A + E be a per-
turbation of A. We want to estimate the error in an eigenvalue λ̂ of A+E when it is
viewed as an approximation to an eigenvalue of A.

Traditional perturbation results bound the absolute error in an eigenvalue. The
Bauer–Fike theorem [2, Theorem IIIa], for instance, bounds the absolute distance

between λ̂ and a closest eigenvalue λ of a diagonalizable matrix A by

|λ− λ̂| ≤ κ(X) ‖E‖,

where κ(X) = ‖X‖ ‖X−1‖ is the condition number of an eigenvector matrix X of A.
The simplest way to generate a relative perturbation bound is to divide an abso-

lute error bound by a (nonzero) eigenvalue. In the case of the Bauer–Fike theorem
we get

|λ− λ̂|
|λ| ≤ κ(X)

‖E‖
|λ| .

Now the bound depends on λ. In particular, the bound is smaller for eigenvalues λ
that are large in magnitude than for those that are small in magnitude.

However, this kind of relative perturbation bound may not be good enough be-
cause there are algorithms that compute all eigenvalues to high relative accuracy—
even those of small magnitude. Among such algorithms are Jacobi methods for Her-
mitian positive-definite matrices [4, 13] and the dqds algorithm for certain tridiagonal

∗Received by the editors June 23, 1997; accepted for publication (in revised form) by R. Bhatia
March 3, 1998; published electronically September 23, 1998.

http://www.siam.org/journals/simax/20-1/32328.html
†Department of Computer Science, Yale University, P. O. Box 208285, New Haven, CT 06520-

8285 (eisenstat-stan@cs.yale.edu). The research of this author was supported in part by NSF grant
CCR-9400921.
‡Center for Research in Scientific Computation, Department of Mathematics, North

Carolina State University, P.O. Box 8205, Raleigh, NC 27695-8205 (ipsen@math.ncsu.edu,
http://www4.ncsu.edu/∼ipsen/info.html). The research of this author was supported in part by
NSF grant CCR-9400921.

149

150 STANLEY C. EISENSTAT AND ILSE C. F. IPSEN

matrices [7]. These algorithms have “genuine” relative error bounds that do not
depend on the eigenvalues.

Our original motivation was to determine under which circumstances we can
find genuine relative perturbation bounds that do not depend on the eigenvalues.
In particular, does the existence of such a bound depend on the properties of the
matrix (e.g., Hermitian positive-definite) or on the properties of the perturbation
(e.g., relative componentwise)?

Our answer is that genuine relative perturbation bounds exist, whenever absolute
bounds exist, for almost any matrix and for any perturbation. In particular, we
show that three well-known absolute bounds imply genuine relative bounds. In this
sense relative bounds are no stronger than absolute bounds. We also show that
corresponding absolute and relative perturbation bounds have the same condition
number.

1.1. Overview. In section 2 we show that the Bauer–Fike theorem for diagonal-
izable matrices implies a large class of relative bounds. The condition number is the
same for relative and absolute bounds. We conclude that the eigenvalues of a normal,
nonsingular matrix are well conditioned in the absolute as well as in the relative sense.

In section 3 we derive a relative perturbation bound for normal matrices that sug-
gests that the eigenvalues of a normal matrix are as well conditioned as the eigenvalues
of its positive-definite polar factor. The bound is invariant under congruence trans-
formations. Hence the eigenvalues of a graded, normal matrix are no more sensitive
to perturbations than the eigenvalues of an “ungraded” Hermitian positive-definite
matrix.

In section 4 we show that Weyl’s perturbation theorem implies a relative bound.
In section 5 we extend the Hoffman–Wielandt theorem for diagonalizable matrices

and show that it implies a relative bound.

1.2. Notation. I is the identity matrix; ‖ · ‖ is the two-norm and ‖ · ‖F the
Frobenius norm; A∗ is the conjugate transpose of a matrix A; and κ(X) ≡ ‖X‖‖X−1‖
is the two-norm condition number of a matrix X with respect to inversion.

2. Two-norm bounds for diagonalizable matrices. We show that the
Bauer–Fike theorem implies a relative bound.

Let A be a diagonalizable matrix with eigendecomposition A = XΛX−1, where

Λ =

λ1

. . .

λn

and λi are the eigenvalues of A. The Bauer–Fike theorem bounds the absolute error
between a perturbed eigenvalue and a closest eigenvalue of A.

Theorem 2.1 (Theorem IIIa in [2]). If A is diagonalizable, then

min
i
|λi − λ̂| ≤ κ(X) ‖E‖,

where κ(X) ≡ ‖X‖ ‖X−1‖.
The Bauer–Fike theorem implies the relative bound below, provided A is nonsin-

gular.
Corollary 2.2. If A is diagonalizable and nonsingular, then

min
i

|λi − λ̂|
|λi| ≤ κ(X) ‖A−1E‖.

RELATIVE EIGENVALUE BOUNDS 151

Proof. Write (A+ E)x̂ = λ̂x̂ as

(Ā+ Ē) x̂ = x̂, where Ā ≡ λ̂A−1, Ē ≡ −A−1E.

Hence 1 is an eigenvalue of Ā + Ē. The matrix Ā has eigenvalues λ̂/λi and the
same eigenvector matrix as A. Apply Theorem 2.1 to Ā and the eigenvalue 1 of Ā+
Ē.

We interpret the amplifier κ(X) in the bounds as a condition number for the
eigenvalues of A. Both absolute and relative perturbation bounds have the same
condition number. The condition number indicates the sensitivity of an eigenvalue to
absolute perturbations E and to relative perturbations

A−1E = A−1 ((A+ E)−A) .

Note, however, that an eigenvalue closest to λ̂ in the absolute sense may be different
from an eigenvalue closest to λ̂ in the relative sense. Corollary 2.2 generalizes [16,
Theorem 3.12].

2.1. A larger class of relative perturbations. So far we have expressed
relative perturbations as A−1E. But why confine A−1 to the left of E? Why not
move it to the right? Or why not factor A−1 and distribute the factors on both sides
of E? The bound below is a consequence of Corollary 2.2.

Theorem 2.3. Let A be diagonalizable and nonsingular. If A = A1A2, then

min
i

|λi − λ̂|
|λi| ≤ κ(W) ‖A−1

1 EA−1
2 ‖,

where W is an eigenvector matrix of A2A1.
Proof. Define

Ā ≡ A2AA
−1
2 , Ē ≡ A2EA

−1
2 .

Since Ā is similar to A, it is diagonalizable with eigendecomposition Ā = WΛW−1.
Applying Corollary 2.2 to Ā and Ā+ Ē gives

min
i

|λi − λ̂|
|λi| ≤ κ(W) ‖Ā−1Ē‖ = κ(W) ‖A−1

1 EA−1
2 ‖.

When A1 and A2 commute, the original condition number κ(X) returns.
Corollary 2.4. Let A = A1A2 be diagonalizable and nonsingular. If A1A2 =

A2A1, then

min
i

|λi − λ̂|
|λi| ≤ κ(X) ‖A−1

1 EA−1
2 ‖.

When A1 = A and A2 = I, we recover Corollary 2.2. The choice A1 = I and
A2 = A gives a similar bound.

Corollary 2.5. Let A be diagonalizable and nonsingular. Then

min
i

|λi − λ̂|
|λi| ≤ κ(X) ‖EA−1‖.

152 STANLEY C. EISENSTAT AND ILSE C. F. IPSEN

Another popular choice for A1 and A2 is a square root A1/2 of A. A square root
of a matrix [9, p. 54, Problem 7], [10, pp. 467 and 471] exists whenever the matrix is
nonsingular [10, p. 468].

Corollary 2.6. Let A be diagonalizable and nonsingular. Then

min
i

|λi − λ̂|
|λi| ≤ κ(X) ‖A−1/2EA−1/2‖.

3. Two-norm bounds for normal matrices. We derive relative perturbation
bounds for normal matrices that are invariant under congruence transformations such
as grading and scaling.

When applied to normal matrices, Corollary 2.4 is simplified.
Corollary 3.1. Let A = A1A2 be normal and nonsingular. If A1A2 = A2A1,

then

min
i

|λi − λ̂|
|λi| ≤ ‖A−1

1 EA−1
2 ‖.

Therefore, eigenvalues of normal matrices are well conditioned in the absolute
sense as well as in many relative senses.

Up to now we have chosen the following factorizations for A:

(A1, A2) = (A, I), (A1, A2) = (I, A), (A1, A2) = (A1/2, A1/2).

In each case, A1 and A2 commute and we retain the perfect conditioning of normal
matrices. Normal matrices, however, admit another commuting factorization. It
results from the polar factorization and the fact that polar factors of normal matrices
commute.

Every nonsingular matrix A has a polar factorization A = HU , where H ≡
(AA∗)1/2 is Hermitian positive-definite, and U ≡ H−1A is unitary [9, Corollary 7.3.3].
We use the following property of polar factors.

Lemma 3.2. Let A be normal and nonsingular with polar factorization A = HU .
Then

HU = UH = H1/2UH1/2.

Proof. The first equality follows from the fact that polar factors of a normal
matrix commute [9, Theorem 7.3.4].

To prove the second equality, note that a Hermitian positive-definite matrix H
has a unique Hermitian positive-definite square root H1/2 [9, Theorem 7.2.6]. From
the first equality, HU = UH follows

H = UHU∗ = (UH1/2U∗) (UH1/2U∗).

Thus UH1/2U∗ is also a Hermitian positive-definite square root of H. However,
uniqueness implies H1/2 = UH1/2U∗. This means that H1/2U = UH1/2 and

A = HU = H1/2 (H1/2U) = H1/2UH1/2.

The following bound is a consequence of Corollary 2.4.

RELATIVE EIGENVALUE BOUNDS 153

Theorem 3.3. Let A be normal and nonsingular, with Hermitian positive-definite
polar factor H. Then

min
i

|λi − λ̂|
|λi| ≤ ‖H−1/2EH−1/2‖.

Proof. A = HU is a polar factorization of A, and Lemma 3.2 implies A =
H1/2UH1/2. Set

A1 ≡ H1/2U, A2 ≡ H1/2.

Then

‖A−1
1 EA−1

2 ‖ = ‖U∗H−1/2EH−1/2‖ = ‖H−1/2EH−1/2‖.

Since A2A1 = A1A2, we can apply Corollary 2.4 to get the desired bound.
Therefore the eigenvalues of a normal matrix have the same relative error bound

as the eigenvalues of its positive-definite polar factor, which suggests that they are as
well conditioned as the eigenvalues of its positive-definite polar factor.

3.1. Grading. The advantage of Theorem 3.3 is that it is invariant under con-
gruence transformations in the following sense.

Corollary 3.4. Let A be normal and nonsingular, with Hermitian positive-
definite polar factor H. If D is nonsingular and

E = DE1D
∗, H = DM1D

∗,

then

min
i

|λi − λ̂|
|λi| ≤ ‖M−1/2

1 E1M
−1/2
1 ‖.

Proof. Theorem 3.3 implies

min
i

|λi − λ̂|
|λi| ≤ ‖H−1/2EH−1/2‖.

Since H is Hermitian positive-definite, M1 = D−1HD−∗ is also Hermitian positive-
definite and has a Hermitian square root. Since

H = H1/2H1/2 = DM
1/2
1 (DM

1/2
1)∗

are both “Cholesky factorizations” of H, they are related by a unitary matrix Q, i.e.,

H1/2 = (DM
1/2
1)Q. Hence by Theorem 3.3,

min
i

|λi − λ̂|
|λi| ≤ ‖H−1/2EH−1/2‖ = ‖M−1/2

1 E1M
−1/2
1 ‖.

Therefore the relative error bound is invariant under congruence transformations
extracted from the perturbation and the positive-definite polar factor. Corollary
3.4 implies essentially that the eigenvalues of a graded, normal matrix are no more
sensitive than the eigenvalues of the best “ungraded” positive-definite polar factor.

154 STANLEY C. EISENSTAT AND ILSE C. F. IPSEN

3.2. Relation to existing work. Slapničar and Veselić [15, section 2], [16, sec-
tion 2] have obtained similar results. Their results are more general in the sense that
they apply to the generalized eigenvalue problem Ax = λBx, where A is Hermitian
and B is Hermitian positive-definite, and they bound the distance between the ith
perturbed and exact eigenvalues. When B = I, their absolute value of A, A turns
out to be a Hermitian positive-definite polar factor of A. However, our results are
more general in the sense that they apply to a larger class of matrices (normal as
opposed to Hermitian), a larger class of perturbations (normwise as opposed to com-
ponentwise), and to a larger class of grading matrices (nonsingular as opposed to real
diagonal).

To relate our results to those in [15, section 2], [16, section 2], we assume that the
backward error is scaled in the same way as the matrix so that ‖E1‖ ≤ ε‖M‖, where
ε is a small positive number and A = DMD∗. The following result is similar in spirit
to [16, Theorem 2.13].

Corollary 3.5. Let A be normal and nonsingular, with positive-definite polar
factor H. Let D be nonsingular and

A = DMD∗, E = DE1D
∗, H = DM1D

∗.

If ‖E1‖ ≤ ε‖M‖, then

min
i

|λi − λ̂|
|λi| ≤ ε ‖M‖‖M−1

1 ‖.

Proof. Corollary 3.4 implies

min
i

|λi − λ̂|
|λi| ≤ ‖M−1/2

1 E1M
−1/2
1 ‖ ≤ ε ‖M−1/2

1 ‖2‖M‖.

As a square root of the Hermitian positive-definite matrix M1, M
1/2
1 is Hermitian.

Therefore ‖M−1/2
1 ‖2 = ‖M−1

1 ‖.
Therefore the eigenvalues have small relative error when M and M−1

1 have small
norm. Here, M is what is left over after extracting the grading from A, and M1 is
what is left over after extracting the grading from the positive-definite polar factor.
One might argue that in Corollary 3.5 the polar factor of M would be preferable to
the polar factor of A. However, then we would be comparing apples and oranges.
Because A and H have the same eigenvalues (in magnitude), we have to compare the
scaled version of A (which is M) to the scaled version of H (which is M1).

In the special case where M is unitary we arrive at the same conclusion as [16,
Theorem 2.37], namely, that the eigenvalues of A are well conditioned.

Corollary 3.6. If, in addition to the assumptions of Corollary 3.5, D also
commutes with the unitary polar factor of A and M is unitary, then

min
i

|λi − λ̂|
|λi| ≤ ε.

Proof. ‖M‖ = 1 because M is unitary, and

A = UH = U DM1D
∗ = D UM1 D

∗

because D and U commute. However, A = DMD∗ and the nonsingularity of D imply
M = UM1. Hence M1 is unitary and ‖M−1

1 ‖ = 1.

RELATIVE EIGENVALUE BOUNDS 155

In conclusion, our results only bound the error in a single eigenvalue of A+E while
other results bound the relative error in all eigenvalues of A+E simultaneously. But
this comes at a price. For instance, existing bounds for Hermitian matrices restrict the
perturbation E so that A+E is Hermitian and has the same inertia as A [1, Lemma
1], [16, Theorem 2.1], or they restrict the congruence transformation D and the size
of the perturbation [8, Corollary 5]. Hence, we have traded simultaneous bounds for
all eigenvalues against freedom in perturbations and applicability to a larger class of
matrices.

4. Two-norm bounds for Hermitian matrices. We show that Weyl’s theo-
rem implies a relative bound.

Let A and A+ E be Hermitian with respective eigenvalues

λn ≤ · · · ≤ λ1, λ̂n ≤ · · · ≤ λ̂1.

Weyl’s perturbation theorem bounds the worst-case absolute error between the ith
exact and perturbed eigenvalues of Hermitian matrices in terms of the two-norm.

Theorem 4.1 (Corollary III.2.6 in [3]). If A and A+ E are Hermitian, then

max
1≤i≤n

|λi − λ̂i| ≤ ‖E‖.
The absolute bound in Theorem 4.1 implies a relative bound, provided that the

matrices are, in addition, positive-definite.
Corollary 4.2 (Theorem 2.3 in [14]). If A and A+ E are Hermitian positive-

definite, then

max
1≤i≤n

|λi − λ̂i|
|λi| ≤ ‖A−1/2EA−1/2‖.

Proof. Fix an index i. Let x̂ be an eigenvector of A+ E associated with λ̂i, i.e.,

(A+ E)x̂ = λ̂ix̂.

Multiplying (λ̂iI − E)x̂ = Ax̂ by A−1 gives

(Ā+ Ē) z = z, where Ā ≡ λ̂iA−1, Ē ≡ −A−1/2EA−1/2, z ≡ A1/2x̂.

Hence 1 is an eigenvalue of Ā+ Ē.
We will show that it is actually the (n− i+ 1)st eigenvalue. We argue as in the

proof of [5, Theorem 2.1]. Since λ̂i is the ith eigenvalue of A+ E, 0 must be the ith
eigenvalue of

(A+ E)− λ̂iI = A1/2 (I − Ā− Ē)A1/2.

However, this is a congruence transformation because square roots of positive-definite
matrices are Hermitian. Congruence transformations preserve the inertia. Hence 0 is
the ith eigenvalue of I − Ā− Ē, and 1 is the (n− i+ 1)st eigenvalue of Ā+ Ē.

Since A+E is positive-definite, λ̂i is positive and λ̂i/λn−j+1 is the jth eigenvalue
of Ā. Applying Theorem 4.1 to Ā and Ā+ Ē gives

max
1≤j≤n

∣∣∣∣∣ λ̂i
λn−j+1

− µj
∣∣∣∣∣ ≤ ‖Ē‖ ≤ ‖A−1/2EA−1/2‖,

where µj are the eigenvalues of Ā+ Ē. When j = n− i+ 1, then µn−i+1 = 1 and we
get the desired bound.

A slightly weaker bound with a restriction on A+E appears in [11, Theorem 3.2].

156 STANLEY C. EISENSTAT AND ILSE C. F. IPSEN

5. Frobenius norm bounds for diagonalizable matrices. We show that a
slightly stronger version of the Hoffman–Wielandt theorem for diagonalizable matrices
implies a relative bound. The idea for this proof was inspired by the derivation of
relative error bounds for multiplicative perturbations in [11].

Let A and A + E be diagonalizable with eigendecompositions A = XΛX−1 and
A+ E = X̂Λ̂X̂−1, respectively. The eigenvalues are

Λ =

λ1

. . .

λn

 , Λ̂ =

 λ̂1

. . .

λ̂n

 .

The Hoffman–Wielandt theorem for diagonalizable matrices [6, Theorem 3.1] estab-
lishes a one-to-one pairing between exact and perturbed eigenvalues and bounds the
sum of absolute errors in the Frobenius norm,√√√√ n∑

i=1

|λi − λ̂τ(i)|2 ≤ κ(X̂) κ(X) ‖E‖F(1)

for some permutation τ . Note that κ(X) and κ(X̂) are expressed in the two-norm,
rather than in the Frobenius norm. This makes the bound tighter because the two-
norm never exceeds the Frobenius norm.

To demonstrate that an absolute Hoffman–Wielandt-type bound implies a relative
version, we need an absolute bound that is slightly stronger than (1). We replace A
by a product AC. The perturbed matrix is AC + E, where C must have the same
eigenvector matrix as AC + E. The bound (1) is the special case where C = I. The
eigendecomposition of C is

C = X̂ΓX̂−1, where Γ =

 γ1

. . .

γn

 .

The eigendecompositions of A and the perturbed matrix remain the same,

A = XΛX−1, AC + E = X̂Λ̂X̂−1.

The stronger Hoffman–Wielandt theorem below bounds the sum of absolute errors
in the products of the eigenvalues of A and C.

Theorem 5.1. Let A, C, and AC + E be diagonalizable. There exists a permu-
tation τ so that √√√√ n∑

i=1

|λiγτ(i) − λ̂τ(i)|2 ≤ κ(X̂) κ(X) ‖E‖F .

Proof. The proof is similar to that of [6, Theorem 3.1].
In AC − X̂Λ̂X̂−1 = −E decompose A and C,

XΛX−1 X̂ΓX̂−1 − X̂Λ̂X̂−1 = −E.
Multiply on the left by X−1 and on the right by X̂ and set Z ≡ X−1X̂,

ΛZΓ− ZΛ̂ = −X−1EX̂.(2)

RELATIVE EIGENVALUE BOUNDS 157

The (i, j)th element of this equation has absolute value

|zij | |λiγj − λ̂j | =
∣∣∣(X−1EX̂)ij

∣∣∣ .
The Frobenius norm is the sum of the squares of all these elements,∑

i,j

|zij |2 |λiγj − λ̂j |2 = ‖X−1EX̂‖2F ≤ ‖X−1‖2 ‖X̂‖2 ‖E‖2F .

By [6, Main Theorem], there exists a doubly stochastic matrix S = (sij) so that

sij
‖Z−1‖2 ≤ |zij |

2, 1 ≤ i, j ≤ n.

Hence ∑
i,j

sij |λiγj − λ̂j |2 ≤ ‖Z−1‖2
∑
i,j

|zij |2 |λiγj − λ̂j |2

≤ κ(X)2 κ(X̂)2 ‖E‖2F .
Because S is doubly stochastic, Birkhoff’s theorem [3, section II.2] implies that there
exists a permutation τ with∑

i

|λiγτ(i) − λ̂τ(i)|2 ≤
∑
i,j

sij |λiγj − λ̂j |2.

Therefore ∑
i

|λiγτ(i) − λ̂τ(i)|2 ≤ κ(X)2 κ(X̂)2 ‖E‖2F .

The stronger absolute bound in Theorem 5.1 implies a relative bound, provided
A is nonsingular. This relative bound is not new. It follows, for instance, from the
multiplicative bound [12, Theorem 2.1′] with D1 = I and D2 = I +A−1E. However,
the proof below demonstrates that the relative bound is no stronger than the absolute
bound because it is implied by the absolute bound.

Corollary 5.2. Let A and A + E be diagonalizable. If A is also nonsingular,
then there exists a permutation τ so that√√√√ n∑

i=1

(
|λi − λ̂τ(i)|
|λi|

)2

≤ κ(X̂) κ(X) ‖A−1E‖F .

Proof. Since A−1(A+ E)−A−1E = I, we can set

Ā ≡ A−1, C ≡ A+ E, Ē ≡ −A−1E.

Then Ā is diagonalizable with eigenvector matrix X and eigenvalues λ−1
i ; C is diag-

onalizable with eigenvector matrix X̂ and eigenvalues λ̂i; and ĀC + Ē = X̂IX̂−1 is
diagonalizable, where the eigenvalues are 1 and we can choose X̂ as an eigenvector
matrix. Applying Theorem 5.1 to Ā, C, and Ē gives

n∑
i=1

|λ−1
i λ̂τ(i) − 1|2 ≤ κ(X̂)2κ(X)2‖A−1E‖2F .

158 STANLEY C. EISENSTAT AND ILSE C. F. IPSEN

REFERENCES

[1] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[2] F. Bauer and C. Fike, Norms and exclusion theorems, Numer. Math., 2 (1960), pp. 137–141.
[3] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[4] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 1204–1245.
[5] S. Eisenstat and I. Ipsen, Relative perturbation techniques for singular value problems, SIAM

J. Numer. Anal., 32 (1995), pp. 1972–1988.
[6] L. Elsner and S. Friedland, Singular values, doubly stochastic matrices, and applications,

Linear Algebra Appl., 220 (1995), pp. 161–169.
[7] K. Fernando and B. Parlett, Accurate singular values and differential qd algorithms, Numer.

Math., 67 (1994), pp. 191–229.
[8] M. Gu and S. Eisenstat, Relative Perturbation Theory for Eigenproblems, Research Report

YALEU/DCS/RR-934, Department of Computer Science, Yale University, New Haven,
CT, 1993.

[9] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[10] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge,

1991.
[11] R. Li, Relative perturbation theory: I. Eigenvalue and singular value variations, SIAM J.

Matrix Anal. Appl., 19 (1998), pp. 956–982.
[12] R. Li, Relative perturbation theory. III. More bounds on eigenvalue variation, Linear Algebra

Appl., 266 (1997), pp. 337–345.
[13] R. Mathias, Accurate eigensystem computations by Jacobi methods, SIAM J. Matrix Anal.

Appl., 16 (1995), pp. 977–1003.
[14] R. Mathias, Spectral perturbation bounds for positive definite matrices, SIAM J. Matrix Anal.

Appl., 18 (1997), pp. 959–980.
[15] I. Slapničar, Accurate Symmetric Eigenreduction by a Jacobi Method, Ph.D. thesis, Fernuni-

versität Gesamthochschule Hagen, Germany, 1992.
[16] K. Veselić and I. Slapničar, Floating-point perturbations of Hermitian matrices, Linear

Algebra Appl., 195 (1993), pp. 81–116.

ON THE STABILITY OF A PARTITIONING ALGORITHM FOR
TRIDIAGONAL SYSTEMS∗

PLAMEN YALAMOV† AND VELISAR PAVLOV†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 159–181

Abstract. Componentwise error analysis for a parallel partitioning algorithm for tridiagonal
systems is presented. Bounds on the equivalent perturbations are obtained, depending on three
constants. Then bounds on the forward error are presented as well, depending on two types of
condition numbers. Estimates on the first constant come directly from the roundoff error analysis of
the tridiagonal Gaussian elimination [N. Higham, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 521–
530]. In the present paper, the second and third constants are bounded for some special classes of
matrices, i.e., diagonally dominant (row or column), symmetric positive definite, M -matrices, and
totally nonnegative.

One of the features of the analysis is that the exact forward and backward errors are bounded,
not just their first order approximations, with respect to the machine precision. In all the bounds,
the linear terms are given separately to show that the terms of higher order are small enough.

Key words. parallel partitioning algorithm, roundoff error analysis, tridiagonal matrices, diag-
onal dominance, symmetric positive definite matrix, M -matrix, nonnegative matrix

AMS subject classifications. 65G05, 65F05, 65Y05

PII. S0895479896314418

1. Introduction. Large tridiagonal systems appear in many applications, such
as finite elements, difference schemes to differential equations, power distribution
systems, etc. Among the direct methods for solving such systems, we can mention
the partition methods, which include very efficient parallel algorithms [1, 2, 3, 6, 7,
10, 14, 15, 16, 19, 20, 22, 24]. Concerning partition methods, a unifying approach
for their derivation and study is given in [1, 3]. Stability analysis of other parallel
algorithms for tridiagonal and bidiagonal systems can be found in [26, 27].

The aim of this paper is to obtain a stability analysis of the partitioning algorithm
proposed by Wang in [24].

Let the linear system under consideration be denoted by

Ax = d,(1)

where A = tridiag(a, b, c) is a tridiagonal matrix, a, b, c, d are vectors of size n,

a = (0, a2, a3, . . . , an)T , b = (b1, b2, . . . , bn)T ,

c = (c1, c2, . . . , cn−1, 0)T , d = (d1, d2, . . . , dn)T .

∗Received by the editors December 27, 1996; accepted for publication (in revised form) by L.
Reichel January 23, 1998; published electronically September 23, 1998. This research was supported
by grants MM-707/97 and I-702/97 from the National Scientific Research Fund of the Bulgarian
Ministry of Education and Science.

http://www.siam.org/journals/simax/20-1/31441.html
†Center of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria

(yalamov@ami.ru.acad.bg, velisar@ami.ru.acad.bg).

159

160 PLAMEN YALAMOV AND VELISAR PAVLOV

Let us assume for simplicity that n = ks−1 for some integer k, if s is the number
of the parallel processors we want to use. We partition matrix A, the solution x, and
the right-hand side d of the system (1) as follows:

A =

B1 c̄1
ak bk ck

ā2 B2 c̄2
a2k b2k c2k

. . .
. . .

. . .

ās−1 Bs−1 c̄s−1

a(s−1)k b(s−1)k c(s−1)k

ās Bs

,

x =
(
XT

1 , xk, X
T
2 , x2k, . . . , X

T
s−1, x(s−1)k, X

T
s

)T
,

d =
(
DT

1 , dk, D
T
2 , d2k, . . . , D

T
s−1, d(s−1)k, D

T
s

)T
,

where Bi ∈ R(k−1)×(k−1), i = 1, 2, . . . , s is a tridiagonal matrix,

Bi =

b(i−1)k+1 c(i−1)k+1

a(i−1)k+2 b(i−1)k+2 c(i−1)k+2

. . .
. . .

. . .

. . .
. . . cik−2

aik−1 bik−1

 ,

āi ∈ R(k−1)×1, i = 2, . . . , s, c̄i ∈ R(k−1)×1, i = 1, . . . , s− 1 are vectors of the kind

āi = (a(i−1)k+1, 0, . . . , 0)T , c̄i = (0, . . . , 0, cik−1)T ,

and Xi, Di ∈ R(k−1)×1, i = 1, . . . , s are vectors of the form

Xi = (x(i−1)k+1, x(i−1)k+2, . . . , xik−1)T ,

Di = (d(i−1)k+1, d(i−1)k+2, . . . , dik−1)T .

In this paper we present Wang’s algorithm in a block form which is more appropriate
for the following analysis. For this purpose we define the permutation

[1 : k − 1, . . . , (i− 1)k + 1 : ik − 1, . . . , (s− 1)k + 1 : sk − 1, k, . . . , ik, . . . , (s− 1)k]

of the numbers [1, . . . , sk − 1] and denote the corresponding permutation matrix by
P. By applying this permutation to the rows and columns of matrix A, we obtain the
system

APx = Pd, with A = PAPT =

(
A11 A12

A21 A22

)
,

where A11 = diag{B1, B2, . . . , Bs} ∈ Rs(k−1)×s(k−1),

STABILITY OF A PARTITIONING ALGORITHM 161

A12 =

c̄1
ā2 c̄2

. . .
. . .

. . . c̄s−1

ās

 ∈ R
s(k−1)×(s−1),(2)

A21 =

0 · · · ak ck · · · 0

0 · · · a2k c2k · · · 0
. . .

. . .
. . .

. . .

0 · · · a(s−1)k c(s−1)k · · · 0

 ,

A21 ∈ R(s−1)×s(k−1), and A22 = diag(bk, b2k, . . . , b(s−1)k) ∈ R(s−1)×(s−1).

We will distinguish between the two matrices A (original) and A (permuted).
Evidently, the permutation does not influence the roundoff error analysis but it in-
fluences some properties of the matrices that we consider in section 3 (e.g., totally
nonnegative matrices). For this reason we use these two notations. The permuted
vectors Px and Pd are not frequently used in the paper. We will stay with the same
notation, i.e., x and d, and give explicitly its permuted components when necessary,
or write Px and Pd for the permuted vectors. Otherwise, we will need some error
bounds on x with respect to the infinity norm, but it is clear that these bounds are
not influenced by the permutation, and this will not lead to confusion.

The algorithm can be presented as follows.

Stage 1. Obtain the block LU factorization

A =

(
A11 A12

A21 A22

)
= LU =

(
A11 0
A21 Is−1

)(
Is(k−1) R

0 S

)
(3)

by the following steps:

1. Obtain the LU-factorization of A11 = P1L1U1 with partial pivoting, if neces-
sary. Here P1 is a permutation matrix, L1 is unit lower triangular, and U1 is
upper triangular.

2. Solve A11R = A12 using the LU factorization from the previous item, and
compute S = A22 −A21R, which is the Schur complement of A11 in A.

Stage 2. Solve Ly = d by using the LU factorization of A11 (Stage 1).

Stage 3. Solve Ux = y by applying Gaussian elimination (with pivoting, if neces-
sary) to the block S.

Because of the block diagonal structure of A11, most of the computations are
well parallelized. Let us note that the blocks L1 and U1 inherit the block diagonal
structure of A11. The block R is quite sparse and is also structured. If we take into
account the structure of A12 in (2), then it is clear that

R =

p(1)

q(2) p(2)

. . .
. . .

. . . p(s−1)

q(s)

 ∈ R
s(k−1)×(s−1),

162 PLAMEN YALAMOV AND VELISAR PAVLOV

where

p(i) = (p(i−1)k+1, p(i−1)k+2, . . . , pik−1)T ∈ R(k−1)×1,

q(i) = (q(i−1)k+1, q(i−1)k+2, . . . , qik−1)T ∈ R(k−1)×1.

So, most of the computations in Stage 3 are also well parallelized because of the block
structure of submatrix R.

Let us note that matrix S (the so-called reduced matrix) is also tridiagonal. We
shall need an explicit notation for its entries in the following. So, we assume that

S =

v1 w1

u2 v2 w2

. . .
. . .

. . .

. . .
. . . ws−2

us−1 vs−1

 ,(4)

where

ui = −aikqik−1, vi = bik − aikpik−1 − cikqik+1, wi = −cikpik+1.

In some publications, stability issues of this partitioning algorithm have been
studied. More precisely, in [3] it is shown that the reduced matrix S is diagonally
dominant, when matrix A is diagonally dominant. The same property holds when A
is a symmetric positive definite (s.p.d.) matrix [4, p. 94], or an M -matrix [4, p. 209].
Another work concerning such a property is [23]. In this paper it is proved that if A
is strictly diagonally dominant (in a more general sense than [3]), then the reduced
matrix S is strictly diagonally dominant. So, in these three cases we can expect that
the whole algorithm is stable because the Gaussian elimination at the separate stages
is stable for diagonally dominant, s.p.d., and M -matrices. Also we should mention
reference [2] in which some stability issues of the present algorithm are studied. It is
shown that under small perturbations in a well conditioned matrix A, the errors in
the reduced matrix S are small.

However, there is no full roundoff error analysis for general nonsingular matrices
or for the whole algorithm (not only for separate stages of the algorithm). In this
paper we present such an analysis. The main features of our analysis are that it is
componentwise and that the exact expressions for the forward and backward errors
are bounded, not just their first order approximation, with respect to the machine
precision. The linear terms are given separately, to show that the terms of higher
order are small enough.

The matrix inequalities are understood to be componentwise throughout the pa-
per.

The outline of the paper is as follows. Section 2 presents backward and forward
error analysis of the partitioning algorithm. In the next section we study some special
classes of matrices. Finally, there are some numerical experiments in section 4.

2. Error analysis. Here and in the next sections we shall present the main
results of this work. In the following, we denote the computed quantities by a hat. By
δT we denote the error of the computation of an arbitrary matrix T , i.e., T̂ = T + δT.
By ∆T we denote an equivalent perturbation in matrix T (see [9, p. 341]).

STABILITY OF A PARTITIONING ALGORITHM 163

2.1. Previous results on the Gaussian elimination for tridiagonal sys-
tems. If x̂ is the computed solution to a tridiagonal system Ax = d obtained by
Gaussian elimination, what is the “best” bound available for the error x − x̂. This
question is answered in [11] using backward error analysis, perturbation theory, and
properties of the LU factorization of A. In [11] it is shown that if the LU factorization
is used to solve a system Ax = d by forward and back substitution, then it follows
that the computed solution x̂ satisfies

(A+ ∆A)x̂ = d, |∆A| ≤ f(ρ0)|L̂||Û |, f(ρ0) = 4ρ0 + 3ρ2
0 + ρ3

0,

where ρ0 is the roundoff unit. In the present paper we assume that |L̂||Û | ≤ K|A|,
where K is a bound for the growth of elements. Then we obtain

|∆A| ≤ K|A|f(ρ0).(5)

Let us note that the LU factorization of a given matrix A and bounds such as
(5) do not always exist. In case they exist, the bounds can be large even for well-
conditioned systems.

2.2. Analysis of the partitioning algorithm. The separate stages of the
algorithm are analyzed in the following three lemmas, and the analysis for the whole
algorithm is given in Theorem 2.4.

Lemma 2.1. If LÛ = A+ E, then

|E| ≤ K1|A||N |f(ρ0), K1 = max {k1, 1} ,

where k1 is a bound for the growth of elements at Stage 1, and N = (0
0

R̂
Is−1

).

Proof. Let us consider the matrix multiplication

LÛ =

(
A11 0
A21 Is−1

)(
Is(k−1) R+ δR

0 S̃ + δS

)
,

where S̃ = A22 −A21R̂. Here we denote by a tilde the exactly computed matrix from
the data A22, A21, R̂. Matrix L is without a hat because it consists of input entries
only, and there is no computation involved. As a result of this multiplication we
obtain

LÛ =

(
A11 A12 +A11δR

A21 A21R̂+ S̃ + δS

)
=

(
A11 A12 +A11δR
A21 A22 + δS

)
= A+ E,

where the backward error from the calculation of the block LU factorization is denoted
by

E =

(
0 A11δR
0 δS

)
.(6)

Now we obtain bounds on the components of matrix E. Let us start with the
entry A11δR, where δR is a matrix. For simplicity, we shall bound a term of the
following kind, A11δy, where δy is the forward error when computing the solution y
of the system A11y = z, and z is a vector. The bound for A11δR is obtained in a way
similar to the bound of A11δy. From backward analysis (e.g., see [25]) we have

(A11 + ∆A11)ŷ = (A11 + ∆A11)(y + δy) = z.(7)

164 PLAMEN YALAMOV AND VELISAR PAVLOV

After some manipulation from (7) we get

A11δy = −∆A11ŷ,(8)

and, hence,

|A11δy| ≤ |∆A11||ŷ|.(9)

Using the results obtained by Higham in [11] for the backward analysis of the Gaussian
elimination for tridiagonal systems and (5), we have that |∆A11| ≤ k1|A11|f(ρ0),
where k1 is a bound for the growth of elements in the Gaussian elimination at Stage
1. If we substitute this bound in (9) it follows that

|A11δy| ≤ k1|A11||ŷ|f(ρ0).(10)

In our case we can substitute y by R and z by A12. If we apply (10) for each column
of the matrix R we obtain an analogous estimate

|A11δR| ≤ k1|A11||R̂|f(ρ0).(11)

Let us bound the term δS now. For the computation of the elements vi of matrix
S (see (4)), simple roundoff errors analysis (see [12, p. 89]) gives

ṽi = {[bik − aikpik−1(1 + σ1)] (1 + σ2)− qik+1cik(1 + σ3)} (1 + σ4)

= bik − aikpik−1 − qik+1cik + bik(σ2 + σ4 + σ1σ4)

− aikpik−1(σ1 + σ2 + σ4 + σ1σ2 + σ1σ4 + σ2σ4 + σ1σ2σ4)

− qik+1cik(σ3 + σ4 + σ3σ4),

where |σi| ≤ ρ0, i = 1, . . . , 4. Hence,

|δvi| ≤ |bik|(2ρ0 + ρ2
0) + |aikpik−1|(3ρ0 + 3ρ2

0 + ρ3
0) + |qik+1cik|(2ρ0 + ρ2

0)

≤ (|bik|+ |aikpik−1|+ |qik+1cik|)(3ρ0 + 3ρ2
0 + ρ3

0).

Analogous bounds are true for the other elements

|δui| ≤ |aikqik−1|ρ0, |δwi| ≤ |cikpik+1|ρ0.

These are the errors from just one multiplication. In this way we obtain a bound for
δS of the following kind:

|δS| ≤ (|A22|+ |A21||R̂|)g(ρ0),(12)

where g(ρ0) = 3ρ0 + 3ρ2
0 + ρ3

0. It is obvious that g(ρ0) ≤ f(ρ0). Then from (11) and
(12) we have

|E| ≤
(

0 k1|A11||R̂|f(ρ0)

0 (|A22|+ |A21||R̂|)g(ρ0)

)
≤ K1

(|A11| 0
|A21| |A22|

)(
0 |R̂|
0 Is−1

)
f(ρ0)

≤ K1|A|
(

0 |R̂|
0 Is−1

)
f(ρ0)

= K1|A||N |f(ρ0),

where K1 = max {k1, 1} and N = (0
0

R̂
Is−1

).

STABILITY OF A PARTITIONING ALGORITHM 165

Next we analyze the solution of the system with the two block triangular matrices
L and Û .

Lemma 2.2. If (L+ ∆L)ŷ = d, then |∆L| ≤ K1|L|f(ρ0).
Proof. When we solve a block triangular linear system with the matrix L for the

equivalent perturbation ∆L, we have

|∆L| =
(|∆A11| 0
|∆A21| |∆Is−1|

)
,

where ∆A11 is the perturbation coming from the Gaussian elimination at Stage 1
(solution of tridiagonal systems), and ∆A21,∆I are the perturbations coming from
the elimination of A21 (which is evidently equivalent to a solution of a unit triangular
system). For the block diagonal matrix A11 with tridiagonal blocks from (5), again
we have

|∆A11| ≤ k1|A11|f(ρ0).(13)

The roundoff error analysis for the solution of a triangular system is well known (e.g.,
[12, p. 152]). In our case (with only two nonzero elements in each row of A21) this
analysis simplifies to

|∆A21| ≤ (2ρ0 + ρ2
0)|A21|,(14)

|∆Is−1| ≤ 2ρ0Is−1.(15)

Finally from (13), (14), and (15) we have

|∆L| ≤ K1|L|f(ρ0).

Lemma 2.3. If (Û + ∆Û)x̂ = ŷ, then

|∆Û | ≤ K2|Û |f(ρ0), K2 = max {k2, 1} ,
where k2 is a bound for the growth of elements for the Gaussian elimination at Stage
3 (the solution of the reduced system with matrix S).

Proof. The proof is similar to the proof of Lemma 2.2.
Now we combine the analysis of the separate stages to get the analysis for the

whole algorithm. Before presenting the main result of this section, we need some
notations.

Let us consider the jth component of the product |N ||Px̂|, j = 1, . . . , s(k − 1).
For this component it is true that

(|N ||Px̂|)j ≤ |R̂j,i||x̂ik|+ |R̂j,i+1||x̂(i+1)k|
≤ ‖R̂‖∞max

{|x̂ik|, |x̂(i+1)k|
}
,

for some i = 1, . . . , s− 2, because there are only two nonzero elements in each row of
matrix R. Let us define the vector Px∗ as follows:

Px∗ = [(x∗1)T (x∗2)T]T ,

where

x∗1 = (|x̂k|e,max {|x̂k|, |x̂2k|} e, . . . ,max
{|x̂(s−2)k|, |x̂(s−1)k|

}
e)T ,

x∗2 = (|x̂k|, . . . , |x̂(s−1)k|)T ,

166 PLAMEN YALAMOV AND VELISAR PAVLOV

and e = (1, 1, . . . , 1) ∈ R1×(k−1). The vector x∗ is clearly defined by

x∗ = (|x̂k|e, |x̂k|,max {|x̂k|, |x̂2k|} e, . . . , |x̂(s−1)k|,max
{|x̂(s−2)k|, |x̂(s−1)k|

}
e)T .

Then we have

|N ||Px̂| ≤
(‖R‖∞x∗1

x∗2

)
≤ rPx∗,(16)

where r = max{‖R̂‖∞, 1}. Let us introduce the following condition number:

cond∗(A,Px∗) =
‖|A−1||A|Px∗‖∞

‖Px̂‖∞ .

We would like to note that

cond∗(A, x∗) ≤ cond(A),

where cond(A) = ‖|A−1||A|‖∞.
Regarding the involvement of the original matrix A in the final bounds, we point

out that

cond(A) = ‖|A−1||A|‖∞ = ‖P|A−1|PTP|A|PT ‖∞
= ‖P|A−1||A|PT ‖∞ = ‖|A−1||A|‖∞ = cond(A),(17)

and also

cond∗(A,Px∗) = cond∗(A, x∗),(18)

in a similar way.
We will also use Skeel’s condition number [18]

cond(A,Px̂) =
‖|A−1||A||Px̂|‖∞

‖x̂‖∞ ,

but with the computed solution x̂ instead of x. This fact allows us to obtain more
precise estimates in the following theorem and to find computable bounds for the
forward error. In a similar way to (17) and (18), we can get that

cond(A,Px̂) = cond(A, x̂).(19)

The condition number cond∗(A, x∗) is introduced to make the obtained bounds
more realistic in some cases. As we shall see in the bounds of the forward error,
the condition number cond∗(A, x∗) is multiplied by the factor r (which can be large
sometimes) while the condition number cond(A, x̂) is not. So, when cond∗(A, x∗) is
small the influence of r should be negligible. An example of such a case is presented
in section 5, which shows that our bounds are tight.

Theorem 2.4. For the partitioning algorithm we have that (A+ ∆A)Px̂ = Pd,
where

|∆A| ≤ |A| [(K1 +K2)f(ρ0) + h1(ρ0)] + |A||N | [(3K1 + 2K2)f(ρ0) + h2(ρ0)] ,

where

h1(ρ0) = (K1 +K2)f(ρ0)g(ρ0) +K1K2f
2(ρ0) +K1K2f

2(ρ0)g(ρ0),

h2(ρ0) = (K1 +K2)f(ρ0)g(ρ0) + 2K1K2f
2(ρ0) +K1K2f

2(ρ0)g(ρ0),

STABILITY OF A PARTITIONING ALGORITHM 167

are the terms of higher order in ρ0, and

‖δx‖∞
‖x̂‖∞ =

‖x̂− x‖∞
‖x̂‖∞

≤ cond(A, x̂) [(K1 +K2)f(ρ0) + h1(ρ0)]

+cond∗(A, x∗)r [(3K1 + 2K2)f(ρ0) + h2(ρ0)] .

Proof. For the computed solution we have

(L+ ∆L)(Û + ∆Û)Px̂ = Pd;

then

(LÛ + ∆LÛ + L∆Û + ∆L∆Û)Px̂ = Pd,

and from the fact that LÛ = A+ E, we get

(A+ E + ∆LÛ + L∆Û + ∆L∆Û)Px̂ = Pd.

Hence, we obtain (A+ ∆A)Px̂ = Pd, where

|∆A| ≤ |E|+ |∆L||Û |+ |L||∆Û |+ |∆L||∆Û |.(20)

From Lemmas 2.1–2.3 and equation (20) we get

|∆A| ≤ K1|A||N |f(ρ0) +K1|L||Û |f(ρ0)

+K2|L||Û |f(ρ0) +K1K2|L||Û |f2(ρ0)

= K1|A||N |f(ρ0) + (K1f(ρ0) +K2f(ρ0) +K1K2f
2(ρ0))|L||Û |,(21)

but

|L||Û | =
(|A11| 0
|A21| Is−1

)(
Is(k−1) |R̂|

0 |Ŝ|
)

=

(|A11| |A11||R̂|
|A21| |A21||R̂|+ |Ŝ|

)
≤
(|A11| |A11||R̂|+ |A12|
|A21| |A22|+ 2|A21||R̂|+ |δS|

)
,

where we have used the fact that Ŝ = A22 −A21R̂+ δS. Now from (12) we have

|L||Û | ≤
(|A11| |A11||R̂|+ |A12|
|A21| |A22|(1 + g(ρ0)) + |A21||R̂|(2 + g(ρ0))

)
≤ |A|(1 + g(ρ0)) +

(
0 |A11||R̂|
0 |A21||R̂|

)
(2 + g(ρ0))

≤ |A|(1 + g(ρ0)) + |A|
(

0 |R̂|
0 Is−1

)
(2 + g(ρ0))

= |A|(1 + g(ρ0)) + |A||N |(2 + g(ρ0)).(22)

168 PLAMEN YALAMOV AND VELISAR PAVLOV

From (21) and (22) we obtain a bound of the equivalent perturbation ∆A for the
whole algorithm:

|∆A| ≤ K1|A||N |f(ρ0)

+(K1f(ρ0) +K2f(ρ0) +K1K2f
2(ρ0))

[|A|(1 + g(ρ0)) + |A||N |(2 + g(ρ0))]

= |A| [(K1 +K2)f(ρ0) + h1(ρ0)]

+|A||N | [(3K1 + 2K2)f(ρ0) + h2(ρ0)] ,(23)

where

h1(ρ0) = (K1 +K2)f(ρ0)g(ρ0) +K1K2f
2(ρ0) +K1K2f

2(ρ0)g(ρ0),

h2(ρ0) = (K1 +K2)f(ρ0)g(ρ0) + 2K1K2f
2(ρ0) +K1K2f

2(ρ0)g(ρ0).

We have separated the terms of higher order in ρ0 in the h1 and h2 functions. Evi-
dently, h1 and h2 are small when there is no significant growth of K1 and K2. From
the equality (A + ∆A)Px̂ = Pd we easily get the expression for the forward error
P(x̂− x):

P(x̂− x) = −A−1∆APx̂.(24)

Then from (23) and (24) we get

|P(x̂− x)| ≤ |A−1||A||Px̂| [(K1 +K2)f(ρ0) + h1(ρ0)]

+ |A−1||A||N ||Px̂| [(3K1 + 2K2)f(ρ0) + h2(ρ0)] .(25)

From (16) and (25) we have

‖δx‖∞
‖x̂‖∞ =

‖P(x̂− x)‖∞
‖Px̂‖∞ ≤ {‖|A−1||A||Px̂|‖∞ [(K1 +K2)f(ρ0) + h1(ρ0)]

+ ‖|A−1||A|Px∗‖∞r [(3K1 + 2K2)f(ρ0) + h2(ρ0)]
}
/‖x̂‖∞

= cond(A,Px̂) [(K1 +K2)f(ρ0) + h1(ρ0)]

+ cond∗(A,Px∗)r [(3K1 + 2K2)f(ρ0) + h2(ρ0)] ,

and the result follows from (18) and (19).
Bounds on k1 (respectively, K1) for special classes of matrices are given in [11, 12].

Analogous bounds for k2 (respectively, K2) would be valid if matrix S (which is
tridiagonal again) preserves the special properties of the original matrix. This topic
and the bounding of ‖R̂‖∞ are discussed in the next section.

Let us also note that the bounds in the next section are some upper bounds for
‖R̂‖∞, and that it is not difficult to compute ‖R̂‖∞ in a relatively small number of
steps. More precisely, we need k− 1 parallel additions and k+ s parallel logical tests.
This clearly does not increase the total computational time significantly because we
need 17k + 8s − 41 parallel steps (without taking into account the communication
costs) for the whole algorithm.

3. Special classes of matrices. In this section we consider more precisely the
case when the matrix A belongs to one of the following types: diagonally dominant,
s.p.d., M -matrix, or totally nonnegative. We would like to mention that matrix
A ∈ Rn×n is a nonsingular M -matrix (see [5, p. 137]) if aij ≤ 0 for all i 6= j and
A−1 ≥ 0. The matrix A is totally nonnegative [5, p. 57] if all its minors of any order
are nonnegative. A well-known equivalent condition [21] for a nonsingular matrix A
is that the inverse of a totally nonnegative matrix is a sign regular matrix, i.e.,

STABILITY OF A PARTITIONING ALGORITHM 169

1. a
(−1)
ij = (−1)i+j āij , where a

(−1)
ij are the entries of the inverse A−1,

and āij ≥ 0;
2. the matrix Ā = {āij}ni,j=1 = |A−1| is totally nonnegative.

For diagonally dominant matrices A we assume row diagonal dominance in the sense
that |ai|+ |ci| ≤ |bi|, i = 1, 2, . . . , n. The definition of an s.p.d. matrix is well known
(e.g., see [13, p. 250]), and we omit it here.

It is not difficult to see that the permuted matrix A is s.p.d., diagonally dominant,
and an M -matrix, if the original matrix A is of that type. However, this is not the case
with totally nonnegative matrices. The permutations may change the sign of some of
the minors in such way that A is no longer totally nonnegative. More precisely, we
will be interested not in the total nonnegativity of A but in the sign regularity of a
part of A−1. As we will see later in this section, this is enough for our purposes.

For the following bounds of ‖R̂‖∞ and k2, we need to analyze what is the type of
the reduced matrix S if matrix A belongs to one of the above mentioned classes. First
we analyze the type of S in exact arithmetic because we need this to bound ‖R̂‖∞.
Then at the end of this section we consider the roundoff error implementation and
comment on the growth of the constant k2.

The next theorem is true not only for tridiagonal but for general dense matrices.
Theorem 3.1. Let A ∈ Rn×n. If matrix A is either
• symmetric positive definite, or
• a nonsingular M-matrix,

then the reduced matrix S (the Schur complement) preserves the same property.
Proof. These properties are proved in [4, p. 94] and [4, p. 209], respectively.
The case where A is row diagonally dominant has been presented in [3]. Here we

give an alternative proof—the larger part of which will be used in one of the following
theorems, where we find bounds on ‖R̂‖∞.

Theorem 3.2. Let A ∈ Rn×n be nonsingular and tridiagonal. If matrix A is row
diagonally dominant, then the reduced matrix S (the Schur complement) preserves the
same property.

Proof. As A is a row diagonally dominant matrix, we have

|ai|+ |ci| ≤ |bi|,(26)

for each i = 1, 2, . . . , n. Let us consider the matrix Bi = (Bi, āi, c̄i) and prove that
Bi preserves the property of row diagonal dominance when the Gaussian elimination
is applied to invert matrix Bi. After the forward substitution, we get the following
matrix:

B(1)
i = (B

(1)
i , ā

(1)
i , c̄

(1)
i),

where ā
(1)
i = (a

(1)
i,1 , a

(1)
i,2 , . . . , a

(1)
i,k−1)T , c̄

(1)
i = (0, 0, . . . , 0, c

(1)
i,k−1)T , and

B
(1)
i =

1 c

(1)
(i−1)k+1

1 c
(1)
(i−1)k+2

. . .
. . .

1 c
(1)
ik−2

1

 .

170 PLAMEN YALAMOV AND VELISAR PAVLOV

Here the new elements are obtained as follows:

a
(1)
i,1 = ai,1/b(i−1)k+1,

c
(1)
(i−1)k+1 = c(i−1)k+1/b(i−1)k+1,

b
(1)
(i−1)k+j+1 = b(i−1)k+j+1 − a(i−1)k+j+1c

(1)
(i−1)k+j ,(27)

a
(1)
i,j+1 = −a(i−1)k+j+1a

(1)
i,j /b

(1)
(i−1)k+j+1,(28)

c
(1)
(i−1)k+j+1 = c(i−1)k+j+1/b

(1)
(i−1)k+j+1,(29)

j = 1, 2, . . . , k − 2.

We consider the LU factorization with a unit diagonal in the U-factor for the sake of
convenience. The proof is similar to the case where the L-factor has a unit diagonal.

We show now by induction on j that the diagonal dominance is preserved after the
forward elimination. For the first row of matrix Bi, the statement is evident because
this is a scaled row of the original matrix A. Let us assume that

|a(1)
i,j |+ |c(1)

(i−1)k+j | ≤ 1.(30)

We will prove that |a(1)
i,j+1|+ |c(1)

(i−1)k+j+1| ≤ 1. From (26)–(30) we have that

1 =
|b(i−1)k+j+1 − a(i−1)k+j+1c

(1)
(i−1)k+j |

|b(1)
(i−1)k+j+1|

≥ |b(i−1)k+j+1| − |a(i−1)k+j+1|(1− |a(1)
i,j |)

|b(1)
(i−1)k+j+1|

=
|b(i−1)k+j+1| − |a(i−1)k+j+1|+ |a(i−1)k+j+1||a(1)

i,j |
|b(1)

(i−1)k+j+1|

≥ |c(i−1)k+j+1|
|b(1)

(i−1)k+j+1|
+
|a(i−1)k+j+1||a(1)

i,j |
|b(1)

(i−1)k+j+1|
= |c(1)

(i−1)k+j+1|+ |a(1)
i,j+1|.

Next we show the same fact for the backward substitution. As a result of this phase
we have

B(2)
i = (Ik−1, q

(i), p(i)),

where

p(i) = (p(i−1)k+1, p(i−1)k+2, . . . , pik−1)T , q(i) = (q(i−1)k+1, q(i−1)k+2, . . . , qik−1)T .

Here the new elements are obtained in the following way:

q(i−1)k+j−1 = a
(1)
i,j−1 − q(i−1)k+jc

(1)
i,j−1,(31)

p(i−1)k+j−1 = −p(i−1)k+jc
(1)
i,j−1,(32)

j = k − 1, k − 2, . . . , 2.

STABILITY OF A PARTITIONING ALGORITHM 171

We shall use induction on j again. For the last row of B(2)
i , the diagonal dominance

was proved in the forward substitution phase. Let us assume that

|q(i−1)k+j |+ |p(i−1)k+j | ≤ 1.(33)

Then from (31), (32), and (33) we have that

|q(i−1)k+j−1| ≤ |a(1)
i,j−1|+ |q(i−1)k+j ||c(1)

i,j−1|
≤ |a(1)

i,j−1|+ (1− |p(i−1)k+j |)|c(1)
i,j−1|

= |a(1)
i,j−1|+ |c(1)

i,j−1| − |p(i−1)k+j ||c(1)
i,j−1|

≤ |a(1)
i,j−1|+ |c(1)

i,j−1| − |p(i−1)k+j−1|.
Hence,

|q(i−1)k+j−1|+ |p(i−1)k+j−1| ≤ |a(1)
i,j−1|+ |c(1)

i,j−1| ≤ 1.(34)

In this way, we obtain that matrix B(2)
i preserves the property of row diagonal domi-

nance. From this fact and equation (4), for the entries of S we obtain

|vi| ≥ |bik| − |aik||pik−1| − |cik||qik+1|
≥ |bik| − |aik|(1− |qik−1|)− |cik|(1− |pik+1|)
≥ |cik|+ |aik||qik−1| − |cik|+ |cik||pik+1|
≥ |ui|+ |wi|.

Hence, the reduced matrix S is row diagonally dominant.
Now let us consider the case where A is totally nonnegative. We present a proof

for this case because we could not find it in the existing literature.
Theorem 3.3. Let A ∈ Rn×n be nonsingular and tridiagonal. If matrix A is

totally nonnegative, then the reduced matrix S (the Schur complement) is
• an M-matrix when the blocks Bi are of odd order, i.e., k is even,
• totally nonnegative when the blocks Bi are of even order, i.e., k is odd.

Proof. As the original matrix A is totally nonnegative, it follows from (3) that
A11, A22 are matrices of the same type, A−1

11 is sign regular, and A12 ≥ 0, A21 ≥ 0.
Let us find the inverse of A. From (3) we obtain

A−1 = U−1L−1 =

(
Is(k−1) −RS−1

0 S−1

)(
A−1

11 0
−A21A

−1
11 Is−1

)
=

(
A−1

11 +H −RS−1

−S−1A21A
−1
11 S−1

)
,(35)

where

H = RS−1A21A
−1
11 = A−1

11 A12S
−1A21A

−1
11 .(36)

As A is a totally nonnegative matrix, we have that A−1 is a sign regular matrix
which is permuted in such a way that the lower right corner of matrix A−1 (see (35))
coincides with S−1 and contains the entries of A−1 with indices

k, k k, 2k . . . k, (s− 1)k
2k, k 2k, 2k . . . 2k, (s− 1)k

...
... . . .

...
(s− 1)k, k (s− 1)k, 2k . . . (s− 1)k, (s− 1)k

 .

172 PLAMEN YALAMOV AND VELISAR PAVLOV

Taking into account the change of signs +,−,+, . . . , in each row and column of
matrix A−1 it follows that when k is even, then the matrix S−1 consists of nonnegative
elements only (these elements have the above mentioned indices in A−1), i.e., S−1 ≥ 0.
It remains to show that the off-diagonal entries of S are nonpositive. Let us write the
signs for the matrix product A21A

−1
11 A12 for one diagonal block of A−1

11 , taking into
consideration only the signs of the entries (each entry with a + or − sign can also be
equal to zero):

(
+ 0 . . . 0 0
0 0 . . . 0 +

)

+ − + . . . +
− + − . . . −
+ − + . . . +
...

...
...

...
+ − + . . . +

+ 0
0 0
...

...
0 0
0 +

=

(
+ +
+ +

)
.(37)

From (37) it is clear that all of the off-diagonal elements of A21A
−1
11 A12 are nonneg-

ative. But S = A22 − A21A
−1
11 A12, where A22 is a diagonal matrix, and hence all of

the off-diagonal elements of S are nonpositive. From the definition of a nonsingular
M -matrix in the beginning of this section, it follows that S is an M -matrix.

The other case is where k is odd. From this fact, taking into account the change
of signs in A−1, it is not difficult to see that the elements with the above mentioned
indices, i.e., the entries of S−1, have signs which change in the same way as in A−1.
It remains to note that |S−1| is the lower right block of |A−1|, and the permutation
matrix P is such that all the minors of |S−1| are minors also in |A−1|. So, |S−1| is
totally nonnegative. Then, S−1 is a sign regular matrix, and S is a totally nonnegative
matrix.

As we saw in Theorem 2.4, the error bound depends not only on the growth factors
K1 and K2, but also on the quantity r, which measures the growth in the matrix R̂.
Clearly, when some of the blocks Bi are ill conditioned (although the whole matrix
A is well conditioned) the factor r can be large. This will lead to large errors even
for well-conditioned matrices. So, we need bounds for r, or, equivalently ‖R̂‖∞. In
the following we show that ‖R̂‖∞ is bounded by not large constants for the above
mentioned four classes of matrices. For the next theorems, we need the following
lemma.

Lemma 3.4. For the computed matrix R̂, we have

‖R̂‖∞ ≤ ‖R‖∞
1− k1cond(A11)f(ρ0)

,

if k1cond(A11)f(ρ0) < 1.
Proof. For the quantity ‖R̂‖∞, we clearly have

‖R̂‖∞ ≤ ‖R‖∞ + ‖δR‖∞.(38)

The bound of ‖δR‖∞ is not so evident, and we present it below. Let us introduce the

following notations: |A−1
11 ||A11| = M = {mit}s(k−1)

i,t=1 ,Mi = ith row of M , l = s(k−1).
From (8) we get

δy = −A−1
11 ∆A11ŷ,

STABILITY OF A PARTITIONING ALGORITHM 173

and, hence,

|δy(j)| ≤ k1|A−1
11 ||A11||ŷ(j)|f(ρ0),(39)

where ŷ(j) is the jth column of matrix R̂. From (39) we have

‖δR‖∞ = max
1≤i≤l

s−1∑
j=1

|δy(j)
i |

≤ max
1≤i≤l

s−1∑
j=1

k1Mi|ŷ(j)|f(ρ0)

= k1 max
1≤i≤l

[
mi1|ŷ(1)

1 |+ · · ·+mil|ŷ(1)
l |+ · · ·

+ mi1|ŷ(s−1)
1 |+ · · ·+mil|ŷ(s−1)

l |
]
f(ρ0)

= k1 max
1≤i≤l

mi1

s−1∑
j=1

|ŷ(j)
1 |+mi2

s−1∑
j=1

|ŷ(j)
2 |+ · · ·+mil

s−1∑
j=1

|ŷ(j)
l |
 f(ρ0).(40)

It is evident that
∑s−1
j=1 |ŷ(j)

i | ≤ ‖R̂‖∞, for each i. From this fact and from (40) we
get

‖δR‖∞ ≤ k1‖R̂‖∞ max
1≤i≤l

l∑
j=1

mijf(ρ0)

= k1cond(A11)‖R̂‖∞f(ρ0).(41)

Now from (38) and (41) we get

‖R̂‖∞ ≤ ‖R‖∞ + k1cond(A11)‖R̂‖∞f(ρ0).

Then we have

‖R̂‖∞ ≤ ‖R‖∞
1− k1cond(A11)f(ρ0)

,

where it is necessary to suppose that k1cond(A11)f(ρ0) < 1.
Because of Lemma 3.4, in the next theorems we need to find bounds only for the

quantity ‖R‖∞ with the exact matrix R. From Lemma 3.4, we see that the bound
of ‖R̂‖∞ depends on how large cond(A11) is. Therefore, we also find bounds on this
condition number, and show that A11 is better conditioned than A, for the four classes
of matrices.

Theorem 3.5. Let A ∈ Rn×n be nonsingular and tridiagonal. If any of the
following two conditions hold

(a) A is totally nonnegative,
(b) A is an M -matrix,

then

‖R̂‖∞ ≤ cond(A)

1− k1cond(A11)f(ρ0)
≤ cond(A)

1− k1cond(A)f(ρ0)
,

if k1cond(A)f(ρ0) < 1.

174 PLAMEN YALAMOV AND VELISAR PAVLOV

Proof. (a) Let A be a totally nonnegative matrix. Then we have that A12 ≥
0, A21 ≥ 0, and A−1

11 is sign regular. From Theorem 3.3, we obtain that when the
blocks Bi are of odd order, then the reduced matrix S is an M -matrix, i.e., S−1 ≥ 0,
and when the blocks Bi are of even order, then the reduced matrix S is a totally
nonnegative matrix, i.e., S−1 is sign regular. We analyze now the block diagonal
entries B−1

i + Hii of matrix A−1
11 + H because the block off-diagonal entries of this

matrix coincide with the block off-diagonal entries of matrix H. We show that Hii

satisfy the first condition of the definition of a sign regular matrix. In this way we
can bound ‖R‖∞ easily. For this purpose it is necessary to consider two cases.

In the first case, Bi is of odd order. In this case, when computing Hii from (36)
we take into account only the signs of the entries (each entry with a + or − sign can
be also equal to zero). Let us write the signs of one block diagonal entry of A12S

−1A21

in the same way as in the proof of Theorem 3.3:
+ 0
0 0
...

...
0 0
0 +

(

+ +
+ +

)(
+ 0 . . . 0 0
0 0 . . . 0 +

)

=

+ 0 . . . 0 +
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
+ 0 . . . 0 +

 .(42)

Now from (36) and (42) we have

Hii =

+ − + . . . +
− + − . . . −
+ − + . . . +
...

...
...

...
+ − + . . . +

+ 0 . . . 0 +
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
+ 0 . . . 0 +

+ − + . . . +
− + − . . . −
+ − + . . . +
...

...
...

...
+ − + . . . +

=

+ 0 . . . 0 +
− 0 . . . 0 −
...

...
...

...
− 0 . . . 0 −
+ 0 . . . 0 +

+ − + . . . +
− + − . . . −
+ − + . . . +
...

...
...

...
+ − + . . . +

=

+ − + . . . +
− + − . . . −
+ − + . . . +
...

...
...

...
+ − + . . . +

 .

Hence, we obtain that the blocks Hii satisfy the first condition of the definition of a
sign regular matrix.

STABILITY OF A PARTITIONING ALGORITHM 175

In the second case Bi is of even order. Let us define the signs of one block diagonal
entry of A12S

−1A21 in an analogous way:
+ 0
0 0
...

...
0 0
0 +

(

+ −
− +

)(
+ 0 . . . 0 0
0 0 . . . 0 +

)

=

+ 0 . . . 0 −
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
− 0 . . . 0 +

 .(43)

Then from (36) and (43) we have

Hii =

+ − + . . . −
− + − . . . +
+ − + . . . −
...

...
...

...
− + − . . . +

+ 0 . . . 0 −
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
− 0 . . . 0 +

+ − + . . . −
− + − . . . +
+ − + . . . −
...

...
...

...
− + − . . . +

=

+ 0 . . . 0 −
− 0 . . . 0 +
...

...
...

...
+ 0 . . . 0 −
− 0 . . . 0 +

+ − + . . . −
− + − . . . +
+ − + . . . −
...

...
...

...
− + − . . . +

=

+ − + . . . −
− + − . . . +
+ − + . . . −
...

...
...

...
− + − . . . +

 .

Hence, the blocks Hii satisfy the first condition of the definition of a sign regular
matrix again.

So, for both cases we get

|A−1
11 +H| = |A−1

11 |+ |H|.(44)

For the block diagonal entries, this fact follows because B−1
i and Hii have the same

sign pattern, and for the block off-diagonal entries this is evident because these entries
of A−1

11 are zero. Now, from (35) and (44) we obtain the following bound:

|A−1| =
(|B11| |B12|
|B21| |B22|

)
≥
(|A−1

11 +H| 0
0 0

)
≥
(|A−1

11 | 0
0 0

)
,(45)

where the blocks Bij correspond to the block partitioning defined in (3). From (45)
it is clear that

|A−1
11 | ≤ |B11|,(46)

176 PLAMEN YALAMOV AND VELISAR PAVLOV

and, hence,

‖R‖∞ ≤ ‖|A−1
11 ||A12|‖∞ ≤ ‖|B11||A12|‖∞ ≤ ‖|A−1||A|‖∞

= cond(A) = cond(A),(47)

where we used equation (17) for the last equality. From Lemma 3.4 and (47) we
obtain the first inequality of the theorem.

For the second inequality from (46) we have

|A−1
11 ||A11| ≤ |B11||A11|.(48)

Taking the infinity norm in (48), we get

cond(A11) ≤ ‖|B11||A11|‖∞ ≤ cond(A) = cond(A),

by (17) again.
(b) Suppose that A is an M -matrix. Then A−1

11 ≥ 0, A12 ≤ 0, A21 ≤ 0. From
Theorem 3.1 we obtain that S is also an M -matrix, i.e., S−1 ≥ 0, and for the matrix
H we get

H = A−1
11 A12S

−1A21A
−1
11 ≥ 0.

Then the equality (44) is valid again, and we prove part (b) in the same way.
Theorem 3.6. Let A ∈ Rn×n be nonsingular and tridiagonal. If matrix A is row

diagonally dominant, then

‖R̂‖∞ ≤ 1

1− k1cond(A11)f(ρ0)
≤ 1

1− 2k1cond(A)f(ρ0)

if 2k1cond(A)f(ρ0) < 1.
Proof. It was proved in Theorem 3.2 that for each i, we have (see (34))

|pi|+ |qi| ≤ 1.

As far as pi and qi are the only nonzero entries of R in the corresponding row, we
have that

‖R‖∞ ≤ 1.(49)

The first inequality of the theorem follows now from Lemma 3.4.
Let us consider

|A−1
11 ||A11| = |A−1

11 +H −H||A11| ≤ |A−1
11 +H||A11|+ |H||A11|.(50)

Let us take infinity norm for the first term in the right-hand side of (50):

‖|A−1
11 +H||A11|‖∞ ≤ ‖|A−1||A|‖∞ = cond(A) = cond(A),(51)

as it was done in (47). For the second term in (50), we have

|H||A11| = |RS−1A21A
−1
11 ||A11|

≤ |R||S−1A21A
−1
11 ||A11| = |R||B21||A11|.(52)

STABILITY OF A PARTITIONING ALGORITHM 177

Taking infinity norms in (52) from (49), we get

‖|H||A11|‖∞ ≤ ‖|B21||A11|‖∞ ≤ ‖|A−1||A|‖∞ = cond(A) = cond(A),(53)

in a similar way. Then from (50), (51), and (53) we obtain

cond(A11) ≤ cond(A) + cond(A) = 2cond(A).

Thus the second inequality is proved as well.
Remark. When A is a column diagonally dominant matrix, we have the following

factorization:

A = LU =

(
Is(k−1) 0
A21A

−1
11 Is−1

)(
A11 A12

0 S

)
.

Then analogous bounds, as for row diagonally dominant matrices, are true and it is
not difficult to propose a modification of the partitioning algorithm corresponding to
this factorization. This modification needs the same number of time steps. We shall
not discuss it here.

In the next theorem we use the fact that ‖A−1‖2‖A‖2 = ‖A−1‖2‖A‖2 which can
be shown in a way similar to (17).

Theorem 3.7. Let A ∈ Rn×n be tridiagonal. If A is a symmetric positive definite
matrix, then

‖R̂‖∞ ≤
√

(s− 1)cond2(A)

1− k1cond(A11)f(ρ0)
≤

√
(s− 1)cond2(A)

1− k1(k − 1)cond2(A)f(ρ0)
,

if k1(k − 1)cond2(A)f(ρ0) < 1, where cond2(A) = ‖A−1‖2‖A‖2.
Proof. Taking into account our Lemma 3.4, Lemma 10.12 from [12], and some

simple norm relations we have

‖R̂‖∞ ≤ ‖R‖∞
1− k1cond(A11)f(ρ0)

≤
√

(s− 1)‖R‖2
1− k1cond(A11)f(ρ0)

=

√
(s− 1)‖A−1

11 A12‖2
1− k1cond(A11)f(ρ0)

≤
√

(s− 1)cond2(A)

1− k1cond(A11)f(ρ0)

=

√
(s− 1)cond2(A)

1− k1cond(A11)f(ρ0)
,

which is exactly the first inequality of the statement.
The second inequality follows from simple norm relations:

cond(A11) = ‖|A−1
11 ||A11|‖∞

= max
1≤i≤s

‖B−1
i ‖∞‖Bi‖∞

≤ max
1≤i≤s

√
k − 1‖B−1

i ‖2
√
k − 1‖Bi‖2

≤ (k − 1)‖A−1
11 ‖2‖A11‖2 = (k − 1)cond2(A11)

≤ (k − 1)cond2(A) = (k − 1)cond2(A).

Theorems 3.5–3.7 show that ‖R̂‖∞ is bounded by not large constants for the four
classes of matrices, if the whole matrix A is well conditioned. In order to bound

178 PLAMEN YALAMOV AND VELISAR PAVLOV

k2 we can use Theorems 3.1–3.3 and the bounds already obtained for the Gaussian
elimination in [11]. However, in practice we obtain the computed matrix Ŝ instead of
the exact one. It is important to know what the distance is between S and Ŝ. This
question is answered in the following theorem.

Theorem 3.8. For the error ΩS = Ŝ − S in the computed reduced matrix Ŝ, it
holds that

‖ΩS‖∞
‖S‖∞ ≤ K1cond(A)rf(ρ0).

Proof. For the computed reduced matrix Ŝ, we have

Ŝ = A22 −A21R̂+ δS = A22 −A21(R+ δR) + δS

= A22 −A21R−A21δR+ δS = S + ΩS,

where by ΩS = −A21δR + δS we denote the total error in Ŝ. From the proof of
Lemma 2.1 (see (6)) we get

L−1E =

(
0 δR
0 ΩS

)
.(54)

On the other hand, we have

L−1E = UU−1L−1E = UA−1E =

(
I R
0 S

)
A−1E.(55)

From (54) and (55) for the block in the lower right corner, it follows that

‖ΩS‖∞ ≤ ‖A−1E‖∞‖S‖∞.(56)

From Lemma 2.1 we get

|A−1E| ≤ K1|A−1||A||N |f(ρ0),

and from the bound of |N | in (16) we have

‖A−1E‖∞ ≤ K1cond(A)rf(ρ0) = K1cond(A)rf(ρ0).(57)

Finally, from (56) and (57) we obtain

‖ΩS‖∞
‖S‖∞ ≤ K1cond(A)rf(ρ0).

The theorems in this section show that ‖R̂‖∞ (and r, respectively) is not large
for the four types of matrices when the original matrix A is well conditioned. So, the
error in S is also bounded by a not large constant, if matrix A is well conditioned.
Consequently, the constant k2 is close to the theoretical constants from [11] (which
are less than or equal to 3). For other types of matrices this conclusion may not be
true, and the error ΩS may grow.

It is clear that when some of the blocks Bi are singular or ill conditioned, the
algorithm can behave poorly. Iterative refinement [9, p. 126] is not of much help
in general because it is convergent under certain restrictions on the conditioning of
matrix Bi. We shall not discuss this problem in detail here. We just mention two

STABILITY OF A PARTITIONING ALGORITHM 179

Table 1
The forward and backward error for the matrix A in Example 1, where k = 6, s = 10.

ε 1E–5 1E–10 1E–15
BE 8.73E–11 1.19E–5 0.42
FE 1.74E–10 2.38E–5 2.06

Table 2
The forward and backward error for the matrix A in Example 2, where s = 10.

k 6 56 256 556
BE 1.44E–15 1.11E–16 1.66E–16 1.14E–16
FE 3.33E–15 1.99E–15 1.31E–14 1.55E–15

references, [2] and [17], where two approaches to overcome this problem have been
proposed. In [2] the authors do a QR-decomposition of each block Bi and introduce
a new block partitioning, when necessary, in such a way that the new blocks are well
conditioned. In [17] an experience with a perturbation approach is presented, and
there is no limitation on the conditioning of Bi. Some theory for the latter approach
and comparison of the two approaches will be given in a future work.

4. Numerical experiments. The numerical experiments in this section are
done in MATLAB, where the roundoff unit is ρ0 ≈ 2.22E−16. We measure two types
of errors:

1. The relative forward error

FE =
‖x̂− x‖∞
‖x̂‖∞ ,

where x̂ is the computed solution.
2. The componentwise backward error (see [12])

BE = max
1≤i≤n

(|Ax̂− d|)i
(|A||x̂|+ |d|)i .

Let us consider the following examples.
Example 1. A = tridiag(1, b, 1), where b = (ε, . . . , ε, 2). In this way A becomes

very well conditioned. The exact solution is x = (1, 1, . . . , 1)T . We can notice how the
backward and forward errors grow when ε → 0, although the matrix A is very well
conditioned and we use partial pivoting. This is because ‖R̂‖∞ grows infinitely when
ε → 0, a fact which is predicted by our theory. We report the results in Table 1 for
different values of ε.

Example 2. A is the matrix from Example 1 with ε = 1E−16 (a number less than
the roundoff unit). A is well conditioned again. The exact solution is

x = (1, . . . , 1, 0; 1, . . . , 1, 0; . . . , 1, . . . , 1, 0; 1, . . . , 1)T ,

where xk = x2k = · · · = x(s−1)k = 0. We report the results of our example in Table 2,
where ε = 1E−16, s = 10 for different values of k. This example shows why we
have introduced the condition number cond∗(A, x∗). Here we have a large r factor
in Theorem 2.4 (≈ 1E+16) but, as can be seen from Table 2, the errors are very
small. This is because cond∗(A, x∗) ≈ 0 for this example, and the influence of r is not
essential although the blocks Bi are almost singular. So, large r does not necessarily
mean large errors as could be expected intuitively. The LU factorization of Bi is done

180 PLAMEN YALAMOV AND VELISAR PAVLOV

Table 3
The forward and backward error of Example 3, where k = 5, s = 3, ε = .009.

x xα e rand randn
BE 4.67E–16 1.17E–16 1.59E–16 2.61E–16
FE 1.54E–9 2.21E–8 1.15E–7 6.95E–7

cond(A, x̂) 3.03E+7 8.99E+8 9.55E+8 4.72E+8
cond∗(A, x∗) 1.97E+8 8.99E+8 1.22E+9 1.71E+9

r 1 1 1 1

with partial pivoting again to make the constants k1 and k2 small. In this way we
can see the importance of introducing the second condition number cond∗(A, x∗).

Example 3. This is an example given in [11] (which was taken from [8]). The
matrix is defined as follows:

ai =

{ −ε/h2, 1 ≤ i ≤ m,
−ε/h2 + (0.5− ih)/h2, m+ 1 ≤ i ≤ n,

ci =

{ −ε/h2 − (0.5− ih)/h2, 1 ≤ i ≤ m,
−ε/h2, m+ 1 ≤ i ≤ n,

and bi = −ai − ci, i = 1, . . . , n, where m = b(n + 1)/2c, h = 1/(n + 1), ε > 0. Let
us note that A is a nonsingular, row diagonally dominant M -matrix. The results
we obtained are given in Table 3. The exact solutions here are chosen as xα =
(1, α, α2, . . . , 10−5)T , α = 10−5/(n−1), e = (1, 1, . . . , 1)T , and “rand” and “randn”
are exact solutions generated by the corresponding MATLAB functions. Again, as
predicted by our theoretical results, the BE is small because A is row diagonally
dominant and an M -matrix. The FE is larger because matrix A is not so well
conditioned, as can be seen from Table 3. The forward error is almost equal to
the theoretical bound from Theorem 2.4, which shows that our bounds cannot be
improved essentially.

Acknowledgment. The authors are grateful to the anonymous referees for use-
ful remarks and suggestions which improved the presentation of this paper.

REFERENCES

[1] P. Amodio and L. Brugnano, Parallel factorizations and parallel solvers for tridiagonal linear
systems, Linear Algebra Appl., 172 (1992), pp. 347–364.

[2] P. Amodio and L. Brugnano, The parallel QR factorization algorithm for tridiagonal linear
systems, Parallel Comput., 21 (1995), pp. 1097–1110.

[3] P. Amodio, L. Brugnano, and T. Politi, Parallel factorizations for tridiagonal matrices,
SIAM J. Numer. Anal., 30 (1993), pp. 813–823.

[4] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,

Philadelphia, PA, 1994.
[6] S. Bondeli, Divide and Conquer: A New Parallel Algorithm for the Solution of a Tridiago-

nal Linear System of Equations, Tech. Report 130, ETH Zürich, Department Informatik,
Institut für Wissenschaftliches Rechnen, Zürich, Switzerland, 1990.

[7] L. Brugnano, A parallel solver for tridiagonal linear systems for distributed memory parallel
computers, Parallel Comput., 17 (1991), pp. 1017–1023.

[8] F. Dorr, An example of ill-conditioning in the numerical solution of singular perturbed prob-
lems, Math. Comp., 25 (1971), pp. 271–283.

[9] G. Golub and C. van Loan, Matrix Computations, 3rd ed., The John Hopkins University
Press, Baltimore, MD, 1996.

STABILITY OF A PARTITIONING ALGORITHM 181

[10] I. Hajj and S. Skelboe, A multilevel parallel solver for block tridiagonal and banded linear
systems, Parallel Comput., 15 (1990), pp. 21–45.

[11] N. J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 521–530.

[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[13] R. Horn and C. Johnsson, Matrix Analysis, Cambridge University Press, Cambridge, UK,

1996.
[14] S. L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Statist.

Comput., 8 (1987), pp. 354–392.
[15] A. Krenchel, H. Plum, and K. Stüben, Parallelization and vectorization aspects of the

solution of tridiagonal linear systems, Parallel Comput., 14 (1990), pp. 31–49.
[16] J. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press,

New York, 1988.
[17] V. Pavlov and D. Todorova, Stabilization and experience with the partitioning method for

tridiagonal systems, in Numerical Analysis and Its Applications, Lecture Notes in Comput.
Sci. 1196, L. Vulkov, J. Wasniewski, and P. Yalamov, eds., Springer-Verlag, Berlin, 1997,
pp. 380-388.

[18] R. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach.,
26 (1979), pp. 494–526.

[19] H. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations, J. Assoc. Comput. Mach., 20 (1973), pp. 27–38.

[20] H. Stone, Parallel tridiagonal solvers, ACM Trans. Math. Software, 1 (1975), pp. 289–307.
[21] F. Stummel, Perturbation theory for evaluation algorithms of arithmetic expressions, Math.

Comp., 37 (1981), pp. 435–473.
[22] H. van Der Vorst, Large tridiagonal and block tridiagonal linear systems on vector and

parallel computers, Parallel Comput., 5 (1987), pp. 45–54.
[23] C. H. Walshaw, Diagonal dominance in the parallel partition method for tridiagonal systems,

SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1086–1099.
[24] H. H. Wang, A parallel method for tridiagonal linear systems, ACM Trans. Math. Software, 7

(1981), pp. 170–183.
[25] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[26] P. Yalamov, Stability of a partitioning algorithm for bidiagonal systems, Parallel Comput., 23

(1997), pp. 333–348.
[27] P. Yalamov, On the stability of the cyclic reduction without back substitution for tridiagonal

systems, BIT, 34 (1994), pp. 428–447.

POSITIVITY OF BLOCK TRIDIAGONAL MATRICES∗

MARTIN BOHNER† AND ONDŘEJ DOŠLÝ‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 182–195

Abstract. This paper relates disconjugacy of linear Hamiltonian difference systems (LHdS)
(and hence positive definiteness of certain discrete quadratic functionals) to positive definiteness of
some block tridiagonal matrices associated with these systems and functionals. As a special case of a
Hamiltonian system, Sturm–Liouville difference equations are considered, and analogous results are
obtained for these important objects.

Key words. linear Hamiltonian difference system, Sturm–Liouville difference equation, block
tridiagonal matrix, discrete quadratic functional

AMS subject classifications. 15A09, 15A63, 39A10, 39A12

PII. S0895479897318794

1. Introduction. The aim of this paper is to relate disconjugacy of linear Hamil-
tonian difference systems (LHdS)

(H) ∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 −ATk uk
and hence positivity of the discrete quadratic functional

(F) F(x, u) =

N∑
k=0

{
uTkBkuk + xTk+1Ckxk+1

}
to positive definiteness of a certain block tridiagonal symmetric matrix associated
with (H) and (F). Here A,B,C are sequences of real n× n matrices such that

I −Ak are invertible and Bk, Ck are symmetric for all k ∈ N0.(1)

To introduce our problem in more detail, we first recall the relation of disconjugacy
of linear Hamiltonian systems (both differential and difference) to positivity of cor-
responding quadratic functionals and to solvability of the associated Riccati matrix
equation. A statement of this kind is usually called a Reid roundabout theorem.

Proposition 1.1 ([4, 6, 7]). Consider the linear Hamiltonian differential system

˜(H) x′ = A(t)x+B(t)u, u′ = C(t)x−AT (t)u,

where A,B,C : I = [a, b] → Rn×n are continuous real n × n matrix valued functions
such that

B(t), C(t) are symmetric and B(t) is positive semidefinite for all t ∈ [a, b],

and suppose that this system is identically normal in I, i.e., the only solution (x, u)
of (H̃) for which x ≡ 0 on some nondegenerate subinterval of I is the trivial solution
(x, u) ≡ (0, 0). Then the following statements are equivalent.

∗Received by the editors March 19, 1997; accepted for publication (in revised form) by U. Helmke
March 9, 1998; published electronically September 23, 1998.

http://www.siam.org/journals/simax/20-1/31879.html
†San Diego State University, Department of Mathematics, 5500 Campanile Dr., San Diego, CA

92182-7200 (bohner@saturn.sdsu.edu). The research of this author was supported by the Alexander
von Humboldt Foundation.
‡Masaryk University, Department of Mathematics, Janáčkovo Nám. 2A, CZ-66295 Brno, Czech

Republic (dosly@math.muni.cz). The research of this author was supported by grant 201/96/0401
of the Czech Grant Agency.

182

BLOCK TRIDIAGONAL MATRICES 183

(i) System (H̃) is disconjugate in I, i.e., the 2n× n matrix solution
(
X
U

)
of (H̃)

given by the initial condition X(a) = 0, U(a) = I has no focal point in I,
i.e., detX(t) 6= 0 in (a, b].

(ii) The quadratic functional

˜(F) F̃(x, u) =

∫ b

a

[
uT (t)B(t)u(t) + xT (t)C(t)x(t)

]
dt

is positive for every x, u : I → Rn satisfying x′ = A(t)x+B(t)u, x(a) = 0 =
x(b) and x 6≡ 0 in I.

(iii) There exists a symmetric solution Q : I → Rn×n of the Riccati matrix differ-
ential equation

˜(R) Q′ +AT (t)Q+QA(t) +QB(t)Q− C(t) = 0.

In the last decade, a considerable effort has been made to find a discrete analogue
of this statement; see [1] and the references given therein. Finally, this problem was
resolved in [2] and the discrete Roundabout Theorem reads as follows.

Proposition 1.2 ([1, 2]). Assume (1). Then the following statements are equiv-
alent.

(i) System (H) is disconjugate in the discrete interval J := [0, N] ∩ N0, N ∈ N,
i.e., the 2n × n matrix solution

(
X
U

)
of (H) given by the initial condition

X0 = 0, U0 = I has no focal point in J∗ := [0, N + 1] ∩ N0, i.e.,

KerXk+1 ⊂ KerXk and Dk = XkX
†
k+1(I −Ak)−1Bk ≥ 0.

(Here Ker and † stand for the kernel and the Moore–Penrose generalized in-
verse of the matrix indicated, respectively, and the matrix inequality ≥ stands
for nonnegative definiteness.)

(ii) The discrete quadratic functional F is positive for every (x, u) : J∗ → Rn
satisfying ∆xk = Akxk+1 +Bkuk, x0 = 0 = xN+1 and x 6≡ 0 in J∗.

(iii) There exist symmetric matrices Q : J∗ → Rn×n such that (I + BQ) are
invertible, (I + BQ)−1B ≥ 0 in J , and solve the discrete Riccati matrix
difference equation

(R) Qk+1 = Ck + (I −ATk)Qk(I +BkQk)−1(I −Ak)−1.

The main difference between continuous and discrete functionals F̃ and F is that
the space of x, u appearing in the discrete quadratic functional has finite dimension.
This suggests investigating positivity of F not only via oscillation properties of (H)
and solvability of (R) as given in the roundabout theorem (which are typical methods
for an “infinite-dimensional” treatment), but also via linear algebra and matrix theory.
The main idea of this approach can be illustrated in the case of the Sturm-Liouville
equation

−∆(rk∆yk) + pkyk+1 = 0(2)

and the corresponding quadratic functional

J (y) =

N∑
k=0

{
rk(∆yk)2 + pky

2
k+1

}
(3)

as follows.

184 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

Expanding the differences in J , for any y = {yk}N+1
k=0 satisfying

y0 = 0 = yN+1,(4)

we have

J (y) =

N∑
k=0

{
(rk + pk)y2

k+1 − 2rkykyk+1 + rky
2
k

}

=

 y1

...
yN

T

β0 −r1

−r1 β1
. . .

. . .
. . . −rN−1

−rN−1 βN−1

 y1

...
yN

 ,

where βk = rk + pk + rk+1. Hence J (y) > 0 for any nontrivial y ∈ RN+2 satisfying
(4) iff the matrix

L :=

β0 −r1

−r1 β1
. . .

. . .
. . . −rN−1

−rN−1 βN−1

is positive definite.

From the elementary course of linear algebra it is known that L is positive definite
iff all its principal minors ∆1 = β0, ∆2 = β0β1 − r2

1, . . . , ∆N = detL are positive.
On the other hand, by (i) of Proposition 1.2 we have J (y) > 0 for any nontrivial y
satisfying (4) iff the solution ỹ of (2) given by the initial condition ỹ0 = 0, ỹ1 = 1

r0
satisfies

ỹk+1 6= 0 and δk :=
ỹk

rkỹk+1
≥ 0, k = 0, . . . , N.(5)

Using Laplace’s rule for computation of determinants, we have the formula

∆k = βk−1∆k−1 − r2
k−1∆k−2.(6)

Expanding the forward differences in (2) we have

yk+2 =
1

rk+1
[βkyk+1 − rkyk] .

This recurrent formula, coupled with (6) and the initial condition ỹ0 = 0, ỹ1 = 1
r0

,
gives

ỹ2 =
β0

r1r0
=

∆1

r1r0
, ỹ3 =

1

r2r1r0

[
β0β1 − r2

1

]
=

∆2

r2r1r0
,

and by induction

ỹk+1 =
1

rk . . . r2r1r0

[
βk−1∆k−1 − r2

k−1∆k−2

]
=

∆k

rk . . . r2r1r0
.

BLOCK TRIDIAGONAL MATRICES 185

Consequently,

δk =
ỹk

rkỹk+1
=

∆k−1

∆k
, ∆0 := 1.(7)

Now, by the Jacobi diagonalization method, there exists an N ×N triangular matrix
M such that

MTLM = diag{δ1, . . . , δN}.

From the last identity one may easily see why the quantities δk come to play in the
definition of disconjugacy of (2).

In this paper we establish a similar identity relating the quadratic functional F
and the matrices Dk from Proposition 1.2. This identity reveals why the matrices
Dk appear in the definition of disconjugacy of (H). In particular, we find a block
triangular matrix M such that

MTLM = diag{D1, . . . , DN},

where L in this identity is the matrix representing the functional F (see Theorem 2.2
in the next section) and Dk are given in (i) of Proposition 1.2.

The paper is organized as follows. The next section is devoted to preliminary
results. We recall some basic properties of solutions of (H), and we also show the
relation between higher order Sturm–Liouville difference equations and LHdS (H).
The main results of the paper, the equivalence of positive definiteness of a block
tridiagonal matrix to nonnegative definiteness of certain matrices constructed via
solutions of (H) (which reduce to δk in the scalar case) are given in section 3. In the
last section we deal with LHdS (H) which correspond to higher order Sturm–Liouville
equations; here the results of the previous section are simplified considerably. The
statements of section 4 complement results of [3, 5].

2. Preliminary results. Subject to our general assumption (1) we consider a
linear Hamiltonian difference system (H) and the corresponding discrete quadratic
functional F defined by (F). Here, x = {xk}k∈N0

and u = {uk}k∈N0
are sequences of

Rn-vectors, and we say that such a pair (x, u) is admissible on J provided that

∆xk = Akxk+1 +Bkukfor allk ∈ J

holds. An x is called admissible (on J) if there exists u such that the pair (x, u) is
admissible (on J). The functional F is then said to be positive definite (and we write
F > 0) whenever

F(x, u) > 0 for all on J admissible (x, u)

with x0 = xN+1 = 0 and

 x1

...
xN

 6= 0

holds. Throughout the paper we denote by (X,U) the principal solution of (H) (at
0), i.e., the solution introduced in Proposition 1.2(i). Concerning Moore–Penrose
inverses we will need the following basic lemma which is proved, e.g., in [2, Remark
2(iii)].

186 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

Lemma 2.1. For any two matrices V and W we have

KerV ⊂ KerW iff W = WV †V iff W † = V †VW †.

It is the goal of this paper to relate the condition from Proposition 1.2(i) to a
condition on certain block tridiagonal kn× kn matrices of the form

Lk =

T0 S1

ST1 T1
. . .

. . .
. . . Sk−1

STk−1 Tk−1

 , k ∈ N0,

where we put, for k ∈ N0,

Tk = Ck + (I −ATk)B†k(I −Ak) +B†k+1 and Sk = −B†k(I −Ak).(8)

Let L = LN . Our first result then is the following.
Theorem 2.2. Let (x, u) be admissible on J with x0 = xN+1 = 0. Then we have

F(x, u) =

 x1

...
xN

T

L

 x1

...
xN

 .

Proof. Let (x, u) be admissible on J so that

uTkBkuk = uTkBkB
†
kBkuk =

(
xTk+1(I −ATk)− xTk

)
B†k ((I −Ak)xk+1 − xk)

holds for all k ∈ J . Then, if x0 = xN+1 = 0, we have

F(x, u) =

N∑
k=0

{
xTk+1Ckxk+1 +

(
xTk+1(I −ATk)− xTk

)
B†k ((I −Ak)xk+1 − xk)

}
=

N∑
k=0

{
xTk+1(Tk −B†k+1)xk+1 + 2xTk Skxk+1 + xTkB

†
kxk

}
=

N∑
k=0

{
xTk+1Tkxk+1 + 2xTk Skxk+1 −∆(xTkB

†
kxk)

}
=

N∑
k=0

{
xTk+1Tkxk+1 + 2xTk Skxk+1

}− xTN+1B
†
N+1xN+1 + xT0 B

†
0x0

=
N−1∑
k=1

{
xTk+1Tkxk+1 + 2xTk Skxk+1

}
+ xT1 T0x1

=

 x1

...
xN

T

L

 x1

...
xN

 ,

and hence our desired result is shown.

BLOCK TRIDIAGONAL MATRICES 187

By introducing the space

A =

 x1

...
xN

 : x = {xk}k∈N0
is admissible on J with x0 = xN+1 = 0

 ,

we can write an immediate consequence of Theorem 2.2.
Corollary 2.3. F > 0 iff L > 0 on A.
Note that L > 0 on A, i.e., χTLχ > 0 for all χ ∈ A \ {0}, is equivalent to

MTLM ≥ 0 and KerMTLM ⊂ KerM
whenever M is a matrix with ImM = A. In the next section we will present such
a matrix M for the general Hamiltonian case, and in the last section we will give
this matrix M and further results for the Sturm–Liouville case. A Sturm–Liouville
difference equation

(SL)

n∑
µ=0

(−∆)µ
{
r

(µ)
k ∆µyk+n−µ

}
= 0, k ∈ N0

with reals r
(µ)
k , 0 ≤ µ ≤ n, such that r

(n)
k 6= 0 for all k ∈ N0 is a special case of a

linear Hamiltonian difference system. We define, for all k ∈ N0,

Ak =

0 1

. . .
. . .

. . . 1
0

 , Bk =

0

. . .

0
1

r
(n)

k

 ,

and Ck =

r

(0)
k

r
(1)
k

. . .

r
(n−1)
k

 .

(9)

Then assumption (1) is satisfied and the following result from [3, Lemma 4] holds.
Lemma 2.4. Suppose (9). Then x is admissible on J iff there exists a sequence

y = {yk}0≤k≤N+n−1 of reals such that

xk =

yk+n−1

∆yk+n−2

∆2yk+n−3

...
∆n−1yk

 for all 0 ≤ k ≤ N + 1

holds, and in this case the functional defined by (F) takes the form

F(x, u) =

N∑
k=0

n∑
ν=0

r
(ν)
k {∆νyk+n−ν}2 ,(10)

where u is such that (x, u) is admissible.
We conclude this section with two auxiliary results where we use the notation

introduced in Proposition 1.2.
Lemma 2.5. Let Ãk := (I −Ak)−1 and Dk = XkX

†
k+1ÃkBk, k ∈ N0.

188 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

(i) Suppose (1). If KerXk+1 ⊂ KerXk, then

Dk is symmetric and KerXT
k+1 ⊂ KerBkÃ

T
k .

(ii) Suppose (9). Then we have for all 0 ≤ k ≤ n− 1

KerXk+1 ⊂ KerXk, rankXk+1 = k + 1, and Dk = 0.

Proof. While part (i) is shown in [2, Remark 2 (ii)], (ii) is the contents of [3,
Lemma 4].

Lemma 2.6. We have, for all k ∈ N0,

XT
k+1TkXk+1 = ∆

{
XT
k (Uk +B†kXk)

}
−XT

k SkXk+1 −XT
k+1S

T
k Xk.(11)

Proof. The calculation

XT
k+1TkXk+1 +XT

k SkXk+1 +XT
k+1S

T
k Xk = XT

k+1

{
Uk+1 − (I −ATk)Uk

}
+XT

k+1(I −ATk)B†k(I −Ak)Xk+1 +XT
k+1B

†
k+1Xk+1

−XT
k B
†
k(I −Ak)Xk+1 −XT

k+1(I −ATk)B†kXk

= XT
k+1Uk+1 − (XT

k + UTk Bk)Uk + (XT
k + UTk Bk)B†k(Xk +BkUk)

+XT
k+1B

†
k+1Xk+1 −XT

k B
†
k(Xk +BkUk)− (XT

k + UTk Bk)B†kXk

= ∆
{
XT
k Uk +XT

k B
†
kXk

}
shows that formula (11) holds.

3. The linear Hamiltonian difference system. In this section we present a
matrix M satisfying ImM = A. We then give a proof of the following crucial result.

Theorem 3.1. If KerXk+1 ⊂ KerXk holds on J , then we have

MTLM = diag {D1, . . . , DN} .

To further motivate our investigations, first we would like to briefly consider the
case that the matrices

Bk are invertible for all k ∈ J.(12)

Then we have A = RNn, and F > 0 iff L > 0. Then, if (X,U) is the principal solution
of (H) at 0 such that Xk are invertible for all 1 ≤ k ≤ N + 1, and if we put

Fk+1 =

D1S1D2S2 . . . DkSk
−D2S2 . . . DkSk

...
(−1)k−1DkSk

(−1)kI

 for all 0 ≤ k ≤ N,

it is easy to show that, for all 0 ≤ k ≤ N ,

D−1
k+1 = Tk − STk DkSk, Lk+1Fk+1Dk+1 =

(
0

(−1)kI

)
(13)

BLOCK TRIDIAGONAL MATRICES 189

and

L−1
k+1 =

(L−1
k 0
0 0

)
+ Fk+1Dk+1F

T
k+1.(14)

Theorem 3.2. Assume (12). We put L0 := I and D̃0 := 0. Then we have
recursively, for k = 0, 1, 2, . . . , N ,

Lk+1 > 0⇐⇒ Lk > 0 and D̃k+1 :=
{
Tk − STk D̃kSk

}−1

> 0.(15)

Proof. Of course (15) is obvious for k = 0. However, if (15) holds for some
0 ≤ k ≤ N − 1, then (put Rk =

(
0
Sk

)
)

Lk+1 =

(Lk Rk
RTk Tk

)
> 0⇐⇒ Lk > 0 and Tk −RTk L−1

k Rk > 0.

However, by (14), Tk−RTk L−1
k Rk = Tk−STk DkSk, where our Dk here are exactly the

D̃k because of (13) and D0 = 0. This proves our desired assertion.
Now we turn our attention to the general case of an LHdS (H), where we assume

(1). Let us define Dij for 1 ≤ i ≤ j ≤ N matrices by

Dij = XiX
†
jDj .

Then we have

Dii = XiX
†
iDi = XiX

†
iXiX

†
i+1ÃiBi = XiX

†
i+1ÃiBi = Di

and, by Lemma 2.1, if KerXj ⊂ KerXi,

Dij = XiX
†
jDj = XiX

†
jXjX

†
j+1ÃjBj = XiX

†
j+1ÃjBj .

We now define, for any m ∈ J , an mn×mn matrix Mm by

Mm =

D11 D12 · · · D1m

0 D22

...
...

. . .
. . .

...
0 · · · 0 Dmm

and put M =MN .

Theorem 3.3. If KerXk+1 ⊂ KerXk holds on J , then ImM = A.

Proof. We assume KerXk+1 ⊂ KerXk on J . First, let

 x1

.

.

.
xn

 ∈ A and put

c0 := 0, ck+1 := ck −X†k+1ÃkBk(Ukck − uk) for k ∈ N0,

where u = {uk}k∈N0
is such that (x, u) is admissible on J . Let dk := Ukck − uk for

k ∈ N0. We have X0c0 = 0 = x0, and Xkck = xk for some k ∈ J implies

Xk+1ck+1 = Xk+1ck −Xk+1X
†
k+1ÃkBk(Ukck − uk)

= (ÃkXk + ÃkBkUk)ck − ÃkBk(Ukck − uk)

= ÃkXkck + ÃkBkuk = Ãkxk + ÃkBkuk = xk+1

190 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

because of Lemmas 2.5(i) and 2.1. Hence

Xkck = xk for all 0 ≤ k ≤ N + 1.

Next, we have for j ∈ J ,

Djdj = XjX
†
j+1ÃjBj(Ujcj − uj) = Xj(cj − cj+1) = −Xj∆cj

so that

Dijdj = XiX
†
jDjdj = −XiX

†
jXj∆cj = −Xi∆cj

for all 0 ≤ i ≤ j ≤ N because of KerXj ⊂ KerXi and Lemma 2.1. Therefore

N∑
j=i

Dijdj = −Xi

N∑
j=i

∆cj = −Xi(cN+1 − ci)

= −XiX
†
N+1XN+1cN+1 +Xici = xi

for all 0 ≤ i ≤ N so that x1

...
xN

 =M

 d1

...
dN

 ∈ ImM.

Conversely, let

 x1

.

.

.
xn

 ∈ ImM and put x0 = xN+1 = 0. We pick d1, . . . , dN ∈ Rn

with

xi =
N∑
j=i

Dijdj for all 1 ≤ i ≤ N.

Then we have

(I −A0)x1 − x0 =

N∑
j=1

(I −A0)X1X
†
jDjdj = B0

N∑
j=1

X†jDjdj ∈ ImB0,

(I −AN)xN+1 − xN = −xN = −DNNdN = −DT
NNdN ∈ ImBN ,

and, for k ∈ J \ {N},

(I −Ak)xk+1 − xk = (I −Ak)
N∑

j=k+1

Xk+1X
†
jDjdj −

N∑
j=k

XkX
†
jDjdj

= {(I −Ak)Xk+1 −Xk}
N∑

j=k+1

X†jDjdj −Dkdk

= BkUk

N∑
j=k+1

X†jDjdj −Dkdk ∈ ImBk

by Lemma 2.5(i) so that x is admissible on J and hence

 x1

.

.

.
xn

 ∈ A.

BLOCK TRIDIAGONAL MATRICES 191

Our next result directly yields Theorem 3.1.
Theorem 3.4. If KerXk+1 ⊂ KerXk holds on J , then

MT
m+1Lm+1Mm+1 =

(MT
mLmMm 0

0 Dm+1

)
.

Proof. Let k ∈ J and m ∈ J \ {N}. We define kn× n matrices Pk and Rk by

Pk =

X1

X2

...
Xk

 and Rk =

0
...
0
Sk

 .

Then we have the recursions

Mm+1 =

(Mm PmX
†
m+1Dm+1

0 Xm+1X
†
m+1Dm+1

)
and Lm+1 =

(Lm Rm
RTm Tm

)
.

Hence by putting M̃k =
(Mk

0

)
,

Mm+1 =
(
M̃m Pm+1X

†
m+1Dm+1

)
.

Therefore the matrix MT
m+1Lm+1Mm+1 turns out to be(M̃T

mLm+1M̃m M̃T
mLm+1Pm+1X

†
m+1Dm+1

Dm+1(X†m+1)TPTm+1Lm+1M̃m Dm+1(X†m+1)TPTm+1Lm+1Pm+1X
†
m+1Dm+1

)
=

(MT
mLmMm ΩmX

†
m+1Dm+1

Dm+1(X†m+1)TΩTm Dm+1(X†m+1)TΛmX
†
m+1Dm+1

)
with

Ωm = M̃T
mLm+1Pm+1 and Λm = PTm+1Lm+1Pm+1.

Hence our result follows directly from (ii) and (iii) of the following lemma.
Lemma 3.5. If KerXk+1 ⊂ KerXk holds on J , then we have, for all k ∈ J \{N},
(i) Λk = XT

k+1(Uk+1 +B†k+1Xk+1);

(ii) Dk+1(X†k+1)TΛkX
†
k+1Dk+1 = Dk+1;

(iii) Ωk = 0.
Proof. First of all we have, by formula (11) of Lemma 2.6,

Λ0 = XT
1 T0X1 = XT

1 (U1 +B†1X1)

and, if Λk−1 = XT
k (Uk +B†kXk) already holds for some k ∈ {1, . . . , N − 1}, again by

applying formula (11) we have

Λk =

(
Pk
Xk+1

)T (Lk Rk
RTk Tk

)(
Pk
Xk+1

)
= PTk LkPk + PTk RkXk+1 +XT

k+1R
T
k Pk +XT

k+1TkXk+1

= XT
k+1(Uk+1 +B†k+1Xk+1).

192 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

Hence (i) is shown, and by (i), for all k ∈ J \ {N},
Dk+1(X†k+1)TΛkX

†
k+1Dk+1 = Dk+1Uk+1X

†
k+1Dk+1 +Dk+1B

†
k+1Dk+1

= Xk+1X
†
k+2Ãk+1Bk+1Uk+1X

†
k+1Dk+1 +Xk+1X

†
k+2Ãk+1Xk+1X

†
k+1Dk+1

= Xk+1X
†
k+2Xk+2X

†
k+1Dk+1 = Xk+1X

†
k+1Dk+1 = Dk+1

takes care of part (ii). Finally, Ω0 = 0, and if Ωk−1 = 0 already holds for some
k ∈ {1, . . . , N − 1}, then

Ωk =
(MT

k 0
)(Lk Rk

RTk Tk

)(
Pk
Xk+1

)
=MT

k (LkPk +RkXk+1)

=

(M̃T
k−1

Dk(X†k)TPTk

)(
LkPk +

(
0

SkXk+1

))
=

(
Ωk−1

Dk(X†k)TΛk−1 +DkSkXk+1

)
=

(
0

Dk(Uk +B†kXk)−DkB
†
k(Xk +BkUk)

)
= 0

because of part (i). Hence (iii) follows, and all our desired results are shown.

4. The Sturm–Liouville difference equation. In this section we deal with
the case where (H) and (F) correspond to a higher order Sturm–Liouville equation
(SL) and its corresponding quadratic functional (10). The special structure of the
matrices A,B,C enables us to simplify the results of the previous section.

We start with an identity which plays the crucial role in the proof of the main
results of this section.

Lemma 4.1. Let (X,U) be the principal solution of LHdS corresponding to (SL).
If Xk+1 is nonsingular, then

Dk = XkX
−1
k+1ÃkBk = diag

{
0, . . . , 0,

detXk

r
(n)
k detXk+1

}
.

Proof. Nonsingularity of Xk+1 implies that KerXk+1 ⊂ KerXk, hence the
matrix Dk = XkX

−1
k+1ÃkBk is symmetric according to Lemma 2.5(i), and since

Bk = diag{0, . . . , 0, (1/r(n)
k)}, the only nonzero entry of Dk is in the right lower

corner. Using Laplace’s rule, we have

detXk = det [(I −Ak)Xk+1 −BkUk]

= det

(I −Ak)Xk+1 −

0 . . . 0
...

...
0 . . . 0

1

r
(n)

k

(Uk)n,1 . . . 1

r
(n)

k

(Uk)n,n

=

n∑
ν=1

[
((I −Ak)Xk+1)n,ν −

1

r
(n)
k

(Uk)n,ν

]
(adj [(I −Ak)Xk+1])ν,n

=
n∑
ν=1

((I −Ak)Xk+1 −BkUk)n,ν

(
[(I −Ak)Xk+1]

−1
)
ν,n

det [(I −Ak)Xk+1]

BLOCK TRIDIAGONAL MATRICES 193

=

n∑
ν=1

(Xk)n,ν

(
X−1
k+1Ãk

)
ν,n

det(I −Ak) detXk+1

= detXk+1

(
XkX

−1
k+1Ãk

)
n,n

= r
(n)
k detXk+1

(
XkX

−1
k+1ÃkBk

)
n,n

= r
(n)
k detXk+1 (Dk)n,n ,

so the desired result follows.

In the next statement and its proof we suppose that the matrices X,L,M are
the same as in the previous section and that the matrices A,B,C in (H) are given by
(9).

Theorem 4.2. Suppose that Xn, . . . , XN+1 are nonsingular and denote

dk := (Dk)n,n =
detXk

r
(n)
k detXk+1

, k = n, . . . , N.(16)

Then there exists an nN × (N − n+ 1) matrix N such that

N TLN = diag{dn, . . . , dN}.

Proof. Observe that the assumption of nonsingularity of Xn, . . . , XN+1 corre-
sponds to the assumption KerXk+1 ⊂KerXk in Theorem 3.1 because of Lemma 2.5
(ii). Denote by M[j] ∈ RnN , j = 1, . . . , nN , the columns of the matrix M and let N
be the nN×(N−n+1) matrix which results fromM after omitting all zero columns,
i.e.,

N =
[
M[n2] M[n(n+1)] . . .M[nN]

]
.

Since D1 = · · · = Dn−1 = 0 for LHdS corresponding to (SL) by Lemma 2.5 (ii),
we have MTLM = diag{0, . . . , 0, Dn, . . . , DN} by Theorem 3.1. By Lemma 4.1,
Dj = diag{0, . . . , 0, dj}, j = n, . . . , N , and the statement follows from the relation
between M and N .

Sturm–Liouville equations may be investigated also directly, i.e., not as a special
case of LHdS. Let t1, . . . , tn be n-dimensional vectors with entries

t(µ)
ν = (−1)n−ν

(
µ− 1

n− ν
)
, µ = 1, . . . , n,

with the usual convention that
(
n
k

)
= 0 if k > n or k < 0, and denote by T the

n× n matrix whose columns are the vectors tν , i.e., T = [t1 . . . tn]. Furthermore, let
P = (pi,j) be the nN × (N − n + 1) matrix with n-vector entries pi,j ∈ Rn given by
pi,j = tn+j−i, with the convention that tl = 0 if l < 1 or l > n.

It follows from Lemma 2.4 that if (H) corresponds to a Sturm–Liouville equation
(SL), then (x, u) satisfying x0 = 0 = xN+1 is admissible iff there exists y = {yk}Nk=n

such that

xk = T

 yk
...

yk+n−1

 ;

194 MARTIN BOHNER AND ONDŘEJ DOŠLÝ

hence (xT1 , . . . , x
T
N)T ∈ A iff x1

...
xN

 = P

 yn
...
yN

 .

Consequently, if A,B,C are given by (9), Tk, Sk by (8), and K := PTLP, we have

F(y) =

N∑
k=0

n∑
ν=0

r
(ν)
k (∆νyk+n−ν)2 =

N∑
k=0

{
xTk+1Ckxk+1 + uTkBkuk

}

=

 yn
...
yN

T

PTLP

 yn
...
yN

 =

 yn
...
yN

T

K

 yn
...
yN

 .

Expanding the differences in (10), it is easy to see that K is a 2n+ 1-diagonal matrix.
Our next computations extend the results of the first section by relating the quantities
dk from (16) (in section 1 for n = 1 denoted by δk) to the principal minors of the
matrix K.

First we look for a relation between the nN×(N−n+1) matrices P andN and the
corresponding representation for (xT1 , . . . , x

T
N)T ∈ A. By the previous considerations

and Theorem 3.3, (xT1 , . . . , x
T
N)T ∈ A iff there exists c = (cn, . . . , cN)T such that x1

...
xN

 = N

 cn
...
cN

 = P

 yn
...
yN

 .

From the last equality we will find a relation between vectors c = (cn, . . . , cN)T and
y = (yn, . . . , yN)T . Note that these vectors are determined uniquely since the matrices

P and N have full rank. Denote by dji the last column of the matrix XiX
†
jDj . Taking

into account the form of the matrices P and N , we get the system of equations
yN t1 = cNd

N
N ,

yN−1t1 + yN t2 = cN−1d
N−1
N−1 + cnd

N
N−1,

...
ynt1 = cnd

n
1 + . . .+ cNd

N
1 .

(17)

From this system of equations, we see that there exists an upper triangular matrix
B = (Bi,j) ∈ R(N−n+1)×(N−n+1) such that y = Bc and that this is just the matrix
which reduces the 2n + 1-diagonal matrix K = PTLP to the diagonal form. Indeed,
we have

F(y) =

 yn
...
yN

T

K

 yn
...
yN

 =

 x1

...
xN

T

L

 x1

...
xN

=

 cn
...
cN

T

N TLN

 cn
...
cN

BLOCK TRIDIAGONAL MATRICES 195

=

 yn
...
yN

T

(BT)−1diag{dn, . . . , dN}B−1

 yn
...
yN

for any y = (yn, . . . , yN)T ∈ RN−n+1; hence

BTKB = diag{dn, . . . , dN}.

Observe also that the diagonal entries of the matrix B are Bk,k = (−1)n−1dn+k−1,
k = 1, . . . , N − n+ 1 (this follows directly from (17)), and that

(KB)j,k = (BTK)k,j =
(
diag{dn, . . . , dN}B−1

)
k,j

=

{
0 j = 1, . . . , k − 1,
(−1)n−1 j = k.

Here we used the information about diagonal entries of B. The last expression may
be regarded as a system of linear equations for B1,k, . . . ,Bk,k, and by Cramer’s rule
we have

Bk,k = (−1)n−1dn+k−1 =
(−1)n−1∆k−1

∆k
.

Now we can summarize our previous computations and relate the quantities dk
from (16), k = n, . . . , N , to the principal minors ∆k of K. This statement may
be viewed as a direct extension of (7) to higher order Sturm–Liouville difference
equations. Here, similarly as in the previous theorem, (X,U) is the principal solution
of (H) with A,B,C given by (9), and the assumption of nonsingularity of the matrices
Xn, . . . , XN+1 has the same meaning as in Theorem 4.2.

Theorem 4.3. Suppose Xn, . . . , XN+1 are nonsingular and let ∆k be the princi-
pal minors of the matrix K. Then, for all 1 ≤ k ≤ N − n+ 1,

dn+k−1 =
∆k−1

∆k
, ∆0 := 1.

REFERENCES

[1] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations,
Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, MA,
1996.

[2] M. Bohner, Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions,
J. Math. Anal. Appl., 199 (1996), pp. 804–826.

[3] M. Bohner, On disconjugacy for Sturm-Liouville difference equations, J. Difference Equations
and Appl., 2 (1996), pp. 227–237.

[4] W. A. Coppel, Disconjugacy, Lecture Notes in Math. 220, Springer-Verlag, Berlin, 1971.
[5] O. Došlý, Factorization of disconjugate higher order Sturm-Liouville difference operators, Com-

put. Math. Appl., to appear.
[6] W. T. Reid, Ordinary Differential Equations, John Wiley, New York, 1971.
[7] W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York,

1980.

ON THE DEGREE OF MIXED POLYNOMIAL MATRICES∗

KAZUO MUROTA†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 196–227

Abstract. The mixed polynomial matrix, introduced as a convenient mathematical tool for the
description of physical/engineering dynamical systems, is a polynomial matrix of which the coeffi-
cients are classified into fixed constants and independent parameters. The valuated matroid, invented
by Dress and Wenzel [Appl. Math. Lett., 3 (1990), pp. 33–35], is a combinatorial abstraction of the
degree of minors (subdeterminants) of a polynomial matrix. We discuss a number of implications
of the recent developments in the theory of valuated matroids in the context of polynomial matrix
theory. In particular, we apply the valuated matroid intersection theorem to the analysis of the
degree of the determinant of a mixed polynomial matrix to obtain a novel duality identity together
with an efficient algorithm.

Key words. combinatorial matrix theory, degree of determinant, mixed matrix, polynomial
matrix, valuated matroid

AMS subject classifications. 05C50, 68Q40, 90C27

PII. S0895479896311438

1. Introduction. Matrices consisting of polynomials or rational functions play
fundamental roles in various branches in engineering (Gohberg, Lancaster, and Rod-
man [22]). For example, in dynamical system theory (Rosenbrock [51], Vidyasagar
[59]), a linear time-invariant system is described by a polynomial matrix called the
system matrix (the Laplace transform of the state-space equations) or by a rational
function matrix called the transfer function matrix. Therefore, it is often the case that
the degrees of minors (subdeterminants) of such a matrix have essential engineering
significance (see section 2). The objective of this paper is to contribute to the combi-
natorial theory of matrices (Brualdi and Ryser [3], Edmonds [12]) by investigating the
combinatorial aspects of the degree of minors of a polynomial/rational matrix using
recent results on valuated matroids.

Let A(s) = (Aij(s)) be an m × n rational function matrix with Aij(s) being
a rational function in s with coefficients from a certain field F (typically the real
number field R). Denote by R and C the row set and the column set of A. In this
paper we are interested in the highest degree of a minor (subdeterminant) of order k
of A(s):

δk = δk(A) = max{degs detA[I, J] | |I| = |J | = k},(1.1)

where A[I, J] denotes the submatrix of A with row set I ⊆ R and column set J ⊆ C,
and the degree of a rational function f(s) = p(s)/q(s) (with p(s) and q(s) being
polynomials) is defined by degs f(s) = degs p(s) − degs q(s). By convention we put
degs(0) = −∞.

Define δ : 2R × 2C → Z ∪ {−∞} and ω : 2R∪C → Z ∪ {−∞} by

δ(I, J) = degs detA[I, J] (I ⊆ R, J ⊆ C),(1.2)

ω(B) = δ(R \B,C ∩B) (B ⊆ R ∪ C),(1.3)

∗Received by the editors November 1, 1996; accepted for publication (in revised form) December
5, 1997; published electronically September 23, 1998.

http://www.siam.org/journals/simax/20-1/31143.html
†Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

(murota@kurims.kyoto-u.ac.jp).

196

DEGREE OF MIXED POLYNOMIAL MATRIX 197

where δ(∅, ∅) = ω(R) = 0 and δ(I, J) = −∞ unless |I| = |J |. A combinatorial
property of the function ω (equivalently, of δ) has been abstracted by Dress and
Wenzel [10], [11] as the concept of valuated matroid. A valuated matroid is a pair
M = (V, ω) of a finite set V and a function ω : 2V → R∪ {−∞} such that B = {B ⊆
V | ω(B) 6= −∞} is nonempty and that the following exchange property holds:

(MV) For B,B′ ∈ B and u ∈ B−B′, there exists v ∈ B′−B such that B−u+v ∈
B, B′ + u− v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v).

The function ω of (1.3) arising from a rational function matrix A(s) defines a
valuated matroid M = (V, ω) with V = R ∪ C and

B = {B ⊆ R ∪ C | A[R \B,C ∩B] is nonsingular}.(1.4)

It has turned out that valuated matroids afford a nice combinatorial framework
to which the optimization algorithms established for matroids generalize naturally
(see Welsh [60], White [61] for matroid theory; Faigle [15], Fujishige [18], Lawler
[32] for combinatorial optimization on matroids; and Iri [27], Murota [34], Recski
[49] for application of matroids). Variants of greedy algorithms work for maximizing
a matroid valuation, as has been shown by Dress and Wenzel [10] as well as by
Dress and Terhalle [7, 8, 9] and Murota [39]. (These greedy-type algorithms are
similar to, but not the same as, those in Korte, Lovász, and Schrader [31].) The
weighted matroid intersection problem has been extended by Murota [41, 42] to the
valuated matroid intersection problem with natural extensions of optimality criteria
and algorithms. The essence of the present paper is an application of these results on
the valuated matroid intersection problem to mixed polynomial matrices (or rather, it
was the analysis of mixed polynomial matrices that had motivated the present author
to investigate the valuated matroid intersection problem).

The concept of mixed polynomial matrix was introduced by Murota [34] (see
also Murota and Iri [45]) as a convenient mathematical tool for the description of
physical/engineering (linear time-invariant) dynamical systems. Let K be a subfield
of a field F . A polynomial matrix A(s) over F (i.e., Aij(s) ∈ F [s]) is called a mixed
polynomial matrix with respect to F /K if

A(s) = Q(s) + T (s) =

N∑
k=0

skQk +
N∑
k=0

skTk(1.5)

for some integer N ≥ 0, where
(MP-Q) Qk (k = 0, 1, . . . , N) are matrices over K , and
(MP-T) Tk (k = 0, 1, . . . , N) are matrices over F such that the set of their nonzero

entries is algebraically independent over K .
The assumption (MP-T) means that we can regard the nonzero entries of Tk (k =
0, 1, . . . , N) as independent parameters.

Example 1.1. For an illustration of the definition above, here is a concrete example
of 2× 3 mixed polynomial matrix:

A(s) =

c1 c2 c3
r1 s3 + 1 s2 + α1 α2s+ 1
r2 s2 + α3 s 0

198 KAZUO MUROTA

with

Q(s) =
s3 + 1 s2 1
s2 s 0

, T (s) = 0 α1 α2s
α3 0 0

.

Here we assume {α1, α2, α3} to be algebraically independent over Q (field of rational
numbers). Then we may take K = Q and F = Q(α1, α2, α3) (field of rational
functions in α1, α2, α3 over Q).

For a nonsingular mixed polynomial matrix A(s) = Q(s) + T (s) we have the
following identity:

degs detA = max
|I|=|J|
I⊆R,J⊆C

{degs detQ[I, J] + degs detT [R− I, C − J]},(1.6)

which can be derived from (MP-Q), (MP-T), and the Laplace expansion of deter-
minants (see Theorem 4.1 in section 4). The right-hand side of this identity in-

volves a maximization over all pairs (I, J), the number of which is (|R|+|C||R|), too

large for an exhaustive search for maximization. Fortunately, however, the functions
δQ(I, J) = degs detQ[I, J] and δT (I, J) = degs detT [I, J] enjoy a nice combinatorial
property, each defining a valuated matroid, as explained above. Moreover, this max-
imization problem can be rewritten as a valuated matroid intersection problem, for
which efficient (polynomial-time) algorithms have been developed.

This approach to the computation of degs detA extends to the computation of
δk(A) for a specified k. It is one of the main objectives of this paper to describe a
concrete procedure for efficiently computing δk(A) for a mixed polynomial matrix A.

This paper is organized as follows. In section 2 we justify our interest in δk
by explaining significances of δk in engineering context. In section 3 we summarize
relevant facts on valuated matroids and indicate their implications in engineering
applications. Sections 4 and 5 compose the main part of the paper. We derive new
identities for δk and determine the coefficient of the highest degree term of detA with
reference to the combinatorial canonical form of a layered mixed matrix. In section 5
we describe the algorithm for δk together with a worked-out example.

Remark 1.1. Already in [33, 34] (before the invention of valuated matroids), the
present author was interested in the degree of the determinant of a mixed polynomial
matrix and designed an efficient algorithm by making use of the results on the matroid
intersection problem. It was possible to avoid valuated matroids because of a stronger
assumption imposed on Q(s):
(MP-Q′) Every nonvanishing subdeterminant of Q(s) is a monomial in s over K .
It was discussed at full length that this stronger assumption could be justified in
engineering applications for a physical reason that can be categorized as a kind of
dimensional analysis. See also an expository article [40].

Remark 1.2. The problem of computing δk(A) has attracted considerable research
interest. See Bujakiewicz [4], Commault, Dion, and Perez [6], Hovelaque, Commault,
and Dion [26], Reinschke [50], Suda, Wan, and Ueno [52], Svaricek [53, 54], and van der
Woude [65] for graph-theoretic approaches; Murota [37, 38] and Iwata, Murota, and
Sakuta [30] for combinatorial relaxation algorithms based on graph-theoretic methods;
Murota and van der Woude [47] for a matroid-theoretic approach; and Dress and
Terhalle [7, 8] and Murota [39] for valuated matroid-theoretic approaches. A recent
paper of Iwata and Murota [29] affords a combinatorial relaxation algorithm based
on the results of the present paper.

DEGREE OF MIXED POLYNOMIAL MATRIX 199

2. Degree of subdeterminants. In this section we dwell on the significance of
δk(A) = max|I|=|J|=k degs detA[I, J] in engineering context in order to motivate and
justify our present interest in δk. The reader may go on to section 3 as the subsequent
technical developments are independent of this section.

2.1. Kronecker form of a matrix pencil. A linear time-invariant dynamical
system can be expressed most naturally in a descriptor form

Eẋ(t) = Fx(t) +Gu(t), y(t) = Hx(t)(2.1)

with “state” x(t) ∈ RN , input u(t), and output y(t). When described in the frequency
domain, the coefficient matrix is given by(

F − sE G
H O

)
.

Here it is natural to assume that sE−F is a regular pencil, i.e., that det(sE−F) 6= 0,
while E can be singular. Then δN (sE −F) represents the dynamical degree [25] (the
number of independent initial conditions that can be imposed), which is equal to the
dimension of the equivalent state-space equations.

For an n×n regular matrix pencil A(s) in general, more detailed information can
be obtained from the sequence δk(A) (k = 1, 2, . . . , n). As is well known (Gantmacher
[19]), a regular pencil can be brought into the Kronecker form by means of “strict
equivalence” as follows.

Theorem 2.1 (Kronecker form). Assume that F is an algebraically closed field
of characteristic zero (e.g., F = C (complex numbers)), and let A(s) be an n × n
regular pencil. There exist nonsingular constant matrices P and Q such that

PA(s)Q = block-diag (sIm0 +B;Nm1(s), Nm2(s), . . . , Nmb(s)) ,(2.2)

where

m1 ≥ m2 ≥ · · · ≥ mb ≥ 1, m0 +m1 + · · ·+mb = n,

B is an m0 ×m0 constant matrix, and Nm(s) denotes an m ×m bidiagonal matrix
defined by

Nm(s) =

1 s

1 s
. . .

. . .

. . . s
1

 .

The matrices Nmk(s) (k = 1, . . . , b) are called the nilpotent blocks, and the number
m1 = max1≤k≤bmk is the index of nilpotency.

Apart from the matrix B, the structural indices of the Kronecker form, i.e., the
integers b, m0, m1, . . . ,mb, can be determined from δk(A) (k = 1, 2, . . . , n) by

b = n−max{k | δk(A)− δk−1(A) = 1}(2.3)

(where b = n if such k does not exist) and by

mk =

{
δn(A) (k = 0),
δn−k(A)− δn−k+1(A) + 1 (k = 1, . . . , b).

(2.4)

Formulae (2.3) and (2.4) can be derived easily from (2.2) (cf. Murota [38]).

200 KAZUO MUROTA

In the literature of numerical analysis a system of equations consisting of a mixture
of differential and algebraic relations is often abbreviated to DAE. For a linear time-
invariant DAE in general, say Ax = b with A = A(s) being a nonsingular polynomial
matrix in s, the index is defined by1

ν(A) = max
i, j

degs(A
−1)ji + 1.

Here it should be clear that each entry (A−1)ji of A−1 is a rational function in s. An
alternative expression is

ν(A) = δn−1(A)− δn(A) + 1.

When degsAij = 0 or 1 for all (i, j) with Aij 6= 0, as in (2.1), the index ν(A) agrees
with the index of nilpotency of A as a matrix pencil; namely, we have ν(A) = m1.

The solution x to Ax = b is of course given by x = A−1b, and therefore ν(A)− 1
equals the highest order of the derivatives of the input b that can possibly appear in
the solution x. As such, a high index indicates the difficulty in numerical solution of
the DAE, and sometimes even the inadequacy in mathematical modeling. See Brenan,
Campbell, and Petzold [2], Gear [20, 21], Hairer and Wanner [23], Ungar, Kröner, and
Marquardt [57] for more about the index of DAE.

2.2. Smith–McMillan form at infinity of a rational matrix. A rational
function f(s) is called proper if degs f(s) ≤ 0. We call a matrix a proper rational
matrix if its entries are proper rational functions. A square proper rational matrix is
called biproper if it is invertible and its inverse is a proper rational matrix. A proper
rational matrix is biproper if and only if its determinant is of degree zero.

Since the proper rational functions form a Euclidean ring, any proper rational
matrix can be brought into the Smith form (Newman [48]), which is sometimes referred
to as the structure at infinity in the control literature. From this we see further that
any rational matrix can be brought into the Smith–McMillan form at infinity, as
stated below (Verghese and Kailath [58]).

Theorem 2.2 (Smith–McMillan form at infinity). Let A(s) be a rational function
matrix. There exist biproper matrices U(s) and V (s) such that

U(s)A(s)V (s) =

(
Γ(s) O
O O

)
,

where

Γ(s) = diag (st1 , . . . , str),

r = rankA(s), and tk = tk(A) (k = 1, . . . , r) are integers with t1 ≥ · · · ≥ tr. Further-
more, tk can be expressed in terms of the minors of A as

tk(A) = δk(A)− δk−1(A) (k = 1, . . . , r),(2.5)

where δk(A) is defined by (1.1) and δ0(A) = 0 by convention.
The integers tk (k = 1, . . . , r), uniquely determined by (2.5), are referred to as the

contents at infinity (Verghese and Kailath [58]). If they are positive, tk (k = 1, . . . , r)

1The definition of index given here applies only to linear time-invariant DAE systems. Index can
be defined for more general systems, and two kinds are distinguished in the literature, differential
index and perturbation index, which coincide with each other for linear time-invariant DAE systems.

DEGREE OF MIXED POLYNOMIAL MATRIX 201

are the orders of the poles at infinity; if negative, −tk (k = 1, . . . , r) are the orders of
the zeroes at infinity.

A (proper) rational function matrix typically appears as the transfer function
matrix of a linear time–invariant dynamical system. The transfer function matrix of
the descriptor system (2.1) is given by

P (s) = H(sE − F)−1G,(2.6)

provided that det(sE−F) 6= 0 (while E can be singular). The Smith–McMillan form
at infinity of P (s) has control-theoretic significances (Commault and Dion [5], Hautus
[24], Svaricek [54], Verghese and Kailath [58]).

In such a case it is desirable to express the Smith–McMillan form at infinity of
P (s) directly from the matrices E, F , G, and H, without referring to the entries of
P (s) explicitly. From the well-known formula

det

(
F − sE G′

H ′ O

)
= det(F − sE) · det[−H ′(F − sE)−1G′],

where H ′ denotes a submatrix of H with k rows and G′ is a submatrix of G with k
columns, it follows that

δk(P) = δN+k(A; I0, J0)− δN (F − sE),(2.7)

where

A(s) =

(
F − sE G
H O

)
,

I0 and J0 are, respectively, the row and column sets corresponding to the N × N
nonsingular submatrix F − sE, and

δN+k(A; I0, J0) = max{degs detA[I, J] | I ⊇ I0, J ⊇ J0, |I| = |J | = N + k}
means the highest degree of a minor of order N + k that contains row set I0 and
column set J0. Note that δN+k(A; I0, J0) = δN+k(Ã) − 2Nd for a sufficiently large
integer d and

Ã(s) =

(
diag (sd, . . . , sd) O

O I

)(
F − sE G
H O

)(
diag (sd, . . . , sd) O

O I

)
.

2.3. Causal splitting for autoregressive models. In the behavioral approach
of Willems [62, 63] to dynamical systems, no a priori distinction is made between in-
puts and outputs in the description of a dynamical system, but they are distinguished
only a posteriori in view of the causality implied by the description. The maximum
degree of determinants plays an important role in this connection.

To be specific, let (wj(t) | t = 0, 1, 2, . . .) (j = 1, . . . , n) be n sequences, each
indexed by Z+ = {t ∈ Z | t ≥ 0}. We consider here an autoregressive (AR) model,
in which we assume that they are subject to a system of m homogeneous difference
equations

n∑
j=1

Nij∑
k=1

Aijkwj(t+ k) = 0 (i = 1, . . . ,m)

202 KAZUO MUROTA

with constant coefficients Aijk. Denoting by s the backward time shift, i.e., s ·
wj(t) = wj(t + 1), the above equation can be rewritten as A(s)w(t) = 0 with

A(s) = (
∑Nij
k=1Aijks

k | i = 1, . . . ,m; j = 1, . . . , n) and w(t) = (wj(t) | j = 1, . . . , n).
The variables wj are called external variables, which are to be divided into two

parts, inputs and outputs, so that (in the Z-domain) the outputs can be computed
from the inputs as well as their initial values using proper transfer matrices. The
number of outputs is equal to the rank of A(s), say r, and consequently, that of
inputs is n − r. Such a splitting of n external variables into inputs and outputs is
named a causal splitting by van der Woude [66].

In case r = m, a causal splitting is tantamount to a splitting of the column
set CA of A(s) into two disjoint sets B and CA − B in such a way that A[RA, B]
is nonsingular and A[RA, B]−1A[RA, CA − B] is proper, where RA denotes the row
set of A(s). It is easy to see that A[RA, B]−1A[RA, CA − B] is proper if and only
if degs detA[RA, B] is maximized by B. Also in the general case, finding a causal
splitting amounts to finding a submatrix A[I,B] with |I| = |B| = r that has the
maximum value of degs detA[I,B], as follows.

Theorem 2.3 (van der Woude [64]). (B,CA−B) is a causal splitting if and only
if there exists I ⊆ RA such that |I| = |B| = r and degs detA[I,B] = δr, where δr is
defined by (1.1).

Let us call B ⊆ CA a dynamical base of a polynomial matrix A(s) if (B,CA−B)
is a causal splitting. In section 3.1 we will see that the family of dynamical bases of
a given matrix possesses a nice combinatorial property, forming the basis family of a
matroid.

3. Valuated matroid. In this section we summarize relevant facts on valuated
matroids and discuss their implications for polynomial/rational matrices.

3.1. Definition. As is already mentioned in the introduction, a valuated ma-
troid is a pair M = (V, ω) of a finite set V and a function ω : 2V → R ∪ {−∞} such
that

B = {B ⊆ V | ω(B) 6= −∞}(3.1)

is nonempty and that the following exchange property holds:
(MV) For B,B′ ∈ B and u ∈ B−B′, there exists v ∈ B′−B, such that B−u+v ∈ B,

B′ + u− v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v).

If this is the case, B satisfies the following simultaneous exchange property:
(SE) For B,B′ ∈ B and u ∈ B−B′, there exists v ∈ B′−B such that B−u+ v ∈ B,

B′ + u− v ∈ B,
and accordingly B forms the basis family of a matroid. Therefore, we can alternatively
say that a valuated matroid is a triple M = (V,B, ω), where (V,B) is a matroid
(defined in terms of the basis family) and ω : B → R is a function satisfying (MV).

Our interest in valuated matroids originates from the fact that a rational function
matrix A(s) defines a valuated matroid. Let A(s) be an m×n matrix of rank m with
each entry being a rational function in a variable s, and let MA = (CA,BA) denote
the (linear) matroid [60, 61] defined on the column set CA of A(s) by the linear
independence of the column vectors. Namely,

BA = {B ⊆ CA | A[RA, B] is nonsingular},(3.2)

DEGREE OF MIXED POLYNOMIAL MATRIX 203

where RA denotes the row set of A. Then ωA : BA → Z defined by

ωA(B) = degs detA[RA, B] (B ∈ BA)(3.3)

satisfies the exchange axiom (MV) above (see Dress and Wenzel [11] for the proof).
The valuated matroid explained in Introduction (cf., (1.3), (1.4)) is a variant of this
construction.

3.2. Maximization in a valuated matroid. Let M = (V,B, ω) be a valuated
matroid. For B ∈ B, u ∈ B, and v ∈ V −B we define

ω(B, u, v) = ω(B − u+ v)− ω(B).(3.4)

The first lemma is most fundamental, showing the local optimality implies the global
optimality.

Lemma 3.1 (Dress and Wenzel [10, 11]). Let B ∈ B. Then ω(B) ≥ ω(B′) for
any B′ ⊆ V if and only if

ω(B, u, v) ≤ 0 for any u ∈ B and v ∈ V −B.(3.5)

When applied to a rational function matrix, this lemma yields the following. It
is remarked that the second statement below is implicit in Willems [62] and van der
Woude [64] (cf., Theorem 2.3).

Lemma 3.2. For MA = (CA,BA, ωA) associated with a rational matrix A(s) of
row-full rank, we have the following.

(1) For B ∈ BA,
ωA(B, u, v) = degs(A[RA, B]−1A[RA, CA −B])uv (u ∈ B, v ∈ CA −B).

(The right-hand side designates the degree of the (u, v) entry of the rational matrix
A[RA, B]−1A[RA, CA −B].)

(2) B ⊆ CA maximizes ωA if and only if A[RA, B]−1A[RA, CA − B] is a proper
rational matrix.

For p : V → R we define ω[p] : 2V → R ∪ {−∞} (or B → R) by

ω[p](B) = ω(B) +
∑
{p(u) | u ∈ B}.(3.6)

M[p] = (V,B, ω[p]) is again a valuated matroid, called a similarity transformation of
M. For MA = (CA,BA, ωA) associated with a rational matrix A(s), this operation
corresponds to multiplying a diagonal matrix diag (s; p) = diag (sp1 , . . . , spn) from the
right.

The following theorem characterizes a valuated matroid as a family of matroids.
The “only if” part is immediate from (MV), as observed by Dress and Wenzel [11].

Theorem 3.3 (Murota [43, 44]). Let ω : 2V → R∪{−∞} be a function such that
B = {B ⊆ V | ω(B) 6= −∞} forms the basis family of a matroid on V . Then (V,B, ω)
is a valuated matroid if and only if for any p : V → R the set of the maximizers of
ω[p] forms the basis family of a matroid on V .

As explained in section 2.3, a causal splitting for A(s) consists of finding a base
B ∈ BA such that A[RA, B]−1A[RA, CA − B] is proper. We have named such B a
dynamical base. Combination of Lemma 3.2 and Theorem 3.3 reveals that the set of
dynamical bases indeed forms the basis family of a matroid on CA. This observation

204 KAZUO MUROTA

suggests a promising research direction toward optimization on and enumeration of
dynamical bases using general results obtained in matroid theory [15, 18, 32].

Lemma 3.4. For MA = (CA,BA, ωA) associated with a rational matrix A(s)
of row-full rank, the matroid defined by the maximizers of ωA agrees with the linear
matroid defined on CA by a constant matrix

A∗B = lim
s→∞A[RA, B]−1A[RA, CA],

where B is a maximizer of ωA. (The matroid defined on CA by A∗B is independent of
the choice of B.)

Proof. The proof is immediate from Lemma 3.2.
Let R and C be disjoint finite sets and δ : 2R × 2C → R ∪ {−∞} be a map such

that

δ(I, J) = ω((R− I) ∪ J) (I ⊆ R, J ⊆ C)(3.7)

for some valuated matroid (R∪C,ω) with ω(R) 6= −∞. Such triple (R,C, δ) is called
a valuated bimatroid in [39]. Define

S = {(I, J) | |I| = |J |, I ⊆ R, J ⊆ C},
r = max{|I| | ∃(I, J) ∈ S : δ(I, J) 6= −∞},
Sk = {(I, J) | |I| = |J | = k, I ⊆ R, J ⊆ C} (0 ≤ k ≤ r),
δk = max{δ(I, J) | (I, J) ∈ Sk} (0 ≤ k ≤ r),
Mk = {(I, J) ∈ Sk | δ(I, J) = δk} (0 ≤ k ≤ r).

Note that δ(∅, ∅) 6= −∞, and δ(I, J) 6= −∞ only if (I, J) ∈ S.
Theorem 3.5 (Murota [39]). The sequence (δ0, δ1, . . . , δr) is concave, i.e.,

δk−1 + δk+1 ≤ 2δk (1 ≤ k ≤ r − 1).

Theorem 3.6 (Murota [39]). For any (Ik, Jk) ∈ Mk with 1 ≤ k ≤ r − 1, there
exist (Il, Jl) ∈Ml (0 ≤ l ≤ r, l 6= k) such that

(∅ =) I0 ⊆ I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · · ⊆ Ir,
(∅ =) J0 ⊆ J1 ⊆ · · · ⊆ Jk−1 ⊆ Jk ⊆ Jk+1 ⊆ · · · ⊆ Jr.

Theorem 3.6 justifies the following incremental greedy algorithm for computing
δk for k = 0, 1, . . . , r. This algorithm involves O(r|R| |C|) evaluations of δ to compute
the whole sequence (δ0, δ1, · · · , δr).

Greedy algorithm for δk (k = 1, 2, . . .).
I0 := ∅; J0 := ∅;
for k := 1, 2, . . . do.

Find i ∈ R−Ik−1, j ∈ C−Jk−1 that maximizes δ(Ik−1+i, Jk−1+j)
and put Ik := Ik−1 + i, Jk := Jk−1 + j and δk := δ(Ik, Jk).

The iteration stops when δ(Ik, Jk) = −∞, and then r = k − 1. See [39] for another
algorithm to compute (δ0, δ1, . . . , δr).

Given a rational matrix A(s) we can naturally define a valuated bimatroid (RA,
CA, δA) by

δA(I, J) = degs detA[I, J] (I ⊆ RA, J ⊆ CA).(3.8)

DEGREE OF MIXED POLYNOMIAL MATRIX 205

The associated valuated matroid in (3.7) is given by ω
Ã

of (3.3) for an m× (m+ n)

matrix Ã = (Im A). In this special case the nesting property stated in Theorem 3.6
has been observed, though in a slightly weaker form, by Svaricek [53], [54, Satz 6.23]
along with the greedy algorithm above.

3.3. Valuated independent assignment problem. The valuated indepen-
dent assignment problem is defined as follows. Suppose we are given a bipartite graph
G = (V +, V −;E), valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−),
and a weight function w : E → R.

Valuated independent assignment problem.
Find a matching M(⊆ E) that maximizes

Ω(M) ≡ w(M) + ω+(∂+M) + ω−(∂−M)(3.9)

subject to the constraint

∂+M ∈ B+, ∂−M ∈ B−,(3.10)

where ∂+M (resp., ∂−M) denotes the set of vertices in V + (resp., V −) incident to M .
A matching M satisfying the constraint (3.10) is called an independent assignment.
Clearly the two matroids must have the same rank for the feasibility of this problem.

The above problem reduces to the independent assignment problem of Iri and
Tomizawa [28] if the valuations are trivial with ω±(B) = 0 for B ∈ B±, and reduces
further to the conventional assignment problem (cf., e.g., Lawler [32]) if the matroids

are trivial or free with B± = 2V
±

.
The following theorem gives an optimality criterion in (1), referring to the ex-

istence of a “potential” function, whereas its reformulation in (2) reveals its duality
nature. This is a natural extension of the corresponding result [28] for the ordinary
(independent) assignment problem.

Theorem 3.7 (Murota [41]). (1) An independent assignment M in G is optimal
for the valuated independent assignment problem (3.9)–(3.10) if and only if there exists
a “potential” function p : V + ∪ V − → R such that

(i) w(a)− p(∂+a) + p(∂−a)

{ ≤ 0 (a ∈ E),
= 0 (a ∈M).

(ii) ∂+M is a maximum-weight base of M+ with respect to ω+[p+],
(iii) ∂−M is a maximum-weight base of M− with respect to ω−[−p−], where p±

is the restriction of p to V ±, and ω+[p+] (resp., ω−[−p−]) is the similarity transfor-
mation defined in (3.6); namely,

ω+[p+](B+) = ω+(B+) +
∑
{p(u) | u ∈ B+} (B+ ⊆ V +),

ω−[−p−](B−) = ω−(B−)−
∑
{p(u) | u ∈ B−} (B− ⊆ V −).

(2)

max
M
{Ω(M) |M : independent assignment}

= min
p
{max(ω+[p+]) + max(ω−[−p−]) | w(a)− p(∂+a) + p(∂−a) ≤ 0 (a ∈ E)}.

(3) If ω+, ω−, and w are all integer-valued, the potential p in (1) and (2) can be
chosen to be integer-valued.

206 KAZUO MUROTA

(4) Let p be a potential that satisfies (i)–(iii) above for some (optimal) independent
assignment M = M0. An independent assignment M ′ is optimal if and only if it
satisfies (i)–(iii) (with M replaced by M ′).

Remark 3.1 Just as the weighted matroid intersection problem may be regarded
as being equivalent to the independent assignment problem, the following problem is
equivalent to the valuated independent assignment problem (see [41] for other equiv-
alent problems).

Valuated matroid intersection problem.
Given a pair of valuated matroids M1 = (V,B1, ω1) and M2 =
(V,B2, ω2) defined on a common ground set V , and a weight func-
tion w : V → R, find a common base B ∈ B1 ∩ B2 that maximizes
w(B) + ω1(B) + ω2(B).

The optimality criterion of Theorem 3.7, when adapted to this problem, gives a gen-
eralization of the well-known optimality criterion [13, 14, 16, 17, 32] for the weighted
matroid intersection problem.

The duality result in Theorem 3.7 above admits a linear algebraic interpretation
for a triple matrix product as follows, although the author is not yet aware of its
engineering applications.

Theorem 3.8. Assume that a matrix product A(s) = Q1(s)T (s)Q2(s) is non-
singular, where Q1(s) (resp., Q2(s)) is a k ×m (resp., n× k) rational matrix over a
field K , and T (s) is an m×n rational matrix over an extension field F (⊇K) such
that the set of the coefficients is algebraically independent over K . Then there exist
k × k nonsingular rational matrices S1(s), S2(s) and diagonal matrices diag (s; p) =
diag (sp1 , . . . , spm), diag (s; q) = diag (sq1 , . . . , sqn) with p ∈ Zm and q ∈ Zn such that

degs detA = degs detS1 + degs detS2

and the matrices

Q̄1(s) = S1(s)
−1
Q1(s) diag (s; p),

T̄ (s) = diag (s;−p)T (s) diag (s;−q),
Q̄2(s) = diag (s; q)Q2(s)S2(s)

−1

are all proper. Note that S1(s)
−1
A(s)S2(s)

−1
= Q̄1(s)T̄ (s)Q̄2(s).

Proof. First, by the Cauchy–Binet formula, we have

detA =
∑

|I|=|J|=k
±detQ1[∗, I] · detT [I, J] · detQ2[J, ∗],

where Q1[∗, I] designates the k × k submatrix of Q1 with column set I and the
whole row set, and similarly for Q2[J, ∗]. There is no numerical cancellation in the
summation above by virtue of the assumed algebraic independence of the coefficients
in T (s), and hence

degs detA = max
|I|=|J|=k

{degs detQ1[∗, I] + degs detT [I, J] + degs detQ2[J, ∗]}.

Next, consider a valuated independent assignment problem defined as follows.
The vertex sets V + and V − are the row set and the column set of T (s), respectively,
and E = {(i, j) | Tij(s) 6= 0}. The valuated matroids attached to V + and V − are
those defined by Q1(s) and Q2(s) as in (3.3), and the weight wij of an edge (i, j) ∈ E

DEGREE OF MIXED POLYNOMIAL MATRIX 207

is defined by wij = degs Tij(s). Note that the maximum value of
∑

(i,j)∈M wij over

all matchings M with I = ∂+M and J = ∂−M is equal to degs detT [I, J].

Then we see from the above identity that degs detA is equal to the maximum
value of Ω(M) over all independent assignment M . Let M be an optimal independent
assignment and put I = ∂+M and J = ∂−M . Let p̂ : V + ∪ V − → Z be the potential
in Theorem 3.7, and define p ∈ Zm and q ∈ Zn by pi = p̂i for i ∈ V + and qj = −p̂j for
j ∈ V −. Define S1 = Q1[∗, I] diag (s; pI) and S2 = diag (s; qJ)Q2[J, ∗], where pI ∈ ZI

is the restriction of p to I and similarly for qJ ∈ ZJ .

The conditions (i), (ii) and (iii) in Theorem 3.7(1), coupled with Lemma 3.2,
imply the properness of T̄ (s), Q̄1(s), and Q̄2(s), respectively.

Remark 3.2. The close relationship between the triple matrix product and the
independent assignment problem through the Binet-Cauchy formula was first observed
by Tomizawa and Iri [55, 56]. To be more precise, the rank of A = Q1TQ2 was
expressed in [55] as the maximum size of an independent matching, whereas the
degree of the determinant of A(s) = Q1T (s)Q2 with constant matrices Qi (i = 1, 2)
was represented in [56] as the optimal value of an independent assignment. Our
present contribution lies in an extension to the more general case with polynomial
matrices Qi(s) (i = 1, 2) by means of valuated matroids, and also in an explicit
statement concerning the transformation into proper matrices.

4. Degree of mixed polynomial matrix.

4.1. Mixed polynomial matrix. Let K be a subfield of a field F . A matrix
A over F (i.e., Aij ∈ F) is called a mixed matrix with respect to F /K if

A = Q+ T,(4.1)

where

(M-Q) Q is a matrix over K (i.e., Qij ∈K), and
(M-T) T is a matrix over F (i.e., Tij ∈ F) such that the set of its nonzero entries is

algebraically independent over K .

A mixed matrix A of (4.1) is called a layered mixed matrix (or an LM matrix) if
the nonzero rows of Q and T are disjoint. In other words, A is an LM matrix if it can
be put into the following form with a permutation of rows:

A =

(
Q
T

)
=

(
Q
O

)
+

(
O
T

)
,(4.2)

where Q and T satisfy (M-Q) and (M-T) above, respectively.

Though an LM-matrix is a special case of mixed matrix, the class of LM matrices
is as general as the class of mixed matrices both in theory and in application. With
an m× n mixed matrix A = Q+ T we associate a (2m)× (m+ n) LM matrix

Ã =

(
Q̃
T̃

)
=

(
Im Q

−diag (t1, . . . , tm) T

)
,(4.3)

where diag (t1, . . . , tm) is a diagonal matrix with “new” variables t1, . . . , tm(∈ F).
Such transformation often works in the analysis of a mixed matrix by way of an LM-

208 KAZUO MUROTA

matrix. For example, if we are interested in the rank of A, we may instead compute
the rank of Ã and use the relation rankA = rankÃ−m.

A polynomial matrixA(s) over F (i.e., Aij(s) ∈ F [s]) is called a mixed polynomial
matrix with respect to F /K if

A(s) = Q(s) + T (s) =

N∑
k=0

skQk +
N∑
k=0

skTk(4.4)

for some integer N ≥ 0, where
(MP-Q) Qk (k = 0, 1, . . . , N) are matrices over K , and
(MP-T) Tk (k = 0, 1, . . . , N) are matrices over F such that the set of their nonzero

entries is algebraically independent over K .
A mixed polynomial matrix with respect to F /K is a mixed matrix with respect to

F (s)/K (s). Also note that A(s) =
∑N
k=0 s

kAk with Ak = Qk + Tk and that Ak, for
each k, is a mixed matrix with respect to F /K .

A mixed polynomial matrix A(s) of (4.4) is called a layered mixed polynomial
matrix (or an LM-polynomial matrix) if the nonzero rows ofQ(s) and T (s) are disjoint,
that is, if it looks like

A(s) =

(
Q(s)
T (s)

)
,(4.5)

where Q(s) and T (s) satisfy (MP-Q) and (MP-T) above, respectively. We denote
by RQ and RT the row sets of Q(s), and T (s), respectively, whereas the column
sets of A(s), Q(s), and T (s), are identified and denoted by C. We put mQ = |RQ|,
mT = |RT |, n = |C|. Obviously, an LM-polynomial matrix with respect to F /K is
an LM-matrix with respect to F (s)/K (s).

The concepts of (layered) mixed (polynomial) matrices were introduced in Murota
and Iri [45], Murota, Iri, and Nakamura [46], and Murota [34] as mathematical tools
for the structural/combinatorial analysis of engineering systems. See [36] and [40] for
surveys; the former deals with mathematical properties of (layered) mixed matrices
while the latter explains engineering motivations.

4.2. Basic identities. We present basic identities concerning the degree of the
determinant of (layered) mixed polynomial matrices, which are easy to derive from
(MP-Q), (MP-T), and the Laplace expansion of determinants. They will be upgraded
in section 5.1 to novel identities of deeper mathematical content.

Recall that R and C denote the row set and the column set of A(s), respectively,
and Q[I, J], e.g., denotes the submatrix of Q with row set I and column set J .

Theorem 4.1 (Murota [33]). For a square mixed polynomial matrix A(s) =
Q(s) + T (s),

degs detA = max
|I|=|J|
I⊆R,J⊆C

{degs detQ[I, J] + degs detT [R− I, C − J]}.(4.6)

(For a singular matrix A both sides are equal to −∞.)
Proof. By the Laplace expansion [19] we see

detA =
∑
|I|=|J|

±detQ[I, J] · detT [R− I, C − J].

DEGREE OF MIXED POLYNOMIAL MATRIX 209

Since the degree of a sum is bounded by the maximum degree of a summand, we
obtain

degs detA ≤ max
|I|=|J|

degs(detQ[I, J] · detT [R− I, C − J])

= max
|I|=|J|

{degs detQ[I, J] + degs detT [R− I, C − J]},

where the inequality turns into an equality provided the highest-degree terms do not
cancel one another. The algebraic independence of the nonzero coefficients in T (s)
ensures this.

The above theorem immediately yields a similar identity for an LM-polynomial
matrix A(s) = (Q(s)

T (s)
). Recall that RQ and RT denote the row sets of Q(s) and T (s),

respectively, and C denotes the column sets of A(s), Q(s), and T (s).

Theorem 4.2. For a square LM-polynomial matrix A(s) = (Q(s)
T (s)

),

degs detA = max
J⊆C
{degs detQ[RQ, J] + degs detT [RT , C − J]}.(4.7)

(For a singular matrix A both sides are equal to −∞.)
In what follows we focus on an LM-polynomial matrix A(s) and consider a variant

of δk(A). Namely, for A(s) = (Q(s)
T (s)

) we define

δLM
k (A) = max

I, J
{degs detA[RQ ∪ I, J] |(4.8)

I ⊆ RT , J ⊆ C, |I| = k, |J | = mQ + k},

where 0 ≤ k ≤ min(mT , n − mQ). It should be clear that δLM
k (A) designates the

highest degree of a minor of order mQ + k with row set containing RQ, and that
δLM
k (A) = −∞ if there exists no (I, J) that satisfies the conditions on the right-hand

side of (4.8). By substituting (4.7) into (4.8) we obtain

δLM
k (A) = max

I, J, B
{degs detQ[RQ, B] + degs detT [I, J −B] |(4.9)

I ⊆ RT , B ⊆ J ⊆ C, |I| = k, |J | = mQ + k, |B| = mQ}.

We prefer to work with δLM
k (A) for an LM-polynomial matrix A(s) rather than to

deal directly with δk(A) for a mixed polynomial matrix A(s) = Q(s) + T (s). This is
because (i) any algorithm for δLM

k can be used to compute δk(A) for a general mixed
polynomial matrix A(s) (as explained below), and (ii) our algorithm description is
much simpler for δLM

k .

The reduction of δk(A) for A(s) = Q(s)+T (s) to δLM
k (Ã) with an LM-polynomial

matrix Ã(s) is similar to the transformation (4.3) of a mixed matrix to another LM-
matrix. Given an m× n mixed polynomial matrix A(s) = Q(s) + T (s) we consider a
(2m)× (m+ n) LM-polynomial matrix

Ã(s) =

(
Q̃(s)

T̃ (s)

)
=

(
diag (sd1 , . . . , sdm) Q(s)

−diag (t1s
d1 , . . . , tms

dm) T (s)

)
,(4.10)

where t1, . . . , tm (∈ F) are “new” variables, and

di = max
j∈CA

degsQij(s) (i ∈ RA),(4.11)

210 KAZUO MUROTA

where RA and CA denote the row set and the column set of A(s), and hence those of

Q(s). The following lemma reveals the relation between δk(A) and δLM
k (Ã).

Lemma 4.3. Let A(s) be a mixed polynomial matrix and Ã(s) be the associated
LM-polynomial matrix defined by (4.10). Then we have

δk(A) = δLM
k (Ã)−

m∑
i=1

di.

Proof. Define

Â(s) =

(RA CA
RQ diag (sd1 , . . . , sdm) Q(s)
RT −diag (sd1 , . . . , sdm) T (s)

)
,(4.12)

which is obtained from Ã(s) by putting ti = 1 (i = 1, . . . ,m). It is obtained from

Ã(s) also by dividing the (m+ i)th row by ti (i = 1, . . . ,m) and redefining Tij(s)/ti
to be Tij(s). The latter fact implies δLM

k (Ã) = δLM
k (Â). (Here it should be clear that

δLM
k (Â) is defined similarly to (4.8), although this is a slight abuse of notation since

Â(s) is not an LM-polynomial matrix.)
We denote the row sets (column sets) of A, Q, and T by RA, RQ, and RT (by CA,

CQ, and CT), respectively, where RQ and RT (CQ and CT) have natural one-to-one
correspondence with RA (with CA). Also we denote the row sets and the column sets

of Â, by R̂ = RQ ∪RT and Ĉ = RA ∪ CA, as indicated in (4.12).
If J ⊇ RA, we have

degs det Â[RQ ∪ I, J] = degs detA[I, J ∩ CA] +
m∑
i=1

di (I ⊆ RT).

Hence, taking the maximum of this expression over all I and J with |I| = |J |−mQ = k
and J ⊇ RA, we see that δk(A) +

∑m
i=1 di is equal to

max{degs det Â[RQ ∪ I, J] | I ⊆ RT , RA ⊆ J ⊆ C, |I| = k, |J | = mQ + k}.

It remains to be shown that the extra constraint “J ⊇ RA” can be removed with-
out affecting the maximum value. Fix I ⊆ RT and let J ⊆ RA∪CA be a maximizer of
degs det Â[RQ∪I, J] satisfying J ⊇ RA. We claim that Â[RQ∪I, J]−1Â[RQ∪I, CA\J]
is a proper rational matrix. This claim implies, by Lemma 3.2, that J is an optimum
solution to the maximization problem without the constraint “J ⊇ RA.”

The claim can be proven as follows. Denoting by IQ and IA the copies of I in RQ
and RA, respectively, we partition the matrix Â[RQ ∪ I,RA ∪ CA] as

Â[RQ ∪ I,RA ∪ CA] =

RA ∩ IA RA \ IA CA ∩ J CA \ J

RQ ∩ IQ D1 O Q11 Q12

RQ \ IQ O D2 Q21 Q22

RT ∩ I −D1 O T11 T12

with the obvious shorthand notations D1, Q11, T11, etc. for the relevant submatrices
of diag (sd1 , . . . , sdm), Q(s), T (s), etc. By row transformations we obtain the following

DEGREE OF MIXED POLYNOMIAL MATRIX 211

sequence of matrices: D1 O Q11 Q12

O D2 Q21 Q22

−D1 O T11 T12

⇒
D1 O Q11 Q12

O D2 Q21 Q22

O O A11 A12

 (Aij = Qij + Tij)

⇒
D1 O Q11 Q12

O D2 Q21 Q22

O O I A11
−1A12

⇒
D1 O O Q12 −Q11A11

−1A12

O D2 O Q22 −Q12A11
−1A12

O O I A11
−1A12

⇒
 I O O D1

−1[Q12 −Q11A11
−1A12]

O I O D2
−1[Q22 −Q12A11

−1A12]
O O I A11

−1A12

 .

This shows

Â[RQ ∪ I, J]−1Â[RQ ∪ I, CA \ J] =

CA \ J

RA B1(s)

CA ∩ J B2(s)

with

B1(s) = diag (s−d1 , . . . , s−dm){Q[RQ, CA \ J]−Q[RQ, CA ∩ J]B2(s)},
B2(s) = A[I, CA ∩ J]−1A[I, CA \ J].

Here B2(s) is a proper rational matrix (i.e., each entry has deg ≤ 0) by the choice
of J, and diag (s−d1 , . . . , s−dm)Q[RQ, CA] is also proper by the definition (4.11) of di.

Therefore, Â[RQ ∪ I, J]−1Â[RQ ∪ I, CA \ J] is a proper rational matrix.

Example 4.1. For the 2× 3 mixed polynomial matrix A(s) in Example 1.1we have
d1 = 3, d2 = 2, and

Ã(s) =

r1 r2 c1 c2 c3
rQ1 s3 s3 + 1 s2 1
rQ2 s2 s2 s 0

rT1 −t1s3 0 α1 α2s
rT2 −t2s2 α3 0 0

.

It is easy to verify that

δ1(A) = degs detA[r1, c1] = 3,

δ2(A) = degs detA[{r1, r2}, {c1, c3}] = 3,

whereas

δLM
1 (Ã) = degs det Ã[{rQ1, rQ2, rT1}, {r1, r2, c1}] = 3 + 5,

δLM
2 (Ã) = degs det Ã[{rQ1, rQ2, rT1, rT2}, {r1, r2, c1, c3}] = 3 + 5.

212 KAZUO MUROTA

4.3. Reduction to valuated independent assignment. We describe how
the computation of δLM

k (A) for an LM-polynomial matrix A(s) = (Q(s)
T (s)

) can be re-

duced to solving a valuated independent assignment problem. We denote by MQ =
(CQ,BQ, ωQ) the valuated matroid associated with Q(s) as (3.2) and (3.3); namely,

BQ = {B ⊆ CQ | detQ[RQ, B] 6= 0},(4.13)

ωQ(B) = degs detQ[RQ, B] (B ∈ BQ).(4.14)

Here and henceforth CQ = {jQ | j ∈ C} denotes a disjoint copy of the column set C of
A (with jQ ∈ CQ denoting the copy of j ∈ C), whereas RQ and RT mean, as before,
the row sets of Q(s) and T (s), respectively; |RQ| = mQ, |RT | = mT , and |C| = n.

We consider a valuated independent assignment problem defined on a bipartite
graph G = (V +, V −;E) with V + = RT ∪ CQ, V − = C, and E = ET ∪ EQ, where

ET = {(i, j) | i ∈ RT , j ∈ C, Tij(s) 6= 0}, EQ = {(jQ, j) | j ∈ C}.
The valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−) attached to V +

and V − are defined by

B+ = {B+ ⊆ V + | B+ ∩ CQ ∈ BQ, |B+ ∩RT | = k},
B− = {B− ⊆ V − | |B−| = mQ + k}

and

ω+(B+) = ωQ(B+ ∩ CQ) (B+ ∈ B+),

ω−(B−) = 0 (B− ∈ B−).

The weight wij of an edge (i, j) ∈ E is defined by

wij =

{
degs Tij(s) ((i, j) ∈ ET),
0 ((i, j) ∈ EQ).

(4.15)

Note the dependence of M± on k as well as the independence of G and w of k.
We then have the following characterization of δLM

k (A) in terms of the optimal
value of the valuated independent assignment problem. Recall the notation Ω(M) of
(3.9) for the value of an independent assignment M .

Theorem 4.4. For an LM-polynomial matrix A(s) = (Q(s)
T (s)

) and an integer k

with 0 ≤ k ≤ min(mT , n −mQ), δLM
k (A) of (4.8) coincides with the optimal value of

the valuated independent assignment problem defined above. That is,

δLM
k (A) = max{Ω(M) |M : independent assignment},(4.16)

where the right-hand side is defined to be −∞ if there exists no independent assign-
ment M .

Proof. Define

∆(I, J,B) = degs detQ[RQ, B] + degs detT [I, J −B],(4.17)

which is the function to be maximized in the expression (4.9) for δLM
k (A). By virtue

of the algebraic independence of the nonzero coefficients in T (s), the second term,
degs detT [I, J−B], is equal to the maximum weight (with respect to wij) of a match-
ing of size |I| = |J −B| in the bipartite graph (RT , C;ET) that covers I and J −B.

DEGREE OF MIXED POLYNOMIAL MATRIX 213

Fig. 1. Graph G (©: arcs in M , B = {x1Q, x3Q}).

Given (I, J,B) with |I| = k and ∆(I, J,B) > −∞, we can construct an independent
assignment M such that

I = ∂+(M ∩ ET), J = ∂−M, B = ∂+(M ∩ EQ),(4.18)

and that M ∩ ET is a maximum weight k-matching in the graph (RT , C;ET) that
covers I and J−B. Note that detQ[RQ, B] 6= 0 and |I| = k if and only if B∪I ∈ B+.
Moreover, ω+(B ∪ I) = degs detQ[RQ, B] by the definition, and therefore we have
∆(I, J,B) = Ω(M). Conversely, an independent assignment M with Ω(M) maximum
determines (I, J,B), as above, for which ∆(I, J,B) = Ω(M) holds true. Hence the
maximum value of ∆(I, J,B) is equal to that of Ω(M).

Example 4.2. The valuated independent assignment problem associated with a
4× 5 LM-polynomial matrix

A(s) =

x1 x2 x3 x4 x5

s3 0 s3 + 1 s2 1
0 s2 s2 s 0

f1 −t1s3 0 0 α1 α2s
f2 0 −t2s2 α3 0 0

(4.19)

with k = 2 is illustrated in Fig. 1. This matrix is essentially the same as Ã(s) in
Example 4.1, but the columns and the rows are now indexed as C = {x1, x2, x3, x4, x5}
and RT = {f1, f2} and accordingly CQ = {x1Q, x2Q, x3Q, x4Q, x5Q}. An optimal
independent assignment M = {(f1, x5), (f2, x2), (x1Q, x1), (x3Q, x3)} is marked by©.
We have I = ∂+(M∩ET) = {f1, f2}, J = ∂−M = {x1, x2, x3, x5}, B = ∂+(M∩EQ) =
{x1Q, x3Q} ∈ BQ, ωQ(B) = 5, w(M) = 1 + 2 = 3, and therefore Ω(M) = 5 + 3 = 8,
which agrees with δLM

2 (A) = 8. In Section 5.2 we will come back to this example to
explain the algorithm.

4.4. Novel identities. The basic identities on the degree of subdeterminants
presented in section 4.2 are upgraded here to novel identities of duality nature. They

214 KAZUO MUROTA

are obtained from the duality result (Theorem 3.7) on the valuated independent as-
signment problem, i.e., the optimality criterion involving a potential function. Besides
this, the potential will be used extensively also in the algorithm in section 5, and fur-
thermore it will play a crucial role in section 4.5 in determining the coefficient of the
highest-degree term of detA(s).

Consider the valuated independent assignment problem associated with A(s),
introduced in section 4.3. Let M be an optimal independent assignment, (I, J,B) be
defined by (4.18), and p̂ : RT ∪ C ∪ CQ → Z be a potential function guaranteed in
Theorem 3.7.

We may assume that p̂(jQ) = p̂(j) for j ∈ C (where jQ ∈ CQ denotes the copy
of j ∈ C). To see this, first note that p̂(jQ) ≥ p̂(j) for j ∈ C and the equality holds
if (jQ, j) ∈ M . For j ∈ C with (jQ, j) 6∈ M , we can redefine p̂(jQ) to p̂(j), since
(jQ, j) is the only arc going out of jQ and its weight wjQj is zero. Define q ∈ ZRT

and p ∈ ZC by

qi = p̂(i) (i ∈ RT), pj = −p̂(j) (j ∈ C).(4.20)

Then the conditions (i)–(iii) in Theorem 3.7(1) are expressed as follows:

degs Tij(s) ≤ qi + pj ((i, j) ∈ ET),(4.21)

degs Tij(s) = qi + pj ((i, j) ∈M ∩ ET),(4.22)

ωQ[−p](B) = max
B′∈BQ

ωQ[−p](B′),(4.23)

q(I) = max
|I′|=k

q(I ′),(4.24)

p(J) = max
|J ′|=mQ+k

p(J ′),(4.25)

where q(I) =
∑
i∈ qi and p(J) =

∑
j∈J pj . These conditions imply

δLM
k (A) = degs detQ[RQ, B] + degs detT [I, J −B](4.26)

= ωQ(B) + q(I) + p(J −B)

= ωQ[−p](B) + q(I) + p(J)

= max
B′∈BQ

ωQ[−p](B′) + max
|I′|=k

q(I ′) + max
|J′|=mQ+k

p(J ′).

Thus we obtain the following theorem.
Theorem 4.5. For an LM-polynomial matrix A(s) = (Q(s)

T (s)
) and an integer k

such that δLM
k (A) > −∞, the following identity holds true:

δLM
k (A) = min

qi+pj≥degs Tij

[
max
|I|=k

q(I) + max
|J|=mQ+k

p(J) + max
B∈BQ

ωQ[−p](B)

]
,(4.27)

where the minimum is taken over all q ∈ ZRT , p ∈ ZC satisfying qi + pj ≥ degs Tij
for all (i, j).

Proof. Let (I, J,B) be as above. For any (q′, p′) with q′i + p′j ≥ degs Tij (∀(i, j)),
we have

δLM
k (A) = degs detQ[RQ, B] + degs detT [I, J −B]

≤ ωQ(B) + q′(I) + p′(J −B)

= ωQ[−p′](B) + q′(I) + p′(J)

≤ max
B′∈BQ

ωQ[−p′](B′) + max
|I′|=k

q′(I ′) + max
|J ′|=mQ+k

p′(J ′),

DEGREE OF MIXED POLYNOMIAL MATRIX 215

whereas the inequalities turn into equalities for (q′, p′) = (q, p), as in (4.26).
With q, p, and B above, we can transform the matrix A(s) to another LM-

polynomial matrix that is somehow canonical with respect to δLM
k . Let S(s) =

(Q[RQ, B] · diag (s;−pB))−1, where pB is the restriction of p to B, and define

Â(s) =

(
Q̂(s)

T̂ (s)

)
=

(
S(s) O
O diag (s;−q)

)
·A(s) · diag (s;−p).(4.28)

The conditions (4.21)–(4.23) mean that

Â(s) =

B J −B C − J

RQ ImQ Q′2(s) Q′3(s)
I T ′1(s) T •2 (s) T ′3(s)
RT − I T ′′1 (s) T ′′2 (s) T ′′3 (s)

(4.29)

is a proper matrix, in which T •2 (s) admits a transversal consisting of entries of degree
zero. Obviously,

δLM
k (Â) = max

|B′|=mQ
degs det Q̂[RQ, B

′] + max
|I′|=|J′|=k

degs det T̂ [I ′, J ′],(4.30)

in which all the three terms are equal to zero. From this we obtain the following
theorem.

Theorem 4.6. For an LM-polynomial matrix A(s) = (Q(s)
T (s)

) and an integer k

such that δLM
k (A) > −∞, there exist p ∈ ZC and q ∈ ZRT such that

Ā(s) =

(
ImQ O
O diag (s;−q)

)
·A(s) · diag (s;−p),

Q̄(s) = Q(s) · diag (s;−p),
T̄ (s) = diag (s;−q) · T (s) · diag (s;−p)

satisfy

δLM
k (Ā) = max

|B|=mQ
degs det Q̄[RQ, B] + max

|I|=|J|=k
degs det T̄ [I, J].(4.31)

Here we can impose on Ā an additional condition:

δLM
k (Ā) = δLM

k (A)− max
|I|=k

q(I)− max
|J|=mQ+k

p(J).(4.32)

It should be clear that Ā(s) = (Q̄(s)
T̄ (s)

), which is also an LM-polynomial matrix.

Proof. The first identity (4.31) follows from (4.30). The second identity (4.32) is

due to (4.26) combined with δLM
k (Ā) = δLM

k (Â) + degs detS−1 = ωQ[−p](B).
Example 4.3. We illustrate the above argument for the LM-polynomial matrix

A(s) of (4.19) with k = 2. The vectors p ∈ ZC and q ∈ ZRT of (4.20) are given by
p = (−1,−1,−3,−4,−3) and q = (4, 3). Accordingly we have

Ā(s) =

x1 x2 x3 x4 x5

s4 0 s6 + s3 s6 s3

0 s3 s5 s5 0

f1 −t1 0 0 α1 α2

f2 0 −t2 α3 0 0

216 KAZUO MUROTA

for which (4.31) holds true with δLM
2 (Ā) = 9 = 9 + 0. Recall from Example 4.3 that

I = {f1, f2}, J = {x1, x2, x3, x5}, B = {x1Q, x3Q}. The matrix Â(s) of (4.28) is equal
to

Â(s) =

x1 x3 x5 x2 x4

1 0 1
s

−s3−1
s3

−1
s

0 1 0 1
s2 1

f1 −t1 0 α2 0 α1

f2 0 α3 0 −t2 0

.(4.33)

In section 5.2 we will come back to this example and explain how the vectors p and
q can be found (see the variable p in Fig. 4, in particular).

As corollaries to Theorem 4.6 we obtain the following two theorems, which should
be compared to Theorem 4.2 and Theorem 4.1, respectively.

Theorem 4.7. For a nonsingular LM-polynomial matrix A(s) = (Q(s)
T (s)

), there

exists p ∈ ZC such that

Ā(s) = A(s) · diag (s;−p), Q̄(s) = Q(s) · diag (s;−p), T̄ (s) = T (s) · diag (s;−p)
satisfy

degs det Ā = max
|B|=|RQ|

degs det Q̄[RQ, B] + max
|J|=|RT |

degs det T̄ [RT , J],(4.34)

where it should be clear that Ā(s) = (Q̄(s)
T̄ (s)

), which is also an LM-polynomial matrix.

Proof. Apply Theorem 4.6 with k = mT = n −mQ to obtain p ∈ ZC . The row
transformation by diag (s;−q) is not necessary in the case of k = mT .

Theorem 4.8. For a nonsingular mixed polynomial matrix A(s) = Q(s) + T (s),
there exist pR ∈ ZR and pC ∈ ZC such that

Ā(s) = diag (s;−pR) ·A(s) · diag (s;−pC),

Q̄(s) = diag (s;−pR) ·Q(s) · diag (s;−pC),

T̄ (s) = diag (s;−pR) · T (s) · diag (s;−pC)

satisfy

degs det Ā = max
|I|=|J|

I⊆R, J⊆C

degs det Q̄[I, J] + max
|I|=|J|

I⊆R, J⊆C

degs det T̄ [R− I, C − J],(4.35)

where it should be clear that Ā(s) = Q̄(s) + T̄ (s), which is also a mixed polynomial
matrix.

Proof. Apply Theorem 4.7 to the associated LM-polynomial matrix (4.10) to ob-
tain p̂ ∈ ZR∪C . Denote by p̂R and p̂C the restrictions of p̂ to R and to C, respectively.
Then put pR = d − p̂R and pC = p̂C , where d ∈ ZR is the vector of exponents in
(4.10).

4.5. Leading coefficient. For a nonsingular LM-polynomial matrix A(s) with
respect to F /K , detA(s) is a polynomial in s with coefficients from F . If we denote
by T the set of nonzero coefficients in T (s), we see that the coefficients in detA(s)
are polynomials in T over K . Recall that T ⊆ F and T is algebraically independent
over K (cf. (MP-T) in section 4.1).

DEGREE OF MIXED POLYNOMIAL MATRIX 217

In this section we are interested in the leading coefficient (= the coefficient of
the highest-degree term) of detA(s), which we denote by η(T) ∈ K [T] (= ring of
polynomials in T over K). Namely,

η(T) = l.c.(detA(s)) = lim
s→∞ s

−δn(A) detA(s),

where l.c.(·) means the leading coefficient of a polynomial in s, and n is the size of the
matrix. The following argument shows, among others, that we can determine which
variables of T appear in η(T) by means of arithmetic operations in K (s) without
involving T .

Recall Â(s) of (4.28), where I = RT and J = C, and define a constant matrix

Â∗ = lim
s→∞ Â(s),(4.36)

which is a nonsingular LM-matrix with respect to F /K . It is noted that the matrix

Â∗ depends on the choice of (q, p,B). Since

detA(s) = detQ[RQ, B] · det Â(s) · sq(RT)+p(C−B), det Â(s) = det Â∗ + o(1),

where o(1) denotes a term that vanishes as s→∞, we see that

η(T) = c · det Â∗, c = l.c.(detQ[RQ, B]) ∈K .(4.37)

For an LM-matrix in general, a block-triangular canonical form is known to ex-
ist (Murota [34], Murota, Iri, and Nakamura [46]). The canonical form is called
the combinatorial canonical form (CCF) of the LM-matrix, and can be computed in
O(n3 log n) time with arithmetic operations in the subfield. Furthermore, it is known
[35] that the factorization of the determinant of an LM-matrix is given through the
irreducible diagonal components of its CCF. See [36] for a survey on the CCF.

Using these general results we see the following.
1. A variable t ∈ T appears in η(T) if and only if t is contained in an irreducible

diagonal block of the CCF of the LM-matrix Â∗. Hence, once Â(s) is known,
the set of variables of T that are contained in η(T) can be computed in
O(n3 log n) time with arithmetic operations in K .

2. The irreducible factors of η(T), as a polynomial in T over K , are given by

the determinants of the irreducible components in the CCF of Â∗. Hence,
once Â(s) is known, the irreducibility of η(T) in K [T] can be determined in
O(n3 log n) time with arithmetic operations in K .

Example 4.4. Consider the 4× 4 submatrix of the LM-polynomial matrix A(s) of
(4.19) with column set J = {x1, x2, x3, x5}. We have T = {t1, t2, α2, α3}. By direct
calculation we see

detA[RA, J] = −α2t2s
8 − t1t2s7 − α2α3s

6 − t1α3s
5,

and therefore η(T) = −α2t2. On the other hand, the matrix Â∗ (cf. (4.33)) and its
CCF (which happens to be triangular) are given by

Â∗ =

x1 x2 x3 x5

1 −1 0 0
0 0 1 0

f1 −t1 0 0 α2

f2 0 −t2 α3 0

, CCF =

x5 x1 x2 x3

f1 α2 −t1 0 0

1 −1 0

f2 −t2 α3

1

.

218 KAZUO MUROTA

We have det Â∗ = −α2t2, in agreement with η(T) (up to a constant factor). The
variables, α2 and t2, appearing in the diagonal blocks agree with those variables
contained in η(T).

5. Algorithm.

5.1. Algorithm description. In section 4.3 we have explained how to reduce
the computation of δLM

k (A) to solving a valuated independent assignment problem.
Here we will provide an algorithm for δLM

k (A) by adapting the augmenting algorithm
of Murota [42] for a general valuated independent assignment problem. Our algorithm
computes δLM

k (A) successively for k = 0, 1, 2, . . . , kmax, where kmax is the maximum
k with δLM

k (A) > −∞.
As described in section 4.3, the associated valuated independent assignment prob-

lem is defined on the bipartite graph G = (V +, V −;E) = (RT ∪ CQ, C;ET ∪ EQ),
where CQ is a disjoint copy of C (with jQ ∈ CQ denoting the copy of j ∈ C), and

ET = {(i, j) | i ∈ RT , j ∈ C, Tij(s) 6= 0}, EQ = {(jQ, j) | j ∈ C}.

The algorithm maintains a pair (M,B) of a matching M ⊆ ET ∪ EQ and a base
B ∈ BQ (⊆ 2CQ) that maximizes

Ω′′(M,B) ≡ w(M) + ωQ(B) = w(M ∩ ET) + ωQ(B)(5.1)

subject to the constraint that ∂+(M ∩EQ) = B and M is of a specified size. We put

MT = M ∩ ET , MQ = M ∩ EQ.

With reference to (M,B) it constructs an auxiliary directed graph G̃ = G̃(M,B) =

(Ṽ , Ẽ) with vertex set Ṽ = RT ∪CQ ∪C and arc set Ẽ = ET ∪EQ ∪E+ ∪M◦, where

E+ = {(iQ, jQ) | iQ ∈ B, jQ ∈ CQ −B,B − iQ + jQ ∈ BQ},
M◦ = {a | a ∈M} (a: reorientation of a).

It should be emphasized that the arcs in E+ have both ends in CQ and that the arcs
in M◦ are directed from C to RT ∪ CQ, i.e., ∂+M◦ ⊆ C and ∂−M◦ ⊆ RT ∪ CQ. We
put

M◦T = {a ∈M◦ | ∂−a ∈ RT } = {a | a ∈MT },
M◦Q = {a ∈M◦ | ∂−a ∈ CQ} = {a | a ∈MQ}.

We define the entrance S+ ⊆ Ṽ and the exit S− ⊆ Ṽ by

S+ = RT − ∂+MT = RT − ∂−M◦T , S− = C − ∂−M = C − ∂+M◦.

Note that no vertex in CQ belongs to the entrance S+.

We define the arc length γ = γ(M,B) : Ẽ → Z by

γ(a) =

−degs Tij(s) (a = (i, j) ∈ ET),

degs Tij(s) (a = (j, i) ∈M◦T),
−ωQ(B, iQ, jQ) (a = (iQ, jQ) ∈ E+),
0 (a ∈ EQ ∪M◦Q),

(5.2)

DEGREE OF MIXED POLYNOMIAL MATRIX 219

where ωQ(B, iQ, jQ) = ωQ(B− iQ+ jQ)−ωQ(B), compatibly with the notation (3.4).
By Lemma 3.2 we can compute ωQ(B, iQ, jQ) by means of pivoting operations on
Q(s), namely, for P (s) = S(s)Q(s) with S(s) = Q[RQ, B]−1 we have ωQ(B, iQ, jQ) =
degs Pij(s).

Suppose there is a shortest path in G̃(M,B) from the entrance S+ to the exit S−

with respect to the arc length γ, and let L be (the set of arcs on) a shortest path
from S+ to S− having the smallest number of arcs. Then we can update (M,B) to
(M,B) by

M = M − {a ∈M | a ∈ L ∩M◦}+ (L ∩ (ET ∪ EQ)),(5.3)

B = B − {∂+a | a ∈ L ∩ E+}+ {∂−a | a ∈ L ∩ E+}.(5.4)

In fact, M is obviously a matching with ∂+(M ∩ EQ) = B and |M | = |M | + 1, and
furthermore, it can be shown [42] that B ∈ BQ and (M,B) maximizes Ω′′(M,B)
under these constraints.

Our algorithm for δLM
k (A) repeats finding a shortest path and updating (M,B)

as follows.
Outline of the algorithm.

Starting from a maximum-weight base B ∈ BQ with respect to ωQ
and the corresponding matching M = {(jQ, j) | jQ ∈ B}, repeat
(i)–(ii) below:
(i) Find a shortest path L having the smallest number of arcs (from

S+ to S− in G̃(M,B) with respect to the arc length γ(M,B)).
[Stop if there is no path from S+ to S−.]

(ii) Update (M,B) according to (5.3) and (5.4).
An initial base B of maximum value of ωQ can be found by the greedy algorithm
described in section 3.2. At each stage of this algorithm it holds that δLM

k (A) =
Ω′′(M,B) for k = |M | −mQ and that (I, J,B) defined by (4.18) gives the maximum
in the expression (4.9) of δLM

k (A).
Just as the primal-dual algorithm for the ordinary minimum-cost flow problem

and the independent assignment problem, the algorithm outlined above can be made
more efficient by the explicit use of a potential function on the auxiliary graph G̃ =
(Ṽ , Ẽ). To this end we maintain p : Ṽ → Z that satisfies

−degs Tij(s) + p(i)− p(j) ≥ 0 ((i, j) ∈ ET),(5.5)

−degs Tij(s) + p(i)− p(j) = 0 ((i, j) ∈MT),(5.6)

p(jQ)− p(j) ≥ 0 (j ∈ C),(5.7)

p(jQ)− p(j) = 0 ((jQ, j) ∈MQ),(5.8)

−ωQ(B, iQ, jQ) + p(iQ)− p(jQ) ≥ 0 ((iQ, jQ) ∈ E+),(5.9)

p(i)− p(k) ≥ 0 (i ∈ RT , k ∈ S+),(5.10)

p(k)− p(j) ≥ 0 (j ∈ C, k ∈ S−).(5.11)

It is remarked that the existence of such p implies the optimality of (M,B) with
respect to Ω′′ of (5.1). In fact, for any (M ′, B′) with |M ′| = |M | and ∂+(M ′ ∩EQ) =
B′ we have

w(M ′) + ωQ(B′) = wp(M
′) + ωQ[pQ](B′) + p(∂+M ′T)− p(∂−M ′)

≤ ωQ[pQ](B) + p(∂+MT)− p(∂−M)

= w(M) + ωQ(B),

220 KAZUO MUROTA

where M ′T = M ′∩ET , wp(a) = w(a)−p(∂+a)+p(∂−a), and pQ denotes the restriction
of p to CQ. Note that wp(M

′) ≤ wp(M) = 0 by (5.5)–(5.8), ωQ[pQ](B′) ≤ ωQ[pQ](B)
by (5.9) and Lemma 3.1, p(∂+M ′T) ≤ p(∂+MT) by (5.10), and p(∂−M ′) ≥ p(∂−M)
by (5.11).

Initially, we have MT = ∅, S+ = RT , and S− = C, and therefore we can put

p(i) = max
k∈RT ,j∈C

degs Tkj(s) (i ∈ RT), p(j) = p(jQ) = 0 (j ∈ C)(5.12)

to meet the conditions (5.5)–(5.11). In general steps, p is updated to

p(v) = p(v) + ∆p(v) (v ∈ Ṽ)(5.13)

based on the length ∆p(v) of the shortest path from S+ to v with respect to the
modified arc length

γp(a) = γ(a) + p(∂+a)− p(∂−a) ≥ 0 (a ∈ Ẽ),(5.14)

where the nonnegativity of γp is due to (5.5)–(5.11). It can be shown [42] that p
satisfies the conditions (5.5)–(5.11).

To compute ωQ(B, iQ, jQ) we use two matrices (or two-dimensional arrays) P =
P (s) and S = S(s), as well as a vector (or one-dimensional array) base. The array P
represents an mQ × n matrix of rational functions in s over K , where P = Q at the
beginning of the algorithm (Step 1 below). The other array S is an mQ×mQ matrix
of rational functions in s over K , which is set to the unit (identity) matrix in Step 1.
Variable base is a vector of size mQ, which represents a mapping (correspondence):
RQ → C ∪ {0}. We also use a scalar (integer-valued) variable δQ to compute ωQ(B).

The following algorithm computes δLM
k (A) for k = 0, 1, 2, . . . , kmax, as well as the

value of kmax, where kmax = −1 by convention, if rankQ(s) < mQ.
Algorithm for δLM

k (A) (k = 0, 1, 2, . . . , kmax).
Step 1: (Initialize)

M := ∅; B := ∅; δQ := 0;
base[i] := 0 (i ∈ RQ); P [i, j] := Qij (i ∈ RQ, j ∈ C);
S := unit matrix of order mQ;
p[i] := maxk∈RT , j∈C degs Tkj(i ∈ RT); p[j] := p[jQ] := 0 (j ∈ C) (cf. (5.12)).

Step 2: (Find B ∈ BQ that maximizes ωQ)
While |B| < mQ do

{Find (h, j) that maximizes degs P [h, j]
s.t. base[h] = 0, jQ 6∈ B, and P [h, j] 6= 0;
If there exists no such (h, j), then stop with kmax := −1;
B := B + jQ; δQ := δQ + degs P [h, j]; M := M + (jQ, j);
base[h] := j; w := 1/P [h, j];
P [h, l] := w × P [h, l] (l ∈ C); S[h, l] := w × S[h, l] (l ∈ RQ);
P [m, l] := P [m, l]− P [m, j]× P [h, l] (h 6= m ∈ RQ, l ∈ C);
S[m, l] := S[m, l]− P [m, j]× S[h, l] (h 6= m ∈ RQ, l ∈ RQ) };

k := 0.
Step 3: (Construct the auxiliary graph G̃(M,B))

δLM
k (A) := δQ +

∑
(i,j)∈M∩ET

degs Tij ;

S+ := RT − ∂+(M ∩ ET); S− := C − ∂−M ; M◦ := {a | a ∈M};
E+ := {(iQ, jQ) | h ∈ RQ, jQ ∈ B,P [h, j] 6= 0, i = base[h]};

DEGREE OF MIXED POLYNOMIAL MATRIX 221

γ(a) :=

−degs Tij(s) (a = (i, j) ∈ ET)

degs Tij(s) (a = (j, i) ∈M◦T)
−degs P [h, j] (a = (iQ, jQ) ∈ E+, base[h] = i)
0 (a ∈ EQ ∪M◦Q)

(cf. (5.2))
where M◦T = {a | a ∈M ∩ ET }, M◦Q = {a | a ∈M ∩ EQ};

γp(a) := γ(a) + p(∂+a)− p(∂−a) (a ∈ Ẽ). (cf. (5.14))
Step 4: (Augment M along a shortest path)

For each v ∈ Ṽ compute the length ∆p(v) of the shortest path from S+ to v

in G̃(M,B) with respect to the modified arc length γp;
If there is no path from S+ to S− (including the case where S+ = ∅ or
S− = ∅), then stop with kmax := k;
Let L (⊆ E) be (the set of arcs on) a shortest path, having the smallest
number of arcs, from S+ to S− with respect to the modified arc length γp;
M := M − {a ∈M | a ∈ L ∩M◦}+ (L ∩ (ET ∪ EQ)) ; k := k + 1;

p[v] := p[v] + ∆p(v) (v ∈ Ṽ); (cf. (5.13))
For all (iQ, jQ) ∈ L ∩ E+ (in the order from S+ to S− along L) do the
following:

{Find h such that i = base[h];
B := B − iQ + jQ; δQ := δQ + degs P [h, j];
base[h] := j; w := 1/P [h, j];
P [h, l] := w × P [h, l] (l ∈ C); S[h, l] := w × S[h, l] (l ∈ RQ);
P [m, l] := P [m, l]− P [m, j]× P [h, l] (h 6= m ∈ RQ, l ∈ C);
S[m, l] := S[m, l]− P [m, j]× S[h, l] (h 6= m ∈ RQ, l ∈ RQ) };

Go to Step 3.

The shortest path in Step 4 can be found in time linear in the size of the graph
G̃, which is O((|R|+ |C|)2), by means of the standard graph algorithms; see, e.g., [1].

For the updates of P in Steps 2 and 4, the algorithm assumes the availability
of arithmetic operations on rational functions in a single variable s over the subfield
K . It is emphasized that no arithmetic operations are done on the T -part, so that
no rational function operations involving coefficients in T (which are independent
symbols) are needed.

The updates of P are the standard pivoting operations [19], the total number
of which is bounded by O(|R|2|C| kmax). Note that pivoting operations are required
for each arc (iQ, jQ) ∈ L ∩ E+ (see Step 4). The sparsity of P should be taken into
account in actual implementations of the algorithm.

The matrix S(s) gives the inverse of Q[RQ, B], which is often useful (see, e.g., the
proof of Theorem 4.6). When S(s) is not needed, it may simply be eliminated from
the computation without any side effect.

5.2. Example. The algorithm above is illustrated here for the 4 × 5 LM-poly-
nomial matrix A(s) of (4.19):

A(s) =

x1 x2 x3 x4 x5

s3 0 s3 + 1 s2 1
0 s2 s2 s 0

f1 −t1s3 0 0 α1 α2s
f2 0 −t2s2 α3 0 0

.(5.15)

222 KAZUO MUROTA

We work with a 2× 5 matrix P (s), a 2× 2 matrix S(s), a vector base of size 2, and
another vector p of size 12.

The flow of computation is traced below.
Step 1. M := ∅; B := ∅; δQ := 0;

(base, P, S) := r1 0
r2 0

,

x1 x2 x3 x4 x5

r1 s3 0 s3 + 1 s2 1
r2 0 s2 s2 s 0

, 1 0
0 1

;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

3 3 0 0 0 0 0 0 0 0 0 0
.

Step 2. (h, j) := (r1, x1); B := {x1Q}, δQ := 3; M := {(x1Q, x1)};

(base, P, S) := r1 x1

r2 0

,

x1 x2 x3 x4 x5

r1 1 0 s3+1
s3

1
s

1
s3

r2 0 s2 s2 s 0

, 1
s3 0
0 1

;

(h, j) := (r2, x2); B := {x1Q, x2Q}, δQ := 5; M := {(x1Q, x1), (x2Q, x2)};

(base, P, S) := r1 x1

r2 x2

,

x1 x2 x3 x4 x5

r1 1 0 s3+1
s3

1
s

1
s3

r2 0 1 1 1
s 0

, 1
s3 0
0 1

s2

;

k := 0.
Step 3. δLM

0 (A) := 5; S+ := {f1, f2}; S− := {x3, x4, x5};
M◦ := {(x1, x1Q), (x2, x2Q)};
E+ := {(x1Q, x3Q), (x1Q, x4Q), (x1Q, x5Q), (x2Q, x3Q), (x2Q, x4Q)};
γ and γp are given in G(0) of Fig. 2. (See G(0) in Fig. 2.)

Step 4.

∆p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

0 0 0 1 0 1 2 0 1 0 1 3
;

There exists a path from S+ to S−;
L := {(f1, x1), (x1, x1Q), (x1Q, x3Q), (x3Q, x3)};
M := {(f1, x1), (x2Q, x2), (x3Q, x3)}; k := 1;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

3 3 0 1 0 1 2 0 1 0 1 3
;

(iQ, jQ) := (x1Q, x3Q) ∈ L ∩ E+; h := r1; B := {x3Q, x2Q}, δQ := 5;

(base, P, S) := r1 x3

r2 x2

,

x1 x2 x3 x4 x5

r1
s3

s3+1 0 1 s2

s3+1
1

s3+1

r2 − s3

s3+1 1 0 1
s(s3+1)

−1
s3+1

,
1

s3+1 0

−1
s3+1

1
s2

.

DEGREE OF MIXED POLYNOMIAL MATRIX 223

Fig. 2. Graph G(0) (© : arcs in M, B = {x1Q, x2Q}, S+ = {f1, f2}, S− = {x3, x4, x5}).

Fig. 3. Graph G(1) (© : arcs in M, B = {x2Q, x3Q}, S+ = {f2}, S− = {x4, x5}).

224 KAZUO MUROTA

Fig. 4. Graph G(2) (©: arcs in M, B = {x1Q, x3Q}, S+ = ∅, S− = {x4}).

Step 3. δLM
1 (A) := 5 + 3 = 8; S+ := {f2}; S− := {x4, x5};
M◦ :={(x1, f1), (x2, x2Q), (x3, x3Q)};
E+ :={(x2Q, x1Q), (x2Q, x4Q), (x2Q, x5Q), (x3Q, x1Q), (x3Q, x4Q), (x3Q, x5Q)};
γ and γp are given in G(1) of Fig. 3. (See G(1) in Fig. 3.)

Step 4.

∆p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

1 0 1 0 3 3 1 1 0 3 3 1
;

There exists a path from S+ to S−;
L := {(f2, x2), (x2, x2Q), (x2Q, x1Q), (x1Q, x1), (x1, f1), (f1, x5)};
M := {(f1, x5), (f2, x2), (x1Q, x1), (x3Q, x3)}; k := 2;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

4 3 1 1 3 4 3 1 1 3 4 4
;

(iQ, jQ) := (x2Q, x1Q) ∈ L ∩ E+; h := r2; B := {x3Q, x1Q}, δQ := 5;

(base, P, S) := r1 x3

r2 x1

,

x1 x2 x3 x4 x5

r1 0 1 1 1
s 0

r2 1 −s3−1
s3 0 −1

s4
1
s3

, 0 1
s2

1
s3

−s3−1
s5

.

Step 3. δLM
2 (A) := 5 + 3 = 8; S+ := ∅; S− := {x4};
M◦ := {(x5, f1), (x2, f2), (x1, x1Q), (x3, x3Q)};
E+ := {(x1Q, x2Q), (x1Q, x4Q), (x1Q, x5Q), (x3Q, x2Q), (x3Q, x4Q)};
γ and γp are given in G(2) of Fig. 4. (See G(2) in Fig. 4.)

Step 4. There exists no path from S+ (= ∅) to S−;
Stop with kmax := 2.

DEGREE OF MIXED POLYNOMIAL MATRIX 225

Acknowledgments. The author expresses his thanks to Satoru Iwata for dis-
cussion and to Vincent Hovelaque, Akiyoshi Shioura, and Jacob van der Woude for
comments.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, North–Holland, New York, 1989.

[3] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press,
London, 1991.

[4] P. Bujakiewicz, Maximum Weighted Matching for High Index Differential Algebraic Equa-
tions, Doctoral thesis, Delft University of Technology, The Netherlands, 1994.

[5] C. Commault and J.-M. Dion, Structure at infinity of linear multivariable systems: A geo-
metric approach, IEEE Trans. Automat. Control, AC-27 (1982), pp. 693–696.

[6] C. Commault, J.-M. Dion, A. Perez, Disturbance rejection for structured systems, IEEE
Trans. Automat. Control, AC–36 (1991), pp. 884–887.

[7] A. W. M. Dress and W. Terhalle, Well-layered maps and the maximum-degree k × k-
subdeterminant of a matrix of rational functions, Appl. Math. Lett., 8 (1995), pp. 19–23.

[8] A. W. M. Dress and W. Terhalle, Well-layered maps – A class of greedily optimizable set
functions, Appl. Math. Lett., 8 (1995), pp. 77–80.

[9] A. W. M. Dress and W. Terhalle, Rewarding maps – On greedy optimization of set func-
tions, Adv. Appl. Math., 16 (1995), pp. 464–483.

[10] A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett., 3 (1990), pp. 33–35.

[11] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math., 93 (1992), pp. 214–250.
[12] J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Stand.,

71B (1967), pp. 241–245.
[13] J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-

tures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Gordon
and Breach, New York, 1970, pp. 69–87.

[14] J. Edmonds, Matroid intersection, Ann. Discrete Math., 14 (1979), pp. 39–49.
[15] U. Faigle, Matroids in combinatorial optimization, in Combinatorial Geometries, N. White,

ed., Cambridge University Press, London, 1987, pp. 161–210.
[16] A. Frank, A weighted matroid intersection algorithm, J. Algorithms, 2 (1981), pp. 328–336.
[17] S. Fujishige, A primal approach to the independent assignment problem, J. Oper. Res. Soc.

Japan, 20 (1977), pp. 1–15.
[18] S. Fujishige, Submodular Functions and Optimization, Ann. Discrete Math. 47, North–

Holland, Amsterdam, 1991.
[19] F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[20] C. W. Gear, Differential-algebraic equation index transformations, SIAM J. Sci. Statist. Com-

put., 9 (1988), pp. 39–47.
[21] C. W. Gear, Differential algebraic equations, indices, and integral algebraic equations, SIAM

J. Numer. Anal., 27 (1990), pp. 1527–1534.
[22] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,

1982.
[23] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag,

Berlin, 1991.
[24] M. L. J. Hautus, The formal Laplace transform for smooth linear systems, in Mathematical

Systems Theory, Lecture Notes in Econom. and Math. Systems 131, G. Marchesini and S.
K. Mitter, eds., Springer-Verlag, Berlin, 1976, pp. 29–47.

[25] Y. Hayakawa, S. Hosoe, and M. Ito, Dynamical degree and controllability for linear systems
with intermediate standard form, Trans. Inst. Electron. Comm. Engrs. Japan, J64A (1981),
pp. 752–759 (in Japanese).

[26] V. Hovelaque, C. Commault, and J.-M. Dion, Analysis of linear structured systems using
primal-dual algorithm, Systems Control Lett., 27 (1996), pp. 73–85.

[27] M. Iri, Applications of matroid theory, in Mathematical Programming – The State of the Art,
A. Bachem, M. Grötschel, and B. Korte, eds., Springer-Verlag, Berlin, 1983, pp. 158–201.

[28] M. Iri and N. Tomizawa, An algorithm for finding an optimal “independent assignment,”
J. Oper. Res. Soc. Japan, 19 (1976), pp. 32–57.

226 KAZUO MUROTA

[29] S. Iwata and K. Murota, Combinatorial Relaxation Algorithm for Mixed Polynomial Matri-
ces, RIMS Preprint 1113, Kyoto University, Kyoto, Japan, 1996.

[30] S. Iwata, K. Murota, and I. Sakuta, Primal-dual combinatorial relaxation algorithms for
the maximum degree of subdeterminants, SIAM J. Sci. Comput., 17 (1996), pp. 993–1012.

[31] B. Korte, L. Lovász, and R. Schrader, Greedoids, Springer-Verlag, Berlin, 1991.
[32] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-

ston, New York, 1976.
[33] K. Murota, Use of the concept of physical dimensions in the structural approach to systems

analysis, Japan J. Appl. Math., 2 (1985), pp. 471–494.
[34] K. Murota, Systems Analysis by Graphs and Matroids – Structural Solvability and Control-

lability, Algorithms Combin. 3, Springer-Verlag, Berlin, 1987.
[35] K. Murota, On the irreducibility of layered mixed matrices, Linear and Multilinear Algebra,

24 (1989), pp. 273–288.
[36] K. Murota, Mixed matrices – Irreducibility and decomposition, in Combinatorial and Graph-

Theoretical Problems in Linear Algebra, IMA Vol. Math. Appl. 50, R. A. Brualdi, S. Fried-
land, and V. Klee, eds., Springer-Verlag, New York, 1993, pp. 39–71.

[37] K. Murota, Computing the degree of determinants via combinatorial relaxation, SIAM J. Com-
put., 24 (1995), pp. 765–796.

[38] K. Murota, Combinatorial relaxation algorithm for the maximum degree of subdeterminants:
Computing Smith–McMillan form at infinity and structural indices in Kronecker form,
Appl. Algebra Engrg., Comm. Comput., 6 (1995), pp. 251–273.

[39] K. Murota, Finding optimal minors of valuated bimatroids, Appl. Math. Lett., 8 (1995),
pp. 37–42.

[40] K. Murota, Structural approach in systems analysis by mixed matrices – An exposition for
index of DAE, in ICIAM 95 (Proceedings of the Third International Congress on Industrial
and Applied Mathematics held in Hamburg, Germany, July 3–7, 1995), Math. Res. 87, K.
Kirchgässner, O. Mahrenholtz, and R. Mennicken, eds., Akademie Verlag, Berlin, 1996,
pp. 257–279.

[41] K. Murota, Valuated matroid intersection, I: Optimality criteria, SIAM J. Discrete Math., 9
(1996), pp. 545–561.

[42] K. Murota, Valuated matroid intersection, II: Algorithms, SIAM J. Discrete Math., 9 (1996),
pp. 562–576.

[43] K. Murota, Convexity and Steinitz’s exchange property, Adv. Math., 124 (1996), pp. 272–311.
Extended abstract in Integer Programming and Combinatorial Optimization (Proceedings
of 5th International IPCO Conference, Vancouver, British Columbia, Canada, June 3–5,
1996), Lecture Notes in Comput. Sci. 1084, W. H. Cunningham, S. T. McCormick, and M.
Queyranne, eds., Springer-Verlag, New York, 1996, pp. 260–274.

[44] K. Murota, Characterizing a valuated delta-matroid as a family of delta-matroids, J. Oper.
Res. Soc. Japan, 40 (1997), pp. 565–578.

[45] K. Murota and M. Iri, Structural solvability of systems of equations – A mathematical formu-
lation for distinguishing accurate and inaccurate numbers in structural analysis of systems,
Japan J. Appl. Math., 2 (1985), pp. 247–271.

[46] K. Murota, M. Iri and M. Nakamura, Combinatorial canonical form of layered mixed matri-
ces and its application to block-triangularization of systems of linear/nonlinear equations,
SIAM J. Algebraic Discrete Meth., 8 (1987), pp. 123–149.

[47] K. Murota and J. W. van der Woude, Structure at infinity of structured descriptor systems
and its applications, SIAM J. Control Optim., 29 (1991), pp. 878–894.

[48] M. Newman, Integral Matrices, Academic Press, London, 1972.
[49] A. Recski, Matroid Theory and Its Applications in Electric Network Theory and in Statics,

Algorithms Combin. 6, Springer-Verlag, Berlin, 1989.
[50] K. J. Reinschke, Multivariable Control, A Graph-Theoretic Approach, Springer-Verlag, New

York, 1988.
[51] H. H. Rosenbrock, State-Space and Multivariable Theory, Nelson, London, 1970.
[52] N. Suda, B. Wan, and I. Ueno, The orders of infinite zeros of structured systems, Trans. Soc.

Instrument Control Engrs. Japan, 25 (1989), pp. 1062–1068 (in Japanese).
[53] F. Svaricek, An improved graph theoretic algorithm for computing the structure at infinity of

linear systems, in Proceedings of the 29th Conference on Decision and Control, Honolulu,
HI, December 1990, pp. 2923–2924.

[54] F. Svaricek, Zuverlässige numerische Analyse linearer Regelungssysteme, Teubner, Stuttgart,
1995.

[55] N. Tomizawa and M. Iri, An algorithm for determining the rank of a triple matrix product
AXB with applications to the problem of discerning the existence of the unique solution

DEGREE OF MIXED POLYNOMIAL MATRIX 227

in a network, Trans. Inst. Electron. Comm. Engrs. Japan, 57A (1974), pp. 834–841 (in
Japanese). English translation in Electron. Comm. Japan, 57A (1974), pp. 50–57.

[56] N. Tomizawa and M. Iri, An algorithm for solving the “independent assignment” problem
with application to the problem of determining the order of complexity of a network,
Trans. Inst. Electron. Comm. Engrs. Japan, 57A (1976), pp. 627–629 (in Japanese).

[57] J. Ungar, A. Kröner, and W. Marquardt, Structural analysis of differential-algebraic equa-
tion systems: Theory and application, Comput. Chemical Engrg., 19 (1995), pp. 867–882.

[58] G. C. Verghese and T. Kailath, Rational matrix structure, IEEE Trans. Automat. Control,
AC-26 (1981), pp. 434–439.

[59] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, Cambridge,
MA, 1985.

[60] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
[61] N. White, ed., Theory of Matroids, Cambridge University Press, London, 1986.
[62] J. C. Willems, From time series to linear systems, Part I: Finite dimensional linear time

invariant systems, Automatica, 22 (1986), pp. 561–580.
[63] J. C. Willems, Dynamical systems, controllability, and observability: A post-modern point of

view, in Mathematical System Theory, A. C. Antoulas, ed., Springer-Verlag, Berlin, 1991,
pp. 17–37.

[64] J. W. van der Woude, Causality relations in linear structured systems, in Comm. Control
Signal Processing, E. Arikan, ed., Elsevier, New York, 1990, pp. 772–778.

[65] J. W. van der Woude, On the structure at infinity of a structured system, Linear Algebra
Appl., 148 (1991), pp. 145–169.

[66] J. W. van der Woude, The generic dimension of a minimal realization of an AR-system,
Math. Control Signals Systems, 8 (1995), pp. 50–64.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS AND
HAMILTONIAN-LIKE MATRICES∗

JONQ JUANG† AND WEN-WEI LIN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 228–243

Abstract. We consider a nonsymmetric algebraic matrix Riccati equation arising from transport
theory. The nonnegative solutions of the equation can be explicitly constructed via the inversion
formula of a Cauchy matrix. An error analysis and numerical results are given. We also show a
comparison theorem of the nonnegative solutions.

Key words. Hamiltonian, algebraic Riccati equation, M-matrices, nonnegative matrices, trans-
port theory

AMS subject classifications. 15A24, 82C70

PII. S0895479897318253

1. Introduction. In transport theory, a variation of the usual one-group neu-
tron transport equation [2, 8, 10] is formulated as{

(µ+ α)
∂

∂x
+ 1

}
ϕ(x, µ) =

c

2

∫ 1

−1

ϕ(x, ω)dω,(1a)

ϕ(0, µ) = f(µ), µ > −α, |µ| ≤ 1,(1b)

lim
x→∞ϕ(x, µ) = 0.(1c)

Here ϕ is the neutron flux, α (0 ≤ α < 1) is an angular shift, and c is the average
of the total number of particles emerging from a collision, which is assumed to be
conservation; i.e., 0 ≤ c ≤ 1.

The scattering function (see, e.g., [15]) for particle transport (or radiative trans-
fer) in the half-space can be derived from (1) via invariant embedding [2]. Such
a scattering function satisfies the following integrodifferential equation (see the ap-
pendix in [15]):(

1

µ+ α
+

1

ν − α

)
X(µ, ν) = c

[
1 +

1

2

∫ 1

−α

X(ω, ν)

ω + α
dω

][
1 +

1

2

∫ 1

α

X(µ, ω)

ω − α dω

]
,(2)

with (µ, ν) ∈ [−α, 1] × [α, 1]. Here the function X : [−α, 1] × [α, 1] → R is called a
scattering function. For the case in which c = 0 or α = 1, (2) has a trivial solution.
When α = 0, the existence of nonnegative solutions of (2) has been studied by many
authors (see, e.g., [15] and the works cited therein). In fact, for this case, the two
integrals in (2) are the usual Chandrasekhar H-function [5, 15].

Discretization of the integrodifferential equation of (2) yields an algebraic matrix
Riccati equation. To see this, let {ωk}nk=1 and {ck}nk=1 denote the sets of the Gauss–
Legendre nodes and weights, respectively, on [0, 1] with

0 < ωn < · · · < ω2 < ω1 < 1(3a)

∗Received by the editors March 7, 1997; accepted for publication (in revised form) by V.
Mehrmann January 28, 1998; published electronically September 23, 1998. This work was sup-
ported in part by the National Science Council of the R.O.C. on Taiwan.

http://www.siam.org/journals/simax/20-1/31825.html
†Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 31015,

Republic of China (jjuang@math.nctu.edu.tw).
‡Institute of Applied Mathematics, National Tsing Hwa University, Hsinchu, Taiwan 30043, Re-

public of China (wwlin@am.nthu.edu.tw).

228

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 229

and

n∑
k=1

ck = 1, ck > 0, k = 1, 2, . . . , n.(3b)

Transforming the Gauss–Legendre nodes and weights on [0, 1] to the intervals [−α, 1]
and [α, 1], respectively, we have the following relationships:

ω−k = {(1 + α)ωk − α} ∈ [−α, 1], c−k = ck(1 + α),(4a)

ω+
k = {(1− α)ωk + α} ∈ [α, 1], c+k = ck(1− α)(4b)

for k = 1, . . . , n. Let Xij = X(ω−i , ω
+
j), i, j = 1, . . . , n. Replacing µ, ν with ω−i and

ω+
j , respectively, in (2), the integrals in (2) can be approximated by∫ 1

−α

X(ω, ω+
j)

ω + α
dω ∼

n∑
k=1

c−k Xkj

ω−k + α

and ∫ 1

α

X(ω−i , ω)

ω − α dω ∼
n∑
k=1

c+kXik

ω+
k − α

.

Consequently, the descretized version of (2) becomes

1

c(ω−i + α)
Xij +

1

c(ω+
j − α)

Xij

= 1 +
1

2

n∑
k=1

c−k Xkj

ω−k + α
+

1

2

n∑
k=1

c+kXik

ω+
k − α

+
1

4

n∑
k=1

n∑
l=1

Xikc
+
k c
−
l Xlj

(ω+
k − α)(ω−l + α)

.(5)

Substituting (4) into (5) and writing the resulting equation in matrix form, we get
an n× n nonsymmetric algebraic matrix Riccati equation in X:

B −AX −XD +XCX = 0,(6)

where A,B,C, and D have the following structures:

A = diag[δ1, δ2, . . . , δn]− eqT ,(7a)

B = eeT ,(7b)

C = qqT ,(7c)

and

D = diag[d1, d2, . . . , dn]− qeT ,(7d)

where

δi =
1

cwi(1 + α)
, di =

1

cwi(1− α)
,(8a)

and

e = [1, 1, . . . , 1]T , q = [q1, q2, . . . , qn]T with qi =
ci

2wi
.(8b)

230 JONQ JUANG AND WEN-WEI LIN

In studying (6), we may assume that all the data are real and that 0 < c ≤ 1, 0 ≤
α < 1, and (3) are satisfied. Consequently, we may assume that

0 < δ1 < δ2 < · · · < δn(9a)

and

0 < d1 < d2 < · · · < dn.(9b)

In addition, we may assume that

di = δi for α = 0, di > δi for α 6= 0, i = 1, 2, . . . , n.(9c)

Recently, the existence of nonnegative solutions (in the componentwise sense) of
(6) was demonstrated via the degree theory by Juang [13]. Some iterative procedures
[14] have been developed for finding the nonnegative solutions of (6). However, for
the case in which c ≈ 1 and α ≈ 0, the convergence rates of these procedures are very
slow, which is unsatisfactory.

Now, let H denote a 2× 2 block matrix of the form

H :=

[
D −C
B −A

]
,(10)

where A,B,C, and D are as defined in (7). We call this matrix H a Hamiltonian-
like matrix of (6). In this paper, we develop a different approach to constructing
the nonnegative solutions of (6) based on computing the invariant subspaces of H
corresponding to some specified eigenvalues. The inversion formula of a Cauchy
matrix is also used to explicitly construct such solutions. Our approach gives a
complete representation and bifurcation diagram, with respect to parameters c and
α, for nonnegative solutions of (6). Furthermore, it provides a numerical algorithm
for computing the nonnegative solutions of (6) and avoids the deficiencies inherent in
the iterative procedures mentioned above.

Symmetric algebraic Riccati equations arising from linear-quadratic control prob-
lems are often solved by computing the “stable” invariant subspace of the correspond-
ing Hamiltonian matrix H̃ (see, e.g., [17, p. 55]). Such equations have been treated
at length in the literature (see, e.g., [17] and the works cited therein). Here H̃ is of

the form H̃ =
[ÃT −C̃
B̃ −Ã

]
, where B̃, C̃ are symmetric and Ã is arbitrary. On the other

hand, nonsymmetric Riccati equations (see, e.g., [7, 18]) are less well understood than
their symmetric counterparts. Note that H, given in (10), is a Hamiltonian matrix
only when c = 1 and α = 0, which is why we call it a Hamiltonian-like matrix.
Moreover, we are seeking a nonnegative solution of (6), as opposed to the positive
semidefinite solutions found in linear-quadratic control problems or the nonsingular
solutions found in polynomial factorizations.

This paper is organized as follows. In section 2, we analyze the eigenvalue dis-
tribution of H and characterize the components of the associated eigenvectors. In
section 3, a complete representation and bifurcation diagram of the nonnegative solu-
tions of (6) are established. In particular, we show that (6) has a unique nonnegative
solution when c = 1 and α = 0 and two nonnegative solutions otherwise. An error
analysis and some numerical experiments for the computation of the nonnegative
solutions are given in section 4. In section 5, some comparison results are derived.
Specifically, we are able to show that the minimal solution of (6) is increasing in c and
decreasing in α. Our concluding section primarily contains some thoughts regarding
possible future research related to the results presented here. For completeness and

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 231

ease of reference, we conclude this introductory section by recording some well-known
results.

In what follows, we shall give the definition of the M-matrix and its properties
(see, e.g., [19, p. 54]).

Definition 1.1. A real n × n matrix A is an M-matrix if there exists a
nonnegative matrix B with a maximal eigenvalue r such that A = cIn − B, where
c ≥ r.

Theorem 1.2. Let matrix A be an n×n nonsingular real matrix with nonpositive
off-diagonal elements. Then the following are equivalent:
(i) A is an M-matrix. (ii) Every real eigenvalue in A is nonnegative. (iii) A−1 is
nonnegative.

Theorem 1.3. Let two n × n matrices Ai, i = 1, 2, be decomposed into Ai =
Di − Bi, respectively, where Di, i = 1, 2, are diagonal parts of Ai, i = 1, 2. Suppose
A1 is an invertible M-matrix, D1 ≤ D2, and B1 ≥ B2 ≥ 0. A2 is then an M-matrix
and A−1

2 ≤ A−1
1 .

2. Properties of the Hamiltonian-like matrix H. In this section, we ana-
lyze the eigenvalue distribution of H given in (10) and characterize the components
and properties of the associated eigenvectors.

Lemma 2.1. The matrix H, as defined in (10), has only real eigenvalues
{−µn, . . . ,−µ1, λ1, . . . , λn}, which are arranged in an ascending order and satisfy
the following inequalities:

−δn < −µn < −δn−1 < . . . < −δ2 < −µ2 < −δ1 < −µ1 ≤ 0,(11a)

0 ≤ λ1 < d1 < λ2 < d2 < . . . < λn < dn.(11b)

Moreover, the following hold: (i) µ1 = 0 only if c = 1. (ii) λ1 = 0 only if c = 1 and
α = 0. (iii) µi = λi, i = 1, 2, . . . , n, for α = 0.

Proof. Let

D1 = diag[d1, d2, . . . , dn] and ∆1 = diag[δ1, δ2, . . . , δn].(12)

We rewrite H − λI as

H − λI =

[
D1 0
0 −∆1

]
− λI −

[
q
−e

] [
eT , qT

]
.(13)

The secular equation (see, e.g., [3, 6, 11]) of H − λI is given by

f(λ) = 1− (eT , qT)

[
(D1 − λI)−1 0

0 −(∆1 + λI)−1

] [
q
−e

]
= 1−

n∑
i=1

qi
di − λ −

n∑
i=1

qi
δi + λ

.(14)

Since λ = di and −δi, i = 1, . . . , n, are not eigenvalues of H, finding eigenvalues
of H is equivalent to locating the roots of f(λ). Using (14), we immediately have the
following asymptotic properties:

lim
λ→±∞

f(λ) = 1, lim
λ→d±

i

f(λ) = ±∞, lim
λ→−δ±

i

f(λ) = ∓∞, i = 1, 2, . . . , n.

The intermediate value theorem indicates that f(λ) must have at least one root in
each of the intervals (di, di+1) and (−δi+1,−δi), where i = 1, 2, . . . , n−1. Thus, there

232 JONQ JUANG AND WEN-WEI LIN

are at least 2n− 2 roots in those intervals. We next examine the number of possible
roots of f(λ) in the interval (−δ1, d1). To this end, we evaluate f(0) and its rate of
change, f

′
(0).

From (14), (8), and (3b), it can be determined that

f(0) = 1−
n∑
i=1

ci
2ωi

cωi(1− α)−
n∑
i=1

ci
2ωi

cωi(1 + α)

= 1− c
{
> 0 for 0 ≤ c < 1,
= 0 for c = 1

(15a)

and

f ′(0) = −1

2

n∑
i=1

cic
2ωi(1− α)2 +

1

2

n∑
i=1

cic
2ωi(1 + α)2

= 2αc2
n∑
i=1

ciωi

{
> 0 for α > 0,
= 0 for α = 0.

(15b)

Since limλ→−δ+
1
f(λ) = limλ→d−1 f(λ) = −∞, we conclude, via (15), that, for 0 < c <

1, f(λ) has two other roots. Specifically, one is in (−δ1, 0) and the other is in (0, d1).
It follows from (15) that, for c = 1 and 0 < α < 1, one root of f(λ) is zero and the
other root is in (0, d1), and for c = 1 and α = 0, f(λ) has a zero root of multiplicity
2. We thus complete the proof of the lemma.

The following results can be easily obtained by studying the secular equations of
A and D. The proof of the lemma is thus omitted.

Lemma 2.2. The eigenvalues of A and D are real and positive.

We now turn our attention to the eigenvectors corresponding to the eigenvalues
λk and µk of H for k = 1, . . . , n.

Lemma 2.3. Let [x1,k, . . . , x2n,k]
T

and [z1,k, . . . , z2n,k]
T

be the eigenvectors of H
corresponding to λk and −µk, respectively, for k = 1, . . . , n. Then it holds that

xi,k =
qi(δn + λk)

di − λk and xn+i,k =
δn + λk
δi + λk

, i = 1, . . . , n,(16)

zi,k =
qi(δn − µk)

di + µk
and zn+i,k =

δn − µk
δi − µk , i = 1, . . . , n,(17)

for k = 1, . . . , n.

Proof. Let xk = [x1,k, x2,k, . . . , x2n,k]
T

be the eigenvector corresponding to λk;
i.e., (H − λkI)xk = 0. Writing H − λkI in the form of (13) and using the last
component −1 in

[
q
−e
]

as a pivotal element to eliminate the other elements of
[
q
−e
]
,

we get

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 233

(18)

d̃1,k 0 · · · 0 0 · · · · · · 0 −q1δ̃n,k

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

...
. . . d̃n,k 0

... −qnδ̃n,k
... 0 −δ̃1,k . . .

... δ̃n,k
... 0

. . .
. . .

...
...

...
. . .

. . . 0
...

0 · · · · · · 0 0 · · · 0 −δ̃n−1,k δ̃n,k
1 · · · · · · 1 q1 · · · · · · qn−1 −δ̃n,k + qn

x1,k

...

...
xn,k
xn+1,k

...

...
x2n−1,k

x2n,k

= 0.

Here, d̃i,k = di − λk and δ̃i,k = δi + λk. Letting x2n,k = 1, we see, via (18), that

xi,k =
qiδ̃n,k

d̃i,k
=
qi(δn + λk)

di − λk and xn+i,k =
δ̃n

δ̃i
=
δn + λk
δi + λk

(19)

for i = 1, . . . , n. The eigenvectors corresponding to −µk can be obtained in a similar
way.

Proposition 2.4. For c = 1 and α = 0, λ1 = µ1 = 0 is a zero eigenvalue of H
that has an algebraic multiplicity of two and a geometric multiplicity of one.

Proof. From Lemma 2.1 we see that the eigenvalues λ1 = µ1 = 0 of H has
algebraic multiplicity of two. To see the geometric multiplicity of λ1 = µ1 = 0, by
noting the leading principal (2n−1)× (2n−1) minor of the coefficient matrix in (18)
with d̃i,k = di and δ̃i,k = δi is nonzero, we conclude that the geometric multiplicity
of λ1 = µ1 = 0 is one.

Let

W =

[
1

di − λj

]n
i,j=1

:= [wi,j],(20)

where {di}ni=1 and {λj}nj=1 are given in Lemma 2.3. Then W is a Cauchy matrix.

We next state a result of [9] which is very useful in proving our main results.
Lemma 2.5. (i) (See Theorem 3.1 of [9].) The matrix W defined in (20) is

nonsingular, and its inverse is given by

W−1 = D1W
TD2,(21)

where D1 = diag(α1, . . . , αn) and D2 = diag(β1, . . . , βn) with

αi =

− n

Π
j=1

(λi − dj)
n

Π
j=1,j 6=i

(λi − λj)
and βi =

n

Π
j=1

(di − λj)
n

Π
j=1,j 6=i

(di − dj)
,(22)

for i = 1,. . . , n. Moreover, αi, βi > 0 for 1 ≤ i ≤ n. For n = 1 the denominators in
(24) is interpreted as 1.

(ii) Let α = [α1, . . . , αn]T , β = [β1, . . . , βn]T . Then Wα = e and WTβ = e.
Here e is given in (8b).

234 JONQ JUANG AND WEN-WEI LIN

Proof. We need only to prove the second part of the lemma. To this end, let
WTβ = f = [f1, f2, . . . , fn]T . By (20) and (22),

fi =
n∑
k=1

n

Π
j=1,j 6=i

(dk − λj)
n

Π
j=1,j 6=k

(dk − dj)
=:

n∑
k=1

rk.

Let φi(λ) =
n

Π
j=1,j 6=i

(λ− λj), which is an n− 1 order monic polynomial. Set

ψ(λ) :=

n∑
k=1

rk

n∏
j=1,j 6=k

(λ− dj).

Then ψ(λ) is the Lagrangian interplating polynomial of φi(λ) at the points d1, . . . , dn.
That is, φi(dj) = ψ(dj), j = 1, . . . , n. Because the order of ψ(λ) is also n − 1, we
have φi(λ) ≡ ψ(λ). By comparing the first coefficient, we get fi = 1. So we have
WTβ = e. Finally, W−1e = D1W

TD2e = D1W
Tβ = D1e = α. We thus complete

the proof of the lemma.
Remark 2.1. Let αi and βi be as given in (22) except with λ1 on the respective

products replaced by −µk. Denote such new αi and βi by αi,k and βi,k, respectively.
Then the assertions in the second part of Lemma 2.5 still hold for the corresponding
W since the interlace property remains true.

We next show the matrices X1 and Z
(k)
1 , given in (23), are invertible. Such

assertions will be used in constructing the solution of the algebraic Riccati equation
(6) in section 3.

Theorem 2.6. Let

X1 =

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

...
xn,1 xn,2 · · · xn,n

 , Z(k)
1 =

z1,k x1,2 · · · x1,n

z2,k x2,2 · · · x2,n

...
...

...
zn,k xn,2 · · · xn,n

 ,(23)

where xi,k and zi,k, 1 ≤ i, k ≤ n, are defined in (16) and (17), respectively. Then X1

and Z
(k)
1 , k = 1, 2, . . . , n, are invertible.

Proof. From (16), decompose X1 into

X1 = DqWDδ,(24)

where

Dq = diag[q1, q2, . . . , qn],(25a)

Dδ = diag[δn + λ1, δn + λ2, . . . , δn + λn],(25b)

and W is defined as in (20). Thus, the nonsingularity of W , and therefore of X1,

follows immediately from Lemma 2.5. The assertion for Z
(k)
1 , k = 1, . . . , n, can be

similarly obtained.
Corollary 2.7. Let X−1

1 = [x̃i,j]
n
i,j=1. Then it holds that

x̃i,j > 0 for i ≤ j and x̃i,j < 0 for i > j.(26)

Similarly, let (Z
(k)
1)−1 = [z̃

(k)
i,j]ni,j . The corresponding elements z̃

(k)
i,j , i, j = 1, 2, . . . , n,

then satisfy the relationship shown in (26).
Proof. The statement (26) follows immediately from (21), (22), and (24).

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 235

3. Existence and multiplicity of nonnegative solutions. Our object in this
section is to study the existence and multiplicity of the nonnegative solutions of (6).
To derive the main results, we first write (6) in the form

[
D −C
B −A

] [
I
X

]
=

[
I
X

]
(D − CX).(27)

It is easily seen that the Span {[IX]} forms an invariant subspace of H corre-
sponding to the matrix D − CX. We first recall the following well-known theorem
(see, e.g., [17]).

Theorem 3.1. If the Span {[X1

X2

]} forms an invariant subspace of H associated

with the matrix Λ ∈ Rn×n and if X1 is invertible, then X = X2X
−1
1 is a solution of

(6).

Proposition 3.2. If X is a nonnegative solution of (6), then {λ2, λ3, . . . , λn}
must be the eigenvalues of D−CX. Consequently, (6) has at most n+ 1 nonnegative
solutions and at most n nonnegative solutions when c = 1 and α = 0.

Proof. Let X be a nonnegative solution of (6). Then,

D − CX = D1 − q(eT + qTX) := D1 − qq̃T

with q̃i > 0 for all i. The secular equation of D1 − qq̃T is

s(λ) = 1−
n∑
i=1

qiq̃i
di − λ.

Since s(−∞) > 0, s(d−1) < 0, and s(d+
i)s(d−i+1) < 0 for i = 1, 2, . . . , n − 1, we may

conclude that D−CX has n distinct real eigenvalues λ̃1, λ̃2, . . . , λ̃n. Moreover, there
are at least n−1 positive eigenvalues, say, λ̃i > 0, i = 2, . . . , n. Since σ(D−CX), the
spectrum of D − CX, is contained in σ

([
D −C
B −A

])
, it then follows from Lemma 2.1

that λi = λ̃i for i = 2, 3, . . . , n. The assertions in the proposition then follow from
Theorem 3.1 and Proposition 2.4.

Remark 3.1. From Lemma 2.1, Theorem 3.1, and Proposition 2.4, we conclude
that (6) has at most

(
2n
n

) − (2n−2
n−1

)
solutions for c = 1 and α = 0 and at most

(
2n
n

)
solutions otherwise.

We next prove the following main result.

Theorem 3.3. Let
[
X1

X2

]
and

[Z(1)
1

Z
(1)
2

]
be the eigenvector matrices of H correspond-

ing to Λ = diag[λ1, λ2, . . . , λn] and Γ1 = diag[−µ1, λ2, . . . , λn], respectively. Then

X = X2X
−1
1 and Z = Z

(1)
2 (Z

(1)
1)−1 are positive solutions of Riccati equation (6).

Moreover, Z ≥ X > 0.

Proof. We first prove that X2X
−1
1 is positive. Let W2 =

[
1

δi+λj

]
, Dδ, and Dq be

given in (25). Using (16), we see that X2 = W2Dδ and X1 = DqWDδ. Hence,

X = W2W
−1D−1

q = W2D1W
TD2D

−1
q ,

where D1 and D2 are given in (21). Let X = [χi,j]. We see that

χi,j =

{
n∑
`=1

(
1

δi + λ`

)(
1

dj − λ`

)
α`

}(
βj
qj

)
.

236 JONQ JUANG AND WEN-WEI LIN

Using the identity

1

(δi + λ`)(dj − λ`) =
1

δi + dj

(
1

δi + λ`
+

1

dj − λ`

)
and recognizing

n∑
`=1

α`
dj − λ` = (Wα)j = 1,(28)

we see that

χi,j =
βj

qj(δi + dj)

(
1 +

n∑
`=1

α`
δi + λ`

)
> 0.(29)

The last equality in (28) is justified by Lemma 2.5 (ii). To complete the proof of the

theorem, let Z = Z
(1)
2 (Z

(1)
1)−1 = [ζi,j]. Here Z

(1)
1 is given in (23) and

Z
(1)
2 =

zn+1,1 xn+1,2 xn+1,3 · · · xn+1,n

zn+2,1 xn+2,2 xn+2,3 · · · xn+2,n

...
...

... · · · ...
zn+n,1 xn+n,2 xn+n,3 · · · xn+n,n

 ,
where zn+i,1 and xn+i,k are defined in (16) and (17), respectively.

To complete the proof of the theorem, it remains to show that Z − X ≥ 0. To
this end, we see that

Z −X = (Z
(1)
2 −XZ(1)

1)(Z
(1)
1)−1

= {(Z(1)
2 −X2) +X(X1 − Z(1)

1)}(Z(1)
1)−1

=: F (Z
(1)
1)−1.

Using (16), (17) and doing some direct calculations, we see that F must be of the
form F = geT1 , where g is a nonnegative vector and eT1 = (1, 0, . . . , 0)T . Note, via

Corollary 2.7, that eT1 (Z
(1)
1)−1 ≥ 0. Thus Z − X = F (Z

(1)
1)−1 = geT1 (Z

(1)
1)−1 ≥ 0.

The proof of the theorem is thus complete.
Remark 3.2. Using Remark 2.1 and a procedure similar to that above, we have

that ζi,j are defined as in (29) except with λ1 in the respective products and summa-
tion taken as −µ1; i.e.,

ζi,j =
βj,1

qj(δi + dj)

(
1 +

α1,1

δi − µ1
+

n∑
`=2

α`,1
δi + λ`

)
.(30)

Theorem 3.4. Equation (6) has a unique nonnegative solution when c = 1 and
α = 0; otherwise, when 0 < c < 1 and 0 < α < 1, it has two nonnegative solutions.

Proof. From Proposition 3.2, it suffices to show, at this stage, that for

k = 2, . . . , n, letting
[Z(k)

1

Z
(k)
2

]
be the eigenvector matrices of H corresponding to

{−µk, λ2, . . . , λn}, respectively, results in Z(k) = Z
(k)
2 (Z

(k)
1)−1 being other than non-

negative. However, these assertions follow directly from Corollary 2.7 and (17).

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 237

4. Error analysis and numerical experiments. In this section, we first pro-
vide a perturbation analysis of Riccati equation (6). For the case that 0 ≤ c < 1 and
0 < α < 1, one can apply the standard theory as discussed in Byers [4] and Kenney
and Laub [16]. Let X = X2X

−1
1 be the positive solution of (6). Let || · || denote the

Frobenius norm and PX(δ) be the set of perturbations with respect to X:

PX(δ) =

{‖∆X‖
δ‖X‖ :

‖∆A‖
‖A‖ ≤ δ,

‖∆D‖
‖D‖ ≤ δ,

‖∆C‖
‖C‖ ≤ δ

}
.

Here Ã = A+∆A, D̃ = D+∆D, and C̃ = C+∆C are some perturbed matrices in a
δ-neighborhood of A, D, and C, respectively, and X̃ = X+ ∆X is the corresponding
perturbed solution. Note that B = eeT has no perturbation error. Following Rice
[20], we define the (asymptotic) condition number of (6) as follows:

ν
X

(A,C,D) = lim
δ→0

sup{PX(δ)}.(31)

The magnitude of ν
X

(A,C,D) is used to measure the sensitivity of the solution
of (6) to perturbations in the data. If ν

X
(A,C,D) is “large,” then small changes in

the data make large changes in the solution. Consequently, the Riccati equation (6)
is ill conditioned. If ν

X
(A,C,D) is of “modest magnitude,” then the small changes

in the data make small changes in the solution. Hence, the corresponding Riccati
equation (6) is well conditioned. Define

KX(A,C,D) =
‖ΘX‖max{‖A‖, ‖D‖}+ ‖ΠX‖‖C‖

‖X‖ ,(32)

where ΘX and ΠX are linear operators on Rn×n, respectively, given by

ΘX(V) = Ω−1
X (V TX +XV) and ΠX(V) = Ω−1

X (XVX)

with

ΩX(V) = (−XC +A)V + V (D − CX).

By a similar argument in [4], one can also show that

1

9
KX(A,C,D) ≤ ν

X
(A,C,D) ≤ 4KX(A,C,D).(33)

From (27), we have that the eigenvalues of ΩX are of the form λk + µ`, where
{λk}nk=1 and {µ`}n`=1, defined in Lemma 2.1, are eigenvalues of (D − CX) and
(A−XC), respectively. Expressions (32) and (33) show that Riccati equation (6) is
ill conditioned when ‖Ω−1

X ‖ is large. The quantity ‖Ω−1
X ‖−1 is usually measured by

sep((D − CX),−(A−XC)) [21]. From the definition of “sep” it follows that

1

min
1≤k,`≤n

|λk + µ`| ≤ ‖Ω
−1
X ‖ = [sep((D − CX),−(A−XC))]−1.(34)

We next apply the above perturbation analysis to the case that c ≈ 1 and α ≈ 0.
From Lemma 2.1, we see that λ1 → 0+ and −µ1 → 0− as c→ 1− and α→ 0+. In this
case, 1

|λ1+µ1| ; hence, ν
X

(A,C,D) become very large. Therefore, the Riccati equation

(6) for c ≈ 1 and α ≈ 0 is very ill conditioned. This shows that the convergence rates

238 JONQ JUANG AND WEN-WEI LIN

of some iterative methods of [14] for solving Riccati equation (6) are very slow and
unsatisfactory.

We now turn our attention to the formulae derived in (29) and (30). The

nonnegative solutions X = X2X
−1
1 and Z = Z

(1)
2 Z

(1)−1
1 are as in Theorem 3.4 and

thus can be computed directly by (29), (30), and (22). In the following we give an
error analysis on the method of (29) and (30). For simplicity, we suppose the given
data {di, δi}ni=1 have no error propagation in computation and let ε

λi
be the relative

error of λi caused by computation. By a standard technique of error analysis (see,
e.g., [22, Chap. 1]), one can derive the relative errors for the computation of {αi}ni=1

and {βi}ni=1 of (22) as follows:

rel(αi) ≡ εαi =
n∑
j=1

λi
λi − dj ελi −

n∑
j=1,j 6=i

(
λi

λi − λj ελi −
λj

λi − λj ελj
)

(35a)

and

rel(βi) ≡ εβi =
n∑
j=1

λj
λj − di ελj .(35b)

Here rel(x) denotes the relative error for the computation of x. Let

εmax
:= max{|ε

λi
|, i = 1, . . . , n},(36a)

θmax := max

{ |λi|
|λi − di| ,

|λi|
|λi − di−1| , i = 1, . . . , n, d0 = −∞

}
,(36b)

θ̃max := max

{∣∣∣∣λi + λi+1

λi+1 − λi

∣∣∣∣ , i = 1, . . . , n

}
,(36c)

dmin
:= min {|di − di+1|, i = 1, . . . , n} .(36d)

From (35), (36), and (11) we can estimate |εαi | and |ε
βi
| as follows:

|εαi | ≤
 |λi|
|λi − di| +

|λi|
|λi − di−1| +

i−2∑
j=1

+
n∑

j=i+1

 |λi|
|λi − dj |

+

 |λi+1 + λi|
|λi+1 − λi| +

|λi + λi−1|
|λi − λi−1| +

i−2∑
j=1

+
n∑

j=i+1

 |λi + λj |
|λi − λj |

 ε
max

≤
[
2
(
θ

max
+ θ̃

max

)
+

2di + dn
d

min

(`n(4(i− 2)(n− i)))
]
ε

max

≤
[
2
(
θ

max
+ θ̃

max

)
+

6dn
dmin

`n(2n)

]
ε

max
(37)

and

|ε
βi
| ≤

 |λi|
|λi − di| +

|λi+1|
|λi+1 − di| +

i−2∑
j=1

+
n∑

j=i+1

 |λj |
|λj − di|

 ε
max

≤
[
2θ

max +
dn
dmin

(`n(4(i− 1)(n− i+ 1)))

]
εmax

≤
[
2θ

max
+

2dn
d

min

`n(2n)

]
ε

max
.(38)

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 239

Table 4.1
(c = 0.999999, α = 10−8).

n = 32 n = 64 n = 128 n = 256
rX 2.1807e-13 4.3211e-12 3.1650e-11 1.0723e-10
rZ 2.1926e-13 4.4682e-12 3.1528e-11 1.2455e-10
λ1 1.73206684765e-3 1.73206684059e-3 1.73206683757e-3 1.73206678707e-3
−µ1 –1.73203684762e-3 –1.73203684057e-3 –1.73203683731e-3 –1.73203678614e-3

Table 4.2
(c = 1.0, α = 10−14).

n = 32 n = 64 n = 128 n = 256
rX 6.9022e-13 4.3476e-12 4.8312e-11 2.0916e-10
λ1 1.72951930554e-15 4.14078493715e-15 2.15344021678e-15 2.61125671244e-15

Here `n denotes the natural logarithm.
Consequently, from (37) and (38) the relative error for the computation of xi,j is

bounded by

|rel(xi,j)| ≤
[
1 + 4θ

max
+ 2θ̃

max
+

8dn
d

min

`n(2n)

]
ε

max
(39)

for i, j = 1, . . . , n. From (4) and (8) we see that the distances between di and di+1

are well separated. Moreover, using the fact that λi ∈ (di, di+1) and the secular
equation f(λ) in (14), we see that λi is well separated from the end points di and
di+1. Therefore, the quantities θmax and θ̃max and 1

d
min

defined in (36) cannot become

too large. Thus, the relative error of xi,j depends on the quantity of εmax . Indeed,
a bisection method combined with Newton’s acceleration scheme can be applied to
f(λ) in (14) for computing the desired eigenvalues {λi}ni=1 accurately. Numerical

stability for the computation {xi,j}ni,j=1 and {z(1)
i,j }ni,j=1 is guaranteed, even when the

problem for solving Riccati equation (6) is ill posed for c ≈ 1 and α ≈ 0.
In the following, we give the numerical results of our test examples. We compute

the nonnegative solutions X and Z by using the formulae (29) and (30) with differ-
ent matrix sizes, n = 32, 64, 128, and 256. In Table 4.1 we compute nonnegative
solutions X and Z for c = 0.999999 and α = 10−8. In Table 4.2 we compute the
unique nonnegative solution X for c = 1.0 and α = 10−14. Here r

X
and r

Z
denote,

respectively, the 2-norm residuals of Riccati equation (6) for the computed solutions
X and Z.

As mentioned in section 1 for the case in which c ≈ 1 and α ≈ 0, iterative
procedures [14] can cause numerical problems during the convergence process. Our
numerical result shows that the residual r

X
of the computed nonnegative solution is

very satisfactory, even when the condition number ν
X

(A,C,D) estimated by (32),
(33), and (34) is very “large” for c = 1 and α = 10−14.

5. Comparison theorems for nonnegative solutions. Noting that only
minimal solution is physically meaningful (see, e.g., [2]), we show in this section
that the minimal nonnegative solution X of (6) is increasing in c and decreasing in α.
The dependency of X on the parameter c is well known. However, the effect of the
parameter α on X is less understood. Our assertions here provide a better picture as
to how the roles of α are played.

To begin, we consider the following iteration:

AX(p+1) +X(p+1)(D − CX(p))) = B = eeT ,(40)

240 JONQ JUANG AND WEN-WEI LIN

with X(0) = 0. Let X = X2X
−1
1 be as given in Theorem 3.3, and set

D − CX(p) := Λp.(41)

Let X(p+1) = [x
(p+1)
i,j]. Equation (40) can be equivalently written as a linear system

of the form

(A⊗ I + I ⊗ Λp)[x
(p+1)
11 , . . . , x

(p+1)
1n , x

(p+1)
21 , . . . , x(p+1)

nn] = [1, 1, . . . , 1]T .(42)

Here ⊗ denotes the Kronecker product (see, e.g., [1]). To save notation, we shall
write (42) as

(A⊗ I + I ⊗ Λp)X
(p+1) = B.(43)

We then prove the following lemmas.
Lemma 5.1. (i) Λ0 = D is an M-matrix. (ii) Λ = X1ΛX−1

1 = D − CX is an
M-matrix.

Proof. To see the first assertion of the lemma, we note, via Lemma 2.2, that the
eigenvalues of D are real and nonnegative. Using the fact that off-diagonal elements
of D are nonpositive, we conclude that Λ0 is an M-matrix. The second assertion
also follows from the fact that off-diagonal elements of Λ are nonpositive and its
eigenvalues are {λi}, which are nonnegative.

Lemma 5.2. (i) A ⊗ I + I ⊗ Λ is an M-matrix. (ii) Let p ∈ N ∪ {0}. For
matrix Λp = D − CX(p), with 0 ≤ X(p) ≤ X, A ⊗ I + I ⊗ Λp is an M-matrix, and
(A⊗ I + I ⊗ Λ)−1 ≥ (A⊗ I + I ⊗ Λp)

−1.
Proof. We first note, via Lemma 2.2, that the eigenvalues of A are positive. It

is then clear that the off-diagonal elements of A ⊗ I + I ⊗ Λ are nonpositive and
its eigenvalues are nonnegative. Hence, A ⊗ I + I ⊗ Λ is an M-matrix. The second
part of the lemma follows by applying Theorem 1.3 on A ⊗ I + I ⊗ Λ(= A1) and
A⊗ I + I ⊗ Λp(= A2).

We are now ready to prove the following theorem.
Lemma 5.3. Let X = X2X

−1
1 be as given in Theorem 3.4. Then X(p), as defined

in (40), converge upward to X.
Proof. We first prove that

0 ≤ X(p−1) ≤ X(p) ≤ X for all p ∈ N.

To see this, we note that

0 = X(0) ≤ X(1).

Moreover, using Lemma 5.2 (ii), we get

X = (A⊗ I + I ⊗ Λ)−1B ≥ (A⊗ I + I ⊗ Λ0)−1B = X(1),

and so

0 = X(0) ≤ X(1) ≤ X.
Suppose (42) holds for p = k. Then we see, as in Lemma 5.2 (ii), that

(A⊗ I + I ⊗ Λk−1)−1 ≤ (A⊗ I + I ⊗ Λk)−1 ≤ (A⊗ I + I ⊗ Λ)−1.

Using (41), we obtain that

0 ≤ X(k) ≤ X(k+1) ≤ X.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 241

Therefore, we conclude, via an induction, that (42) holds as claimed. Let the limit
of the sequence {X(p)} be denoted by X(∞). Since X(∞) is a nonnegative solution of
(6) and X(∞) ≤ X, it must be that X(∞) = X.

To emphasize the dependence of X on the parameters c and α, we write X as
X(c, α). Likewise, all quantities are similarly written if necessary. We are now ready
to state our comparison result.

Theorem 5.4. The solution X = X2X
−1
1 of (6) is increasing in c and decreasing

in α. In particular, X(1, 0) ≥ X(c, α) for all c, α.
Proof. For fixed α and c1 ≤ c2, suppose X(p)(c1, α) ≤ X(p)(c2, α), where

X(p)(ci, α), i = 1, 2, are as defined in (40). Then by applying Theorem 1.3 on

A1 = A(c2, α)⊗ I + I ⊗ Λp(c2, α) and A2 = A(c1, α)⊗ I + I ⊗ Λp(c1, α),

we get

(A(c1, α)⊗ I + I ⊗ Λp(c1, α))−1 ≤ (A(c2, α)⊗ I + I ⊗ Λp(c2, α))−1.

Here Λp(ci, α) := D(ci, α)− CX(p)(ci, α), i = 1, 2. It then follows from (41) that

X(p+1)(c1, α) ≤ X(p+1)(c2, α).

Clearly,

0 = X(0)(c1, α) ≤ X(0)(c2, α) = 0.

Hence, an induction yields that X(p)(c1, α) ≤ X(p)(c2, α) for all p ∈ N. We conclude,
via Lemma 5.3, that X(c1, α) ≤ X(c2, α).

To see X(c, α) is decreasing in α, we first note that

δi + di =
1

cwi(1 + α)
+

1

cwi(1− α)
=

2

cwi(1− α2)

are increasing in α. Therefore, for fixed c and α1 ≤ α2, suppose X(p)(c, α1) ≥
X(p)(c, α2). Then by applying Theorem 1.3 on A1 = A(c, α1)⊗ I + I ⊗Λp(c, α1) and
A2 = A(c, α2)⊗ I + I ⊗ Λp(c, α2), we get

[A(c, α1)⊗ I + I ⊗ Λp(c, α1)]−1 ≥ [A(c, α2)⊗ I + I ⊗ Λp(c, α2)]−1.

Noting that

0 = X(0)(c, α1) ≥ X(0)(c, α2) = 0,

we conclude, via an induction and Lemma 5.3, that

X(c, α1) ≥ X(c, α2).

The proof of the theorem is thus complete.

6. Concluding remarks. We conclude with a few suggestions for further re-
lated work.

First, the method of invariant embedding has been applied to transport problems
(see, e.g., [10]) involving neutrons and gamma rays with realistic energy and angle-
dependent cross-sections. It is therefore of interest to study a more general form of
algebraic matrix Riccati equations encompassing those cases.

242 JONQ JUANG AND WEN-WEI LIN

Next, we note that the simple transport model [8, 10] in an isotropically scattering
plane-parallel layer of finite thickness would induce a differential Riccati equation of
the form

X ′ = B −AX −XD +XCX,(44a)

X(0) = 0.(44b)

Here A,B,C, and D are as defined in (7). It would be worthwhile to pursue the
asymptotic characteristics and stability of the nonnegative solutions of (6) with re-
spect to this differential Riccati equation (44).

Finally, it would be desirable to generalize our techniques for solving the corre-
sponding algebraic Riccati equation to infinitely dimensional cases [15].

Acknowledgments. We thank Professor Volker Mehrmann and referees for sug-
gesting numerous improvements to the original draft. In particular, the inversion
formula of a Cauchy matrix was brought to our attention, which leads to a much
shorter proof of Theorem 3.4 and Lemma 2.5 (ii).

REFERENCES

[1] R. Bellman, Introduction to Matrix Analysis, 2nd ed., McGraw-Hill, New York, 1970.
[2] R. Bellman and G. M. Wing, An Introduction to Invariant Embedding, John Wiley, New

York, 1975.
[3] J. R. Bunch, C. R. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric

eigenproblem, Numer. Math., 31 (1978), pp. 31–48.
[4] R. Byers, Numerical stability and instability in matrix sign function based in algorithms, in

Computational and Combined Methods in Systems Theory, C. I. Byrnes and A. Lindquist,
eds., North-Holland, New York, 1986, pp. 185–200.

[5] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
[6] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,

Numer. Math., 36 (1981), pp. 177–195.
[7] D. J. Clements and B. D. O. Anderson, Polynomial factorization via the Riccati equation,

SIAM J. Appl. Math., 31 (1976), pp. 179–205.
[8] F. Coron, Computation of the asymptotic states for linear half space kinetic problem, Trans-

port Theory Statist. Phys., 19 (1990), pp. 89–114.
[9] T. Finck, G. Heinig, and K. Rost, An inversion formula and fast algorithms for Cauchy-

Vandermonde matrices, Linear Algebra Appl., 183 (1993), pp. 179–197.
[10] B. D. Ganapol, An investigation of a simple transport model, Transport Theory Statist.

Phys., 21 (1992), pp. 1–37.
[11] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–334.
[12] G. H. Golub and J. H. Wilkinson, Ill-conditioned eigensystems and the computations of the

Jordan canonical form, SIAM Rev., 18 (1976), pp. 578–619.
[13] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear

Algebra Appl., 230 (1995), pp. 89–100.
[14] J. Juang and I-Der Chen, Iterative solution for a certain class of algebraic matrix Riccati

equations arising in transport theory, Transport Theory Statist. Phys., 21 (1993), pp. 65–
80.

[15] J. Juang and P. Nelson, Global existence, asymptotic and uniqueness for the reflection kernel
of the angularly shifted transport equation, Math. Models Methods Appl. Sci., 5 (1995),
pp. 239–251 .

[16] C. Kenney and A. J. Laub, Condition estimation for matrix functions, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 191–209.

[17] V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag,
Berlin, 1991.

[18] H. Meyer, The matrix equation AZ +B − ZCZ − ZD = 0, SIAM J. Appl. Math., 30 (1976),
pp. 136-142.

[19] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS 243

[20] J. R. Rice, A theory of condition, SIAM J. Numer. Anal., 3 (1966), pp. 287–310.
[21] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-

value problems, SIAM Rev., 15 (1973), pp. 727–764.
[22] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,

1980.

NEW FAST ALGORITHMS FOR STRUCTURED LINEAR
LEAST SQUARES PROBLEMS∗

MING GU†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 244–269

Abstract. We present new fast algorithms for solving the Toeplitz and the Toeplitz-plus-
Hankel least squares problems. These algorithms are based on a new fast algorithm for solving
the Cauchy-like least squares problem. We perform an error analysis and provide conditions under
which these algorithms are numerically stable. We also develop implementation techniques that
significantly reduce the execution time. While no previous fast algorithm is known to be numerically
stable for very ill conditioned problems, our numerical results indicate that these new algorithms are
efficient and numerically stable for problems ranging from well conditioned to very ill conditioned to
numerically singular.

Key words. displacement equation, error analysis, fast algorithm, iterative refinement, Toeplitz
matrix

AMS subject classifications. 15A06, 65F05, 65G05

PII. S089547989529646X

1. Introduction.

1.1. Displacement equations and structured matrices. The Sylvester-type
displacement equation for a matrix M ∈ Cm×n is

ΩM −M Λ = ∆,(1.1)

where Ω ∈ Cm×m and Λ ∈ Cn×n, ∆ ∈ Cm×n is called the generator of M with
respect to Ω and Λ, and r = rank(∆) ≤ min(m,n) is called the displacement rank of
M with respect to Ω and Λ. M possesses a displacement structure with respect to Ω
and Λ if r � min(m,n).

In general, there is no simple relationship between r and rank(M). For r �
min(m,n), we usually factorize ∆ as ∆ = AB for matrices A ∈ Cm×r and B ∈ Cr×n.
This decomposition is not unique. For numerical stability reasons, we often choose A
to be well conditioned.

The displacement equation (1.1) does not in general reflect the potential symmetry
structure in M . The symmetric Stein-type displacement equation for a Hermitian
matrix M is

M − Ω∗M Ω = Θ ,(1.2)

where Ω ∈ Cm×m; Θ ∈ Cm×m is Hermitian and is called the generator of M with
respect to Ω.

For r = rank(Θ) � m, we usually factorize Θ as Θ = AJ A∗ for matrices
A ∈ Cm×r and J ∈ Cr×r with J being Hermitian and both A and J being well
conditioned.

∗Received by the editors December 27, 1995; accepted for publication (in revised form) by L.
Eldén April 23, 1997; published electronically September 29, 1998.

http://www.siam.org/journals/simax/20-1/29646.html
†Department of Mathematics, University of California, Los Angeles, CA 90095-1555

(mgu@math.ucla.edu). This work was supported in part by the Applied Mathematical Sciences
Subprogram of the Office of Energy Research, U.S. Department of Energy, under contract DE-AC03-
76SF00098.

244

ALGORITHMS FOR STRUCTURED LEAST SQUARES 245

The concept of displacement structure was introduced in Kailath, Kung, and
Morf [34], the symmetric variant of which, the displacement equation of the form (1.2),
appeared in Chun, Kailath, and Lev-Ari [14]. Displacement equations of the form (1.1)
appeared in Heinig and Rost [31]. The most general form of displacement structure,
which includes equations (1.1) and (1.2) as special cases, was introduced in Kailath
and Sayed [36]. For a comprehensive discussion on the displacement structure theory
and applications, see Kailath and Sayed [37].

A special case in (1.1) is when both Ω and Λ are diagonal. Let C ∈ Cm×n satisfy

ΩC − C Λ = AB(1.3)

with Ω = diag(ω1, . . . , ωm), Λ = diag(λ1, . . . , λn), and

A =

 a∗1
...
a∗m

 and B = (b1, . . . , bn) ,

where ωk, λj are scalars and ak and bj are r-dimensional vectors. C is called a Cauchy-
like matrix. Usually we assume that ωk 6= λj for all 1 ≤ k ≤ m and 1 ≤ j ≤ n. In
this case the (k, j) entry of C is a∗k bj/ωk − λj . In particular, C is a Cauchy matrix if
m = n, r = 1, and ak = bj = 1 for all k and j. In the case where ωk = λj for some pairs
of (k, j), (1.3) requires that a∗k bj = 0 and allows the corresponding entries in C to be
arbitrary. A Cauchy-like matrix C has the interesting property that any submatrix
of C is again a Cauchy-like matrix. In addition, if C is a nonsingular square Cauchy-
like matrix, then C−1 is a Cauchy-like matrix as well. Some symmetric/Hermitian
Cauchy-like matrices satisfy1 a displacement equation similar to (1.2):

M − Ω∗M Ω = AJ A∗ ,(1.4)

where

Ω = diag(ω1, . . . , ωm), A =

 a∗1
...
a∗m

 ,

and J ∈ Cr×r is Hermitian. For ω∗k ωj 6= 1, the (k, j) entry of M is a∗k J aj/1− ω∗k ωj .
For ω∗k ωj = 1, (1.4) requires that a∗k J aj = 0 and allows the corresponding entries in
M to be arbitrary.

Other classes of structured matrices include the Toeplitz matrices and the Hankel
matrices. A Toeplitz matrix T is a matrix whose entries are constant along every
diagonal (T = (tk−j)1≤k≤m,1≤j≤n), and a Hankel matrix H is a matrix whose entries
are constant along every antidiagonal (H = (hk+j−2)1≤k≤m,1≤j≤n). Toeplitz and
Hankel matrices are included in the larger class of Toeplitz-plus-Hankel matrices,
which are sums of Toeplitz and Hankel matrices. These matrices often arise from
signal processing and control theory applications (see, for example, Bunch [9] and
Nagy [41]). We will discuss the displacement equations that the Toeplitz matrix and
the Toeplitz-plus-Hankel matrix satisfy in section 3.

1Assume that ωk 6= 0 for all k; then M is Cauchy-like since (1.4) can be rewritten in the form
of (1.3) as Ω−∗M −M Ω = (Ω−∗ A) (J A∗).

246 MING GU

1.2. Fast algorithms for structured matrices. Our main goal is to develop
new fast algorithms for solving the linear least squares problem

min
x
‖M x− h‖2 ,(1.5)

where M ∈ Rm×n is the Toeplitz or the Toeplitz-plus-Hankel matrix, and h ∈ Rm

is a vector. We will also consider the case where M is a real or complex Cauchy-like
matrix. Throughout this paper, we assume that rank(M) = n and that m ≥ n + r,
where r is the displacement rank of M . The problem (1.5) has a unique solution

xM = (M∗M)
−1

M∗ h .(1.6)

Fast algorithms for solving the least squares problem (1.5) when M is a Toeplitz
matrix have been developed by Bojanczyk, Brent, and de Hoog [5], Chun, Kailath,
and Lev-Ari [14], Cybenko [16, 17], Nagy [40], Park and Eldén [44], Qiao [45], and
Sweet [46] that require O(mn) floating point operations, as opposed to O(mn2) float-
ing point operations normally required for solving general dense linear least squares
problems. Fast parallel algorithms have also been developed by Bojanczyk and
Brent [4] and Brent [7]. However, some of these algorithms have unknown stability
properties (see Brent [7]) and others are known to be unstable (see Luk and Qiao [39]);
most of these methods suffer from loss of accuracy for very ill conditioned problems.

A special case of the Toeplitz least squares problem is the Toeplitz linear sys-
tem of equations. For discussions on some of the earlier fast and superfast methods
(performing O(n2) and O(n log2

2 n) floating point operations, respectively) for solving
such equations, see Bojanczyk et al. [6], Bunch [9], Cybenko [15], Sweet [47], and the
references therein.

Recently, Gohberg, Kailath, and Olshevsky [21] developed an algorithm, Algo-
rithm GKO, for solving the Toeplitz system by transforming the Toeplitz matrix into
a Cauchy-like matrix via fast Fourier or trigonometric transforms, and then solving
the Cauchy-like linear system of equations via a fast variation of the straightforward
Gaussian elimination with partial pivoting (GEPP) procedure; they have also demon-
strated numerically that Algorithm GKO is stable. Their work is based on some
earlier work of Heinig [30]. Sweet and Brent [48] have shown that the generator of the
Cauchy-like matrix in Algorithm GKO could suffer large internal element growth, and
Gu [28] has presented a modified procedure that avoids such internal element growth
and that can perform a fast variation of Gaussian elimination with complete pivoting
(GECP). Gohberg and Olshevsky [23, 24] and Kailath and Olshevsky [35] have de-
veloped fast variations of the Bunch–Kaufman pivoting procedure [8] for factorizing
symmetric/Hermitian Cauchy-like matrices.

1.3. Main results. We present a new fast algorithm for solving the least squares
problem (1.5) when M is a Cauchy-like matrix. This algorithm reduces the least
squares problem to two Cauchy-like systems of linear equations and solves them by
generalizing techniques of Gohberg, Kailath, and Olshevsky [21], Kailath and Ol-
shevsky [35], Gu [28], and Heinig [30]. An error analysis performed by Gu [27] shows
that this algorithm is backward stable if the L matrix in the LU factorization of M
with fast partial/complete pivoting is well conditioned.

We also present a new fast algorithm for solving the least squares problem (1.5)
when M is a Toeplitz or Toeplitz-plus-Hankel matrix. It transforms M into a Cauchy-
like matrix via the fast Fourier or trigonometric transforms and solves the resulting
Cauchy-like least squares problem using the fast algorithm above. Since the choices of

ALGORITHMS FOR STRUCTURED LEAST SQUARES 247

transformations are not unique, we compare different choices in terms of efficiency and
numerical accuracy in solving the Toeplitz and the Toeplitz-plus-Hankel least squares
problems. An error analysis performed by Gu [27] shows that this algorithm is as
backward stable as the algorithm for solving the resulting Cauchy-like least squares
problem. Since the Hankel and Toeplitz matrices are simply related, this new fast
algorithm is also a new fast algorithm for solving the Hankel least squares problem.

We develop implementation techniques that significantly reduce the execution
time. We perform a large number of numerical experiments on the new fast Toeplitz
and Toeplitz-plus-Hankel least squares problem solver and compare it with the straight-
forward QR-type least squares problem solver that ignores the Toeplitz and Toeplitz-
plus-Hankel structures. Our numerical results indicate that this fast algorithm is
indeed much faster than the straightforward solver and yet is essentially as accurate
on problems ranging from well conditioned to very ill conditioned to numerically sin-
gular. To the best of our knowledge, no other fast Toeplitz or Toeplitz-plus-Hankel
least squares problem solver is numerically stable for very ill conditioned least squares
problems.

In section 2 we present the new fast algorithm for solving the Cauchy-like least
squares problem. In section 3 we show how to transform Toeplitz and Toeplitz-plus-
Hankel matrices into Cauchy-like matrices and compare different choices of trans-
formations in terms of efficiency and numerical accuracy. In section 4 we develop
implementation techniques that reduce the execution time and present numerical re-
sults. In section 5 we draw conclusions and discuss extensions.

1.4. Notation and conventions. i is the unit imaginary number (i2 = −1).
For a matrix M , M∗ denotes its complex conjugate; in case M is real, both M∗ and
MT denote its transpose. |M | is the matrix of moduli. We use the max norm, the
∞-norm, and the 2-norm:

‖M‖max = max
k,j
|Mk,j |, ‖M‖∞ = max

k

∑
j

|Mk,j |, and ‖M‖2 = max
‖u‖2=1

‖M u‖2.

Ik is the k × k identity matrix. We use Matlab-like notation to denote subma-
trices. Mp:q,s:k is a submatrix of M that selects rows p to q of columns s to k; M:,s:k

and Ms:k,: select sth through kth rows and columns, respectively; and when s = k,
we replace s : k by s. When matrices Ω and Λ are diagonal, Ωs:k and Λs:k select both
rows and columns s to k of Ω and Λ, respectively.

A flop is a real floating point operation α◦β, where α and β are real floating point
numbers and ◦ is one of +, −, ×, and ÷. Taking the absolute value or comparing
two floating point numbers is also counted as a flop. We count a complex addition or
subtraction as 2 flops, a complex multiplication as 6 flops, and a complex division as
11 flops.

2. The Cauchy-like least squares problem.

2.1. Reducing one least squares problem to two linear systems. Let
C ∈ Cm×n be a Cauchy-like matrix satisfying (1.3). We assume that rank(C) = n
and that the diagonal entries of Ω are distinct. So C is the unique solution to (1.3).
In section 1.2 we consider the least squares problem (1.5) for M = C.

The expression in the solution (1.6) is not suitable for direct numerical compu-
tation for ill conditioned C. QR factorize C to get C = QR, where Q ∈ Cm×n is
column unitary and R ∈ Cn×n is upper triangular. The least squares solution is

xC = (C∗ C)−1 (C∗ h) = (R∗Q∗QR)−1 (R∗Q∗ h) = R−1 (Q∗ h) .(2.1)

248 MING GU

Although this scheme is backward stable, it is slow for large m and n. The QR
factorization requires O(mn2) flops to compute in general, and no known algorithm
can stably compute a QR factorization of a Cauchy-like matrix in O(mn) flops.

Fortunately, this is not the only way to compute xC . Partition

C =

(
C1

C2

)
, h =

(
h1:n

hn+1:m

)
,(2.2)

where C1 = C1:n,1:n and C2 = Cn+1:m,1:n. We assume that C1 is nonsingular and
define

Z = C2 C
−1
1 ∈ C(m−n)×n and K = In + Z∗ Z ∈ Cn×n .(2.3)

The least squares solution xC can now be rewritten as

xC = (C∗1 (In + Z∗ Z) C1)
−1

C∗1

(
(In Z∗)

(
h1:n

hn+1:m

))
= C−1

1 K−1 (h1:n + Z∗ hn+1:m) .(2.4)

Equations like (2.4) were discussed by Noble in the context of generalized inverse
computations [42]. In (2.4), C1 is a square Cauchy-like matrix (see section 1.2). In
Theorems 2.1 through 2.3 that follow, we show that for the types of Cauchy-like
matrices C that interest us, both Z and K are Cauchy-like as well, with K being
symmetric/Hermitian positive definite. Hence, xC can be computed by solving the
following two Cauchy-like linear systems of equations2

K g = h1:n + Z∗ hn+1:m and C1 xC = g.(2.5)

Theorem 2.1. Let C be a Cauchy-like matrix satisfying (1.3). Then Z in (2.3)
is a Cauchy-like matrix satisfying the displacement equation

Ωn+1:m Z − Z Ω1:n =
(
An+1:m,: − C2 C

−1
1 A1:n,:

)
(BC−1

1) .(2.6)

Proof. Equation (1.3) can be rewritten as

Ω1:n C1 − C1 Λ = A1:n,:B and Ωn+1:m C2 − C2 Λ = An+1:m,:B,

which can be further rewritten as

C−1
1 Ω1:n = ΛC−1

1 + (C−1
1 A1:n,:) (BC−1

1) and Ωn+1:m C2 = C2 Λ +An+1:m,:B.

On the other hand,

Ωn+1:m Z − Z Ω1:n = (Ωn+1:m C2)C−1
1 − C2 (C−1

1 Ω1:n).

Plugging in the above two relations and simplifying, we obtain (2.6).
The generator for Z in (2.6) can be rewritten as

QW =
(
An+1:m,: − C2 C

−1
1 A1:n,:

)
(BC−1

1) .(2.7)

2Björck [3] observes that for m−n� n, the first equation in (2.5) can be solved in O(n(m−n))
flops. The fast algorithms in section 2.4 for factorizing K require O(nm) flops and are designed to
work best if m� n.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 249

In section 2.2 we will discuss how to choose a well conditioned Q without explicitly
computing either An+1:m,: − C2 C

−1
1 A1:n,: or BC−1

1 .
Theorem 2.2. Let C be a Cauchy-like matrix satisfying (1.3). Assume that all

the matrices Ω, Λ, A, and B are real. Then K in (2.3) is a symmetric Cauchy-like
matrix satisfying the displacement equation

Ω1:nK −K Ω1:n = AJ AT ,(2.8)

where A =
(
ZT Q WT

)
and J =

(
0 −Ir
Ir 0

)
for Q and W in (2.7).

Proof.

Ω1:nK −K Ω1:n = Ω1:n (In + ZT Z)− (In + ZT Z) Ω1:n

= (Z Ω1:n)T Z − ZT (Z Ω1:n) .

On the other hand, combining (2.6) and (2.7) gives

Z Ω1:n = Ωn+1:m Z −QW.
Theorem 2.2 follows by plugging this relation into the above and simplifying.

Remark 2.1. To compute A from a generator QW of Z, we need to form Z and
perform the matrix–matrix product ZT Q. The total cost is about (4r + 1)(m− n)n
flops.

Theorem 2.3. Let C be a Cauchy-like matrix satisfying (1.3). Assume that
|ωj | = 1 for 1 ≤ j ≤ m. Then K in (2.3) is a Cauchy-like matrix satisfying the
displacement equation

K − Ω∗1:nK Ω1:n = AJ A∗,(2.9)

where A =
(
W ∗ Z∗ Ω∗n+1:mQ

)
and J =

(−Q∗Q Ir
Ir 0

)
for Q and W in (2.7).

Proof. By assumption, we have

Ω∗1:n Ω1:n = In and Ω∗n+1:m Ωn+1:m = Im−n.

Hence,

K − Ω∗1:nK Ω1:n = (In + Z∗ Z)− Ω∗1:n (In + Z∗ Z) Ω1:n

= Z∗ Z − (Z Ω1:n)∗ (Z Ω1:n).

On the other hand, combining (2.6) and (2.7) gives

Z Ω1:n = Ωn+1:m Z −QW.
Theorem 2.3 follows by plugging this relation into the above and simplifying.

Remark 2.2. To compute A for a given generator QW of Z, we need to form the
matrix Z and then perform the matrix–matrix product Z∗

(
Ω∗n+1:mQ

)
. The total

cost is about (16r + 11)(m− n)n flops.
In sections 2.2 and 2.3, we will discuss fast algorithms for factorizing C1 and

computing the generator of Z, and in section 2.4 we will discuss fast algorithms for
factorizing K.

250 MING GU

2.2. Gaussian elimination for Cauchy-like matrices. Let C be a Cauchy-
like matrix satisfying (1.3) and let the LU factorization of C be

C = LU,(2.10)

where L ∈ Cm×n is unit lower triangular and U ∈ Cn×n is upper triangular. Given
(2.10), the factorization for C1 in (2.2) is simply L1 U for L1 = L1:n,1:n.

While the generator of Z can be computed directly from formula (2.6) using
factorization (2.10), numerical accuracy could be compromised for ill conditioned C1.
Theorems 2.4 and 2.5 below establish a procedure that computes the generator for Z
during the course of Gaussian elimination on C. Define C(1) = C and set

C(k) = Ck:m,k:n − Ck:m,1:k−1 C
−1
1:k−1,1:k−1 C1:k−1,k:n

=

(
γ(k)

(
u(k)

)∗
v(k) C

(k)
2:m−k+1,2:n−k+1

)
.(2.11)

C(k) is the Schur complement of C1:k−1,1:k−1 for k = 2, . . . , n; and
(γ(k)

v(k)

)
and

(γ(k) (u(k))∗) are the first column and row of C(k), respectively. Theorem 2.4 below
summarizes a few results of Gohberg, Kailath, and Olshevsky [21] and Gohberg and
Olshevsky [23, 24]. Parts of it can also be found in [30, 36].

Theorem 2.4. Let the Cauchy-like matrix C in (1.3) have LU factorization (2.10).
Then the kth row of U and kth column of L in (2.10) are determined by

Uk,k = γ(k), Uk,k+1:n =
(
u(k)

)∗
, and Lk+1:m,k =

v(k)

γ(k)
.

For 1 ≤ k ≤ n − 1, the Schur complements {C(k+1)}n−1
k=1 satisfy the displacement

equation

Ωk+1:m C
(k+1) − C(k+1) Λk+1:n = A(k+1)B(k+1),(2.12)

where {A(k+1)} and {B(k+1)} satisfy the recursion: A(1) = A, B(1) = B, and

A(k+1) = A
(k)
2:m−k+1,: − Lk+1:m,k A

(k)
1,: = Ak+1:m,: − Ck+1:m,1:k C

−1
1:k,1:k A1:k,:,(2.13)

B(k+1) = B
(k)
:,2:n−k+1 −B(k)

:,1

Uk,k+1:n

Uk,k
= B:,k+1:n −B:,1:k C

−1
1:k,1:k C1:k,k+1:n.(2.14)

Hence, the kth column of L and kth row of U can be determined from the first
column and row of C(k), which is recursively defined through (2.12), (2.13), and (2.14).

To compute the generator of Z, we define

Z(k) = Ck+1:m,1:k C
−1
1:k,1:k for k = 1, 2, . . . , n(2.15)

so that Z(n) = Z (see (2.3)). Theorem 2.1 implies that every Z(k) is a Cauchy-
like matrix of displacement rank at most r. In the following we introduce a simple
recursion for computing {Z(k)} via {A(k+1)} and {B(k+1)}.

First, by applying Theorem 2.1 to Z(1) we have

Ω2:m,2:m Z
(1) − Z(1) ω1 = A(2) Y (1), where Y (1) = B:,1/γ.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 251

To compute the generator for Z(k), we set

y(k) = B
(k)
:,1 /Uk,k,

(
z(k)

)∗
=
(
A

(k)
1,: Y

(k−1)
)

(ωkIk−1 − Ω1:k−1,1:k−1)
−1

and

Y (k) =
(
Y (k−1) − y(k)

(
z(k)

)∗
y(k)

)
∈ Cr×k .(2.16)

Theorem 2.5. For k = 2, . . . , n,

Ωk+1:m Z
(k) − Z(k) Ω1:k = A(k+1) Y (k).

Proof. Combining Theorem 2.1 and (2.13), we see that the generator of Z(k) is
simply A(k+1)B:,1:k C

−1
1:k,1:k for all k. Hence, in the following we will show inductively

that

Y (k−1) = B:,1:k−1 C
−1
1:k−1,1:k−1.(2.17)

Equation (2.17) is obviously true for k = 2 by construction. Assuming that it
holds for some k ≥ 2, we want to show it to hold for k + 1. To this end, partition

C1:k,1:k =

(
C1:k−1,1:k−1 C1:k−1,k

Ck,1:k−1 Ck,k

)
.

It is well known (see, for example, Wilkinson [52, pp. 202–204]) that Uk,k is the Schur
complement of C1:k−1,1:k−1,

Uk,k = Ck,k − Ck,1:k−1 C
−1
1:k−1,1:k−1 C1:k−1,k.

Hence,

C−1
1:k,1:k =

(
C−1

1:k−1,1:k−1 + f e∗/Uk,k −f/Uk,k
−e∗/Uk,k 1/Uk,k

)
,

where f = C−1
1:k−1,1:k−1 C1:k−1,1:k and e∗ = Ck,1:k−1 C

−1
1:k−1,1:k−1. Consequently

B:,1:k C
−1
1:k,1:k = (B:,1:k−1 B:,k)

(
C−1

1:k−1,1:k−1 + f e∗/Uk,k −f/Uk,k
−e∗/Uk,k 1/Uk,k

)
=
(
B:,1:k−1 C

−1
1:k−1,1:k−1 − f̂ e∗/Uk,k f̂/Uk,k

)
,(2.18)

where

f̂ = B:,k −B:,1:k−1 f = B:,k −B:,1:k−1 C
−1
1:k−1,1:k−1 C1:k−1,1:k,

which, according to (2.14), is simply B
(k)
:,1 .

On the other hand, we observe from (2.15) that e∗ is the first row of Z(k−1),
which, by induction hypothesis (2.17) and Theorem 2.1, satisfies the displacement
equation

Ωk:m Z
(k−1) − Z(k−1) Ω1:k−1 = A(k) Y (k−1).

Hence,

e∗ =
(
A

(k)
1,: Y

(k)
)

(ωkIk−1 − Ω1:k−1)
−1
.

It follows from (2.17) that f̂/Uk,k = y(k) and e∗ =
(
z(k)

)∗
. Now comparing these

relations with (2.16), (2.17), and (2.18), we have Y (k) = B:,1:k C
−1
1:k,1:k.

252 MING GU

2.3. Pivoting and generator redecomposition. Factorization (2.10) does
not always exists. One celebrated property of the Cauchy-like matrix C is that per-
forming partial and complete pivoting on C does not change the Cauchy-like struc-
ture (see, for example, Gohberg and Olshevsky [22] and Heinig [30]). Let Pm(j, k)
and Qn(j, k) denote the permutations that interchange the jth and kth rows and
columns of an m × n matrix, respectively. To perform pivoting on C, one finds
a large magnitude entry (kmax, jmax) in C, permutes it to the (1, 1) entry to get

Ĉ ≡ Pm(1, kmax)C Qn(1, jmax), and then applies the elimination step to Ĉ. Let C be
a Cauchy-like matrix satisfying (1.3). Then for every 1 ≤ k ≤ m and 1 ≤ j ≤ n,

(Pm(1, k) ΩPm(1, k)) Ĉ − Ĉ (Qn(1, j) ΛQn(1, j)) = (Pm(1, k)A) (BQn(1, j)) .

It follows that Ĉ is still a Cauchy-like matrix.
To perform partial pivoting, one chooses jmax = 1, finds the largest magnitude

entry (kmax, 1) in the first column of C, and permutes the kthmax and the first rows
of C. Performing partial pivoting ensures that an LU factorization can always be
computed. There is, however, a potential problem of element growth. Let

gPP ≡ max
1≤k≤n

‖C(k)‖max/‖C‖max

be the element growth factor. It is well known that gPP ≤ 2n−1 for GEPP, and
although very rare, this bound is attainable for certain dense matrices (see Golub
and van Loan [25, pp. 115–116]). It is not clear whether this bound is attainable for
Cauchy-like matrices with low displacement rank. When large element growth does
occur, the computed LU factorizations can have a large backward error.

One way to reduce this element growth is to perform complete pivoting, whereby
one chooses the largest magnitude entry in the entire matrix C and permutes it
to the (1, 1) entry. This is an overall O(mn2) procedure. To reduce the cost, we
adopt the fast variation of complete pivoting proposed in Gu [28] to find an entry
that is sufficiently large in magnitude. Since this method involves redecomposing the
generators of both C(k) and Z(k−1), in the following we show how it works on C(k)

instead of on C.
In (2.12), we QR factorize A(k) to get A(k) = AR, where A is column unitary,

and R is upper triangular. We then compute B = RB(k) and Y = RY (k−1). It
follows that

A(k)B(k) = AB and A(k) Y (k−1) = AY.
In other words, we redecompose the generators of C(k) and Z(k) as AB and AY,
respectively.

Since A is column unitary, the jth columns of A(k)B(k) and B have the same
2-norm. Hence, we choose jmax by looking for the largest 2-norm column of B. We
then choose the (kmax, jmax) entry to be the largest magnitude entry in the jthmax

column of C(k). The following lemma shows that |C(k)
kmax,jmax

| is sufficiently large; it
is a straightforward generalization of Lemma 2.1 in [28].

Lemma 2.1. Let C be a Cauchy-like matrix satisfying equation (1.3). Then

‖C(k)‖max ≤
√
mψ |C(k)

kmax,jmax
| , where ψ =

maxk,j |ωk|+ |λj |
mink,j |ωk − λj | .

ALGORITHMS FOR STRUCTURED LEAST SQUARES 253

In addition to potential element growth in the LU factorization, Sweet and Brent
show that the matrices A(k) and B(k), if updated as in (2.13) and (2.14), could also
grow so that (see [48]) ∥∥∥|A(k)| |B(k)|

∥∥∥
2
�
∥∥∥A(k)B(k)

∥∥∥
2

for some k. And if this happens, the backward error in the LU factorization could be
large. The same arguments show that if∥∥∥|A(k)| |Y (k−1)|

∥∥∥
2
�
∥∥∥A(k) Y (k−1)

∥∥∥
2
,

then the backward error in the computed Z matrix could be large. However, such
element growth goes away when redecomposition is performed; in fact it will not occur
as long as A(k) is well conditioned (see Gu [27, 28]).

Algorithm 2.1 below computes an LU factorization of the form

C = Pm LU (Qn)T ,(2.19)

where L ∈ Cm×n is unit lower triangular and U ∈ Cn×n is upper triangular, and
Pm ∈ Rm×m and Qn ∈ Rn×n are permutation matrices. It also computes a generator
of the matrix Z = C̃2 C̃

−1
1 , where

C̃ = (Pm)T C Qn =

(
C̃1

C̃2

)
with C̃1 = C̃1:n,1:n, C̃2 = C̃n+1:m,1:n.

Rows of U and columns of L are computed according to Theorem 2.4, and the gen-
erator of Z is computed according to Theorem 2.5. Algorithm 2.1 also performs the
variation of complete pivoting proposed in section 2.3 at every ζ step and partial
pivoting at every step. Algorithm 2.1 assumes that the matrix A is initially column
unitary. In practice we set ζ � r.

Algorithm 2.1. LU factorization of Cauchy-like matrix C in (1.3) with pivot-
ing.

L := 0 ∈ Cm×n; U := 0 ∈ Cn×n; Pm := Im; Qn := In;

for k := 1 to n do

if (mod(k, ζ) = 0) then

Ak:m,: := Ak:m,:R (QR factorizes Ak:m,:);

B:,k:n := RB:,k:n; Y:,1:k−1 := RY:,1:k−1;

jmax := argmaxk≤j≤n ‖B:,j‖2;

if jmax > k then

Qn := Qn(k, jmax)Qn; Λ := Qn(k, jmax) ΛQn(k, jmax);

B := BQn(k, jmax); U := U Qn(k, jmax);

endif

endif

Lk:m,k := (Ωk:m − λkIm−k+1)
−1

Ak:m,:B:,k;

kmax := argmaxk≤j≤m |Lj,k|;
if kmax > k then

Pm := Pm Pm(k, kmax); Ω := Pm(k, kmax) ΩPm(k, kmax);

254 MING GU

A := Pm(k, kmax)A; L := Pm(k, kmax)L;

endif

Uk,k := Lk,k; Uk,k+1:n := Ak,:Bk+1:n (ωkIn−k − Λk+1:n)
−1

;

Lk,k := 1; Lk+1:m,k := Lk+1:m,k/Uk,k;

Ak+1:m,: := Ak+1:m,:−Lk+1:m,k Ak,:; B:,k+1:n := B:,k+1:n−B:,k Uk,k+1:n/Uk,k;

z∗ := Ak,: Y:,1:k−1 (ωkIk−1 − Ω1:k−1)
−1

; y := B:,k/Uk,k;

Y:,1:k := (Y:,1:k−1 − y z∗ y);

endfor
Remark 2.3. If the input data A, B, Ω, and Λ are real, Algorithm 2.1 costs

about (4r + 4)mn + (2r − 1)n2 flops, plus an extra cost of about (4m − n)nr2/ζ
flops for redecomposing the generators; there is also potentially about n2(ζ + 1)/(2ζ)
swaps of memory locations. For a matrix transformed into a Cauchy-like matrix from
a Toeplitz-plus-Hankel matrix (see sections 1 and 3), the displacement rank r is at
most 4. If we choose ζ � 4, then the cost of Algorithm 2.1 is about (20m + 7n)n
flops.

Remark 2.4. If the input data are complex, Algorithm 2.1 costs about (16r +
22)mn+8rn2 flops, plus the cost for comparisons and the cost of about 4(4m−n)nr2/ζ
flops for redecomposing the generators; there is also potentially about n2(ζ + 1)/ζ
swaps of memory locations. For a matrix transformed into a Cauchy-like matrix from
a Toeplitz matrix (see sections 1 and 3), the displacement rank r is at most 2. If
we choose ζ � 2, and choose pivots that have the largest sum of real and imaginary
parts in absolute value, the cost for comparisons is about 4mn − 2n2 flops, and the
cost of Algorithm 2.1 is about 2(29m+ 7n)n flops.

Remark 2.5. If r � max(ζ, 1), then the cost of redecomposing the generators dom-
inates the computation of Algorithm 2.1. In this case we use QR updating techniques
similar to those of Daniel et al. [18] (see also Golub and van Loan [25, section 12]) to
perform the QR factorization at every step, bringing the total redecomposition cost
down to O(mnr).

To get an upper bound on the element growth factor for Algorithm 2.1, let

W(k) =

(
k

k∏
s=2

s1/(s−1)

)1/2

= O
(
k

1
2 + 1

4 ln k
)
.

This is Wilkinson’s upper bound on the growth factor for GECP on a k × k general
dense matrix. Although W(k) is not a polynomial in k, it does not grow very fast
either [51]. The following theorem trivially generalizes a similar result in [28].

Theorem 2.6. Let C be a Cauchy-like matrix satisfying (1.3), and let (2.19) be
the LU factorization generated by Algorithm 2.1 in exact arithmetic for ζ = 1. Then
the element growth factor gCP ≡ max1≤k≤n ‖C(k)‖max/‖C‖max satisfies

gCP ≤
√
nψ

2+
∑n−1

k=1
1/k

W(n),

where ψ is defined in Lemma 2.1.

2.4. Factorizing a positive definite Cauchy-like matrix. In this section,
we compute the Cholesky factorization of a symmetric/Hermitian positive definite
Cauchy-like matrix K in (2.3):

K = LDL∗,(2.20)

ALGORITHMS FOR STRUCTURED LEAST SQUARES 255

where L ∈ Cn×n is unit lower triangular and D ∈ Rn×n is positive diagonal. We will
assume that K satisfies either equation (2.8) or (2.9). In both cases, the displacement
equation specifies all the off-diagonal entries of K; the diagonal entries of K have to
be provided separately.

The first step of Cholesky factorization is to zero-out the first column and row of
K below and above the diagonal entry:

K =

(
γ v∗

v K2:n,2:n

)
=

(
1 0
l In−1

) (
γ 0
0 K(2)

) (
1 0
l In−1

)∗
.(2.21)

Hence, D1,1 = γ; L2:m,1 = l = v/γ. K(2) = K2:m,2:n−v v∗/γ is the Schur complement
of γ.

2.4.1. Real Cholesky factorization. First assume thatK satisfies (2.8). Then
K is a real symmetric positive definite matrix. Similar to (2.12), K(2) is a Cauchy-
like matrix. Theorem 2.7 below is a direct generalization of Theorem 2.4. More
discussions on factorizing symmetric Cauchy-like matrices can be found in Gohberg
and Olshevsky [23, 24] and Kailath and Olshevsky [35].

Theorem 2.7. Let K satisfy (2.8). Then K(2) in (2.21) satisfies the displacement
equation

Ω2:nK
(2) −K(2) Ω2:n = A(2) J

(
A(2)

)T
,

where A(2) = A2:n,: − lA1,:. The diagonal entries of K(2) satisfy

K
(2)
k−1,k−1 = Kk,k − v2

k

γ
, for k = 2, . . . , n.

Hence, the first step of Cholesky factorization on K involves computing the first
column of K from (2.8), computing l and A(2), and computing diagonal entries of
K(2). Cholesky factorization then proceeds by recursively applying this step to K(2),
with the displacement equation in Theorem 2.7 replacing (2.8). Since K is symmetric
positive definite, all the diagonal entries are positive and hence this procedure never
breaks. At the end of this procedure, K is factored into (2.20) with L ∈ Rn×n.

While Cholesky factorization on a general dense symmetric positive definite ma-
trix is always backward stable, the above procedure may not be due to potential
element growth in the generators similar to that in Algorithm 2.1 without generator
redecomposition. To avoid it, we perform diagonal pivoting on K and redecompose
the generators as well. Since K is symmetric positive definite, γ becomes the largest
magnitude entry in K after diagonal pivoting. Based on Theorem 2.7, Algorithm 2.2
below computes a Cholesky factorization with diagonal pivoting:

K = Qn LDLT (Qn)
T
,

where L ∈ Rn×n is unit lower triangular and D ∈ Rn×n is positive diagonal. Algo-
rithm 2.2 performs generator redecomposition every ζ step, and it assumes that on
input, the diagonal entries of D are those of K and that A is well conditioned.

Algorithm 2.2. Real Cholesky factorization on a Cauchy-like matrix.

L := 0 ∈ Rn×n; Qn := In;

for k := 1 to n do

256 MING GU

if (mod(k, ζ) = 0) then

Ak:n,: := Ak:n,:R (QR factorizes Ak:n); J := RJ RT ;

endif

kmax := argmaxk≤j≤nDj,j ;
if kmax > k then

Qn := QnQn(k, kmax); Ω1:n := Qn(k, kmax) Ω1:nQn(k, kmax);

D := Qn(k, kmax)DQn(k, kmax);

A := Qn(k, kmax)A; L:,1:k := Qn(k, kmax)L:,1:k;

endif

Lk+1:n,k := (Ωk+1:n − ωkIn−k)
−1 Ak+1:n,: J ATk,:/Dk,k;

Ak+1:n,: := Ak+1:n,: − Lk+1:n,kAk,:;
for j := k + 1 to n do

Dj,j := Dj,j − L2
j,k Dk,k.

endfor

endfor

Remark 2.6. Algorithm 2.2 costs about (4r + 2.5)n2 flops, where 2r is the dis-
placement rank of K (see (2.8)), plus an extra cost of about 2n2r2/ζ flops for re-
decomposing the generators; there is also potentially about n2/2 swaps of memory
locations. For a matrix transformed into a Cauchy-like matrix from a Toeplitz-plus-
Hankel matrix (see sections 1 and 3), the displacement rank of K is 2r ≤ 8. In this
case, Algorithm 2.2 costs about 18.5n2 flops for ζ � 4.

2.4.2. Complex Cholesky factorization. Now assume that K satisfies (2.9).
Then K is a complex Hermitian positive definite matrix. Again K(2) in (2.21) is
a Cauchy-like matrix. Theorem 2.8 below is a slight modification of Lemma 3.2 of
Kailath and Olshevsky [35].

Theorem 2.8. Let K satisfy (2.9). Then K(2) in (2.21) satisfies the displacement
equation

K(2) − Ω∗2:nK
(2) Ω2:n = A(2) J

(
A(2)

)∗

with A(2) = A2:n,: − (l − t/2)A1,: , where t = A2:n,: J A∗1,:/γ.

The diagonal entries of K(2) satisfy

K
(2)
k−1,k−1 = Kk,k − |vk|

2

γ
for k = 2, . . . , n.

Similar to Algorithm 2.2, Algorithm 2.3 below is based on Theorem 2.8 and
computes a Cholesky factorization with diagonal pivoting:

H = Qn LDL∗ (Qn)
T
,(2.22)

where L ∈ Cn×n is unit lower triangular and D ∈ Rn×n is positive diagonal. Algo-
rithm 2.3 performs generator redecomposition every ζ step, and it assumes that on
input, the diagonal entries of D are those of K and that A is well conditioned.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 257

Algorithm 2.3. Complex Cholesky factorization.

L := 0 ∈ Rn×n; Qn := In;

for k := 1 to n do

if (mod(k, ζ) = 0) then

Ak:n,: := Ak:n,:R (QR factorizes Ak:n,:); J := RJ R∗;
endif

kmax := argmaxk≤j≤nDj,j ;
if kmax > k then

Qn := QnQn(k, kmax); Ω1:n := Qn(k, kmax) Ω1:nQn(k, kmax);

D := Qn(k, kmax)DQn(k, kmax);

A := Qn(k, kmax)A; L:,1:k := Qn(k, kmax)L:,1:k;

endif

t := Ak+1:n,: J A∗k,:/Dk,k; Lk+1:n,k :=
(
In−k − ωk Ω̄k+1:n

)−1
t;

Ak+1:n,: := Ak+1:n,: − (Lk+1:n,k − t/2) Ak,:;
for j := k + 1 to n do

Dj,j := Dj,j − |Lj,k|2Dk,k.

endfor

endfor
Remark 2.7. Algorithm 2.3 costs about (16r+14)n2 flops, where 2r is the displace-

ment rank ofK (see (2.9)), plus an extra cost of about 8n2r2/ζ flops for redecomposing
the generators; there is also potentially about n2 swaps of memory locations. For a
matrix transformed into a Cauchy-like matrix from a Toeplitz matrix (see sections 1
and 3), the displacement rank of K is 2r ≤ 4. In this case, Algorithm 2.3 costs about
46n2 flops for ζ � 2.

3. Toeplitz and Toeplitz-plus-Hankel least squares problems.

3.1. Toeplitz least squares problems. For any integer k > 0, define

T
(δ)
k =

0 0 · · · 0 δ
1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0

 ∈ Rk×k.

Let Ω = T
(1)
m and Λ = T

(δ)
n . As is noted in Gohberg, Kailath, and Olshevsky [21]

and Heinig [30], it is easy to verify that every m × n Toeplitz matrix satisfies the
displacement equation (1.1) with ∆ having nonzero entries only in its first row and
last column, and hence the displacement rank is rank(∆) ≤ 2. To ensure that (1.1)
always has a unique solution, we choose δ > 1. Lemma 3.1 below is a generalization
of Heinig [30].

Lemma 3.1. Let M ∈ Cm×n be a matrix satisfying the displacement equation

T (1)
m M −M T (δ)

n = AB,(3.1)

where A ∈ Cm×r and B ∈ Cr×n. Then C ≡ FmM G−1 F∗n is a Cauchy-like matrix:

ΩC − C Λ = (FmA)
(
B G−1 (Fn)∗

)
,(3.2)

258 MING GU

where Fm =

√
1

m

(
e

2πi
m (k−1)(j−1)

)
1≤k,j≤m

and Fn =

√
1

n

(
e

2πi
n (k−1)(j−1)

)
1≤k,j≤n

are the normalized inverse discrete Fourier transform matrices,

G = diag(1, δ̃, . . . , δ̃n−1), where δ̃ = δ
1
n ,

and

Ω = diag
(

1, e
2πi
m , . . . , e

2πi
m (m−1)

)
, Λ = δ̃ diag

(
1, e

2πi
n , . . . , e

2πi
n (n−1)

)
.

Proof. It is well known that

T (1)
m = (Fm)

∗
ΩFm.

On the other hand, T
(δ)
n = δ̃ G−1 T

(1)
n G and hence

T (δ)
n = G−1 (Fn)

∗
ΛFn G.

Equation (3.2) follows by plugging these relations into (3.1) and simplifying.
A matrix M is called Toeplitz-like if it satisfies the displacement equation (3.1)

with r � n (cf. [21]). To solve the least squares problem (1.5) when M is a Toeplitz-
like matrix, we transform M into a Cauchy-like matrix using Lemma 3.1. Setting
M = (Fm)

∗
C F (n) G in (1.6) and simplifying,

xM = G−1 (Fn)
∗

(C∗ C)
−1

C∗ (Fm h) = G−1 (Fn)
∗
xC ,

where xC = (C∗ C)
−1

C∗ (Fm h) is the solution to the Cauchy-like least squares
problem

min
x
‖C x− (Fm h) ‖2.

The idea of transforming a Toeplitz linear system of equations into a Cauchy-like
system of linear equations via the FFT was proposed by Heinig [30]. Related trans-
formations were proposed by Fiedler [20], Gohberg and Olshevsky [22], and Pan [43].

We summarize the above into Algorithm 3.1, assuming that M satisfies (3.1) with
A column orthogonal.

Algorithm 3.1. Solving the Toeplitz-like least squares problem.
1. Choose δ, compute Ω and Λ in Lemma 3.1;
2. compute h := Fm h, A := FmA, and B := B G−1 (Fn)∗;
3. choose ζ1, LU factorize C1, and compute the generator for Z for C1 and Z

in (2.5) via Algorithm 2.1;
4. choose ζ3, compute the initial generator for K in (2.5) via Theorem 2.3, and

compute the Cholesky factorization of K via Algorithm 2.3;
5. compute xC by solving the linear systems in (2.5) via forward and backward

substitution;
6. compute xM := G−1 (Fn)

∗
xC .

Remark 3.1. The total cost of steps 1, 2, and 6 is O(m log2m) flops via the forward
and backward FFTs; the cost of step 3 is about (16r + 22)mn+ 8rn2 flops, plus the
cost for comparisons and the cost of about 4(4m− n)nr2/ζ1 flops for redecomposing
the generators (see Remark 2.4); the cost of step 4 is about (16r+ 11)mn+ 3n2 flops,

ALGORITHMS FOR STRUCTURED LEAST SQUARES 259

plus an extra cost of about 8n2r2/ζ3 flops for redecomposing the generators (see
Remarks 2.2 and 2.7). Since the matrix Z is computed in step 4 (see Remark 2.2),
the cost for step 5 is about 8(m+ n)n flops. Hence, the total cost of Algorithm 3.1 is
about (32r + 41)mn+ (8r + 11)n2 flops, plus the cost for comparisons and generator
redecompositions. In particular, let M be a Toeplitz matrix; then r ≤ 2. We modify
Algorithm 2.1 to choose pivots that have the largest sum of real and imaginary parts in
absolute value. Hence, the cost for comparisons in Algorithm 2.1 is about 4mn− 2n2

flops (see Remark 2.4). We choose ζ1 � 2 and ζ3 � 2. Thus, the total cost of
Algorithm 3.1 is about (109m+ 25n)n flops.

3.2. Toeplitz-plus-Hankel least squares problems. For any integer k > 0,
define

T (δ)
k =

1 1 0 · · · 0

1 0 1 · · · ...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 · · · 0 1 δ

∈ Rk×k.

Since T (δ)
k is symmetric, it has an eigendecomposition of the form

T (δ)
k = Q(δ)

k D(δ)
k

(
Q(δ)
k

)T
,

where Q(δ)
k is orthogonal and D(δ)

k is diagonal. In particular,

Q(1)
k =

√
2

k

(
qj cos

(2p− 1)(j − 1)π

2n

)
1≤p,j≤k

and

Q(−1)
k =

√
2

k

(
cos

(2p− 1)(2j − 1)π

4k

)
1≤p,j≤k

,

where q1 = 1
2 and qj = 1 for 2 ≤ j ≤ k, and the corresponding diagonal matrices are

D(1)
k = 2 diag

(
1, cos

π

k
, . . . , cos

(k − 1)π

k

)
and

D(−1)
k = 2 diag

(
cos

π

2k
, cos

3π

2k
, . . . , cos

(2k − 1)π

2k

)
.

Let Ω = T (δ1)
m and Λ = T (−δ1)

n . As is noted in Gohberg, Kailath, and Ol-
shevsky [21], it is easy to verify that every Toeplitz-plus-Hankel matrix satisfies the
displacement equation (1.1) with ∆ having nonzero entries only in its first and last
row and column, thus the displacement rank of a Toeplitz-plus-Hankel matrix is
rank(∆) ≤ 4. In particular, this result is true for every Toeplitz or Hankel matrix.
Let gcd(m,n) be the greatest common divider of m and n.

260 MING GU

Lemma 3.2. Let M ∈ Cm×n be a matrix satisfying the displacement equation

T (δ1)
m M −M T (−δ1)

n = AB,(3.3)

where A ∈ Cm×r and B ∈ Cr×n. Then C ≡
(
Q(δ1)
m

)T
M Q(−δ1)

n is a Cauchy-like

matrix:

ΩC − C Λ =

((
Q(δ1)
m

)T
A

) (
BQ(−δ1)

n

)
,

where Ω = D(δ1)
m and Λ = D(−δ1)

n . We choose δ1 = 1 if m/gcd(m,n) is odd, and
δ1 = −1 otherwise. Then the diagonals of Ω and Λ satisfy

min
k,j
|ωk − λj | ≥ 4 sin2 gcd(m,n)π

4mn
and min

k 6=j
|ωk − ωj | ≥ 4 sin2 π

2m
.

Proof. The displacement equation for C can be proved using arguments similar
to those in the proof of Lemma 3.1.

Let m̂ = m/ gcd(m,n) and n̂ = n/ gcd(m,n). Then m̂ and n̂ are integers and
gcd(m̂, n̂) = 1. First assume that m̂ is odd. Then δ1 = 1. It follows that

|ωk − λj | = 2

∣∣∣∣cos
(k − 1)π

m
− cos

(2j − 1)π

2n

∣∣∣∣
= 4

∣∣∣∣sin(2 ((k − 1) n̂− j m̂) + m̂

4m̂ n̂ gcd(m,n)
π

)
sin

(
2 ((k − 1) n̂+ j m̂)− m̂

4m̂ n̂ gcd(m,n)
π

)∣∣∣∣
≥ 4

∣∣∣∣sin(π

4m̂ n̂ gcd(m,n)

)
sin

(
π

4m̂ n̂ gcd(m,n)

)∣∣∣∣ = 4 sin2 gcd(m,n)π

4mn
,

where we have used the fact that both 2 ((k − 1) n̂− j m̂)+m̂ and 2 ((k − 1) n̂+ j m̂)−
m̂ are odd integers and hence are never integer multiples of 4m̂ n̂ gcd(m,n), the
denominator.

On the other hand, if m̂ is even, then it follows that n̂ is odd and δ1 = −1.
Similar arguments show that |ωk − λj | ≥ 4 sin2 gcd(m,n)π/4mn. The bound on
mink 6=j |ωk − ωj | can be easily verified in both cases.

A matrix M is called Toeplitz-plus-Hankel-like if it satisfies the displacement equa-
tion (3.3) with r � n (cf. [21]). In the least squares problem (1.5), if the matrix M is
real Toeplitz-plus-Hankel-like, we transform it into a real Cauchy-like matrix C using
Lemma 3.2:

M = Q(δ1)
m C

(
Q(−δ1)
n

)T
.

Plugging this relation into (1.6) and simplifying, we get xM = Q(−δ1)
n xC , where

xC =
(
CT C

)−1
CT

((
Q(δ1)
m

)T
h

)
.

Similar to Algorithm 3.1, Algorithm 3.2 that follows solves the least squares prob-
lem with M satisfying (3.3). We assume that both M and h are real.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 261

Algorithm 3.2. Solving the Toeplitz-plus-Hankel-like least squares problem.
1. Choose δ1 and compute Ω and Λ in Lemma 3.2;

2. compute h :=
(
Q(δ1)
m

)T
h, A :=

(
Q(δ1)
m

)T
A, and B := BQ(−δ1)

n ;

3. choose ζ1, LU factorize C1, and compute the generator for Z for C1 and Z
in (2.5) via Algorithm 2.1;

4. choose ζ3, compute the initial generator for K in (2.5) via Theorem 2.2, and
compute the Cholesky factorization of K via Algorithm 2.2;

5. compute xC by solving the linear systems in (2.5) via forward and backward
substitution;

6. compute xM := Q(−δ1)
n xC .

Remark 3.2. The total cost of steps 1, 2, and 6 is O(m log2m) flops via fast cosine
transforms; the cost of step 3 is about (4r+ 4)mn+ (2r− 1)n2 flops, plus the cost of
about (4m − n)nr2/ζ1 flops for redecomposing the generators (see Remark 2.3); the
cost of step 4 is about (4r+ 1)mn+ 1.5n2 flops, plus an extra cost of about 2n2r2/ζ3
flops for redecomposing the generators (see Remarks 2.1 and 2.6). Since the matrix
Z is computed in Step 4 (see Remark 2.1), the cost for step 5 is about 2(m + n)n
flops. Hence, the total cost of Algorithm 3.2 is about (8r+ 7)mn+ (2r+ 2.5)n2 flops,
plus the cost for generator redecompositions. In particular, let M be a Toeplitz-plus-
Hankel matrix; then r ≤ 4. We choose ζ1 � 4 and ζ3 � 4. Thus the total cost of
Algorithm 3.2 is about (39m+ 10.5n)n flops.

3.3. Efficiency and accuracy considerations. Every Toeplitz matrix is a
Toeplitz-plus-Hankel matrix, hence Algorithm 3.2 is an algorithm for solving real
Toeplitz least squares problems as well. For such a problem, Algorithm 3.1 performs
2.7 times as many flops as Algorithm 3.2 and hence is much slower (see Remarks 3.1
and 3.2).

Gu [27] has performed an error analysis on both Algorithms 3.1 and 3.2. The
methodology in this error analysis is similar to that of Chandrasekaran and Sayed [11,
12], Gu [28], and Sweet and Brent [48] for analyzing fast algorithms for solving various
structured linear systems of equations. We summarize related results in Gu [27] in
Theorem 3.1 below.

Theorem 3.1. Let x̂M be the computed solution of Algorithm 3.1 or 3.2 to the

linear least squares problem (1.5) with ζ1 = ζ2 = ζ3 = 1, and let L̂ =
(L̂1 0

L̂2 Im−n

)
be the m × m lower triangular matrix computed by the call to Algorithm 2.1 from
Algorithm 3.1 or 3.2. Then x̂M is the exact solution to the linear least squares problem

min
x
‖ (M + δM) x− h‖2 , with ‖δM‖2 ≤ η

(
mn (ψ + φ)κ

(
L̂
))2

‖M‖2 +O(ε2),

where η is a small multiple of the machine precision ε, κ
(
L̂
)

=
∥∥∥L̂∥∥∥

∞

∥∥∥L̂−1
∥∥∥
∞

, and

ψ =
maxk,j |ωk|+ |λj |
mink,j |ωk − λj | and φ =

2 maxk |ωk|
mink 6=j |ωk − ωj | .

Ω = diag(ω1, . . . , ωm) and Λ = diag(λ1, . . . , λn) are defined in Lemma 3.1 for Algo-
rithm 3.1 and in Lemma 3.2 for Algorithm 3.2.

As commented in Gu [27], upper bounds similar to those in Theorem 3.1 hold
for the case ζ1 > 1, ζ2 > 1, and ζ3 > 1 as well, provided that there is little element
growth within the generators for Algorithms 2.1 through 2.3 (see section 2).

262 MING GU

The upper bounds on gCP (Theorem 2.6) and backward error (Theorem 3.1)
suggest that the smaller ψ and φ are, the smaller the potential element growth and
backward error will be. In our numerical experiments, we took δ = n in Algorithm 3.1.
Hence, ψ = O(n) and φ = O(m) for Algorithm 3.1, whereas ψ = O(m2n2/ gcd2(m,n))
and φ = O(m2) for Algorithm 3.2 (see Lemma 3.2). Hence, Theorem 3.1 suggests
that Algorithm 3.1 could be more accurate than Algorithm 3.2, even though it is less
efficient.

It is well known that κ(L̂) could be as large as O(2n) in the worst case if the
Cauchy-like matrix C factorized in Algorithm 2.1 was a general dense matrix (see
section 2.3). Consequently the upper bound on ‖δM‖2 could be as large as O(4n) in
the worst case. It is not clear whether a sharper upper bound exists for Cauchy-like
matrices with low displacement rank. On the other hand, even if κ(L̂) ≈ 1, the upper
bound on ‖δM‖2 in Theorem 3.1 is still much larger than that for the QR method,
which is O (εmn‖M‖2) (see Demmel [19]). Hence, Algorithms 3.1 and 3.2 appear to
be less accurate than QR.

Our numerical experiments indicate that Algorithm 3.2 is indeed, in general, less
accurate than Algorithm 3.1, which in turn is, in general, less accurate than QR, but
the lost accuracy can be recovered by one step of Björck iterative refinement [2], which
costs about 21n2 flops for Algorithm 3.1 and 6n2 flops for Algorithm 3.2, respectively.

A number of fast algorithms has been developed over the years to solve the
Toeplitz and Toeplitz-plus-Hankel least squares problems (see section 1.2). Among
them, the algorithm proposed recently by Park and Eldén [44] appears to be more
stable than others but is less efficient, requiring about (9m + 18.5n)n flops. Algo-
rithm 3.2 with Björck iterative refinement is about four times as expensive as the
Park and Eldén algorithm. However, to the best of our knowledge, no previous fast
algorithm is known to be numerically stable for very ill conditioned problems, whereas
our new algorithms can solve problems ranging from well conditioned to very ill con-
ditioned to numerically singular. See section 4 for more details.

4. Numerical experiments. We have implemented Algorithms 2.1 through 3.2
in Fortran and have performed a large number of numerical experiments with them to
investigate their behavior in finite arithmetic and to compare Algorithms 3.1 and 3.2
with other available algorithms. In this section we discuss some issues related to
measuring backward errors and implementation, and report some of the numerical
results. We chose ζ1 = 10, ζ2 = ζ3 = m, and δ = n in Algorithms 3.1 and 3.2.
In other words, very few steps of complete pivoting and generator redecomposition
were performed in our numerical experiments. As was also observed by Gohberg,
Kailath, and Olshevsky [21], partial pivoting is usually sufficient to guarantee stability
in factorizing Cauchy matrices, and generator redecomposition is usually needed only
at the beginning (see Sweet and Brent [48]).

4.1. Implementation issues. A natural way to implement Algorithm 2.1 is to
keep Pm and Qn in vectors and keep both L and U in a single matrix W by storing
L in the strict lower triangular part of W and U in the upper triangular part of W.
However, arrays are stored columnwise in Fortran. Since U is generated and stored
row-by-row in Algorithm 2.1, columns of W have to be moved into and brought out
of fast memory for most steps of elimination for large n. This causes a significant
amount of memory movement between slow and fast levels in the memory hierarchy.
For more detailed discussions on memory movement, see, for example, [19, section 2.6].
As in Gu [28], we reduce this memory movement by storing rows of U columnwise in
Algorithm 2.1. Let Sn ∈ Rn×n be the matrix that is 1 on the main antidiagonal and 0

ALGORITHMS FOR STRUCTURED LEAST SQUARES 263

Table 1
Fortran BLAS, large residuals.

Matrix Order
1

κ(T)
Execution time (seconds)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 3×10−1 4×10−1 4×100 9×10−1

640 600 1×10−3 8×10−1 9×10−1 2×100 2×100 6×100

1 1280 1200 1×10−3 3×100 3×100 7×100 7×100 5×101

2560 2400 8×10−4 1×101 1×101 3×101 3×101 4×102

320 300 6×10−17 2×10−1 2×10−1 4×10−1 4×10−1 8×10−1

640 600 4×10−17 8×10−1 9×10−1 2×100 2×100 6×100

2 1280 1200 3×10−17 3×100 3×100 6×100 7×100 5×101

2560 2400 1×10−17 1×101 1×101 3×101 3×101 4×102

320 300 4×10−9 2×10−1 2×10−1 4×10−1 4×10−1 8×10−1

640 600 2×10−13 9×10−1 8×10−1 2×100 2×100 6×100

3 1280 1200 2×10−15 3×100 3×100 6×100 7×100 5×101

2560 2400 5×10−15 1×101 1×101 3×101 3×101 4×102

Matrix Order
1

κ(T)
Backward error (τ)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×101 2×10−1 1×100 1×10−1 3×10−2

640 600 1×10−3 8×101 3×10−1 1×100 3×10−1 2×10−2

1 1280 1200 1×10−3 1×103 3×10−1 2×100 3×10−1 2×10−2

2560 2400 8×10−4 3×102 1×10−1 8×100 1×10−1 1×10−2

320 300 6×10−17 1×100 9×10−1 6×10−1 6×10−1 3×10−1

640 600 4×10−17 2×100 1×100 5×10−1 5×10−1 3×10−1

2 1280 1200 3×10−17 7×10−1 5×10−1 2×100 2×100 2×10−1

2560 2400 1×10−17 2×100 2×100 3×100 3×100 2×10−1

320 300 4×10−9 6×101 5×10−1 4×100 5×10−1 1×10−1

640 600 2×10−13 9×101 2×102 4×100 5×10−1 1×10−1

3 1280 1200 2×10−15 2×101 3×101 9×100 1×101 2×10−1

2560 2400 5×10−15 3×101 4×101 2×101 3×101 1×10−1

everywhere else. Then Ũ ≡ Sn UT Sn is an upper triangular matrix, whose kth column
is the (n−k+1)st row of U in the reverse order. The backward substitution procedure
for computing U−1 y in Algorithm 2.1 can be rewritten as a forward substitution as
Sn ((ŨT)−1 (Sn y)). Gu [28] shows that this technique significantly reduces memory
movement.

We further reduce the memory movement by delaying permuting rows of L in
Algorithms 2.1 through 2.3 until the factorization is completed. To be more specific,
assume that at the kth step of elimination, we need to swap two rows of L in order
to bring the pivot to the (k, k) position. We achieve this by only swapping the
corresponding rows in the generator matrix. After the factorization is completed,
we restore rows of L to their proper positions. This technique is also used to swap
columns of U in Algorithm 2.1.

4.2. Numerical results. The computations were done on an IBM RS6000 work-
station in double precision, where the machine precision is ε ≈ 1.1 × 10−16. We
compared the following algorithms:3

3No software implementation of any of the fast algorithms for solving Toeplitz and Toeplitz-plus-
Hankel least squares problems is available in the public domain. Hence, we only compared our new
algorithms with the implementation of dense QR in LAPACK on netlib.

264 MING GU

Table 2
Fortran BLAS, small residuals.

Matrix Order
1

κ(T)
Execution time (seconds)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 3×10−1 4×10−1 5×10−1 8×10−1

640 600 1×10−3 8×10−1 9×10−1 2×100 2×100 6×100

1 1280 1200 1×10−3 3×100 3×100 6×100 7×100 5×101

2560 2400 8×10−4 1×101 1×101 3×101 3×101 4×102

320 300 6×10−17 2×10−1 2×10−1 4×10−1 5×10−1 8×10−1

640 600 4×10−17 8×10−1 9×10−1 2×100 2×100 6×100

2 1280 1200 3×10−17 3×100 3×100 7×100 7×100 5×101

2560 2400 1×10−17 1×101 1×101 3×101 3×101 4×102

320 300 4×10−9 2×10−1 2×10−1 4×10−1 4×10−1 8×10−1

640 600 2×10−13 8×10−1 9×10−1 2×100 2×100 6×100

3 1280 1200 2×10−15 3×100 3×100 6×100 7×100 5×101

2560 2400 5×10−15 1×101 1×101 3×101 3×101 4×102

Matrix Order
1

κ(T)
Normalized residual (τ)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 7×102 3×100 7×100 3×100 3×10−1

640 600 1×10−3 4×103 8×100 1×100 8×100 5×10−1

1 1280 1200 1×10−3 9×104 1×101 1×101 1×101 3×10−1

2560 2400 8×10−4 4×104 5×100 5×101 5×100 3×10−1

320 300 6×10−17 2×101 9×10−1 1×100 4×10−1 3×10−1

640 600 4×10−17 2×102 8×10−1 3×100 4×10−1 2×10−1

2 1280 1200 3×10−17 5×101 5×10−1 3×100 3×100 2×10−1

2560 2400 1×10−17 2×101 2×100 4×100 3×100 2×10−1

320 300 4×10−9 4×101 1×100 2×101 1×100 3×10−1

640 600 2×10−13 2×102 4×102 1×101 5×100 3×10−1

3 1280 1200 2×10−15 5×101 2×101 1×101 2×101 3×10−1

2560 2400 5×10−15 9×101 7×101 3×101 3×101 3×10−1

• NEW-I: Algorithm 3.2 without iterative refinement; about (39m + 10.5n)n
flops.
• NEW-II: Algorithm 3.2 with iterative refinement; about (39m+16.5n)n flops.
• NEW-III: Algorithm 3.1 without iterative refinement; about (109m + 25n)n

flops.
• NEW-IV: Algorithm 3.1 with iterative refinement; about (109m+46n)n flops.
• QR: LAPACK [1] subroutine DGELS for solving a general dense linear least

squares problem using the QR method; about (2m− 2/3n)n2 flops.
We solved the Toeplitz(-plus-Hankel) linear least squares problem

min
x
‖ (T +H) x− h‖2

for the following types of Toeplitz matrices T = (tk−j)1≤k≤m,1≤j≤n and Hankel ma-
trices H = (hk+j−2)1≤k≤m,1≤j≤n:

• Type 1: {tk} and {hj} were randomly generated from uniform distribution
on (0, 1). A Type 1 matrix is usually well conditioned.

• Type 2: hj = 0. t0 = 2ω and tk = sin(2πωk)
πk for k 6= 0, where ω = 0.25.

A Type 2 matrix is also called the Prolate matrix in Gohberg, Kailath, and
Olshevsky [21] and Varah [49]; T is very ill conditioned.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 265

Table 3
Optimized BLAS, large residuals.

Matrix Order
1

κ(T)
Execution time (seconds)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 2×10−1 4×10−1 5×10−1 3×10−1

640 600 1×10−3 8×10−1 8×10−1 2×100 2×100 2×100

1 1280 1200 1×10−3 3×100 3×100 6×100 6×100 2×101

2560 2400 8×10−4 1×101 1×101 2×101 2×101 1×102

320 300 4×10−17 2×10−1 2×10−1 4×10−1 4×10−1 3×10−1

640 600 4×10−17 7×10−1 8×10−1 1×100 2×100 2×100

2 1280 1200 2×10−17 3×100 3×100 6×100 6×100 2×101

2560 2400 7×10−18 1×101 1×101 2×101 2×101 1×102

320 300 4×10−9 2×10−1 2×10−1 4×10−1 4×10−1 3×10−1

640 600 2×10−13 8×10−1 8×10−1 1×100 2×100 2×100

3 1280 1200 2×10−15 3×100 3×100 6×100 6×100 2×101

2560 2400 5×10−15 1×101 1×101 2×101 2×101 1×102

Matrix Order
1

κ(T)
Backward error (τ)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 3×10−1 4×10−1 5×10−1 8×10−1

640 600 1×10−3 9×101 3×10−1 1×100 3×10−1 2×10−2

1 1280 1200 1×10−3 1×103 3×10−1 2×100 3×10−1 2×10−2

2560 2400 8×10−4 4×102 1×10−1 8×100 1×10−1 1×10−2

320 300 4×10−17 1×100 7×10−1 8×10−1 7×10−1 2×10−1

640 600 4×10−17 2×100 1×100 6×10−1 7×10−1 3×10−1

2 1280 1200 2×10−17 9×10−1 7×10−1 2×100 2×100 2×10−1

2560 2400 7×10−18 2×100 2×100 3×100 3×100 2×10−1

320 300 4×10−9 6×101 5×10−1 4×100 5×10−1 1×10−1

640 600 2×10−13 2×102 8×102 4×100 5×10−1 1×10−1

3 1280 1200 2×10−15 3×101 5×101 1×101 2×101 1×10−1

2560 2400 5×10−15 2×101 4×101 2×101 3×101 1×10−1

• Type 3: A set of data was generated as

xk = e−αk
bm/3c∑
j=1

j

bm/3c+ 1
cos

(
j k π

bm/3c+ 1

)
+ β rk,

where α = π/n; rk is taken from a normal distribution, rk ∈ N(0, 1), and
β = 10−7, 10−11, 10−15, and 10−18. The matrix T ∈ Rm×n was constructed
from tk−s = xk−s+n and we set H = 0. This is a modification of Test V in
Park and Eldén [44], which, in turn, is a modification of an example from
Kolbel and Schafer [38]. T becomes more and more ill conditioned as β
becomes smaller and smaller.

We chose two types of right-hand side vectors h:

• Components of h were randomly generated from uniform distribution on
(0, 1). The linear least squares problem has a large residual.

• Components of xM were randomly generated from uniform distribution on
(0, 1) and h = (T +H) xM . The problem has a small residual.

One way to measure the accuracy in a solution x̂M computed by either one of our
new algorithms or QR is to compute the normwise smallest backward error δM such

266 MING GU

that x̂M is the exact solution to the linear least squares problem (see Theorem 3.1)

min
x
‖ (M + δM) x− h‖2.(4.1)

To do so, we use the following theorem of Gu [26], which is a modification of a result of

Waldén, Karlson, and Sun [50] and Higham [32, Chapter 19]. Let M = Q

(
D
0

)
WT

be the singular value decomposition of M , where Q ∈ Rm×m and W ∈ Rn×n are
orthogonal, and D ∈ Rn×n is nonnegative diagonal. Assume that x̂M 6= 0 and let

r = h−M x̂M = Q

(
r1

r2

)
for r1 ∈ Rn , r2 ∈ Rm−n, and η =

‖r‖2
‖x̂M‖2 .

Theorem 4.1. Define

τ =
min (η, σ̃)√
m ‖M‖2 ε , where σ̃ =

√
rT1 D

2 (D2 + η2I)
−1

r1

‖r2‖22/η2 + η2 rT1 (D2 + η2In)
−2

r1

.

Then the Frobenius normwise smallest backward error δM such that x̂M is the exact
solution to the least squares problem (4.1) satisfies

√
5− 1

2
≤ ‖δM‖F√

mτ ‖M‖2 ε ≤ 1.

According to Theorem 4.1, x̂M is a good approximate solution if and only if
τ ≤ O(1).

Numerical results are summarized in Tables 1 through 4. These results confirm
that both Algorithms 3.1 and 3.2 are capable of solving problems ranging from well
conditioned to ill conditioned to numerically singular, both for large residuals and
small residuals, and that they are significantly faster than QR.

Algorithm 3.2 is the fastest algorithm, whereas QR is the slowest. Flop counts
indicate that NEW-I and NEW-II break even with QR at n ≈ 40. From our numerical
experiments, for m = 2560 and n = 2400, Algorithm 3.2 is up to 30 times faster than
QR in Fortran BLAS and up to 10 times faster in optimized BLAS; Algorithm 3.1
is up to 15 times faster than QR in Fortran BLAS and up to 5 times faster in opti-
mized BLAS. One reason Algorithms 3.1 and 3.2 appear less efficient than flop counts
indicate is that most of the computations in Algorithms 3.1 and 3.2 are in level-1
and level-2 BLAS, whereas most of the computations in QR are in level-3 BLAS. If
these algorithms are implemented in systolic arrays, one might expect the speedups
of Algorithms 3.1 and 3.2 to be more in line with what flop counts indicate.

Algorithm 3.2 is the least accurate, whereas QR is the most accurate. For m =
2560 and n = 2400, the backward error in Algorithm 3.2 is up to 105 times larger than
that in QR. With iterative refinement, the backward error in Algorithm 3.2 is at most
200 times as large. While Algorithm 3.1 costs at least twice as much as Algorithm 3.2,
it is significantly more accurate. With or without iterative refinement, the backward
error in Algorithm 3.1 is at most 200 times larger than that in QR.

5. Conclusions and extensions. We have presented fast algorithms for solving
the Toeplitz and Toeplitz-plus-Hankel linear least squares problems and shown them
to be numerically stable under certain conditions. We have discussed implementation

ALGORITHMS FOR STRUCTURED LEAST SQUARES 267

Table 4
Optimized BLAS, small residuals.

Matrix Order
1

κ(T)
Execution time (seconds)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 3×10−1 4×10−1 5×10−1 3×10−1

640 600 1×10−3 8×10−1 8×10−1 1×100 2×100 2×100

1 1280 1200 1×10−3 3×100 3×100 6×100 6×100 2×101

2560 2400 8×10−4 1×101 1×101 2×101 2×101 1×102

320 300 4×10−17 2×10−1 2×10−1 4×10−1 4×10−1 3×10−1

640 600 4×10−17 7×10−1 8×10−1 2×100 2×100 2×100

2 1280 1200 2×10−17 3×100 3×100 6×100 6×100 2×101

2560 2400 7×10−18 1×101 1×101 2×101 2×101 1×102

320 300 4×10−9 2×10−1 2×10−1 4×10−1 4×10−1 3×10−1

640 600 2×10−13 8×10−1 8×10−1 1×100 2×100 2×100

3 1280 1200 2×10−15 3×100 3×100 6×100 6×100 2×101

2560 2400 5×10−15 1×101 1×101 2×101 2×101 1×102

Matrix Order
1

κ(T)
Backward error (τ)

type m n NEW-I NEW-II NEW-III NEW-IV QR

320 300 2×10−3 2×10−1 3×10−1 4×10−1 5×10−1 8×10−1

640 600 1×10−3 4×103 8×100 1×100 9×100 4×10−1

1 1280 1200 1×10−3 7×104 1×101 1×101 1×101 5×10−1

2560 2400 8×10−4 5×104 5×100 5×101 5×100 4×10−1

320 300 4×10−17 2×101 1×100 8×10−1 4×10−1 3×10−1

640 600 4×10−17 3×102 7×10−1 7×10−1 7×10−1 3×10−1

2 1280 1200 2×10−17 7×101 7×10−1 2×100 1×100 2×10−1

2560 2400 7×10−18 4×101 2×100 4×100 4×100 2×10−1

320 300 4×10−9 4×101 1×100 2×101 1×100 4×10−1

640 600 2×10−13 2×102 8×102 1×101 5×100 4×10−1

3 1280 1200 2×10−15 3×101 5×101 2×101 2×101 4×10−1

2560 2400 6×10−15 6×101 8×101 2×101 3×101 4×10−1

techniques that further improve their efficiency. Numerical experiments indicate that
they are both numerically stable and efficient in practice.

The algorithms presented in this paper can be modified to solve mosaic Toeplitz
or block Toeplitz linear least squares problems (cf. [13, 21]).

As Theorem 3.1 indicates, these new algorithms could be numerically unstable
if κ(L̂) is large. The best available upper bound on κ(L̂) is O(2n), which has never

been seen in practice. It is not clear whether a sharper bound on κ(L̂) exists for
Cauchy-like matrices with low displacement rank.

While the element growth factor for GECP is much smaller than that for GEPP,
these factors remain largely theoretical. It would be interesting to know if there are
cases where complete pivoting is significantly more accurate than partial pivoting.
Another related issue is to study the impact of the different choices of ζj ’s on the
accuracy of the numerical solution.

One way to reduce the upper bound on κ(L̂) is to perform a rank-revealing
LU (RRLU) factorization on C instead of using GEPP/GECP (see, for example,
Chan [10], Gu and Eisenstat [29], and Hwang, Lin, and Yang [33]). It would be in-
teresting to see if fast RRLU factorization algorithms can be developed to guarantee
that κ(L̂) is always modest.

268 MING GU

Acknowledgments. The author is grateful to Profs. A. Björck and S. Chan-
drasekaran for helpful discussions, Prof. Golub for pointing out to him reference [42],
and the anonymous referees for many helpful suggestions that significantly improved
the presentation of this paper.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] A. Björck, Iterative refinement of linear least squares solutions I, BIT, 7 (1967), pp. 257–278.
[3] A. Björck, personal communication, Dept. of Math., Linköping University, Linköping, Sweden,

1996.
[4] A. Bojanczyk and R. P. Brent, Parallel solution of certain Toeplitz least-squares problems,

Linear Algebra Appl., 77 (1986), pp. 43–60.
[5] A. W. Bojanczyk, R. P. Brent, and F. de Hoog, QR factorization of Toeplitz matrices,

Numer. Math., 49 (1986), pp. 81–94.
[6] A. W. Bojanczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet, On the stability of

the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 40–57.

[7] R. P. Brent, Parallel algorithms for Toeplitz systems, in Numerical Linear Algebra, Digital
Signal Processing and Parallel Algorithms, G. H. Golub and P. van Dooren, eds., Springer-
Verlag, New York, 1990.

[8] J. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric
linear systems, Math. Comput., 31 (1977), pp. 163–179.

[9] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat.
Comput., 6 (1985), pp. 349–364.

[10] T. F. Chan, On the existence and computation of LU-factorizations with small pivots, Math.
Comp., 42 (1984), pp. 535–547.

[11] S. Chandrasekaran and A. H. Sayed, A fast stable solver for nonsymmetric Toeplitz and
quasi-Toeplitz systems of linear equations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 107–
139.

[12] S. Chandrasekaran and A. H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J.
Matrix Anal. Appl., 17 (1996), pp. 950–983.

[13] J. Chun and T. Kailath, Generalized displacement structure for block-Toeplitz, Toeplitz-block,
and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128.

[14] J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and triangular fac-
torization, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 899–913.

[15] G. Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems
of equations, SIAM J. Sci. Stat. Comput., 1 (1980), pp. 303–320.

[16] G. Cybenko, A general orthorgonalization technique with applications to time series analysis
and signal processing, Math. Comp., 40 (1983), pp. 323–336.

[17] G. Cybenko, Fast Toeplitz orthorgonalization using inner products, SIAM J. Sci. Stat. Com-
put., 8 (1987), pp. 734–740.

[18] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization, Math. Comp., 30 (1976),
pp. 772–795.

[19] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[20] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl., 58 (1984), pp. 75–95.
[21] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting

for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.
[22] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured ma-

trices, Linear Algebra Appl., 202 (1994), pp. 163–192.
[23] I. Gohberg and V. Olshevsky, Fast algorithm for matrix Nehari problem, in Systems and

Networks: Mathematical Theory and Applications, Proc. Internat. Symposium Mathe-
matical Theory of Networks and Systems, (MTNS-93), U. Helmke, R. Mennicken, and J.
Sauers, eds., Vol. 2, 1994, pp. 687–690.

[24] I. Gohberg and V. Olshevsky, Fast state space algorithms for matrix Nehari and Nehari-
Takagi interpolation problems, Integral Equations Operator Theory, 20 (1994), pp. 44–83.

ALGORITHMS FOR STRUCTURED LEAST SQUARES 269

[25] G. Golub and C. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[26] M. Gu, Backward perturbation bounds for linear least squares problems, SIAM J. Matrix Anal.
Appl., to appear.

[27] M. Gu, New Fast Algorithms for Structured Linear Least Squares Problems, LBL Report LBL-
37878, Lawrence Berkeley National Laboratory, Berkeley, CA, 1995.

[28] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 279–306.

[29] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[30] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing, IMA Vol. Math. Appl. 69, Springer-Verlag, New
York, 1995, pp. 95–114.

[31] G. Heinig and K. Rost, Algebraic methods for Toeplitz-like matrices and operators, Oper.
Theory, 13 (1984), pp. 109–127.

[32] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[33] T.-M. Hwang, W.-W. Lin, and E. K. Yang, Rank revealing LU factorizations, Linear Algebra

Appl., 175 (1992), pp. 115–141.
[34] T. Kailath, S. Kung, and M. Morf, Displacement ranks of matrices and linear equations,

J. Math. Anal. Appl., 68 (1979), pp. 395–407.
[35] T. Kailath and V. Olshevsky, Symmetric and Bunch-Kaufman Pivoting for Cauchy-like

Matrices with Applications to Toeplitz-like Matrices, manuscript.
[36] T. Kailath and A. H. Sayed, Fast algorithms for generalized displacement structures, in

Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Pro-
cessing, Vol. II, H. Kimura and S. Kodama, eds., Mita Press, Osaka, Japan, 1992, pp. 27–32.

[37] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[38] W. Kolbel and H. Schafer, Improvement and automation of the LPSVD algorithm by contin-
uous regularization of the singular values, J. Magnetic Resonance, 100 (1992), pp. 598–603.

[39] F. T. Luk and S. Qiao, A fast but unstable orthogonal triangularization technique for Toeplitz
matrices, Linear Algebra Appl., 88/89 (1987), pp. 495–506.

[40] J. G. Nagy, Fast inverse QR factorization for Toeplitz matrices, SIAM J. Sci. Comput., 14
(1993), pp. 1174–1193.

[41] J. G. Nagy, Applications of Toeplitz systems, SIAM News, October 1995.
[42] B. Noble, Computing the Moore-Penrose generalized inverse, in Generalized Inverses and

Applications, M. Z. Nashed, ed., Academic Press, New York, San Diego, 1976.
[43] V. Pan, On computations with dense structured matrices, Math. Comp., 55 (1990), pp. 179–

190.
[44] H. Park and L. Eldén, Stability Analysis and Fast Algorithms for Triangularization of

Toeplitz Matrices, Tech. Report Lith-Mat-R-95-16, Department of Mathematics, Linköping
University, Linköping, Sweden, 1995.

[45] S. Qiao, Hybrid algorithm for fast Toeplitz orthogonalization, Numer. Math., 53 (1988),
pp. 351–366.

[46] D. R. Sweet, Fast Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1–21.
[47] D. R. Sweet, The use of pivoting to improve the numerical performance of algorithms for

Toeplitz matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 468–493.
[48] D. R. Sweet and R. P. Brent, Error analysis of a fast partial pivoting method for structured

matrices, in Advanced Signal Processing Algorithms, Proc. of SPIE, T. Luk, ed., Vol. 2363,
1995, pp. 266–280.

[49] J. M. Varah, The Prolate matrix, Linear Algebra Appl., 187 (1993), pp. 269–278.
[50] B. Waldén, R. Karlson, and J.-G. Sun, Optimal backward perturbation bounds for the linear

least square problem, Numer. Linear Algebra Appl., 2 (1995), pp. 271–286.
[51] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput.

Mach., 10 (1961), pp. 281–330.
[52] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

BLOCKWISE PERTURBATION THEORY FOR MARKOV CHAINS∗

XUE JUNGONG† AND GAO WEIGUO†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 270–278

Abstract. This paper is concerned with the relative sensitivity of the individual stationary
probabilities of an irreducible Markov chain to small relative blockwise perturbations of the transi-
tion matrix. It is shown that this sensitivity depends on some quantities related to the stochastic
complements of diagonal blocks of the transition matrix. For nearly uncoupled and nearly transient
Markov chains, the stationary probabilities are sensitive to general perturbations in the relative sense.
However, they are insensitive to small blockwise relative perturbations.

Key words. Markov chains, perturbation theory, nonnegative matrix, stationary distribution,
transition matrix

AMS subject classifications. 65F35, 15A51, 60J10

PII. S0895479895294629

1. Introduction. The sensitivity of the stationary distribution of an irreducible
Markov chain has been addressed by many authors [9], [6], [4], [3]. Recently, much
attention was focused on analyzing the relative sensitivity of the individual stationary
probabilities. In [5], Ipsen and Meyer presented an important result: Let P and

P̃ = P +F be irreducible transition matrices with respective stationary distributions
πT and π̃T satisfying

πTP = πT , π̃T P̃ = π̃T ,
∑
i

πi = 1 =
∑
i

π̃i.

Then

πi − π̃i
πi

= π̃TF (i)A−1
i 1(1.1)

and ∣∣∣∣πi − π̃iπi

∣∣∣∣ ≤ ‖F (i)‖ · ‖A−1
i ‖.(1.2)

Here F (i) is the submatrix of F obtained by deleting the ith column and Ai is the
principal submatrix of A = I − P obtained by deleting the ith column and row.
Throughout this paper, the norm ‖ ∗ ‖ is the one-norm for matrices and row vectors.
We denote by 1 (a bold one) the vector of all ones. In later discussion, we give its
dimension with a subscript (e.g., 1n for the vector with n entries) explicitly when
necessary.

The relative sensitivity of the ith stationary probability to general perturbations
is determined by ‖A−1

i ‖. However, if F is an entrywise small relative perturbation to
P , then |πi−π̃i|/πi must small. O’Cinneide’s result [8] just states this: If |fij | ≤ η|pij |
for i 6= j, then ∣∣∣∣πi − π̃iπi

∣∣∣∣ ≤ 2nη +O(η2),

∗Received by the editors November 10, 1995; accepted for publication (in revised form) by D. P.
O’Leary October 22, 1997; published electronically September 29, 1998.

http://www.siam.org/journals/simax/20-1/29462.html
†Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

(jgxue@ms.fudan.edu.cn).

270

BLOCKWISE PERTURBATION THEORY FOR MARKOV CHAINS 271

where n is the order of P . Similar results can also be found in [12] and [13]. However
large ‖A−1

i ‖ is, small relative errors in the entries of P result in small relative error
in πi.

The purpose of this paper is to extend O’Cinneide’s result to the blockwise case.
Let P and F be partitioned as

P =

P11 P12 · · · P1t

P21 P22 · · · P2t

...
...

...
Pt1 Pt2 · · · Ptt

 and F =

F11 F12 · · · F1t

F21 F22 · · · F2t

...
...

...
Ft1 Ft2 · · · Ftt

 ,

where Pii and Fii are square, of order mi, with n =
∑t
i=1mi. The stationary distri-

bution πT is partitioned conformally with P , πT = (πT1 , . . . , π
T
t). From now on, πTi

is a row vector of order mi and πi(j) is the jth entry of πTi . Similarly, π̃T can be
partitioned as π̃T = (π̃T1 , . . . , π̃

T
t). Under the condition that ‖Fii‖ ≤ η for i = 1, . . . , t

and

1T |Fij | ≤ η · 1TPij , i 6= j,(1.3)

where the inequality and the absolute value are to be understood in a entrywise sense,
we are to bound

max
1≤i≤t, 1≤j≤mi

∣∣∣∣πi(j)− π̃i(j)πi(j)

∣∣∣∣ .(1.4)

In other words, we are to bound the relative error in each stationary probability when
each column of the off-diagonal blocks of the transition matrix gets a small relative
perturbation. We will find a bound that depends on some quantities related to the
stochastic complements of diagonal blocks. The stochastic complement of Pii [7] is

Sii = Pii + Pi∗(I − Pi)−1P∗i,

where Pi∗ is an mi × (n −mi) matrix composed of the ith row of blocks of P with
Pii removed, P∗i is an (n −mi) ×mi matrix composed of the ith column of blocks
of P with Pii removed, and Pi is the principal submatrix of P with the ith row and
column of blocks removed.

Obviously, Sii is also a stochastic matrix with stationary distribution πTi /‖πTi ‖.
In section 3, we will discuss how to bound these quantities. For nearly uncoupled

and nearly transient Markov chains, the stationary probabilities are sensitive to gen-
eral perturbations in a relative sense. However, they are insensitive to small relative
blockwise perturbations as in (1.3). This extends results in [1], [10], and [11].

2. Symbols and definitions.. Throughout this article |B| denotes the matrix
|B| = (|bij |) and B ≤ C(< C) means bij ≤ cij(< cij) for all i and j. We denote by

B̄, B̆, and B̂ the submatrices of B with the last column, the last row, and the last
column and row removed, respectively. These symbols are also used for row vectors
and columns. The jth column of the identity matrix I is denoted by ej .

Let G be a tree of vertices 1, . . . , n; i.e., G has n−1 edges and no cycles. A vertex
of G that has one neighbor is called a leaf. If B is an n× n matrix, then we define

dG(B) = min{max(|aij |, |aji|) |{i, j} is an edge of G},

272 XUE JUNGONG AND GAO WEIGUO

d(B) = max
G

dG(B),

and

q(B) = max{‖C−1‖C is a principal matrix of B with order n}.
Writing Aii = I − Pii and Bii = I − Sii, where Sii is as in (1.5), we have

πTBii = 0 and d(Bii) = d(Sii) ≥ d(Pii).

We set

q = max
1≤i≤t

q(Bii) and s = max
1≤i≤t

si,

where

si =
max1≤j≤mi πi(j)
min1≤j≤mi πi(j)

.

If mi = 1, we let s = 1 and q = 0.

3. Bounding q. After computing πT , we can get s at once. Now we discuss
how to bound q.

Lemma 3.1. Let A be an n × n irreducible M-matrix. If d(A) ≥ c and A is
column and row diagonally dominant, i.e., A1 ≥ 0 and 1TA ≥ 0, then

‖A−1
i ‖ ≤

n(n− 1)

2c
,(3.1)

where Ai is the principal submatrix of A with the ith column and row deleted.
Proof. Without loss of generality, we prove (3.1) for i = n. Suppose that G is a

tree and dG(A) = d(A). It is well known that a tree has at least two leaves and the
subgraph of a tree with one leaf deleted is still a tree. So there exists a permutation
of 1, . . . , n − 1, which is denoted by α(1), . . . , α(n − 1), such that α(j) is a leaf of
the subgraph of G with the vertices α(1), . . . , α(j − 1) deleted. In other words, for
1 ≤ j ≤ n− 1, we can find j < k ≤ n such that

aα(k),αj ≤ −c or aα(j),αk ≤ −c;(3.2)

here we set α(n) = n. Without loss of generality, we assume that α(j) = j. Thus
after n− 2 steps of Gaussian elimination on A, we have the LU factorization of An

LAnU = D,

where L = Ln−2 · · ·L1 and U = U1 · · ·Un−1 with

Lj =

1
. . .

1

lj+1,j
. . .

...
ln−1,j 1

, Uj =

1
. . .

1 uj,j+1 · · · uj,n−1

. . .

. . .

1

,

BLOCKWISE PERTURBATION THEORY FOR MARKOV CHAINS 273

and D = diag(d1, . . . , dn−1). Because Gaussian elimination preserves the M-matrix
structure and diagonal dominance, see [2], we have that Li ≥ 0, Ui ≥ 0, and

n−1∑
k=j+1

lk,j ≤ 1,
n−1∑
k=j+1

uj,k ≤ 1.

This gives

Uj

n−1∑
k=j+1

ek ≤
n−1∑
k=j

ek and

 n−1∑
k=j+1

eTk

Lj ≤
n−1∑
k=j

eTk .(3.3)

From (3.3) and Ujek = ek for k ≤ j, we get

Uej ≤ U1 · · ·Uj−1ej ≤ U1 · · ·Uj−1

n−1∑
k=j

ek ≤
n−1∑
j=1

ej .

Since U is upper triangular,

U ≤

1 1 · · · 1

1
. . .

...
. . .

...
1

 .

Similarly,

L ≤

1

1 1
...

...
. . .

1 1 · · · 1

 .

Since the off-diagonal entries of A decrease under Gaussian elimination,

dj ≥ max

n∑

k=j+1

|ajk|,
n∑

k=j+1

|akj |
 ≥ c.

Thus

‖A−1
n ‖ = ‖UD−1L‖ ≤ 1

c
‖UL‖ ≤ n(n− 1)

2c
.

Remark. Let

A =

c −c
−c 2c −c

. . .
. . .

. . .

−c 2c −c
−c c

 .

274 XUE JUNGONG AND GAO WEIGUO

We can easily get A1 = 0, 1TA = 0, d(A) = c, and

‖A−1
n ‖ =

n(n− 1)

2c
.

This means that the bound (3.1) is tight.

The following theorem provides an upper bound for q.

Theorem 3.1. Let m = maximi and d = mini d(Pii). Then

q ≤ m(m− 1)s

2d
.

Proof. Let Di = diag(πi(1), . . . , πi(mi)) and Cii = DiBii. We have that ‖Di‖ ≤
max1≤j≤mi πi(j) Cii is an M-matrix with Cii1 = 0 and 1TCii = 0 and

d(Cii) ≥ d(Bii) · min
1≤j≤mi

πi(j) ≥ d(Pii) · min
1≤j≤mi

πi(j) ≥ d min
1≤j≤mi

πi(j).

From Lemma 3.1,

q(Cii) ≤ m(m− 1)

2d ·min1≤j≤mi πi(j)
.

Thus,

q(Bii) ≤ ‖Di‖q(Cii) ≤ m(m− 1)s

2d
.

4. The main result. In this section, we assess the relative sensitivity of the
individual stationary probabilities. The following theorem is the main result of this
paper.

Theorem 4.1. Let P and P̃ = P + F be irreducible transition matrices with
respective stationary distributions πT and π̃T . Let P and F be partitioned as in (1.3)
and πT and π̃T be partitioned conformally. Denote

δ = max
1≤i≤t, 1≤j≤mi

∣∣∣∣πi(j)− π̃i(j)πi(j)

∣∣∣∣ .
If for i = 1, . . . , t Pii is irreducible and

‖Fii‖ ≤ η and 1T |Fij | ≤ η · 1TPij for i 6= j,

then

δ ≤ 2ts((s+ 1)q + 1) · η
1− 2ts((s+ 1)q + 1) · η .(4.1)

Proof. Without loss of generality, we assume that

δ = max
1≤i≤t, 1≤j≤mi

∣∣∣∣ π̃i(j)− πi(j)πi(j)

∣∣∣∣ =

∣∣∣∣ π̃t(mt)− πt(mt)

πt(mt)

∣∣∣∣ .

BLOCKWISE PERTURBATION THEORY FOR MARKOV CHAINS 275

From (1.1)

δ = |π̃T F̄ Â−11| ≤
t∑

j=1

|π̃Tj (Fj1; . . . ;Fj,t−1 F̄jt)Â
−11|

≤ (1 + δ)

t∑
j=1

|πTj (Fj1; . . . ;Fj,t−1 F̄jt)Â
−11|.(4.2)

Construct

Xj =

Im1 −1m1

. . .
...

Imj−1
−1mj−1

0 −1mj T̄mj
Imj+1

−1mj+1

. . .
...

Ĭmt −1mt−1

and

Yj =

Im1

. . .

Imj−1

0 Imj+1

. . .

− 1
πt(mt)

πT1 · · · · · · − 1
πt(mt)

πTj · · · · · · − 1
πt(mt)

π̄Tt
Ĭmj

.

It is easily verified that

(Fj1; . . . ;Fj,t−1; F̄jt)Xj = (Fj1; . . . ;Fj,j−1;Fj,j+1; . . . ;Fjt; F̄jj),

Yj1 = 1− 1

πt(mt)
erj , where rj =

t∑
i 6=j

mi,

and

YjÂXj = Hj ; i.e., Â−1 = XjH
−1Yj ,

where

Hj =

(
I − Pj −P̄∗j
−P̆j∗ Âjj

)
.

Thus

δ ≤ (1 + δ)

(
|πTt (Ft1; . . . ;Ft,t−1 F̄tt)Â

−11|

+

t−1∑
j=1

∣∣∣∣πTj (Fj1; . . . ;Fj,j−1;Fj,j+1; . . . ;Fjt; F̄jj)H
−1
j

(
1 +

1

πt(mt)
erj

)∣∣∣∣).(4.3)

276 XUE JUNGONG AND GAO WEIGUO

Now we bound

|πTt (Ft1; . . . ;Ft,t−1; F̄tt)Â
−11|.

From 1T |Ftj | ≤ η1TPtj for j = 1, . . . , t− 1, it follows that

|πTt (Ft1; . . . ;Ft,t−1)| ≤ stη · πTt Pt∗ ≤ sη · πTt Pt∗.

Since πTA = 0 implies

πTt (−Pt∗ ; Ātt) = −(πT1 ; . . . ;πTt−1; 0)Â,

i.e.,

πTt (−Pt∗ ; Ātt)Â
−1 = −(π1; . . . ;πt−1; 0)

and

π̄Tt ≥ πTt Ātt =
t−1∑
i−1

πTt P̄it ≥ 0,

we have

|πTt (Ft1; . . . ;Ft,t−1; F̄tt)Â
−1| ≤ sη · πTt (Pt∗; 0)Â−1 + πTt (0 ; |F̄tt|)Â−1

= sη · πTt (Pt∗ ; −Ātt)Â−1 + πTt (0 ; C)Â−1

= sη · (πT1 ; . . . ;πTt−1; 0) + πTt (0;C)Â−1.

Here C = sη · Ī + |F̄tt| with ‖C‖ ≤ (s+ 1)η. Writing

Â =

(
I − Pt −P̄∗t
−P̆t∗ Âtt

)
and noting πTA = 0 implies π̄Tt P̆t∗(I − Pt)−1 ≤ (πT1 ; . . . ;πTt−1), we get

B̂tt = Âtt − P̆t∗(I − Pt)−1P̄∗t

and

πTt (0 ; C)Â−1 = πTt CB̂
−1
tt (P̆t∗(I − Pt)−1; I)

≤ s(s+ 1)q(Btt)‖C‖η · π̄Tt (P̆t∗(I − Pt)−1; I)

≤ s(s+ 1)qη · (πT1 ; · · · ;πTt−1; π̄Tt).

Thus

|πTt (Ft1; . . . ;Ft,t−1; F̄tt)Â
−1| ≤ s((s+ 1)q + 1)η · (πT1 ; · · · ;πTt−1; π̄Tt).(4.4)

Similarly, we have

|πTj (Fj1; . . . ;Fj,j−1;Fj,j+1; . . . ;Fjt; F̄jj)H
−1
j |,

s((s+ 1)q + 1)η · (πT1 ; . . . ;πTj−1;πTj+1; . . . ;πt; π̄
T
j).(4.5)

BLOCKWISE PERTURBATION THEORY FOR MARKOV CHAINS 277

Substituting (4.4) and (4.5) into (4.3), we have

δ ≤ 2(1 + δ)st((s+ 1)q + t),

which gives (3.1).
Remark. If mi = 1 for 1 ≤ i ≤ t, then δ ≤ 2nη +O(η2); this is just O’Cinneide’s

result. If s and q are not large, this theorem demonstrates that each stationary
probability is insensitive to small relative blockwise perturbations. For some ill-
conditioned Markov chains, such as nearly uncoupled and nearly transient Markov
chains, maxi ‖A−1

i ‖ must be large, while s and q may be small. Consider the follow-
ing example:

P =

0.5 0.5− ε ε 0

0.5− ε 0.5 0 ε
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 =

(
P11 P12

P21 P22

)

and

F =

ηε 0 0 −ηε
0 ηε −ηε 0
η
4

η
4 −η4 −η4

η
4

η
4 −η4 −η4

 =

(
F11 F12

F21 F22

)
,

where P11, P22, F11, and F22 are 2× 2 matrices and ε is a small constant. Then

πT =
1

2 + 4ε
(1, 1, 2ε, 2ε),

and

π̃T =
1

2 + 2η + 4(1− η)ε
(1 + η, 1 + η, 2(1− η)ε, 2(1− η)ε).

It is easy to show that ‖A−1
i ‖ = O(1

ε), i = 3, 4 while s = 1 and q ≈ 2. The entrywise
relative error between πT and π̃T is no more than 3η + O(η2). However we cannot
apply O’Cinneide’s result to predict that the entrywise relative error is small, since
some zero entries of P are perturbed to be nonzero. Applying Theorem 4.1, we have

max
i

∣∣∣∣πi − π̃iπi

∣∣∣∣ ≤ 20η +O(η2),

which shows that each stationary probability gets a small perturbation.

Acknowledgments. The authors are grateful to Prof. Jiang Erxiong for his
careful reading of this paper and illuminating suggestions. We would like to thank
two anonymous referees for their helpful comments.

REFERENCES

[1] J. L. Barlow, Perturbation results for nearly uncoupled Markov chains with applications to
iterative methods, Numer. Math., 65 (1993), pp. 51–62.

[2] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Science, Academic
Press, New York, 1979.

278 XUE JUNGONG AND GAO WEIGUO

[3] R. E. Funderlic and C. D. Meyer, Sensitivity of the stationary distribution vector for an
ergodic Markov chain, Linear Algebra Appl., 76 (1986), pp. 1–17.

[4] G. H. Golub and C. D. Meyer, Using the QR factorization and group inversion to compute,
differentiate, and estimate the sensitivity of stationary probabilities for Markov chains,
SIAM J. Algebraic Discrete Meth., 7 (1985), pp. 273–281.

[5] C. F. Ipsen and C. D. Meyer, Uniform stability of Markov chains, SIAM J. Matrix Anal.
Appl., 4 (1994), pp. 1061–1074.

[6] C. D. Meyer, The condition of a finite Markov chain and perturbation bounds for the limiting
probabilities, SIAM J. Algebraic Discrete Meth., 1 (1980), pp. 273–283.

[7] C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Rev., 31 (1989), pp. 240–272.

[8] C. A. O’Cinneide, Entrywise perturbation theory and error analysis for Markov chains, Nu-
mer. Math., 65 (1993), pp. 190–120.

[9] P. J. Schweitzer, Perturbation theory and finite Markov chains, J. Appl. Prob., 5 (1968), pp.
401–413.

[10] G. Stewart and G. Zhang, On a direct method for the solution of nearly uncoupled Markov
chains, Numer. Math., 59 (1991), pp. 1–11.

[11] G. Stewart, On the perturbation of Markov chains with nearly transient states, Numer. Math.,
65 (1995), pp. 135–141.

[12] Y. Takahashi, On the effects of small deviations in the transition matrix of a finite Markov
chain, J. Oper. Res. Soc. Japan, 16 (1973), pp. 104–129.

[13] R. L. Tweedie Perturbation of countable Markov chains and processes, Ann. Inst. Statist.
Math., 32 (1980), pp. 283–290.

[14] G. Zhang, On the sensitivity of the solution of nearly uncoupled Markov chains, SIAM J.
Matrix Anal. Appl., 4 (1993), pp. 1112–1123.

NEWTON’S METHOD FOR DISCRETE ALGEBRAIC RICCATI
EQUATIONS WHEN THE CLOSED-LOOP MATRIX HAS

EIGENVALUES ON THE UNIT CIRCLE∗

CHUN-HUA GUO†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 279–294

Abstract. When Newton’s method is applied to find the maximal symmetric solution of a dis-
crete algebraic Riccati equation (DARE), convergence can be guaranteed under moderate conditions.
In particular, the initial guess does not need to be close to the solution. The convergence is quadratic
if the Fréchet derivative is invertible at the solution. When the closed-loop matrix has eigenvalues on
the unit circle, the derivative at the solution is not invertible. The convergence of Newton’s method
is shown to be either quadratic or linear with the common ratio 1

2
, provided that the eigenvalues on

the unit circle are all semisimple. The linear convergence appears to be dominant, and the efficiency
of the Newton iteration can be improved significantly by applying a double Newton step at the right
time.

Key words. discrete algebraic Riccati equations, Newton’s method, maximal symmetric solu-
tion, convergence rate, matrix pencils

AMS subject classifications. 15A24, 65H10, 93B40

PII. S0895479897322999

1. Introduction. Algebraic Riccati equations occur in many important applica-
tions [18], [20]. In a previous paper [11] we considered Newton’s method for continuous
algebraic Riccati equations (CAREs). In this paper we consider a DARE of the form

−X +ATXA+Q− (C +BTXA)T (R+BTXB)−1(C +BTXA) = 0,(1.1)

where A,Q ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, R ∈ Rm×m, and QT = Q,RT = R. We
denote by R(X) the left-hand side of (1.1). The function R(X) and its derivatives are
much more complicated than their CARE counterparts. Nevertheless, it will be shown
that most analytical properties established in [11] for the CARE can be extended to
the DARE. The analysis here is more involved, but the line of attack is the same.

Let S be the set of symmetric matrices in Rn×n. For any matrix norm (not neces-
sarily multiplicative) S is a Banach space. Let D = {X ∈ S | R+BTXB is invertible}.
We have R : D → S. The first Fréchet derivative of R at a matrix X ∈ D is a linear
map R′X : S → S given by

R′X(S) = −S + ÂTSÂ,(1.2)

where Â = A−B(R+BTXB)−1(C +BTXA). Also the second derivative at X ∈ D,
R′′X : S × S → S, is given by

R′′X(S1, S2) = −ÂTS1HS2Â− ÂTS2HS1Â,(1.3)

where H = B(R+BTXB)−1BT .
For A ∈ Rn×n and B ∈ Rn×m, the pair (A,B) is said to be d-stabilizable if there

is a K ∈ Rm×n such that A−BK is d-stable, i.e., all its eigenvalues are in the open

∗Received by the editors June 16, 1997; accepted for publication (in revised form) by A. Ran
January 15, 1998; published electronically October 7, 1998.

http://www.siam.org/journals/simax/20-2/32299.html
†Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada

(guo@math.ucalgary.ca).

279

280 CHUN-HUA GUO

unit disk. For real symmetric matrices X and Y , we write X ≥ Y (X > Y) if X−Y is
positive semidefinite (definite). A symmetric solution X+ of (1.1) is called maximal if
X+ ≥ X for every symmetric solution X. The following result is essentially the real
version of Theorem 13.1.1 in [18]. See also [22].

Theorem 1.1. Let (A,B) be a d-stabilizable pair and assume that there is a sym-
metric solution X̃ of the inequality R(X) ≥ 0 for which R+BT X̃B > 0. Then there
exists a maximal symmetric solution X+ of R(X) = 0. Moreover, R + BTX+B > 0
and all the eigenvalues of A−B(R+BTX+B)−1(C +BTX+A) lie in the closed unit
disk.

Remark 1.1. In Theorem 13.1.1 of [18], the matrix R is required to be invertible.
This requirement is needed for some later developments in [18], but is not necessary
for the conclusions of Theorem 13.1.1. The proof of that theorem should be slightly
modified. We have only to replace expressions of the form Q − CTR−1C + (L −
R−1C)TR(L−R−1C) by expressions of the form Q+LTRL−CTL−LTC. That the
invertibility of R is not necessary for the conclusions of Theorem 1.1 has also been
noted in [2]. As noted in [3], the matrix R may well be singular in applications.

A symmetric solution X of (1.1) is called stabilizing (resp., almost stabilizing) if
all the eigenvalues of A−B(R+BTXB)−1(C+BTXA) are in the open (resp., closed)
unit disk. Such solutions play important roles in applications. Theorem 1.1 tells us
that, under the given conditions, the maximal solution is at least almost stabilizing.

The Newton method for the solution of (1.1) is

Xi = Xi−1 − (R′Xi−1
)−1R(Xi−1), i = 1, 2, . . . ,(1.4)

given that the maps R′Xi(i = 0, 1, . . .) are all invertible. The iteration (1.4) is closely
related to the solution of the Stein equation described in the following classical result.

Theorem 1.2 (cf. [18, p. 100]). For any given matrices A,B,Γ ∈ Rn×n the
Stein equation S − BSA = Γ has a unique solution (necessarily real) if and only if
λrµs 6= 1 for any λr ∈ σ(A), µs ∈ σ(B).

It follows from Theorem 1.2 that, under the conditions of Theorem 1.1, R′X+
is

invertible if and only if A−B(R+BTX+B)−1(C +BTX+A) is d-stable.
When we apply Newton’s method to the DARE (1.1) with (A,B) d-stabilizable,

the initial matrix X0 is taken such that A − B(R + BTX0B)−1(C + BTX0A) is d-
stable. The usual way to generate such an X0 is as follows. We choose L0 ∈ Rm×n
such that A0 = A − BL0 is d-stable, and take X0 to be the unique solution of the
Stein equation

X0 −AT0 X0A0 = Q+ LT0 RL0 − CTL0 − LT0 C.(1.5)

In view of (1.2), the Newton iteration (1.4) can be rewritten as

Xi −ATi XiAi = Q+ LTi RLi − CTLi − LTi C, i = 1, 2, . . . ,(1.6)

where

Li = (R+BTXi−1B)−1(C +BTXi−1A)(1.7)

and

Ai = A−BLi.(1.8)

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 281

Theorem 1.3. Under the same conditions as in Theorem 1.1 and for any L0 ∈
Rm×n such that A0 = A − BL0 is d-stable, starting with the symmetric matrix X0

determined by (1.5), the recursion (1.6) determines a sequence of symmetric matrices
{Xi}∞i=0 for which A − B(R + BTXiB)−1(C + BTXiA) is d-stable for i = 0, 1, . . . ,
X0 ≥ X1 ≥ · · · , and limi→∞Xi = X+.

The maximal solution can thus be found by the Newton iteration with an initial
guess not necessarily close to the solution. The proof of the above theorem can be
found in [18, pp. 308–311] (with some slight modifications as pointed out in Remark
1.1). See also [13] and [22]. Note that an L0 can be produced by automatic stabilizing
procedures such as the one in [24]. It should also be noted that X0 ≥ X1 is generally
not true, if X0 is not obtained from (1.5).

It is readily seen that R′X , as a function of X, is Lipschitz continuous on a closed
ball centered at X+ and contained in D. Thus the well-known locally quadratic
convergence of Newton’s method (see [15], [21]), in combination with Theorem 1.3,
yields the following result.

Theorem 1.4. If A− B(R + BTX+B)−1(C + BTX+A) is d-stable in Theorem
1.3, then for the sequence {Xi}∞i=0 there is a constant c > 0 such that, for i = 0, 1, . . .,
‖Xi+1 −X+‖ ≤ c‖Xi −X+‖2, where ‖ · ‖ is any given matrix norm.

When the closed-loop matrix A−B(R+BTX+B)−1(C+BTX+A) has eigenvalues
on the unit circle, R′X+

is not invertible. This situation happens in some important

applications (see [4], for example). We will show that the convergence of Newton’s
method is either quadratic or linear with common ratio 1

2 , provided that the eigen-
values on the unit circle are all semisimple (i.e., all elementary divisors corresponding
to these eigenvalues are linear). The linear convergence appears to be dominant and,
when this is the case, the efficiency of the Newton iteration can be improved signif-
icantly by applying a double Newton step at the right time. Numerical results are
also given to illustrate these phenomena.

As in [11] we apply the following general formulation of Newton’s method (see
[5], [6], [7], [16], [17], [23]). Let F be a smooth map from a Banach space E into
itself. Assume that there is an x∗ ∈ E such that F (x∗) = 0 and the Fréchet derivative
at x∗, F ′(x∗), has a null space N of dimension d with 0 < d < ∞. Also, it is
assumed that F ′(x∗) has closed range M and that there is a direct sum decomposition
E = N ⊕M . Then we may define PN to be the projection onto N parallel to M and
let PM = I −PN . Assume further that the following regularity condition holds: there
is a φ0 ∈ N such that the map B on N given by B = PNF

′′(x∗)(φ0, ·) is invertible.
These ideas can now be used to formulate sufficient conditions for local convergence.

Theorem 1.5 (cf. [16, Theorem 1.1]). Let E = N ⊕M , let φ0 be chosen so that
B is invertible, and let N = span{φ0} ⊕N1 for some subspace N1. Write x̃ = x− x∗
and let

W (ρ, θ, η) = {x | 0 < ‖x̃‖ < ρ, ‖PM x̃‖ ≤ θ‖PN x̃‖,
(1.9) ‖(PN − P0)x̃‖ ≤ η‖PN x̃‖},
where P0 is the projection onto span{φ0} parallel to M ⊕ N1. If x0 ∈ W (ρ0, θ0, η0)
for ρ0, θ0, η0 sufficiently small, then the Newton sequence {xi} is well defined and
‖F ′(xi)−1‖ ≤ c‖x̃i‖−1 for all i ≥ 1 and some constant c > 0. Moreover,

lim
i→∞

‖x̃i+1‖
‖x̃i‖ =

1

2
, lim

i→∞
‖PM x̃i‖
‖PN x̃i‖2 = 0.

282 CHUN-HUA GUO

The regularity condition is very important for the above theorem. Without this
condition, the behavior of Newton’s method can be very erratic (see, e.g., [10]). Before
we can apply Theorem 1.5 to the DARE (1.1), we need to check the direct sum
condition and the regularity condition for the DARE. The direct sum condition will
be discussed in sections 2 and 3. The regularity condition is satisfied for the DARE
whenever the matrix pair (A,B) is d-stabilizable. This will be discussed in section 4.

If the matrix pair (A,B) is not d-stabilizable, a generalized Newton’s method
may be used for the solution of the DARE (1.1). For differential periodic Riccati
equations without the stability condition, the convergence of a generalized Newton’s
method has been established in [12]. The ideas used in that paper can also be used
for CAREs or DAREs without the stabilizability condition. In this paper, however,
we restrict ourselves to the standard Newton’s method and assume that the matrix
pair (A,B) is d-stabilizable.

2. Interpretation of the direct sum condition for the DARE. We now go
back to the discussion of the DARE (1.1) and assume throughout that the conditions
of Theorem 1.1 are satisfied. Let X+ be the maximal solution of (1.1) with R′X+

not

invertible. Let N = KerR′X+
, M =ImR′X+

. We have the following interpretation of
the direct sum condition.

Theorem 2.1. S = N ⊕M if and only if all eigenvalues of

A+ = A−B(R+BTX+B)−1(C +BTX+A)

on the unit circle are semisimple.

Proof. Let J be the real Jordan canonical form for A+ with P−1A+P = J and
a real matrix P . We find that K ∈ N if and only if K = P−TLP−1 for some
L ∈ NJ = {Y ∈ S | − Y + JTY J = 0}. Also W ∈ M if and only if W = P−TUP−1

for some U ∈ MJ = {Y ∈ S | Y = −V + JTV J for some V ∈ S}. Therefore,
S = N ⊕M if and only if S = NJ ⊕MJ .

If all eigenvalues of A+ on the unit circle are semisimple, we gather the Jordan
blocks of J in several groups:

J = diag(G1, G2, G3, . . . , Gp−1, Gp).(2.1)

Here G1 = −Ir1 , G2 = Ir2 , Gp ∈ Rrp×rp consists of real Jordan blocks associated with
eigenvalues in the open unit disk, and for i = 3, . . . , p− 1,

Gi = diag

((
ai bi
−bi ai

)
, . . . ,

(
ai bi
−bi ai

))
∈ Rri×ri ,(2.2)

where −1 < a3 < · · · < ap−1 < 1, bi > 0, and a2
i + b2i = 1 for i = 3, . . . , p − 1. Using

block matrix multiplications and applying Theorem 1.2 repeatedly, we can show that
S = NJ ⊕MJ . The detailed expressions for NJ andMJ will be given in Lemma 2.2
and will be needed in the sequel.

If A+ has nonlinear elementary divisors corresponding to eigenvalues on the unit
circle, we can arrange the Jordan blocks so that the first Jordan block J1 has one of
the following two forms:

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 283

(i) J1 =

a 1

a
. . .

. . . 1
a

 , a = ±1.

(ii) J1 =

B I

B
. . .

. . . I
B

 , B =

(
a b
−b a

)
, b > 0, a2 + b2 = 1.

For the first case, D1 = diag(0, . . . , 0, 1, 0, . . . , 0) ∈ NJ ∩MJ , where the element 1
appears at the same position as the last diagonal element of J1. Note that D1 =
−V1 + JTV1J for

V1 =
1

2
sign(a)

0

0 1
1 0

0

 ,

where the 2 × 2 matrix in the center appears at the same position as the southeast
corner of J1. For the second case, D2 = diag(0, . . . , 0, I, 0, . . . , 0) ∈ NJ ∩MJ , where
the 2× 2 identity matrix I appears at the same position as the last diagonal block of
J1. Note that D2 = −V2 + JTV2J for

V2 =
1

2b

0

0 T
−T 0

0

with T =

(
0 −1
1 0

)
,

where the 4 × 4 matrix in the center appears at the same position as the southeast
corner of J1. Therefore, S 6= NJ ⊕MJ .

In order to give an explicit construction of the spaces NJ andMJ , we introduce,
as in [11], the matrices

E1 =

(
1 0
0 1

)
, E2 =

(
0 1
−1 0

)
, E3 =

(
1 0
0 −1

)
, E4 =

(
0 1
1 0

)
,

and let Sk be the linear space of real symmetric matrices of order k. For 3 ≤ j ≤ p−1,
we define subspaces Sj , Tj ⊂ Srj by

Sj =
{
X ⊗ E1 + Y ⊗ E2 | X symmetric, Y antisymmetric; both have order

rj
2

}
;

Tj =
{
X ⊗ E3 + Y ⊗ E4 | X,Y symmetric of order

rj
2

}
.

Here, ⊗ denotes the Kronecker product (see p. 97 of [18], for example).
Lemma 2.2. If all eigenvalues of A+ on the unit circle are semisimple, then

N = {P−TNP−1 | N ∈ NJ}, M = {P−TMP−1 | M ∈MJ}
with

NJ = {N = diag(N1, . . . , Np) | Ni ∈ Rri×ri , 1 ≤ i ≤ p;
NT

1 = N1, N
T
2 = N2, Np = 0, Ni ∈ Si, 3 ≤ i ≤ p− 1},

MJ = {M = (Mij) | Mij ∈ Rri×rj ,MT
ij = Mji, 1 ≤ i, j ≤ p;

M11 = 0,M22 = 0,Mii ∈ Ti, 3 ≤ i ≤ p− 1}.

284 CHUN-HUA GUO

Proof. The statement can be verified using block matrix multiplications and Theo-
rem 1.2.

3. Characterization of the direct sum condition via a matrix pencil.
We have given in section 2 a characterization of the direct sum condition, in which
the sought after solution X+ appears. In order to give a characterization which is
independent of X+, we consider the matrix pencil λFe −Ge with

Fe =

 I 0 0
0 AT 0
0 −BT 0

 , Ge =

 A 0 B
−Q I −CT
C 0 R

 .

Matrix pencils of this type were first introduced in [8] and [25], but for a different
purpose. See also [14].

Lemma 3.1. If (1.1) has a Hermitian solution X, then

(λFe −Ge)
 I 0 0

X I 0
Z 0 I

 =

 I 0 0
ATX I ZT

−BTX 0 I

 (λMe −Ne),(3.1)

where Z = −(R+BTXB)−1(C +BTXA) and

Me =

 I 0 0
0 (A+BZ)T 0
0 −BT 0

 , Ne =

 A+BZ 0 B
0 I 0
0 0 R+BTXB

 .

Proof. It can be easily verified by direct computation.
Note that, in contrast with Proposition 15.2.1 of [18], the equality (3.1) does not

require the invertibility of R.
Corollary 3.2. If (1.1) has a Hermitian solution X, then λFe−Ge is a regular

pencil. Moreover, α 6= 0 is an eigenvalue of A + BZ if and only if α and ᾱ−1 are
eigenvalues of λFe −Ge. A unimodular α is an eigenvalue of A+BZ with algebraic
multiplicity k if and only if it is an eigenvalue of λFe−Ge with algebraic multiplicity
2k.

Proof. We have by Lemma 3.1 det(λFe−Ge) = (−1)m det(R+BTXB) det(λI −
(A + BZ)) det(λ(A + BZ)T − I). If det(λI − (A + BZ)) = (λ − λ1) · · · (λ − λn), we
have det(λ(A+BZ)T − I) = (λ̄1λ− 1) · · · (λ̄nλ− 1). The conclusions in the corollary
now follow easily.

If all unimodular eigenvalues of λFe−Ge are of algebraic multiplicity two, then all
unimodular eigenvalues of A+BZ are simple and the direct sum condition is satisfied.
To give a complete characterization, we need to consider the relationship between the
elementary divisors of A+BZ and λFe −Ge.

Theorem 3.3. Let α be a complex number with |α| = 1 and X be a solution of
(1.1) with R+BTXB > 0. If

rank(αI −A B) = n,

then the elementary divisors of A+BZ corresponding to α have degrees k1, . . . , ks(1 ≤
k1 ≤ · · · ≤ ks ≤ n) if and only if the elementary divisors of λFe − Ge corresponding
to α have degrees 2k1, . . . , 2ks.

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 285

Proof. Suppose the elementary divisors of A + BZ corresponding to α have
degrees k1, . . . , ks. By the local Smith form (see [9], for example), we can find matrix
polynomials Eα(λ) and Fα(λ) invertible at α such that

λI − (A+BZ) = Eα(λ)

(
I 0
0 D

)
Fα(λ),(3.2)

where D = diag((λ − α)k1 , . . . , (λ − α)ks). Replacing λ by λ̄−1 in (3.2), and then
taking conjugate transpose (denoted by ∗), we get

(A+BZ)T − λ−1I = Kα(λ)

(
I 0
0 D

)
Lα(λ),(3.3)

where Kα(λ) and Lα(λ) = (Eα(λ̄−1))∗ are rational matrix functions invertible at
α. For any rational matrix functions F (λ) and G(λ), we will write F (λ) ∼ G(λ) if
there are rational matrix functions K(λ) and L(λ) invertible at α such that F (λ) =
K(λ)G(λ)L(λ).

Now, in view of Lemma 3.1, we have

λFe −Ge ∼
 λI − (A+BZ) 0 −B

0 (A+BZ)T − λ−1I 0
0 −BT −(R+BTXB)

 .

By (3.2) and (3.3) we further have (for λ in a neighborhood of α)

λFe −Ge ∼

I 0 0 0 B11 B12

0 D 0 0 B21 B22

0 0 I 0 0 0
0 0 0 D 0 0
0 0 C11 C12 S11 S12

0 0 C21 C22 S21 S22

 ,

where we have written

−(Eα(λ))−1B = (Bij), −((Eα(λ̄−1))−1B)∗ = (Cij), −(R+BTXB) = (Sij).

Since rank(αI −A B) = n, rank(λI − (A+BZ) −B) = n at λ = α. Therefore,
at λ = α,

rank

(
I 0 B11 B12

0 D B21 B22

)
= n

and thus rank(B21 B22) = s. Note also that Eα(λ̄−1) = Eα(λ) at λ = α. We may
then assume that B21 and C12 are invertible in a neighborhood of α. Now we obtain
by block elimination

λFe −Ge ∼W (λ) =

I 0 0 0 0 0
0 D 0 0 I 0
0 0 I 0 0 0
0 0 0 D 0 0
0 0 0 I V11 V12

0 0 0 0 V21 V22

 ,

286 CHUN-HUA GUO

where

V (λ) = (Vij) =

(
C−1

12 0
−C22C

−1
12 I

)
(Sij)

(
B−1

21 −B−1
21 B22

0 I

)
is a rational matrix function with −V (α) > 0 (we have used R + BTXB > 0 here).
It is clear that no principal minors of V (λ) are zero at α.

All nonzero minors of order i for W (λ) have the form (λ − α)lq(λ), where l ≥ 0
and α is neither a zero nor a pole of the rational function q(λ). For 2n+m−s+1 ≤ i ≤
2n+m, the smallest l turns out to be li = Σs+i−2n−m

j=1 2kj . For 1 ≤ i ≤ 2n+m−s, the
smallest l is li = 0. By the Binet–Cauchy formula (see [19], for example), we can see
that (λ−α)li is also the greatest common divisor (of the form (λ−α)l) of all minors
of order i for λFe − Ge. Thus the elementary divisors of λFe − Ge corresponding to
α are (λ− α)2k1 , . . . , (λ− α)2ks . This proves the “only if” part of the theorem. The
“if” part follows readily from the “only if” part.

Corollary 3.4. If the conditions of Theorem 1.1 are satisfied and R′X+
is not

invertible, then S = N ⊕M if and only if all the elementary divisors of λFe − Ge
corresponding to the eigenvalues on the unit circle are of degree two.

A previous result of the same nature as Theorem 3.3 can be found in [26]. That
result is applicable to the DARE (1.1) with C = 0, R > 0, and Q ≥ 0.

4. Convergence rate of the Newton method. When S = N ⊕M, we let
PN denote the projection onto N parallel to M and let PM = I − PN . For the
DARE (1.1), we start the Newton iteration with the symmetric matrix X0 obtained
from the Stein equation (1.5). By Theorem 1.3, the Newton sequence is well defined
and converges to X+. The following result shows that there is some possibility of
quadratic convergence.

Lemma 4.1. For any fixed θ > 0, let Q = {i | ‖PM(Xi − X+)‖ > θ‖PN (Xi −
X+)‖}. Then there exist an integer i0 and a constant c > 0 such that ‖Xi −X+‖ ≤
c‖Xi−1 −X+‖2 for all i in Q for which i ≥ i0.

Proof. Let X̃i = Xi − X+, i = 0, 1, . . ., and let L+ = (R + BTX+B)−1(C +
BTX+A), (thus A+ = A−BL+). We have (see [18, p. 314])

X̃i −AT+X̃iA+ = (L+ − Li)T (R+BTXiB)(L+ − Li)

and ‖L+ − Li‖ = O(‖X̃i−1‖). We also have

L+ − Li+1 = {(R+BTX+B)−1 − (R+BTXiB)−1}(C +BTX+A)

−(R+BTXiB)−1BT X̃iA

= (R+BTXiB)−1BT X̃iBL+ − (R+BTXiB)−1BT X̃iA

= −(R+BTX+B)−1BT X̃iA+ +O(‖X̃i‖2),

where we have written O(‖X̃i‖2) for a term W (Xi) satisfying ‖W (Xi)‖ = O(‖X̃i‖2).
Now, in view of (1.1) and (1.7),

R(Xi) = R(Xi)−R(X+)

= −X̃i +AT X̃iA− (C +BTXiA)TLi+1 + (C +BTX+A)TL+

= −X̃i +AT+X̃iA+ −AT+X̃iA+ +AT X̃iA

−{(C +BTXiA)T − (C +BTX+A)T }Li+1

+(C +BTX+A)T (L+ − Li+1)

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 287

= O(‖X̃i−1‖2)−AT+X̃iA+ +AT X̃iA

−AT X̃iBL+ +O(‖X̃i‖2)− (BL+)T X̃iA+

= O(‖X̃i−1‖2) +O(‖X̃i‖2).

Thus for i large enough,

‖R(Xi)‖ ≤ c1‖X̃i−1‖2 + c2‖X̃i‖2(4.1)

for some constants c1 and c2.
On the other hand, for i in Q and large enough, we have as in [23]

‖R(Xi)‖ ≥ (c3(θ−1 + 1)−1 − c4‖X̃i‖)‖X̃i‖(4.2)

for some constants c3 and c4. Since Xi 6= X+ for any i, we have by (4.1) and (4.2)

c3(θ−1 + 1)−1 − c4‖X̃i‖ ≤ c2‖X̃i‖+ c1‖X̃i−1‖2/‖X̃i‖.
Therefore, we can find an i0 such that ‖X̃i‖ ≤ c‖X̃i−1‖2 for all i in Q for which
i ≥ i0.

Corollary 4.2. Assume that, for given θ > 0, ‖PM(Xi −X+)‖ > θ‖PN (Xi −
X+)‖ for all i large enough. Then Xi → X+ quadratically.

The condition in Corollary 4.2 appears to be not easily satisfied. In fact, quadratic
convergence has never been observed in our numerical experiments. We do not know
if there are any examples of quadratic convergence in our setting. The next result
describes what will happen if the convergence of the Newton iteration is not quadratic.

Theorem 4.3. Assume S = N ⊕M. If the convergence of the Newton sequence
{Xi} is not quadratic, then ‖(R′Xi)−1‖ ≤ c‖Xi − X+‖−1 for all i ≥ 1 and some
constant c > 0. Moreover,

lim
i→∞

‖Xi+1 −X+‖
‖Xi −X+‖ =

1

2
, lim

i→∞
‖PM(Xi −X+)‖
‖PN (Xi −X+)‖2 = 0.

The proof of this theorem will be an application of Theorem 1.5. We first establish
some preliminary results.

Lemma 4.4. Let J and P be as in the proof of Theorem 2.1. Then

rank(λI − J P−1B(R+BTX+B)−1BTP−T) = n

for every complex number λ with |λ| ≥ 1.
Proof. In view of Theorem 4.5.6(b) of [18], we need only to show that the pair

(J, P−1B(R+BTX+B)−1BTP−T) is d-stabilizable, or equivalently,

(A−BL+, B(R+BTX+B)−1BT) is d-stabilizable.(4.3)

Since (A,B) is d-stabilizable and Im(B(R + BTX+B)−1BT) = ImB, (4.3) follows
from Lemma 4.5.3 of [18].

Lemma 4.5 (see [11, Lemma A.3]). Let W be a Hermitian positive semidefinite
matrix. If the determinant of a principal submatrix of W is zero, then the rows of W
containing this submatrix must be linearly dependent.

We now set out to check the regularity condition needed in Theorem 1.5. For
fixed Z ∈ N , we consider the map BZ : N → N defined by

BZ(Y) = PNR′′X+
(Z, Y).

288 CHUN-HUA GUO

By Lemma 2.2, we can write Y = P−TYJP−1, Z = P−TZJP−1 with YJ , ZJ ∈ NJ .
Let H+ = B(R+BTX+B)−1BT . We have by (1.3)

BZ(Y) = −PN (AT+ZH+Y A+ +AT+Y H+ZA+)

= −P−TPNJ (JTZJD+YJJ + JTYJD+ZJJ)P−1,

where D+ = P−1B(R+BTX+B)−1BTP−T , and PNJ is the projection onto NJ par-
allel to MJ . Let ZJ = diag(Z1, . . . , Zp), YJ = diag(Y1, . . . , Yp) and diag(D1, . . . , Dp)
be the block diagonal of D+. Let Si = Sri for i = 1, 2. We have further

BZ(Y) = −P−Tdiag(FZ1(Y1),FZ2(Y2), . . . ,FZp−1(Yp−1), 0)P−1,(4.4)

where we define linear transformations FZi : Si → Si by

FZi(Yi) = ZiDiYi + YiDiZi, i = 1, 2,

FZi(Yi) = PSi(G
T
i (ZiDiYi + YiDiZi)Gi), i = 3, . . . , p− 1

with PSi being the projection onto Si parallel to Ti. The matrices Gi were defined in
(2.1) and (2.2).

For k = 1, 2, . . . , p− 1, let

Uk = {Zk ∈ Sk | FZk : Sk → Sk is not invertible }.

Lemma 4.6. For k = 1, 2, . . . , p− 1, the set Uk has measure zero in Sk.
Proof.
Case 1. k = 1, 2. We prove the result for k = 1, since the proof for k = 2 is

similar. As in [11], we can show that U1 has measure zero in S1 unless detD1 = 0.
Note that D+ = P−1B(R+BTX+B)−1BTP−T is symmetric positive semidefinite. If
detD1 = 0, the first r1 rows of D+ would be linearly dependent by Lemma 4.5. Thus
rank(−I − J D+) < n , which contradicts Lemma 4.4.

Case 2. k = 3, . . . , p−1. We will first find a more explicit expression for FZk(Yk).
It is easily seen that

Gk = akI ⊗ E1 + bkI ⊗ E2.(4.5)

By Lemma 2.2, we can write

Yk = Ms ⊗ E1 +Ma ⊗ E2, Zk = Ns ⊗ E1 +Na ⊗ E2,(4.6)

where Ms and Ns are symmetric; Ma and Na are antisymmetric. Let

Dk = (Dij)
rk/2
i,j=1 with Dij =

(
dij1 dij3
dij4 dij2

)
,

Qs = (qsij)
rk/2
i,j=1 with qsij =

1

2
(dij1 + dij2),

Qa = (qaij)
rk/2
i,j=1 with qaij =

1

2
(dij3 − dij4).

Then

Dk = Qs ⊗ E1 +Qa ⊗ E2 +Rs ⊗ E3 + Ts ⊗ E4,(4.7)

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 289

where Qs, Rs and Ts are symmetric; Qa is antisymmetric. Using (4.5)–(4.7) to expand
GTk (ZkDkYk + YkDkZk)Gk, we find that each map FZk has the same form as in
the CARE case (see [11]). Thus, as in [11], each Uk has measure zero in Sk unless
det(Qs + iQa) = 0.

To complete the proof, we need to show det(Qs + iQa) 6= 0. By Lemma 4.4 we
have rank((ak+bki)I−J D+) = n. Let E(i, j(m)) be the elementary matrix obtained
from I by adding m times row j to row i. Let tk = r1 + · · ·+ rk−1 and

U = E(tk + rk − 1, (tk + rk)(−i)) · · ·E(tk + 3, (tk + 4)(−i))E(tk + 1, (tk + 2)(−i)).
Then

rank(U((ak + bki)I − J) UD+U
∗) = n.

Since the (tk+1)th, (tk+3)th, . . . , (tk+rk−1)th rows of the matrix U((ak+bki)I−J)
are all zero, the corresponding rows of the Hermitian positive semidefinite matrix
UD+U

∗ must be linearly independent. By Lemma 4.5, the principal submatrix (of
order rk/2) of UD+U

∗ contained in these rows must have a nonzero determinant.
The principal submatrix is exactly 2(Qs+ iQa). Therefore, det(Qs+ iQa) 6= 0.

Lemma 4.7. If S = N ⊕M, then

U = {Z ∈ N | BZ : N → N is not invertible }
has measure zero in N . In particular, the regularity condition holds.

Proof. The result follows from (4.4) and Lemma 4.6, as in [11].
Proof of Theorem 4.3. Note that the map R can be extended to a smooth map

on S without changing its values on a closed ball centered at X+ and contained in D.
Now, as in [11], the proof can be completed by applying Theorem 1.3, Theorem 1.5,
Corollary 4.2, and Lemma 4.7.

When all elementary divisors of the closed-loop matrix corresponding to the eigen-
values on the unit circle are linear, we know from Theorem 4.3 that the convergence
of the Newton iteration is either quadratic or linear with rate 1

2 . Quadratic conver-
gence, however, has not been observed in numerical experiments when the closed-loop
matrix has eigenvalues on the unit circle. The convergence has been observed to be
linear with rate 1

p√2
, where p is the highest degree of elementary divisors associated

with eigenvalues on the unit circle. The next example gives a little theoretical support
for the observation. A general theory for the case p > 1 would be a topic for future
research.

Example 4.1. Consider the DARE (1.1) with n = 2,m = 1 and

A =

(
1 0
1 1

)
, B =

(
1
0

)
, C = 0, Q = 0, R = 1.

Clearly (A,B) is d-stabilizable and X+ = 0 (0 is the unique almost stabilizing solution
in this case. See Theorem 13.5.2 of [18], for example). Note that (λ− 1)2 is the only
elementary divisor of A+ = A. The Newton sequence {Xi} is well defined and we
write for i = 0, 1, . . . ,

Xi =

(
ai ci
ci bi

)
.

Since A − B(R + BTXiB)−1(C + BTXiA) is d-stable, we can deduce that ci 6= 0.
Since Xi ≥ 0, we also have ai, bi > 0.

290 CHUN-HUA GUO

By (1.6)–(1.8), we find for i = 0, 1, . . .

ai+1 =
2a2
i + 3aici + 2ci

(2ai − ci + 4)ai
,(4.8)

bi+1 =
((2 + ai)ai+1 − ai)ci

2(1 + ai)2
,(4.9)

ci+1 =
(1 + ai+1)ci

2(1 + ai)
.(4.10)

Since Xi → 0, we get from (4.10)

lim
i→∞

ci+1

ci
=

1

2
.(4.11)

It follows from (4.8) that

lim
i→∞

ci
ai

= 0.(4.12)

It then follows from (4.9), (4.11), and (4.12) that limi→∞ bi/ai = 0. If the convergence
of the Newton iteration is linear with rate µ, then limi→∞ ai+1/ai = µ. Now by (4.8)
and (4.12),

lim
i→∞

ai+1

ai
=

1

2

(
1 + lim

i→∞
ci
a2
i

)
.(4.13)

If limi→∞ ci/a
2
i = 0, we would have limi→∞ ai+1/ai = 1/2 by (4.13) and further

limi→∞ ci/a
2
i = ∞ by (4.11), which is a contradiction. Therefore, limi→∞ ci/a

2
i 6= 0.

Thus we get from (4.11) that µ = 1/
√

2.
The above example can also serve to show that X0 ≥ X1 is generally not true if

X0 is not determined by (1.5). Take

X0 =

(
εα ε
ε δ

)
with α > 1, 0 < ε < 1, and δ real. It is easily checked that A−B(R+BTX0B)−1(C+
BTX0A) is d-stable. We see from (4.8) that a1 ∼ 0.5ε1−α as ε → 0. Thus X0 ≥ X1

cannot be true for small ε. As ε and δ go to zero, we have ‖X0 − X+‖ → 0, but
‖X1 −X+‖ → ∞.

5. Using the double Newton step. We have shown that the convergence of
Newton’s method is either quadratic or linear with rate 1

2 , provided that the unimod-
ular eigenvalues of the closed-loop matrix are all semisimple. Quadratic convergence
has not been observed in our numerical experiments. Therefore, we should always be
prepared for linear convergence. In this section we will show that the efficiency of the
Newton iteration (when it is linearly convergent) can be improved significantly if a
double Newton step is used at the right time. However, since the second derivative of
the Riccati function is no longer constant, the improvement will not be as dramatic
as in the CARE case.

Lemma 5.1. In the setting of Theorems 1.1 and 1.3, assume that Xk is close
enough to X+ with Xk − X+ ∈ N and that ‖(R′Xk)−1‖ ≤ c‖Xk − X+‖−1 with c
independent of k. If Yk+1 = Xk−2(R′Xk)−1R(Xk), then ‖Yk+1−X+‖ ≤ c1‖Xk−X+‖2
for some constant c1 independent of k.

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 291

Proof. By Taylor’s theorem,

R(Xk) =
1

2
R′′X+

(Xk −X+, Xk −X+) +O(‖Xk −X+‖3),

and then

R′Xk(Xk −X+) = R′′X+
(Xk −X+, Xk −X+) +O(‖Xk −X+‖3)

= 2R(Xk) +O(‖Xk −X+‖3).

Thus

Xk −X+ = 2(R′Xk)−1R(Xk) +O(‖Xk −X+‖2).

When the direct sum condition is satisfied and the convergence of the Newton
sequence {Xk} is not quadratic, we have ‖(R′Xk)−1‖ ≤ c‖Xk − X+‖−1 for all k (cf.
Theorem 4.3). Moreover, the error Xk −X+ will be dominated by its N -component
for large k. A much better approximate solution can then be obtained by applying
the double Newton step. More precisely, we have the following result.

Theorem 5.2. Assume S = N ⊕M and the convergence of the Newton iteration
is not quadratic. If for some k, ‖Xk −X+‖ is small enough and ‖PM(Xk −X+)‖ ≤
ε‖PN (Xk −X+)‖ with ε sufficiently small, and Yk+1 = Xk − 2(R′Xk)−1R(Xk), then
‖Yk+1 −X+‖ ≤ c1ε + c2‖Xk −X+‖2 for some constants c1 and c2 independent of ε
and k.

Proof. The result follows from Lemma 5.1 and the argument used in the proof of
[11, Theorem 3.2].

In contrast to the CARE case, the error estimate for Yk+1 contains the term
c2‖Xk −X+‖2. For a problem which produces a large c2, the error ‖Yk+1 −X+‖ will
be small only when ‖Xk −X+‖ is already sufficiently small. In this case the double
Newton step will be useful only at a very late stage of the iteration.

In the CARE case (as described in [11]), the iterate produced by the double
Newton step is at least almost stabilizing (see the discussions in [2]). For the DARE
case, however, it can happen that the matrix Yk+1 in Theorem 5.2 is neither stabilizing
nor almost stabilizing.

Example 5.1 (cf. [18, Example 13.2.1]). Consider the DARE (1.1) with Q = C = 0
and A = B = R = I. Clearly (A,B) is d-stabilizable and X+ = 0. All eigenvalues of
the closed-loop matrix are on the unit circle and semisimple. For L0 = I, the Newton
iterates are found to be

Xk =
1

2k+1 − 1
I, k = 0, 1,

Thus, the convergence is linear with rate 1/2. If we compute Yk+1 as in Theorem 5.2,
we get

Yk+1 = − 1

(2k+1 − 1)(2k+2 − 1)
I.

Although Yk+1 is much more accurate than Xk+1 for large k, it is neither stabilizing
nor almost stabilizing.

The double Newton step is useful in that it can significantly improve the accuracy
of the current Newton iterate and thus find more correct digits of the exact solution.

292 CHUN-HUA GUO

The potential problem of getting a slightly nonstabilizing approximate solution is not
our concern here. Even if an exact solution with an infinite number of decimals is
known, we will probably get a slightly nonstabilizing approximate solution by keeping
only a finite number of decimals.

Theorem 5.2 suggests the following modification of the Newton method.
Algorithm (modified Newton method for DARE).
1. Choose a matrix L0 for which A−BL0 is d-stable.
2. Find X0 from (1.5).
3. For k = 0, 1, . . . do:

Solve R′Xk(H) = R(Xk);
Compute Xk+1 = Xk − 2H;
If ‖R(Xk+1)‖ < ε, stop;
Otherwise, compute Xk+1 = Xk −H;
If ‖R(Xk+1)‖ < ε, stop.

In the above algorithm, ‖ · ‖ is an easily computable matrix norm (e.g., 1-norm)
and ε is a prescribed accuracy. The equation R′Xk(H) = R(Xk) can be rewritten as

a Stein equation H − ATk+1HAk+1 = −R(Xk), which can be solved efficiently by a
variation of the Bartels/Stewart algorithm [1] (also see [20]). According to Theorem
5.2, the double Newton step will be efficient only when the current iterate is already
reasonably close to the solution. This is a major difference between the CARE and
DARE cases. We may try the double Newton step only when the norm of the residual
is small enough (less than

√
ε, say) and save a little more computational work. In

the above algorithm, all iterates except the last one are identical to those produced
by the original Newton method. Thus all good properties of the Newton method are
retained.

6. Numerical results. In this section we give two simple examples to illustrate
the performance of the modified Newton method.

Example 6.1. We consider the DARE (1.1) with n = m = 2 and

A =

(
0 −1
0 2

)
, B =

(
1 0
1 1

)
, C = 0, Q =

(
1 0
0 0

)
, R =

(
4 2
2 1

)
.

Note that A and R are both singular. It can be easily verified that X+ = diag(1, 0) is
the only solution of the DARE and the closed-loop eigenvalues are 0 and 1. We take
L0 = diag(0, 2) so that A0 = A − BL0 is d-stable, and apply the modified Newton
method with ε = 10−10. The numerical results are recorded in Table 6.1. The last
iterate is produced by the double Newton step.

Example 6.2. We consider the DARE (1.1) with n = m = 8 and

A = diag

 −1
1

1

 ,

(√
3

2
1
2

− 1
2

√
3

2

)
,

 1
2 1

1
2 1

1
2

 ,

B =

1
1 1

. . .
. . .

1 1

 , C = 0, Q = 0, R = I.

For this example, X+ = 0 and the closed-loop eigenvalues are those of A. The uni-
modular eigenvalues are all semisimple. We take L0 = diag(−1, 1, 1, 1, 1, 0.1, 0.1, 0.1)

NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 293

Table 6.1
Performance of the modified Newton method for Example 6.1.

k ‖Xk −X+‖1 ‖R(Xk)‖1
0 0.5000D + 01 0.4545D + 01
1 0.4167D + 00 0.1894D + 00
2 0.1471D + 00 0.3342D − 01
3 0.6410D − 01 0.7284D − 02
4 0.3012D − 01 0.1711D − 02
5 0.1462D − 01 0.4153D − 03
6 0.7205D − 02 0.1023D − 03
7 0.3577D − 02 0.2540D − 04
8 0.1782D − 02 0.6328D − 05
9 0.3170D − 05 0.2009D − 10

Table 6.2
Performance of the modified Newton method for Example 6.2.

k ‖Xk −X+‖1 ‖R(Xk)‖1
0 0.2344D + 02 0.2327D + 02
1 0.2273D + 01 0.1855D + 01
2 0.3733D + 00 0.1766D + 00
3 0.1419D + 00 0.2444D − 01
4 0.6291D − 01 0.6681D − 02
5 0.2987D − 01 0.1611D − 02
6 0.1458D − 01 0.3826D − 03
7 0.7204D − 02 0.9472D − 04
8 0.3581D − 02 0.2357D − 04
9 0.1785D − 02 0.5877D − 05
10 0.8914D − 03 0.1467D − 05
11 0.4454D − 03 0.3666D − 06
12 0.2226D − 03 0.9161D − 07
13 0.3986D − 07 0.1312D − 10

so that A0 = A − BL0 is d-stable, and apply the modified Newton method with
ε = 10−10. The results are recorded in Table 6.2. Again, the last iterate is produced
by the double Newton step.

In both examples, the convergence of the Newton method is linear and the final
double Newton step reduces the error significantly. We have by (4.1) that ‖R(Xk)‖ ≤
c‖Xk −X+‖2, where Xk are the Newton iterates. The last iterate, Yl, is produced by
the double Newton step and ‖R(Yl)‖ ≤ c‖Yl−X+‖2 is not necessarily true. Typically,
for l large enough, the error ‖Yl −X+‖ is comparable to ‖R(Xl−1)‖.

Acknowledgments. The author wishes to thank Dr. Peter Lancaster for his
many helpful suggestions. Careful comments by Dr. Peter Benner are also gratefully
acknowledged.

REFERENCES

[1] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C, Comm.
ACM, 15 (1972), pp. 820–826.

[2] P. Benner, Contributions to the Numerical Solution of Algebraic Riccati Equations and Re-
lated Eigenvalue Problems, Logos-Verlag, Berlin, 1997.

[3] P. Benner, A. J. Laub, and V. Mehrmann, A Collection of Benchmark Examples for the
Numerical Solution of Algebraic Riccati Equations II: Discrete-Time Case, Tech. report
SPC 95-23, Fakultät für Mathematik, Technische Universität Chemnitz-Zwickau, Germany,
1995.

294 CHUN-HUA GUO

[4] S. W. Chan, G. C. Goodwin, and K. S. Sin, Convergence properties of the Riccati difference
equation in optimal fitering of nonstabilizable systems, IEEE Trans. Automat. Control, 29
(1984), pp. 110–118.

[5] D. W. Decker, H. B. Keller, and C. T. Kelley, Convergence rates for Newton’s method at
singular points, SIAM J. Numer. Anal., 20 (1983), pp. 296–314.

[6] D. W. Decker and C. T. Kelley, Newton’s method at singular points I, SIAM J. Numer.
Anal., 17 (1980), pp. 66–70.

[7] D. W. Decker and C. T. Kelley, Convergence acceleration for Newton’s method at singular
points, SIAM J. Numer. Anal., 19 (1982), pp. 219–229.

[8] A. Emami-Naeini and G. F. Franklin, Comments on “On the numerical solution of the
discrete-time algebraic Riccati equation,” IEEE Trans. Automat. Control, 25 (1980), pp.
1015–1016.

[9] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[10] A. Griewank and M. R. Osborne, Analysis of Newton’s method at irregular singularities,
SIAM J. Numer. Anal., 20 (1983), pp. 747–773.

[11] C.-H. Guo and P. Lancaster, Analysis and modification of Newton’s method for algebraic
Riccati equations, Math. Comp., 67 (1998), pp. 1089–1105.

[12] V. Hernández and A. Pastor, On the Kleinman iteration for periodic nonstabilizable systems,
in Proc. European Control Conference ECC97, No. 946, 1997.

[13] G. A. Hewer, An iterative technique for the computation of the steady-state gains for the
discrete optimal regulator, IEEE Trans. Automat. Control, 16 (1971), pp. 382–384.

[14] V. Ionescu and M. Weiss, On computing the stabilizing solution of the discrete-time Riccati
equation, Linear Algebra Appl., 174 (1992), pp. 229–238.

[15] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon,
New York, 1964.

[16] C. T. Kelley, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots,
Math. Comp., 47 (1986), pp. 609–623.

[17] C. T. Kelley and R. Suresh, A new acceleration method for Newton’s method at singular
points, SIAM J. Numer. Anal., 20 (1983), pp. 1001–1009.

[18] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.
[19] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, Or-

lando, FL, 1985.
[20] V. L. Mehrmann, The Autonomous Linear Quadratic Control Problem, Lecture Notes in

Control and Inform. Sci. 163, Springer-Verlag, Berlin, 1991.
[21] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several

Variables, Academic Press, New York, 1970.
[22] A. C. M. Ran and R. Vreugdenhil, Existence and comparison theorems for algebraic Riccati

equations for continuous- and discrete-time systems, Linear Algebra Appl., 99 (1988), pp.
63–83.

[23] G. W. Reddien, On Newton’s method for singular problems, SIAM J. Numer. Anal., 15 (1978),
pp. 993–996.

[24] V. Sima, An efficient Schur method to solve the stabilizing problem, IEEE Trans. Automat.
Control, 26 (1981), pp. 724–725.

[25] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci.
Comput., 2 (1981), pp. 121–135.

[26] H. K. Wimmer, Normal forms of symplectic pencils and the discrete algebraic Riccati equation,
Linear Algebra Appl., 147 (1991), pp. 411–440.

THE EQUATIONS ATX ±XTA = B∗

H. W. BRADEN†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 295–302

Abstract. We give necessary and sufficient conditions for the matrix equations

ATX ±XTA = B

to admit solutions and give their general solution. Because A may be singular, the solution involves
the generalized inverse of A. The (−) equation underlies the modern R-matrix approach to completely
integrable Hamiltonian systems. This paper provides a new and algorithmic approach to constructing
such R-matrices.

Key words. generalized inverse, R-matrix

AMS subject classifications. Primary, 15A06, 15A09, 15A24, 58F07; Secondary, 70G99

PII. S0895479897323270

1. Introduction. The purpose of this article is to analyze the matrix equations

ATX ±XTA = B,(1)

where B is an arbitrary square matrix. We shall give necessary and sufficient condi-
tions for (1) to admit solutions, together with their general solutions. Before describ-
ing how the equations arose, let us describe the result. Because A need not be either
square or invertible, we introduce a generalized inverse G satisfying

AGA = A.(2)

Such a generalized inverse always exists, and further restrictions are possible. (Ac-
counts of generalized inverses may be found in [3, 7, 11, 12].) For example, if G
satisfies (2), then Ḡ = GAG satisfies both

AḠA = A and ḠAḠ = Ḡ.(3)

Indeed the Moore–Penrose inverse—which is unique and always exists—further sat-
isfies (AG)† = AG, (GA)† = GA. We assume here only that (2) is satisfied. Given
such a G we define the projection operators P1 = GA and P2 = AG which satisfy

AP1 = P2A = A.(4)

With these quantities defined, we may now state our result.
Theorem 1. The matrix equation (1) has solutions if and only if

(C1) BT = ±B,

(C2) (1− PT
1)B(1− P1) = 0,

∗Received by the editors June 23, 1997; accepted for publication (in revised form) by R. Bhatia
March 12, 1998; published electronically October 20, 1998.

http://www.siam.org/journals/simax/20-2/32327.html
†Department of Mathematics and Statistics, The University of Edinburgh, Edinburgh EH9 3JZ,

UK (hwb@ed.ac.uk).

295

296 H. W. BRADEN

in which case the general solution is

X =
1

2
GTBP1 +GTB(1− P1) + (1− PT2)Y + (PT2 ZP2)A,(5)

where Y is arbitrary and Z is constrained only by the symmetry requirement that(
PT2 ZP2

)T
= ∓PT2 ZP2.

Corollary 1. Let X be specified as in the theorem, and suppose that X̄ is any
other solution of (1), not necessarily constructed from the same generalized inverse.
Then

X̄ = X + (1− PT2)(X̄ −X)∓ PT2 GT (X̄T −XT)P2A.(6)

In particular, the corollary shows that the general solution of (1) does not depend
on the choice of generalized inverse G made. Further, (6) enables us to relate the
parameters Y and Z of (5) appearing in different solutions.

It remains to place (1) in context. Unlike the matrix equation

AX −XC = B,(7)

which has been studied extensively since Sylvester’s time (see [4] for a comprehensive
review and bibliography), our equation seems to have received less attention. The
appearance of the transpose in (1) leads to rather different behavior from that arising
in Lyapunov’s equation

AX +XA† = B.

Being linear, (1) may be treated by standard techniques: in the notation of [9] we are
solving (

I ⊗AT ±
∑
ij

AEij ⊗ ETij
)

vec(X) = vec(B).

Our theorem gives an explicit solution. The only study of (1) I have been able to
find is in [8], where the equation is treated for the particular case of A invertible and
where the matrices considered are taken to be over a finite field.

Corollary 2 (Hodges). If detA 6= 0, then

X = PT
(
Z +

1

2
QTBQ

)
Q−1

is the general solution of (1), where Z = ∓ZT is arbitrary and PAQ = I.

This follows immediately from the theorem and observing G = QP .

Recent interest in (the minus form of) (1) has its origins in Hamiltonian dynamics,
and I shall describe this application in the next section. Section 3 will be devoted to
the proofs, and section 4 will conclude with a brief discussion.

THE EQUATIONS ATX ±XTA = B 297

2. An application. The motivation for our investigation of (1) arises from
the modern R-matrix treatment of completely integrable mechanical systems. These
are Hamiltonian mechanical systems in, say, 2N variables (xi, pi) which possess N -
functionally independent conserved quantities that Poisson commute with each other
[1]. A theorem of Liouville [10, 1] then says that the solutions of Hamilton’s equa-
tion may be obtained by quadrature: that is, by algebraic operations, the inversion
of functions, and the integration of specified functions. Historically the discovery of
completely integrable systems has relied upon the considerable ingenuity of the dis-
coverer. The last decade and a half, however, has seen a simple conceptual framework
developed that unifies most known completely integrable systems. This unification
has its origin in soliton bearing partial differential equations and inverse-scattering
theory, which have at their heart a zero-curvature or Lax equation.

The modern approach has two ingredients:
1. Encode the equations of motion for the system under consideration in terms

of a Lax pair,

L̇ = [L,M].(8)

Here L, M are matrices (the Lax pair) taking values in some representation
E of a Lie algebra g, the left-hand side is a matrix commutator, and the
consistency of (8) is the equations of motion for the mechanical system.

2. Construct an E ⊗ E valued R-matrix [13] such that

{L ⊗, L} = [R,L⊗ 1]− [RT , 1⊗ L].(9)

The notation employed here is further elaborated below.
Upon using the cyclicity of the trace and the fact that the trace of any commutator
vanishes, we see that (8) entails that the quantities TrE L

k are conserved while (9)
shows that these quantities Poisson commute after noting

{TrE L
k,TrE L

m} = TrE⊗E{Lk ⊗, Lm} = kmTrE⊗E Lk−1 ⊗ Lm−1{L ⊗, L} = 0.

Thus the Lax pair and R-matrix together provide us with a large number of Poisson
commuting conserved quantities. The complete integrability of the system will then
follow if we have sufficient functionally independent quantities amongst these. The
Lax matrix L is usually constructed so that there are manifestly sufficient functionally
independent quantities.

The R-matrix approach to completely integrable systems then rests upon finding
solutions to (8) and (9). It has been proven [2] that the eigenvalues of L Poisson
commute if and only if one can construct a matrix R satisfying (9), so the R-matrix
necessarily exists for an integrable Lax pair. If we are to be honest, the ingenuity of
the original discoverer of an integrable system has now been replaced by the equally
arcane art of constructing Lax pairs (8). The merit of the approach, however, is that
it is able to unify many disparate examples. Our interest here is on the construction
of the R-matrix satisfying (9). We shall now see that this is a particular example
of (1). This observation, alongside that of Theorem 1, reduces the construction of
R-matrices to straightforward algebraic operations. Condition (C1) is automatically
satisfied in this setting, and consequently condition (C2) gives us a straightforward
necessary test for the integrability of a Lax matrix L. We remark that the known
ambiguities in R-matrices correspond to the possible choices of generalized inverse.
Our corollary shows that any choice of generalized inverse suffices to construct the
R-matrix.

298 H. W. BRADEN

We now identify (9) with the minus form of (1) and in the process amplify the
notation being employed. Let Tµ denote a basis for the (finite dimensional) Lie algebra
g with [Tµ, Tν] = cλµν Tλ defining the structure constants of g; let φ(Tµ) = Xµ yield
the representation E of the Lie algebra g under consideration. We now expand L and
R in terms of the resulting basis of E and E ⊗ E, respectively. With L =

∑
µ L

µXµ

the left-hand side of (9) becomes

{L ⊗, L} =
∑
µ,ν

{Lµ, Lν}Xµ ⊗Xν .

If R = RµνXµ⊗Xν , then RT denotes the transpose RT = RνµXµ⊗Xν ; the right-hand
side of (9) then yields

[R,L⊗ 1]− [RT , 1⊗ L] = Rµν([Xµ, L]⊗Xν −Xν ⊗ [Xµ, L])
= RµνLλ([Xµ, Xλ]⊗Xν −Xν ⊗ [Xµ, Xλ])
= (RτνcµτλL

λ −RτµcντλLλ)Xµ ⊗Xν .

Upon setting Aµν = cνµλL
λ = −ad(L)νµ, Bµν = {Lµ, Lν}, and Xµν = Rµν we see

that (9) is an example of the minus equation of (1). Further, the antisymmetry of
the Poisson bracket means that (C1) is satisfied for this problem. The construction
of the R-matrix thus reduces to finding the generalized inverse to ad(L) and verifying
the (now) necessary and sufficient condition (C2). Elsewhere [6] I have shown how to
construct a generalized inverse to ad(L) for generic L ∈ g together with an explicit
form for the Moore–Penrose inverse. That result together with our present theorem
gives us the R-matrix for generic L and an algorithm to compute it.

We conclude the section with an example to make matters concrete. Although
the example is trivially integrable, our treatment is new.

2.1. An example. Consider matrices L, M given by

L =

(
p1 fα
f−α p2

)
, M =

(
0 f ′α
f ′−α 0

)
.(10)

Here fα = fα(x1 − x2) and f−α = f−α(x2 − x1) are two arbitrary functions, and we
view L and M as being in the natural representation of g = gl2. One finds for these
matrices that the consistency of (8) is equivalent to the equations of motion for the
Hamiltonian system (of particles on the line) with Hamiltonian

H =
1

2
TrL2 =

1

2
(p2

1 + p2
2) + fα(x1 − x2)f−α(x2 − x1).

Of course this system is separable and thus integrable because the potential depends
only on the difference of coordinates, yet nonetheless it provides an instructive exam-
ple. Here the conserved quantity TrL corresponds to the centre of mass momentum.

We shall now show how our theorem provides the R-matrix to this problem,

R =
f ′α
f−α

E12⊗E12+
f ′−α
fα

E21⊗E21+

(
p q

−Λ−1vp− Fu −Λ−1vq − FΛT

)
.(11)

Here the final term represents the ambiguity in the R-matrix: p, q are arbitrary 2× 2
matrices coming from the Y term of (5), while F is a symmetric 2 × 2 matrix built
from Z; the remaining matrices are fixed by the problem and specified below. Even
in this simple problem the complete R-matrix (11) appears new.

THE EQUATIONS ATX ±XTA = B 299

To apply our theorem we must first compute the matrices A = −(adL)T and B.
We order our basis of gl2 as {E11, E22, E12, E21}, where Eij is the matrix with 1 in
the ijth position and zero elsewhere. Then

ad(L) =

0 0 −f−α fα
0 0 f−α −fα
−fα fα p1 − p2 0
f−α −f−α 0 p2 − p1

 =

(
0 uT

v Λ

)

and (upon using {pi, xj} = δij)

B =

0 0 f ′α −f ′−α
0 0 −f ′α f ′−α
−f ′α f ′α 0 0
f ′−α −f ′−α 0 0

 =

(
0 −µT
µ 0

)
= −BT .

With our choice of basis we find a block structure to adL and B; this enables us to
define the various 2×2 matrices u, v, Λ, and µ. Provided p1 6= p2 (a generic condition)

the generalized inverse of ad(L) is found to be (
0 0
0 Λ−1); the generalized inverse of

A is thus minus the transpose of this. The projection operators defined earlier are
then

P1 =

(
0 0

Λ−1Tu 1

)
, P2 =

(
0 vTΛ−1T

0 1

)
.

For the case at hand the constraint (C2) takes the form

(C2) 0 = µTΛ−1Tu− uTΛ−1µ,

which is readily verified to be true. Applying our main result (5) then shows the
general R-matrix to be of the form

R =

(
0 0

−Λ−1µ 0

)
+

(
p q

−Λ−1vp− Fu −Λ−1vq − FΛT

)
,(12)

where

−Λ−1µ =
1

p1 − p2

(
f ′α −f ′α
f ′−α −f ′−α

)
.(13)

The second term of (12) characterizes the ambiguity in R. We have parameterized

the matrices Y,Z in (5) by Y = (
p q
r s

) and Z = (
a b
c d

). The matrices p, q are

arbitrary, while the entries of Z are such that

F = Λ−1vavTΛ−1T + d+ Λ−1vb+ cvTΛ−1T

is symmetric. These are the entries of (11) mentioned above.
We remark that (in view of (13)) the R-matrix given by the first term of (12)

depends on all of the dynamical variables. However, by choosing p = q = 0 and

F =
−c

p1 − p2

(
f ′α/f−α 0

0 −f ′−α/fα
)

+
1− c
p1 − p2

(
0 f ′α/fα

f ′α/fα (f ′αf−α + f ′−αfα)/f2
α

)

300 H. W. BRADEN

we obtain the one parameter family of momentum independent R-matrices

R = c
f ′α
f−α

E12 ⊗ E12 + (1− c) f
′
α

fα
(E12 ⊗ E21 − E21 ⊗ E12)

+
(1− c)f ′αf−α + f ′−αfα

f2
α

E21 ⊗ E21.

In particular we note the particularly simple form (when c = 1)

R =
f ′α
f−α

E12 ⊗ E12 +
f ′−α
fα

E21 ⊗ E21

that we have chosen for (11) above. Finally, observe that in the situation where
fα(z) = −fα(−z) = wα(z) is any (odd) function, we recover the result of [5] with
c = 0:

R =
w′α
wα

(E12 ⊗ E21 − E21 ⊗ E12) .(14)

In fact this present work extends that of [5] for the present theorem characterizes the
full ambiguity of the R-matrix, while the earlier cited work gives only a subspace of
this.

3. Proof of the theorem. Suppose that solutions of (1) exist. By taking the
transpose of both sides of this equation it is immediate that B must be (skew-)
symmetric (C1). Similarly, upon multiplying both sides of (1) by 1− PT1 on the left
and 1− P1 on the right and then employing the projection properties (4), we obtain
the constraint (C2). The constraints (C1), (C2) are therefore necessary. We will
establish their sufficiency by showing that the general solution is as stated.

Suppose that X is given by (5). Then

ATX =
1

2
PT1 BP1 + PT1 B(1− P1) +ATZA

and

XTA =
1

2
PT1 B

TP1 + (1− PT1)BTP1 +ATZTA.

Upon using the (anti)symmetry (C1) of B and the appropriate symmetry of ATZA
we have

ATX ±XTA = PT1 BP1 + PT1 B(1− P1) + (1− PT1)BP1 = B − (1− PT1)B(1− P1).

Now employing (C2) shows that the final term of this expression vanishes and con-
sequently that X given by (5) satisfies (1). This has established the sufficiency of
the constraints for a solution to exist, and it remains to show that (5) is indeed the
general solution.

Let X̄ be any solution of (1) and let X0 be the solution given by

X0 =
1

2
GTBP1 +GTB(1− P1).

Set Y = X̄ −X0. Then by linearity

ATY ± Y TA = 0.(15)

THE EQUATIONS ATX ±XTA = B 301

Further, the matrix Y may be decomposed using the projector P2 as

Y = (1− PT2)Y + PT2 Y.(16)

Utilizing (15) we may rewrite the final term in this decomposition as

PT2 Y = PT2 P
T
2 Y = PT2 G

TATY = ∓PT2 GTY TA = ∓PT2
(
GTY T

)
P2A = PT2 ZP2A,

where we have defined Z = ∓GTY T = ∓GT (X̄T − XT
0). Further use of (15) also

yields

(PT2 ZP2)T = ∓PT2 Y GP2 = ∓PT2 GTATY GP2 = PT2 G
TY TP2P2 = ∓(PT2 ZP2).

Putting these results together shows

X̄ = X0 + (1− PT2)Y + PT2 ZP2A(17)

with Y and Z as given in Theorem 1, thus establishing that (5) is the general solution
of (1). Further, (17) establishes the result of the corollary (6).

4. Discussion. This paper has been devoted to the matrix equations (1): we
have given necessary and sufficient conditions for them to possess solutions and pre-
sented general solutions when these hold. The solutions are constructed from any
generalized inverse of the matrix A, with differing generalized inverses yielding the
same general solution. A particular case of the (–) matrix equation is (9), which
arises in the modern R-matrix approach to completely integrable equations. In this
setting (C2) becomes the necessary and sufficient condition for an R-matrix to exist.
The paper thus provides a new and algorithmic approach to constructing R-matrices
without the usual recourse of guessing a suitable ansatz; applications and extensions
have been presented elsewhere [6]. The equation

AX −XTC = B

is a natural generalization of both (7) and the equations studied here. I don’t know
of a simple explicit solution to this equation at present.

Acknowledgments. I thank the referee for suggested improvements to the pre-
sentation of this paper.

REFERENCES

[1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.
[2] O. Babelon and C.M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. B,

237 (1990), pp. 411–416.
[3] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Krieger,

Huntington, NY, 1974.
[4] R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX −XB = Y ,

Bull. London Math. Soc., 29 (1997), pp. 1–21.
[5] H.W. Braden and T. Suzuki, R-matrices for the n = 2, 3 elliptic Calogero-Moser Models,

Phys. Lett. A, 192 (1994), pp. 17–21.
[6] H.W. Braden, R-matrices and generalized inverses, J. Phys. A, 30 (1997), pp. L485–L493.
[7] S.R. Caradus, Generalized Inverses and Operator Theory, Queen’s Papers in Pure and Appl.

Math. 50, Queen’s University, Kingston, ON, 1978.
[8] J.H. Hodges, Some matrix equations over a finite field, Ann. Mat. Pura Appl.(4), 44 (1957),

pp. 245–250.

302 H. W. BRADEN

[9] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam-
bridge, 1991.

[10] J. Liouville, Note sur les équations de la dynamique, J. Math. Pures Appl., 14 (1855), pp.
137–138.

[11] R.M. Pringle and A.A. Rayner, Generalized Inverse Matrices with Applications to Statistics,
Griffin’s Statistical Monographs and Courses 28, Charles Griffin, London, 1971.

[12] C.R.A Rao and S.K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley
and Sons, New York, 1971.

[13] M.A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl., 17 (1983),
pp. 17–33.

THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY
CONSTRAINTS∗

ALAN EDELMAN† , TOMÁS A. ARIAS‡ , AND STEVEN T. SMITH§

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 303–353

Abstract. In this paper we develop new Newton and conjugate gradient algorithms on the
Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such
areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures
computations, and signal processing. In addition to the new algorithms, we show how the geometrical
framework gives penetrating new insights allowing us to create, understand, and compare algorithms.
The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide
a top level mathematical view of previously unrelated algorithms. It is our hope that developers of
new algorithms and perturbation theories will benefit from the theory, methods, and examples in
this paper.

Key words. conjugate gradient, Newton’s method, orthogonality constraints, Grassmann man-
ifold, Stiefel manifold, eigenvalues and eigenvectors, invariant subspace, Rayleigh quotient iteration,
eigenvalue optimization, sequential quadratic programming, reduced gradient method, electronic
structures computation, subspace tracking

AMS subject classifications. 49M07, 49M15, 53B20, 65F15, 15A18, 51F20, 81V55

PII. S0895479895290954

1. Introduction. Problems on the Stiefel and Grassmann manifolds arise with
sufficient frequency that a unifying investigation of algorithms designed to solve these
problems is warranted. Understanding these manifolds, which represent orthogonality
constraints (as in the symmetric eigenvalue problem), yields penetrating insight into
many numerical algorithms and unifies seemingly unrelated ideas from different areas.

The optimization community has long recognized that linear and quadratic con-
straints have special structure that can be exploited. The Stiefel and Grassmann
manifolds also represent special constraints. The main contribution of this paper is
a framework for algorithms involving these constraints, which draws upon ideas from
numerical linear algebra, optimization, differential geometry, and has been inspired by
certain problems posed in engineering, physics, and chemistry. Though we do review
the necessary background for our intended audience, this is not a survey paper. This
paper uses mathematics as a tool so that we can understand the deeper geometrical
structure underlying algorithms.

In our first concrete problem we minimize a function F (Y), where Y is constrained
to the set of n-by-p matrices such that Y TY = I (we call such matrices orthonormal),
and we make the further homogeneity assumption that F (Y) = F (Y Q), where Q is

∗Received by the editors August 28, 1995; accepted for publication (in revised form) by M. L.
Overton June 20, 1997; published electronically October 20, 1998.

http://www.siam.org/journals/simax/20-2/29095.html
†Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge,

MA 02139 (edelman@math.mit.edu). This research was supported by a fellowship from the Alfred
P. Sloan Foundation and NSF grants 9501278-DMS and 9404326-CCR.
‡Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

(muchomas@mit.edu). This research was supported by an NSF/MRSEC Seed Project grant from
the MIT Center for Material Science and Engineering.
§MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02173 (stsmith@ll.mit.edu). This

research was sponsored by DARPA under Air Force contract F19628-95-C-0002. Opinions, interpre-
tations, conclusions, and recommendations are those of the author and are not necessarily endorsed
by the United States Air Force.

303

304 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

any p-by-p orthogonal matrix. In other words, the objective function depends only on
the subspace spanned by the columns of Y ; it is invariant to any choice of basis. The
set of p-dimensional subspaces in Rn is called the Grassmann manifold. (Grassmann
originally developed the idea in 1848, but his writing style was considered so obscure
[1] that it was appreciated only many years later. One can find something of the
original definition in his later work [48, Chap. 3, Sec. 1, Article 65].) To the best
of our knowledge, the geometry of the Grassmann manifold has never been explored
in the context of optimization algorithms, invariant subspace computations, physics
computations, or subspace tracking. Useful ideas from these areas, however, may be
put into the geometrical framework developed in this paper.

In our second problem we minimize F (Y) without the homogeneity condition
F (Y) = F (Y Q) mentioned above, i.e., the optimization problem is defined on the
set of n-by-p orthonormal matrices. This constraint surface is known as the Stiefel
manifold, which is named for Eduard Stiefel, who considered its topology in the 1930s
[82]. This is the same Stiefel who in collaboration with Magnus Hestenes in 1952
originated the conjugate gradient algorithm [49]. Both Stiefel’s manifold and his
conjugate gradient algorithm play an important role in this paper. The geometry of
the Stiefel manifold in the context of optimization problems and subspace tracking
was explored by Smith [75]. In this paper we use numerical linear algebra techniques
to simplify the ideas and algorithms presented there so that the differential geometric
ideas seem natural and illuminating to the numerical linear algebra and optimization
communities.

The first author’s original motivation for studying this problem came from a re-
sponse to a linear algebra survey [30], which claimed to be using conjugate gradient to
solve large dense eigenvalue problems. The second and third authors were motivated
by two distinct engineering and physics applications. The salient question became:
What does it mean to use conjugate gradient to solve eigenvalue problems? Is this the
Lanczos method? As we shall describe, there are dozens of proposed variations on the
conjugate gradient and Newton methods for eigenvalue and related problems, none of
which are Lanczos. These algorithms are not all obviously related. The connections
among these algorithms have apparently not been appreciated in the literature while
in some cases numerical experiments have been the only basis for comparison when
no theoretical understanding was available. The existence of so many variations in so
many applications compelled us to ask for the big picture: What is the mathemat-
ics that unifies all of these apparently distinct algorithms? This paper contains our
proposed unification.

We summarize by itemizing what is new in this paper.
1. Algorithms for Newton and conjugate gradient methods on the Grassmann

and Stiefel manifolds that naturally use the geometry of these manifolds. In the
special cases that we are aware of, our general algorithms are competitive up to small
constant factors with the best known special algorithms. Conjugate gradient and
Newton on the Grassmann manifold have never been explicitly studied before. Stiefel
algorithms have been studied before [75], but the ideas here represent considerable
simplifications.

2. A geometrical framework with the right mix of abstraction and concreteness
to serve as a foundation for any numerical computation or algorithmic formulation
involving orthogonality constraints, including the symmetric eigenvalue problem. We
believe that this is a useful framework because it connects apparently unrelated ideas;
it is simple and mathematically natural. The framework provides new insights into

ORTHOGONALITY CONSTRAINTS 305

existing algorithms in numerical linear algebra, optimization, signal processing, and
electronic structures computations, and it suggests new algorithms. For example, we
connect the ideas of geodesics and the cubic convergence of the Rayleigh quotient
iteration, the CS decomposition, and sequential quadratic programming. We also
interpret the ill-conditioning of eigenvectors of a symmetric matrix with multiple
eigenvalues as the singularity of Stiefel and Grassmann coordinates.

3. Though geometrical descriptions of the Grassmann and Stiefel manifolds are
available in many references, ours is the first to use methods from numerical linear al-
gebra emphasizing computational efficiency of algorithms rather than abstract general
settings.

The remainder of this paper is organized into three sections. The geometrical
ideas are developed in section 2. This section provides a self-contained introduction
to geometry, which may not be familiar to some readers, while deriving the new
geometrical formulas necessary for the algorithms of section 3, and the insights of
section 3 provide descriptions of new algorithms for optimization on the Grassmann
and Stiefel manifolds. Concrete examples of the new insights gained from this point
of view are presented in section 4. Because we wish to discuss related literature in
the context developed in sections 2 and 3, we defer discussion of the literature to
section 4, where specific applications of our theory are organized.

2. Differential geometric foundation for numerical linear algebra. A
geometrical treatment of the Stiefel and Grassmann manifolds appropriate for nu-
merical linear algebra cannot be found in standard differential geometry references.
For example, what is typically required for practical conjugate gradient computations
involving n-by-p orthonormal matrices are algorithms with complexity of order np2.
In this section we derive new formulas that may be used in algorithms of this com-
plexity in terms of standard operations from numerical linear algebra. These formulas
will be used in the algorithms presented in the following section. Because we focus on
computations, our approach differs from the more general (and powerful) coordinate-
free methods used by modern geometers [18, 47, 54, 62, 79, 87]. Boothby [8] provides
an undergraduate level introduction to the coordinate-free approach.

For readers with a background in differential geometry, we wish to point out how
we use extrinsic coordinates in a somewhat unusual way. Typically, one uses a pa-
rameterization of the manifold (e.g., x = cosu sin v, y = sinu sin v, z = cos v for the
sphere) to derive metric coefficients and Christoffel symbols in terms of the parame-
ters (u and v). Instead, we only use extrinsic coordinates subject to constraints (e.g.,
(x, y, z) such that x2 + y2 + z2 = 1). This represents points with more parameters
than are intrinsically necessary, but we have found that the simplest (hence compu-
tationally most useful) formulas for the metric and Christoffel symbol are obtained in
this manner. The choice of coordinates does not matter abstractly, but on a computer
the correct choice is essential.

We now outline this section. After defining the manifolds of interest to us in
section 2.1, we take a close look at the Stiefel manifold as a submanifold of Euclidean
space in section 2.2. This introduces elementary ideas from differential geometry
and provides the geometric structure of the orthogonal group (a special case of the
Stiefel manifold), which will be used throughout the rest of the paper. However, the
Euclidean metric is not natural for the Stiefel manifold, which inherits a canonical
metric from its definition as a quotient space. Therefore, we introduce the quotient
space point of view in section 2.3. With this viewpoint, we then derive our formu-
las for geodesics and parallel translation for the Stiefel and Grassmann manifold in

306 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Table 2.1
Representations of subspace manifolds.

Space Symbol Matrix rep. Quotient rep.

Orthogonal group On Q –

Stiefel manifold Vn, p Y On/On−p

Grassmann manifold Gn, p None

{
Vn, p/Op

or
On/ (Op ×On−p)

}

sections 2.4 and 2.5. Finally, we describe how to incorporate these formulae into
conjugate gradient and Newton methods in section 2.6.

2.1. Manifolds arising in numerical linear algebra. For simplicity of expo-
sition, but for no fundamental reason, we will concentrate on real matrices. All ideas
carry over naturally to complex matrices. Spaces of interest are as follows:

1. The orthogonal group On consisting of n-by-n orthogonal matrices;
2. The Stiefel manifold Vn, p consisting of n-by-p “tall-skinny” orthonormal ma-

trices;
3. The Grassmann manifold Gn, p obtained by identifying those matrices in Vn, p

whose columns span the same subspace (a quotient manifold).
Table 2.1 summarizes the definitions of these spaces. Our description of Gn, p is

necessarily more abstract than On or Vn, p. Gn, p may be defined as the set of all
p-dimensional subspaces of an n-dimensional space.

We shall benefit from two different yet equivalent modes of describing our spaces:
concrete representations and quotient space representations. Table 2.2 illustrates how
we store elements of Vn, p and Gn, p in a computer. A point in the Stiefel manifold
Vn, p is represented by an n-by-p matrix. A point on the Grassmann manifold Gn, p is
a linear subspace, which may be specified by an arbitrary orthogonal basis stored as
an n-by-p matrix. An important difference here is that, unlike points on the Stiefel
manifold, the choice of matrix is not unique for points on the Grassmann manifold.

The second mode of representation, the more mathematical, is useful for ob-
taining closed-form expressions for the geometrical objects of interest. It is also the
“proper” theoretical setting for these manifolds. Here, we represent the manifolds as
quotient spaces. Points in the Grassmann manifold are equivalence classes of n-by-p
orthogonal matrices, where two matrices are equivalent if their columns span the same
p-dimensional subspace. Equivalently, two matrices are equivalent if they are related
by right multiplication of an orthogonal p-by-p matrix. Therefore, Gn, p = Vn, p/Op.
On the computer, by necessity, we must pick a representative of the equivalence class
to specify a point.

ORTHOGONALITY CONSTRAINTS 307

Table 2.2
Computational representation of subspace manifolds.

Space Data structure represents Tangents ∆

Stiefel manifold Y one point Y T∆ = skew-symmetric

Grassmann manifold Y entire equivalence class Y T∆ = 0

The Stiefel manifold may also be defined as a quotient space but arising from the
orthogonal group. Here, we identify two orthogonal matrices if their first p columns
are identical or, equivalently, if they are related by right multiplication of a matrix
of the form (I0

0
Q), where Q is an orthogonal (n − p)-by-(n − p) block. Therefore,

Vn, p = On/On−p. With the Stiefel manifold so represented, one has yet another
representation of the Grassmann manifold, Gn, p = On/(Op ×On−p).

2.2. The Stiefel manifold in Euclidean space. The Stiefel manifold Vn, p
may be embedded in the np-dimensional Euclidean space of n-by-p matrices. When
p = 1, we simply have the sphere, while when p = n, we have the group of orthogonal
matrices known as On. These two special cases are the easiest and arise in numerical
linear algebra the most often.

Much of this section, which consists of three subsections, is designed to be a
painless and intuitive introduction to differential geometry in Euclidean space. Sec-
tion 2.2.1 is elementary. It derives formulas for projections onto the tangent and
normal spaces. In section 2.2.2, we derive formulas for geodesics on the Stiefel mani-
fold in Euclidean space. We then discuss parallel translation in section 2.2.3.

In the two special cases when p = 1 and p = n, the Euclidean metric and the
canonical metric to be discussed in section 2.4 are the same. Otherwise they differ.

2.2.1. Tangent and normal space. Intuitively, the tangent space at a point
is the plane tangent to the submanifold at that point, as shown in Figure 2.1. For
d-dimensional manifolds, this plane is a d-dimensional vector space with origin at the
point of tangency. The normal space is the orthogonal complement. On the sphere,
tangents are perpendicular to radii, and the normal space is radial. In this subsection,
we will derive the equations for the tangent and normal spaces on the Stiefel manifold.
We also compute the projection operators onto these spaces.

An equation defining tangents to the Stiefel manifold at a point Y is easily ob-
tained by differentiating Y TY = I, yielding Y T∆ + ∆TY = 0, i.e., Y T∆ is skew-
symmetric. This condition imposes p(p+ 1)/2 constraints on ∆, or, equivalently, the
vector space of all tangent vectors ∆ has dimension

np− p(p+ 1)

2
=
p(p− 1)

2
+ p(n− p).(2.1)

Both sides of (2.1) are useful for the dimension counting arguments that will be
employed.

308 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Manifold

Normal

Tangent

Fig. 2.1. The tangent and normal spaces of an embedded or constraint manifold.

The normal space is defined to be the orthogonal complement of the tangent
space. Orthogonality depends upon the definition of an inner product, and because
in this subsection we view the Stiefel manifold as an embedded manifold in Euclidean
space, we choose the standard inner product

ge(∆1,∆2) = tr ∆T
1 ∆2(2.2)

in np-dimensional Euclidean space (hence the subscript e), which is also the Frobenius
inner product for n-by-p matrices. We shall also write 〈∆1,∆2〉 for the inner product,
which may or may not be the Euclidean one. The normal space at a point Y consists
of all matrices N which satisfy

tr ∆TN = 0

for all ∆ in the tangent space. It follows that the normal space is p(p+ 1)/2 dimen-
sional. It is easily verified that if N = Y S, where S is p-by-p symmetric, then N is in
the normal space. Since the dimension of the space of such matrices is p(p+ 1)/2, we
see that the normal space is exactly the set of matrices {Y S }, where S is any p-by-p
symmetric matrix.

Let Z be any n-by-p matrix. Letting sym(A) denote (A+AT)/2 and skew(A) =
(A−AT)/2, it is easily verified that at Y

πN (Z) = Y sym(Y TZ)(2.3)

defines a projection of Z onto the normal space. Similarly, at Y ,

πT (Z) = Y skew(Y TZ) + (I − Y Y T)Z(2.4)

is a projection of Z onto the tangent space at Y (this is also true of the canonical
metric to be discussed in section 2.4). Equation (2.4) suggests a form for the tangent
space of Vn, p at Y that will prove to be particularly useful. Tangent directions ∆
at Y then have the general form

∆ = Y A+ Y⊥B(2.5)

= Y A+ (I − Y Y T)C,(2.6)

ORTHOGONALITY CONSTRAINTS 309

where A is p-by-p skew-symmetric, B is (n− p)-by-p, C is n-by-p, B and C are both
arbitrary, and Y⊥ is any n-by-(n− p) matrix such that Y Y T + Y⊥Y⊥T = I; note that
B = Y⊥TC. The entries in the matrices A and B parameterize the tangent space
at Y with p(p− 1)/2 degrees of freedom in A and p(n− p) degrees of freedom in B,
resulting in p(p− 1)/2 + p(n− p) degrees of freedom as seen in (2.1).

In the special case Y = In, p ≡ (Ip0) (the first p columns of the n-by-n identity
matrix), called the origin, the tangent space at Y consists of those matrices

X =

(
A

B

)
for which A is p-by-p skew-symmetric and B is (n− p)-by-p arbitrary.

2.2.2. Embedded geodesics. A geodesic is the curve of shortest length be-
tween two points on a manifold. A straightforward exercise from the calculus of
variations reveals that for the case of manifolds embedded in Euclidean space the ac-
celeration vector at each point along a geodesic is normal to the submanifold so long
as the curve is traced with uniform speed. This condition is necessary and sufficient.
In the case of the sphere, acceleration for uniform motion on a great circle is directed
radially and therefore normal to the surface; therefore, great circles are geodesics on
the sphere. One may consider embedding manifolds in spaces with arbitrary metrics.
See Spivak [79, Vol. 3, p. 4] for the appropriate generalization.

Through (2.3) for the normal space to the Stiefel manifold, it is easily shown
that the geodesic equation for a curve Y (t) on the Stiefel manifold is defined by the
differential equation

Ÿ + Y (Ẏ T Ẏ) = 0.(2.7)

To see this, we begin with the condition that Y (t) remains on the Stiefel manifold

Y TY = Ip.(2.8)

Taking two derivatives,

Y T Ÿ + 2Ẏ T Ẏ + Ÿ TY = 0.(2.9)

To be a geodesic, Ÿ (t) must be in the normal space at Y (t) so that

Ÿ (t) + Y (t)S = 0(2.10)

for some symmetric matrix S. Substitute (2.10) into (2.9) to obtain the geodesic equa-
tion (2.7). Alternatively, (2.7) could be obtained from the Euler–Lagrange equation
for the calculus of variations problem

d(Y1, Y2) = min
Y (t)

∫ t2

t1

(tr Ẏ T Ẏ)1/2 dt such that Y (t1) = Y1, Y (t2) = Y2.(2.11)

We identify three integrals of motion of the geodesic equation (2.7). Define

C = Y TY, A = Y T Ẏ , S = Ẏ T Ẏ .(2.12)

Directly from the geodesic equation (2.7),

Ċ = A+AT ,

Ȧ = −CS + S,

Ṡ = [A,S],

310 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

where

[A,S] = AS − SA(2.13)

is the Lie bracket of two matrices. Under the initial conditions that Y is on the Stiefel
manifold (C = I) and Ẏ is a tangent (A is skew-symmetric), then the integrals of the
motion have the values

C(t) = I,

A(t) = A(0),

S(t) = eAtS(0)e−At.

These integrals therefore identify a constant speed curve on the Stiefel manifold. In
most differential geometry books, the equation of motion for geodesics is written in
intrinsic coordinates in terms of so-called Christoffel symbols which specify a quadratic
form of the tangent vectors. In our formulation, the form Γe(Ẏ , Ẏ) = Y Ẏ T Ẏ is written
compactly in extrinsic coordinates.

With these constants of the motion, we can write an integrable equation for the
final geodesic,1

d

dt

(
Y eAt, Ẏ eAt

)
=
(
Y eAt, Ẏ eAt

)(
A −S(0)
I A

)
,

with integral

Y (t) =
(
Y (0), Ẏ (0)

)
exp t

(
A −S(0)
I A

)
I2p,pe

−At.

This is an exact closed form expression for the geodesic on the Stiefel manifold,
but we will not use this expression in our computation. Instead we will consider the
non-Euclidean canonical metric on the Stiefel manifold in section 2.4.

We mention in the case of the orthogonal group (p = n), the geodesic equation is
obtained simply from A = QT Q̇ = constant, yielding the simple solution

Q(t) = Q(0)eAt.(2.14)

From (2.14) it is straightforward to show that on connected components of On,

d(Q1, Q2) =

(n∑
k=1

θ2
k

)1/2

,(2.15)

where {eiθk} are the eigenvalues of the matrix QT1 Q2 (cf. (2.67) and section 4.3).

2.2.3. Parallel translation. In Euclidean space, we move vectors parallel to
themselves simply by moving the base of the arrow. On an embedded manifold, if
we move a tangent vector to another point on the manifold by this technique, it is
generally not a tangent vector. One can, however, transport tangents along paths on
the manifold by infinitesimally removing the component of the transported vector in
the normal space.

1We thank Ross Lippert [56] for this observation.

ORTHOGONALITY CONSTRAINTS 311

∆

Y(0)

Y(0) + εY
.

∆

τ∆
∆
.

Y(t)

Fig. 2.2. Parallel transport in a submanifold of Euclidean space (infinitesimal construction).

Figure 2.2 illustrates the following idea: Imagine moving a tangent vector ∆ along
the curve Y (t) in such a manner that every infinitesimal step consists of a parallel
displacement of ∆ in the Euclidean np-dimensional space, which is then followed by
the removal of the normal component. If we move from Y (0) = Y to Y (ε) then to
first order, our new location is Y + εẎ . The equation for infinitesimally removing the
component generated in the normal space as we move in the direction Ẏ is obtained
by differentiating (2.3) as follows:

∆̇ = −Y (Ẏ T∆ + ∆T Ẏ)/2.(2.16)

We are unaware of any closed form solution to this system of differential equations
along geodesics.

By differentiation, we see that parallel transported vectors preserve the inner
product. In particular, the square length of ∆ (tr ∆T∆) is preserved. Additionally,
inserting Ẏ into the parallel transport equation, one quickly sees that a geodesic
always parallel transports its own tangent vector. This condition may be taken as the
definition of a geodesic.

Observing that tr ∆T∆ is the sum of the squares of the singular values of ∆,
we conjectured that the individual singular values of ∆ might also be preserved by
parallel transport. Numerical experiments show that this is not the case.

In the case of the orthogonal group (p = n), however, parallel translation of ∆
along the geodesic Q(t) = Q(0)eAt is straightforward. Let ∆(t) = Q(t)B(t) be the
solution of the parallel translation equation

∆̇ = −Q(Q̇T∆ + ∆T Q̇)/2,

where B(t) is a skew-symmetric matrix. Substituting ∆̇ = Q̇B + QḂ and Q̇ = QA,
we obtain

Ḃ = −1

2
[A,B],(2.17)

whose solution is B(t) = e−At/2B(0)eAt/2; therefore,

∆(t) = Q(0)eAt/2B(0)eAt/2.(2.18)

These formulas may be generalized to arbitrary connected Lie groups [47, Chap. 2,
Ex. A.6].

312 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

So as to arrive at the general notion of parallel transport, let us formalize what
we did here. We saw that the geodesic equation may be written

Ÿ + Γe(Ẏ , Ẏ) = 0,

where in the Euclidean case

Γe(∆1,∆2) = Y (∆T
1 ∆2 + ∆T

2 ∆1)/2.

Anticipating the generalization, we interpret Γ as containing the information of the
normal component that needs to be removed. Knowing the quadratic function Γ(∆,∆)
is sufficient for obtaining the bilinear function Γ(∆1,∆2); the process is called polar-
ization. We assume that Γ is a symmetric function of its arguments (this is the
so-called torsion-free condition), and we obtain

4Γ(∆1,∆2) = Γ(∆1 + ∆2,∆1 + ∆2)− Γ(∆1 −∆2,∆1 −∆2).

For the cases we study in this paper, it is easy in practice to guess a symmetric form
for Γ(∆1,∆2) given Γ(∆,∆).

We will give a specific example of why this formalism is needed in section 2.4.
Let us mention here that the parallel transport defined in this manner is known to
differential geometers as the Levi–Civita connection. We also remark that the function
Γ when written in terms of components defines the Christoffel symbols. Switching
to vector notation, in differential geometry texts the ith component of the function
Γ(v, w) would normally be written as

∑
jk Γijkvjwk, where the constants Γijk are called

Christoffel symbols. We prefer the matrix notation over the scalar notation.

2.3. Geometry of quotient spaces. Given a manifold whose geometry is well
understood (where there are closed form expressions for the geodesics and, perhaps
also, parallel transport), there is a very natural, efficient, and convenient way to
generate closed form formulas on quotient spaces of that manifold. This is precisely
the situation with the Stiefel and Grassmann manifolds, which are quotient spaces
within the orthogonal group. As just seen in the previous section, geodesics and
parallel translation on the orthogonal group are simple. We now show how the Stiefel
and Grassmann manifolds inherit this simple geometry.

2.3.1. The quotient geometry of the Stiefel manifold. The important ideas
here are the notions of the horizontal and vertical spaces, the metric, and their rela-
tionship to geodesics and parallel translation. We use brackets to denote equivalence
classes. We will define these concepts using the Stiefel manifold Vn, p = On/On−p as
an example. The equivalence class [Q] is the set of all n-by-n orthogonal matrices
with the same first p columns as Q. A point in the Stiefel manifold is the equivalence
class

[Q] =

{
Q

(
Ip 0
0 Qn−p

)
: Qn−p ∈ On−p

}
;(2.19)

that is, a point in the Stiefel manifold is a particular subset of the orthogonal matrices.
Notice that in this section we are working with equivalence classes rather than n-by-p
matrices Y = QIn, p.

The vertical and horizontal spaces at a point Q are complementary linear sub-
spaces of the tangent space at Q. The vertical space is defined to be vectors tangent

ORTHOGONALITY CONSTRAINTS 313

to the set [Q]. The horizontal space is defined as the tangent vectors at Q orthogonal
to the vertical space. At a point Q, the vertical space is the set of vectors of the form

Φ = Q

(
0 0
0 C

)
,(2.20)

where C is (n−p)-by-(n−p) skew-symmetric, and we have hidden postmultiplication
by the isotropy subgroup (Ip On−p

). Such vectors are clearly tangent to the set [Q]
defined in (2.19). It follows that the horizontal space at Q is the set of tangents of
the form

∆ = Q

(
A −BT
B 0

)
(2.21)

(also hiding the isotropy subgroup), where A is p-by-p skew-symmetric. Vectors of
this form are clearly orthogonal to vertical vectors with respect to the Euclidean inner
product. The matrices A and B of (2.21) are equivalent to those of (2.5).

The significance of the horizontal space is that it provides a representation of
tangents to the quotient space. Intuitively, movements in the vertical direction make
no change in the quotient space. Therefore, the metric, geodesics, and parallel trans-
lation must all be restricted to the horizontal space. A rigorous treatment of these
intuitive concepts is given by Kobayashi and Nomizu [54] and Chavel [18].

The canonical metric on the Stiefel manifold is then simply the restriction of the
orthogonal group metric to the horizontal space (multiplied by 1/2 to avoid factors
of 2 later on). That is, for ∆1 and ∆2 of the form in (2.21),

gc(∆1,∆2) =
1

2
tr

(
Q

(
A1 −BT1
B1 0

))T
Q

(
A2 −BT2
B2 0

)
= 1

2 trAT1 A2 + trBT1 B2,(2.22)

which we shall also write as 〈∆1,∆2〉. It is important to realize that this is not equal
to the Euclidean metric ge defined in section 2.2 (except for p = 1 or n), even though
we use the Euclidean metric for the orthogonal group in its definition. The difference
arises because the Euclidean metric counts the independent coordinates of the skew-
symmetric A matrix twice and those of B only once, whereas the canonical metric
counts all independent coordinates in A and B equally. This point is discussed in
detail in section 2.4.

Notice that the orthogonal group geodesic

Q(t) = Q(0) exp t

(
A −BT
B 0

)
(2.23)

has horizontal tangent

Q̇(t) = Q(t)

(
A −BT
B 0

)
(2.24)

at every point along the curve Q(t). Therefore, they are curves of shortest length in
the quotient space as well, i.e., geodesics in the Grassmann manifold are given by the
simple formula

Stiefel geodesics = [Q(t)],(2.25)

314 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

where [Q(t)] is given by (2.19) and (2.23). This formula will be essential for deriving
an expression for geodesics on the Stiefel manifold using n-by-p matrices in section 2.4.

In a quotient space, parallel translation works in a way similar to the embedded
parallel translation discussed in section 2.2.3. Parallel translation along a curve (with
everywhere horizontal tangent) is accomplished by infinitesimally removing the verti-
cal component of the tangent vector. The equation for parallel translation along the
geodesics in the Stiefel manifold is obtained by applying this idea to (2.17), which
provides translation along geodesics for the orthogonal group. Let

A =

(
A1 −BT1
B1 0

)
and B =

(
A2 −BT2
B2 0

)
(2.26)

be two horizontal vectors t Q = I. The parallel translation of B along the geodesic
eAt is given by the differential equation

Ḃ = −1

2
[A,B]H ,(2.27)

where the subscript H denotes the horizontal component (lower right block set to
zero). Note that the Lie bracket of two horizontal vectors is not horizontal and that
the solution to (2.27) is not given by the formula (e−At/2B(0)eAt/2)H . This is a special
case of the general formula for reductive homogeneous spaces [18, 75]. This first order
linear differential equation with constant coefficients is integrable in closed form, but
it is an open question whether this can be accomplished with O(np2) operations.

2.3.2. The quotient geometry of the Grassmann manifold. We quickly
repeat this approach for the Grassmann manifold Gn, p = On/(Op × On−p). The
equivalence class [Q] is the set of all orthogonal matrices whose first p columns span
the same subspace as those ofQ. A point in the Grassmann manifold is the equivalence
class

[Q] =

{
Q

(
Qp 0
0 Qn−p

)
: Qp ∈ Op, Qn−p ∈ On−p

}
,(2.28)

i.e., a point in the Grassmann manifold is a particular subset of the orthogonal ma-
trices, and the Grassmann manifold itself is the collection of all these subsets.

The vertical space at a point Q is the set of vectors of the form

Φ = Q

(
A 0
0 C

)
,(2.29)

where A is p-by-p skew-symmetric and C is (n− p)-by-(n− p) skew-symmetric. The
horizontal space at Q is the set of matrices of the form

∆ = Q

(
0 −BT
B 0

)
.(2.30)

Note that we have hidden postmultiplication by the isotropy subgroup (Op On−p
) in

(2.29) and (2.30).
The canonical metric on the Grassmann manifold is the restriction of the orthog-

onal group metric to the horizontal space (multiplied by 1/2). Let ∆1 and ∆2 be of
the form in (2.30). Then

gc(∆1,∆2) = trBT1 B2.(2.31)

ORTHOGONALITY CONSTRAINTS 315

As opposed to the canonical metric for the Stiefel manifold, this metric is in fact
equivalent to the Euclidean metric (up to multiplication by 1/2) defined in (2.2).

The orthogonal group geodesic

Q(t) = Q(0) exp t

(
0 −BT
B 0

)
(2.32)

has horizontal tangent

Q̇(t) = Q(t)

(
0 −BT
B 0

)
(2.33)

at every point along the curve Q(t); therefore,

Grassmann geodesics = [Q(t)],(2.34)

where [Q(t)] is given by (2.28) and (2.32). This formula gives us an easy method for
computing geodesics on the Grassmann manifold using n-by-p matrices, as will be
seen in section 2.5.

The method for parallel translation along geodesics in the Grassmann manifold
is the same as for the Stiefel manifold, although it turns out the Grassmann manifold
has additional structure that makes this task easier. Let

A =

(
0 −AT
A 0

)
and B =

(
0 −BT
B 0

)
(2.35)

be two horizontal vectors at Q = I. It is easily verified that [A,B] is in fact a vertical
vector of the form of (2.29). If the vertical component of (2.17) is infinitesimally
removed, we are left with the trivial differential equation

Ḃ = 0.(2.36)

Therefore, the parallel translation of the tangent vector Q(0)B along the geodesic
Q(t) = Q(0)eAt is simply given by the expression

τB(t) = Q(0)eAtB,(2.37)

which is of course horizontal at Q(t). Here, we introduce the notation τ to indicate
the transport of a vector; it is not a scalar multiple of the vector. It will be seen in
section 2.5 how this formula may be computed using O(np2) operations.

As an aside, if H and V represent the horizontal and vertical spaces, respectively,
it may be verified that

[V, V] ⊂ V, [V,H] ⊂ H, [H,H] ⊂ V.(2.38)

The first relationship follows from the fact that V is a Lie algebra, the second follows
from the reductive homogeneous space structure [54] of the Grassmann manifold, also
possessed by the Stiefel manifold, and the third follows the symmetric space structure
[47, 54] of the Grassmann manifold, which the Stiefel manifold does not possess.

2.4. The Stiefel manifold with its canonical metric.

316 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

2.4.1. The canonical metric (Stiefel). The Euclidean metric

ge(∆,∆) = tr ∆T∆

used in section 2.2 may seem natural, but one reasonable objection to its use is that
it weighs the independent degrees of freedom of the tangent vector unequally. Using
the representation of tangent vectors ∆ = Y A+ Y⊥B given in (2.5), it is seen that

ge(∆,∆) = trATA+ trBTB

= 2
∑
i<j

a2
ij +

∑
ij

b2ij .

The Euclidean metric counts the p(p + 1)/2 independent coordinates of A twice. At
the origin In, p, a more equitable metric would be gc(∆,∆) = tr ∆T (I− 1

2In, pI
T
n, p)∆ =

1
2 trATA + trBTB. To be equitable at all points in the manifold, the metric must
vary with Y according to

gc(∆,∆) = tr ∆T (I − 1
2Y Y

T)∆.(2.39)

This is called the canonical metric on the Stiefel manifold. This is precisely the metric
derived from the quotient space structure of Vn, p in (2.22); therefore, the formulas
for geodesics and parallel translation for the Stiefel manifold given in section 2.3.1
are correct if we view the Stiefel manifold as the set of orthonormal n-by-p matrices
with the metric of (2.39). Note that if ∆ = Y A + Y⊥B is a tangent vector, then
gc(∆,∆) = 1

2 trATA+ trBTB, as seen previously.

2.4.2. Geodesics (Stiefel). The path length

L =

∫
gc(Ẏ , Ẏ)1/2 dt(2.40)

may be minimized with the calculus of variations. Doing so is tedious but yields the
new geodesic equation

Ÿ + Ẏ Ẏ TY + Y
(
(Y T Ẏ)2 + Ẏ T Ẏ

)
= 0.(2.41)

Direct substitution into (2.41) using the fact that

(I − In, pITn, p)X(I − In, pITn, p) = 0,

if X is a skew-symmetric matrix of the form

X =

(
A −BT
B 0

)
,

verifies that the paths of the form

Y (t) = QeXtIn, p(2.42)

are closed form solutions to the geodesic equation for the canonical metric.
We now turn to the problem of computing geodesics with algorithms of complexity

O(np2). Our current formula Y (t) = Q exp t(AB
−BT

0)In, p for a geodesic is not useful.
Rather we want to express the geodesic Y (t) in terms of the current position Y (0) = Y

ORTHOGONALITY CONSTRAINTS 317

and a direction Ẏ (0) = H. For example, A = Y TH and we have C := BTB =
HT(I −Y Y T)H. In fact the geodesic only depends on BTB rather than B itself. The

trick is to find a differential equation for M(t) = ITn, p exp t(AB
−BT

0)In, p.
The following theorem makes clear that the computational difficulty inherent in

computing the geodesic is the solution of a constant coefficient second order differential
equation for M(t). The answer is obtained not by a differential equation solver but
rather by solving the corresponding quadratic eigenvalue problem.

Theorem 2.1. If Y (t) = Qet(
A
B
−BT

0)In, p, with Y (0) = Y and Ẏ (0) = H, then

Y (t) = YM(t) + (I − Y Y T)H

∫ t

0

M(t) dt,(2.43)

where M(t) is the solution to the second order differential equation with constant
coefficients

M̈ −AṀ + CM = 0; M(0) = Ip, Ṁ(0) = A,(2.44)

A = Y TH is skew-symmetric, and C = HT(I − Y Y T)H is nonnegative definite.
Proof . A direct computation verifies that M(t) satisfies (2.44). By separately

considering Y TY (t) and (I − Y Y T)Y (t), we may derive (2.43).
The solution of the differential equation (2.44) may be obtained [25, 88] by solving

the quadratic eigenvalue problem

(λ2I −Aλ+ C)x = 0.

Such problems are typically solved in one of three ways: (1) by solving the generalized
eigenvalue problem (

C 0
0 I

)(
x
λx

)
= λ

(
A −I
I 0

)(
x
λx

)
,

(2) by solving the eigenvalue problem(
0 I
−C A

)(
x
λx

)
= λ

(
x
λx

)
,

or (3) any equivalent problem obtained by factoring C = KTK and then solving the
eigenvalue problem (

A −KT

K 0

)(
x
y

)
= λ

(
x
y

)
.

Problems of this form arise frequently in mechanics, usually with A symmetric.
Some discussion of physical interpretations for skew-symmetric matrices may be found
in the context of rotating machinery [21]. If X is the p-by-2p matrix of eigenvectors
and Λ denotes the eigenvalues, then M(t) = XeΛtZ, and its integral is

∫
M(t) dt =

XeΛtΛ−1Z, where Z is chosen so that XZ = I and XΛZ = A.
Alternatively, the third method along with the matrix exponential may be em-

ployed.
Corollary 2.2. Let Y and H be n-by-p matrices such that Y TY = Ip and

A = Y TH is skew-symmetric. Then the geodesic on the Stiefel manifold emanating
from Y in direction H is given by the curve

Y (t) = YM(t) +QN(t),(2.45)

318 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

where

QR := K = (I − Y Y T)H(2.46)

is the compact QR-decomposition of K (Q n-by-p, R p-by-p) and M(t) and N(t) are
p-by-p matrices given by the matrix exponential(

M(t)
N(t)

)
= exp t

(
A −RT
R 0

)(
Ip
0

)
.(2.47)

Note that (2.47) is easily computed by solving a 2p-by-2p skew-symmetric eigen-
value problem, which can be accomplished efficiently using the SVD or algorithms
specially tailored for this problem [86].

2.4.3. Parallel translation (Stiefel). We now develop a notion of parallel
transport that is consistent with the canonical metric. The geodesic equation takes
the form Ÿ + Γ(Ẏ , Ẏ) = 0, where, from (2.41), it is seen that the Christoffel function
for the canonical metric is

Γc(∆,∆) = ∆∆TY + Y∆T (I − Y Y T)∆.(2.48)

By polarizing we obtain the result

Γc(∆1,∆2) = 1
2 (∆1∆T

2 + ∆2∆T
1)Y + 1

2Y
(
∆T

2(I − Y Y T)∆1(2.49)

+∆T
1 (I − Y Y T)∆2

)
.

Parallel transport is given by the differential equation

∆̇ + Γc(∆, Ẏ) = 0,(2.50)

which is equivalent to (2.27). As stated after this equation, we do not have an O(np2)
method to compute ∆(t).

2.4.4. The gradient of a function (Stiefel). Both conjugate gradient and
Newton’s method require a computation of the gradient of a function, which depends
upon the choice of metric. For a function F (Y) defined on the Stiefel manifold, the
gradient of F at Y is defined to be the tangent vector ∇F such that

trFTY∆ = gc(∇F,∆) ≡ tr(∇F)T (I − 1
2Y Y

T)∆(2.51)

for all tangent vectors ∆ at Y , where FY is the n-by-p matrix of partial derivatives
of F with respect to the elements of Y , i.e.,

(FY)ij =
∂F

∂Yij
.(2.52)

Solving (2.51) for ∇F such that Y T (∇F) = skew-symmetric yields

∇F = FY − Y FTY Y.(2.53)

Equation (2.53) may also be derived by differentiating F (Y (t)), where Y (t) is the
Stiefel geodesic given by (2.45).

ORTHOGONALITY CONSTRAINTS 319

2.4.5. The Hessian of a function (Stiefel). Newton’s method requires the
Hessian of a function, which depends upon the choice of metric. The Hessian of a
function F (Y) defined on the Stiefel manifold is defined as the quadratic form

HessF (∆,∆) =
d2

dt2

∣∣∣∣
t=0

F
(
Y (t)

)
,(2.54)

where Y (t) is a geodesic with tangent ∆, i.e., Ẏ (0) = ∆. Applying this definition to
F (Y) and (2.45) yields the formula

HessF (∆1,∆2) = FY Y (∆1,∆2) + 1
2 tr
(
(FTY∆1Y

T + Y T∆1F
T
Y)∆2

)
(2.55)

− 1
2 tr
(
(Y TFY + FTY Y)∆T

1 Π∆2

)
,

where Π = I − Y Y T , FY is defined in (2.52), and the notation FY Y (∆1,∆2) denotes
the scalar

∑
ij, kl(FY Y)ij, kl(∆1)ij(∆2)kl, where

(FY Y)ij, kl =
∂2F

∂Yij∂Ykl
.(2.56)

This formula may also readily be obtained by using (2.50) and the formula

HessF (∆1,∆2) = FY Y (∆1,∆2)− trFTY Γc(∆1,∆2).(2.57)

For Newton’s method, we must determine the tangent vector ∆ such that

HessF (∆, X) = 〈−G,X〉 for all tangent vectors X,(2.58)

where G = ∇F . Recall that 〈 , 〉 ≡ gc(,) in this context. We shall express the solution
to this linear equation as ∆ = −Hess−1G, which may be expressed as the solution to
the linear problem

FY Y (∆)− Y skew(FTY∆)− skew(∆FTY)Y − 1

2
Π∆Y TFY = −G,(2.59)

Y T∆ = skew-symmetric, where skew(X) = (X − XT)/2 and the notation FY Y (∆)
means the unique tangent vector satisfying the equation

FY Y (∆, X) = 〈FY Y (∆), X〉 for all tangent vectors X.(2.60)

Example problems are considered in section 3.

2.5. The Grassmann manifold with its canonical metric. A quotient space
representation of the Grassmann manifold was given in section 2.3.2; however, for
computations we prefer to work with n-by-p orthonormal matrices Y . When per-
forming computations on the Grassmann manifold, we will use the n-by-p matrix Y
to represent an entire equivalence class

[Y] = {Y Qp : Qp ∈ Op },(2.61)

i.e., the subspace spanned by the columns of Y . Any representative of the equivalence
class will do.

We remark that an alternative strategy is to represent points on the Grassmann
manifold with projection matrices Y Y T . There is one such unique matrix correspond-
ing to each point on the Grassmann manifold. On first thought it may seem foolish

320 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

to use n2 parameters to represent a point on the Grassmann manifold (which has
dimension p(n−p)), but in certain ab initio physics computations [43], the projection
matrices Y Y T that arise in practice tend to require only O(n) parameters for their
representation.

Returning to the n-by-p representation of points on the Grassmann manifold, the
tangent space is easily computed by viewing the Grassmann manifold as the quotient
space Gn, p = Vn, p/Op. At a point Y on the Stiefel manifold then, as seen in (2.5),
tangent vectors take the form ∆ = Y A + Y⊥B, where A is p-by-p skew-symmetric,
B is (n − p)-by-p, and Y⊥ is any n-by-(n − p) matrix such that (Y, Y⊥) is orthogo-
nal. From (2.61) it is clear that the vertical space at Y is the set of vectors of the
form

Φ = Y A;(2.62)

therefore, the horizontal space at Y is the set of vectors of the form

∆ = Y⊥B.(2.63)

Because the horizontal space is equivalent to the tangent space of the quotient, the
tangent space of the Grassmann manifold at [Y] is given by all n-by-p matrices ∆ of
the form in (2.63) or, equivalently, all n-by-p matrices ∆ such that

Y T∆ = 0.(2.64)

Physically, this corresponds to directions free of rotations mixing the basis given by
the columns of Y .

We already saw in section 2.3.2 that the Euclidean metric is in fact equivalent to
the canonical metric for the Grassmann manifold. That is, for n-by-p matrices ∆1

and ∆2 such that Y T∆i = 0 (i = 1, 2),

gc(∆1,∆2) = tr ∆T
1 (I − 1

2Y Y
T)∆2,

= tr ∆T
1∆2,

= ge(∆1,∆2).

2.5.1. Geodesics (Grassmann). A formula for geodesics on the Grassmann
manifold was given via (2.32); the following theorem provides a useful method for
computing this formula using n-by-p matrices.

Theorem 2.3. If Y (t) = Qet(
0
B
−BT

0)In, p, with Y (0) = Y and Ẏ (0) = H, then

Y (t) = (Y V U)

(
cos Σt
sin Σt

)
V T ,(2.65)

where UΣV T is the compact singular value decomposition of H.
Proof 1. It is easy to check that either formulation for the geodesic satisfies the

geodesic equation Ÿ + Y (Ẏ T Ẏ) = 0, with the same initial conditions.
Proof 2. Let B = (U1, U2)(Σ

0)V T be the singular value decomposition of B (U1

n-by-p, U2 p-by-(n − p), Σ and V p-by-p). A straightforward computation involving
the partitioned matrix(

0 −BT
B 0

)
=

(
V 0 0
0 U1 U2

) 0 −Σ 0
Σ 0 0
0 0 0

V T 0
0 UT1
0 UT2

(2.66)

ORTHOGONALITY CONSTRAINTS 321

verifies the theorem.
A subtle point in (2.65) is that if the rightmost V T is omitted, then we still have a

representative of the same equivalence class as Y (t); however, due to consistency con-
ditions along the equivalent class [Y (t)], the tangent (horizontal) vectors that we use
for computations must be altered in the same way. This amounts to postmultiplying
everything by V , or, for that matter, any p-by-p orthogonal matrix.

The path length between Y0 and Y (t) (distance between subspaces) is given by [89]

d
(
Y (t), Y0

)
= t‖H‖F = t

(p∑
i=1

σ2
i

)1/2

,(2.67)

where σi are the diagonal elements of Σ. (Actually, this is only true for t small enough
to avoid the issue of conjugate points, e.g., long great circle routes on the sphere.) An
interpretation of this formula in terms of the CS decomposition and principal angles
between subspaces is given in section 4.3.

2.5.2. Parallel translation (Grassmann). A formula for parallel translation
along geodesics of complexity O(np2) can also be derived as follows.

Theorem 2.4. Let H and ∆ be tangent vectors to the Grassmann manifold at Y .
Then the parallel translation of ∆ along the geodesic in the direction Ẏ (0) = H (see
(2.65)) is

τ∆(t) =

(
(Y V U)

(− sin Σt
cos Σt

)
UT + (I − UUT)

)
∆.(2.68)

Proof 1. A simple computation verifies that (2.68) and (2.65) satisfy (2.16).
Proof 2. Parallel translation of ∆ is given by the expression

τ∆(t) = Q exp t

(
0 −AT
A 0

)(
0
B

)
(which follows from (2.37)), where Q = (Y, Y⊥), H = Y⊥A, and ∆ = Y⊥B. Decom-
posing (0

A
−AT

0) as in (2.66) (note well that A has replaced B), a straightforward
computation verifies the theorem.

2.5.3. The gradient of a function (Grassmann). We must compute the
gradient of a function F (Y) defined on the Grassmann manifold. Similarly to sec-
tion 2.4.4, the gradient of F at [Y] is defined to be the tangent vector ∇F such
that

trFTY∆ = gc(∇F,∆) ≡ tr(∇F)T∆(2.69)

for all tangent vectors ∆ at Y , where FY is defined by (2.52). Solving (2.69) for ∇F
such that Y T (∇F) = 0 yields

∇F = FY − Y Y TFY .(2.70)

Equation (2.70) may also be derived by differentiating F (Y (t)), where Y (t) is the
Grassmann geodesic given by (2.65).

322 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

2.5.4. The Hessian of a function (Grassmann). Applying the definition for
the Hessian of F (Y) given by (2.54) in the context of the Grassmann manifold yields
the formula

HessF (∆1,∆2) = FY Y (∆1,∆2)− tr(∆T
1 ∆2Y

TFY),(2.71)

where FY and FY Y are defined in section 2.4.5. For Newton’s method, we must
determine ∆ = −Hess−1G satisfying (2.58), which for the Grassmann manifold is
expressed as the linear problem

FY Y (∆)−∆(Y TFY) = −G,(2.72)

Y T∆ = 0, where FY Y (∆) denotes the unique tangent vector satisfying (2.60) for the
Grassmann manifold’s canonical metric.

Example problems are considered in section 3.

2.6. Conjugate gradient on Riemannian manifolds. As demonstrated by
Smith [75, 76], the benefits of using the conjugate gradient algorithm for uncon-
strained minimization can be carried over to minimization problems constrained to
Riemannian manifolds by a covariant translation of the familiar operations of com-
puting gradients, performing line searches, the computation of Hessians, and carry-
ing vector information from step to step in the minimization process. In this sec-
tion we will review the ideas in [75, 76], and then in the next section we formu-
late concrete algorithms for conjugate gradient on the Stiefel and Grassmann man-
ifolds. Here one can see how the geometry provides insight into the true difference
among the various formulas that are used in linear and nonlinear conjugate gradient
algorithms.

Figure 2.3 sketches the conjugate gradient algorithm in flat space and Figure 2.4
illustrates the algorithm on a curved space. An outline for the iterative part of the
algorithm (in either flat or curved space) goes as follows: at the (k−1)st iterate xk−1,
step to xk, the minimum of f along the geodesic in the direction Hk−1, compute
the gradient Gk = ∇f(xk) at this point, choose the new search direction to be a
combination of the old search direction and the new gradient

Hk = Gk + γkτHk−1,(2.73)

and iterate until convergence. Note that τHk−1 in (2.73) is the parallel translation of
the vector Hk−1 defined in section 2.2.3, which in this case is simply the direction of
the geodesic (line) at the point xk (see Figure 2.4). Also note the important condition
that xk is a minimum point along the geodesic

〈Gk, τHk−1〉 = 0.(2.74)

Let us begin our examination of the choice of γk in flat space before proceeding
to arbitrary manifolds. Here, parallel transport is trivial so that

Hk = Gk + γkHk−1.

ORTHOGONALITY CONSTRAINTS 323

k+1xx
k−1

Conjugate

kx

Fig. 2.3. Conjugate gradient in flat space.

k+1

x
k−1 x

Geodesic

kx H
k−1

τ

k

k

H

G
Geodesic

Fig. 2.4. Conjugate gradient in curved space.

In both linear and an idealized version of nonlinear conjugate gradient, γk may
be determined by the exact conjugacy condition for the new search direction

fxx(Hk, Hk−1) = 0,

i.e., the old and new search direction must be conjugate with respect to the Hessian
of f . (With fxx = A, the common notation [45, p. 523] for the conjugacy condition
is pTk−1Apk = 0.) The formula for γk is then

Exact Conjugacy: γk = −fxx(Gk, Hk−1)/fxx(Hk−1, Hk−1).(2.75)

The standard trick to improve the computational efficiency of linear conjugate
gradient is to use a formula relating a finite difference of gradients to the Hessian
times the direction (rk − rk−1 = −αkApk as in [45]). In our notation,

324 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

〈Gk −Gk−1, ·〉 ≈ αfxx(·, Hk−1),(2.76)

where α = ‖xk − xk−1‖/‖Hk−1‖.
The formula is exact for linear conjugate gradient on flat space, otherwise it has

the usual error in finite difference approximations. By applying the finite difference
formula (2.76) in both the numerator and denominator of (2.75), and also applying
(2.74) twice (once with k and once with k − 1), one obtains the formula

Polak–Ribière: γk = 〈Gk −Gk−1, Gk〉/〈Gk−1, Gk−1〉.(2.77)

Therefore, the Polak–Ribiére formula is the exact formula for conjugacy through the
Hessian, where one uses a difference of gradients as a finite difference approximation
to the second derivative. If f(x) is well approximated by a quadratic function, then
〈Gk−1, Gk〉 ≈ 0, and we obtain

Fletcher–Reeves: γk = 〈Gk, Gk〉/〈Gk−1, Gk−1〉.(2.78)

For arbitrary manifolds, the Hessian is the second derivative along geodesics. In
differential geometry it is the second covariant differential of f . Here are the formulas

Exact Conjugacy: γk = −Hess f(Gk, τHk−1)/Hess f(τHk−1, τHk−1),(2.79)

Polak–Ribière: γk = 〈Gk − τGk−1, Gk〉/〈Gk−1, Gk−1〉,(2.80)

Fletcher–Reeves: γk = 〈Gk, Gk〉/〈Gk−1, Gk−1〉(2.81)

which may be derived from the finite difference approximation to the Hessian,

〈Gk − τGk−1, ·〉 ≈ αHessf(·, τHk−1), α = d(xk, xk−1)/‖Hk−1‖.
Asymptotic analyses appear in section 3.6.

3. Geometric optimization algorithms. The algorithms presented here are
our answer to the question: What does it mean to perform the Newton and conjugate
gradient methods on the Stiefel and Grassmann manifolds? Though these algorithms
are idealized, they are of identical complexity up to small constant factors with the
best known algorithms. In particular, no differential equation routines are used.
It is our hope that in the geometrical algorithms presented here, the reader will
recognize elements of any algorithm that accounts for orthogonality constraints. These
algorithms are special cases of the Newton and conjugate gradient methods on general
Riemannian manifolds. If the objective function is nondegenerate, then the algorithms
are guaranteed to converge quadratically [75, 76].

3.1. Newton’s method on the Grassmann manifold. In flat space, New-
ton’s method simply updates a vector by subtracting the gradient vector premultiplied
by the inverse of the Hessian. The same is true on the Grassmann manifold (or any
Riemannian manifold for that matter) of p-planes in n-dimensions with interesting
modifications. Subtraction is replaced by following a geodesic path. The gradient
is the usual one (which must be tangent to the constraint surface), and the Hessian
is obtained by twice differentiating the function along a geodesic. We show in sec-
tion 4.9 that this Hessian is related to the Hessian of the Lagrangian; the two Hessians

ORTHOGONALITY CONSTRAINTS 325

arise from the difference between the intrinsic and extrinsic viewpoints. It may be
suspected that following geodesics may not be computationally feasible, but because
we exploit the structure of the constraint surface, this operation costs O(np2), which
is required even for traditional algorithms for the eigenvalue problem—our simplest
example.

Let F (Y) be a smooth function on the Grassmann manifold, i.e., F (Y) = F (Y Q)
for any p-by-p orthogonal matrix Q, where Y is an n-by-p matrix such that Y TY =
Ip. We compute formulas for FY and FY Y (∆) using the definitions given in sec-
tion 2.5.4. Newton’s method for minimizing F (Y) on the Grassmann manifold is as
follows.

Newton’s Method for Minimizing F (Y) on the Grassmann Manifold

• Given Y such that Y TY = Ip,

◦ Compute G = FY − Y Y TFY .

◦ Compute ∆ = −Hess−1G such that Y T∆ = 0 and

FY Y (∆)−∆(Y TFY) = −G.

• Move from Y in direction ∆ to Y (1) using the geodesic formula

Y (t) = Y V cos(Σt)V T + U sin(Σt)V T ,

where UΣV T is the compact singular value decomposition of ∆ (meaning U
is n-by-p and both Σ and V are p-by-p).

• Repeat.

The special case of minimizing F (Y) = 1
2 trY TAY (A n-by-n symmetric) gives

the geometrically correct Newton method for the symmetric eigenvalue problem. In
this case FY = AY and FY Y (∆) = (I − Y Y T)A∆. The resulting algorithm requires
the solution of a Sylvester equation. It is the idealized algorithm whose approxima-
tions include various forms of Rayleigh quotient iteration, inverse iteration, a number
of Newton style methods for invariant subspace computation, and the many vari-
ations of Davidson’s eigenvalue method. These ideas are discussed in sections 4.1
and 4.8.

3.2. Newton’s method on the Stiefel manifold. Newton’s method on the
Stiefel manifold is conceptually equivalent to the Grassmann manifold case. Let Y be
an n-by-p matrix such that Y TY = Ip, and let F (Y) be a smooth function of Y with-
out the homogeneity condition imposed for the Grassmann manifold case. Compute
formulas for FY and FY Y (∆) using the definitions given in section 2.4.5. Newton’s
method for minimizing F (Y) on the Stiefel manifold is as follows.

326 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Newton’s Method for Minimizing F (Y) on the Stiefel Manifold

• Given Y such that Y TY = Ip,

◦ Compute G = FY − Y FTY Y .

◦ Compute ∆ = −Hess−1G such that Y T∆ = skew-symmetric and

FY Y (∆)− Y skew(FTY∆)− skew(∆FTY)Y − 1
2Π∆Y TFY = −G,

where skew(X) = (X −XT)/2 and Π = I − Y Y T .

• Move from Y in direction ∆ to Y (1) using the geodesic formula

Y (t) = YM(t) +QN(t),

where QR is the compact QR decomposition of (I − Y Y T)∆ (meaning Q is
n-by-p and R is p-by-p), A = Y T∆, and M(t) and N(t) are p-by-p matrices
given by the 2p-by-2p matrix exponential(

M(t)
N(t)

)
= exp t

(
A −RT
R 0

)(
Ip
0

)
.

• Repeat.

For the special case of minimizing F (Y) = 1
2 trY TAY N (A n-by-n symmetric, N

p-by-p symmetric) [75], FY = AY N and FY Y (∆) = A∆N − Y N∆TAY . Note that if
N is not a multiple of the identity, then F (Y) does not have the homogeneity condition
required for a problem on the Grassmann manifold. If N = diag(p, p− 1, . . . , 1), then
the optimum solution to maximizing F over the Stiefel manifold yields the eigenvectors
corresponding to the p largest eigenvalues.

For the orthogonal Procrustes problem [32], F (Y) = 1
2‖AY −B‖2F (A m-by-n, B

m-by-p, both arbitrary), FY = ATAY − ATB and FY Y (∆) = ATA∆ − Y∆TATAY .
Note that Y TFY Y (∆) = skew-symmetric.

3.3. Conjugate gradient method on the Grassmann manifold. Conju-
gate gradient techniques are considered because they are easy to implement, have low
storage requirements, and provide superlinear convergence in the limit. The New-
ton equations may be solved with finitely many steps of linear conjugate gradient;
each nonlinear conjugate gradient step, then, approximates a Newton step. In flat
space, the nonlinear conjugate gradient method performs a line search by following
a direction determined by conjugacy with respect to the Hessian. On Riemannian
manifolds, conjugate gradient performs minimization along geodesics with search di-
rections defined using the Hessian described above [75, 76]. Both algorithms approxi-
mate Hessian conjugacy with a subtle formula involving only the gradient directions,
resulting in an algorithm that captures second derivative information by computing
only first derivatives. To “communicate” information from one iteration to the next,
tangent vectors must parallel transport along geodesics. Conceptually, this is neces-
sary because, unlike flat space, the definition of tangent vectors changes from point

ORTHOGONALITY CONSTRAINTS 327

to point.
Using these ideas and formulas developed in section 3.1, the conjugate gradient

method on the Grassmann manifold is as follows.

Conjugate Gradient for Minimizing F (Y) on the Grassmann Mani-
fold

• Given Y0 such that Y T0 Y0 = I, compute G0 = FY0 − Y0Y
T
0 FY0 and set

H0 = −G0.

• For k = 0, 1, . . . ,

◦ Minimize F (Yk(t)) over t where

Y (t) = Y V cos(Σt)V T + U sin(Σt)V T

and UΣV T is the compact singular value decomposition of Hk.

◦ Set tk = tmin and Yk+1 = Yk(tk).

◦ Compute Gk+1 = FYk+1
− Yk+1Y

T
k+1FYk+1

.

◦ Parallel transport tangent vectors Hk and Gk to the point Yk+1:

τHk = (−YkV sin Σtk + U cos Σtk)ΣV T ,(3.1)

τGk = Gk −
(
YkV sin Σtk + U(I − cos Σtk)

)
UTGk.(3.2)

◦ Compute the new search direction

Hk+1 = −Gk+1 + γkτHk, where γk =
〈Gk+1 − τGk, Gk+1〉

〈Gk, Gk〉

and 〈∆1,∆2〉 = tr ∆T
1∆2.

◦ Reset Hk+1 = −Gk+1 if k + 1 ≡ 0 mod p(n− p).

3.4. Conjugate gradient method on the Stiefel manifold. As with New-
ton’s method, conjugate gradient on the two manifolds is very similar. One need only
replace the definitions of tangent vectors, inner products, geodesics, gradients, and
parallel translation. Geodesics, gradients, and inner products on the Stiefel mani-
fold are given in section 2.4. For parallel translation along geodesics on the Stiefel
manifold, we have no simple, general formula comparable to (3.2). Fortunately, a
geodesic’s tangent direction is parallel, so a simple formula for τHk comparable to
(3.1) is available, but a formula for τGk is not. In practice, we recommend setting
τGk := Gk and ignoring the fact that τGk will not be tangent at the point Yk+1.
Alternatively, setting τGk := 0 (also not parallel) results in a Fletcher–Reeves con-
jugate gradient formulation. As discussed in the next section, neither approximation
affects the superlinear convergence property of the conjugate gradient method.

The conjugate gradient method on the Stiefel manifold is as follows.

328 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Conjugate Gradient for Minimizing F (Y) on the Stiefel Manifold

• Given Y0 such that Y T0 Y0 = I, compute G0 = FY0
− Y0F

T
Y0
Y0 and set H0 =

−G0.

• For k = 0, 1, . . . ,

◦ Minimize F (Yk(t)) over t where

Yk(t) = YkM(t) +QN(t),

QR is the compact QR decomposition of (I − YkY Tk)Hk, A = Y Tk Hk,
and M(t) and N(t) are p-by-p matrices given by the 2p-by-2p matrix
exponential appearing in Newton’s method on the Stiefel manifold in
section 3.2.

◦ Set tk = tmin and Yk+1 = Yk(tk).

◦ Compute Gk+1 = FYk+1
− Yk+1F

T
Yk+1

Yk+1.

◦ Parallel transport tangent vector Hk to the point Yk+1:

τHk = HkM(tk)− YkRTN(tk).(3.3)

As discussed above, set τGk := Gk or 0, which is not parallel.

◦ Compute the new search direction

Hk+1 = −Gk+1 + γkτHk, where γk =
〈Gk+1 − τGk, Gk+1〉

〈Gk, Gk〉

and 〈∆1,∆2〉 = tr ∆T
1 (I − 1

2Y Y
T)∆2.

◦ Reset Hk+1 = −Gk+1 if k + 1 ≡ 0 mod p(n− p) + p(p− 1)/2.

3.5. Numerical results and asymptotic behavior.

3.5.1. Trace maximization on the Grassmann manifold. The convergence
properties of the conjugate gradient and Newton’s methods applied to the trace maxi-
mization problem F (Y) = trY TAY are shown in Figure 3.1, as well as the convergence
of an approximate conjugate gradient method and the Rayleigh quotient iteration for
comparison. This example shows trace maximization on G5, 3, i.e., three-dimensional
subspaces in five dimensions. The distance between the subspace and the known op-
timum subspace is plotted versus the iteration number, where the distance in radians
is simply the square root of the sum of squares of the principal angles between the
subspaces. The dimension of this space equals 3(5 − 3) = 6; therefore, a conjugate
gradient algorithm with resets should at least double in accuracy every six iterations.
Newton’s method, which is cubically convergent for this example (this point is dis-
cussed in section 4.1), should triple in accuracy every iteration. Variable precision
numerical software is used to demonstrate the asymptotic convergence properties of
these algorithms.

The thick black curve (CG-1) shows the convergence of the conjugate gradient
algorithm using the Polak–Ribière formula. The accuracy of this algorithm is at
least doubled between the first and sixth and the seventh and twelfth iterations,

ORTHOGONALITY CONSTRAINTS 329

0 5 10 15 20
10−40

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

ITERATIONS

E
R

R
O

R
 (

ra
d)

CG (Polak−Ribière)

CG (Fletcher−Reeves)

APP. CG (Polak−Ribière)

APP. CG (A−Conjugacy)

GRASSMANN NEWTON

RQI

CG−1 =

CG−2 =

CG−3 =

CG−4 =

NT−1 =

NT−2 =

CG−1

CG−2CG−3

CG−4

NT−1

NT−2

Fig. 3.1. Convergence of the conjugate gradient and Newton’s method for trace maximization on
the Grassmann manifold G5, 3. The error (in radians) is the arc length distance between the solution
and the subspace at the ith iterate ((2.67) and section 4.3). Quadratic convergence of conjugate
gradient is evident, as is cubic convergence of Newton’s method, which is a special property of this
example.

demonstrating this method’s superlinear convergence. Newton’s method is applied
to the twelfth conjugate gradient iterate, which results in a tripling of the accuracy
and demonstrates cubic convergence of Newton’s method, shown by the dashed thick
black curve (NT-1).

The thin black curve (CG-2) shows conjugate gradient convergence using the
Fletcher–Reeves formula

γk = 〈Gk+1, Gk+1〉/〈Gk, Gk〉.(3.4)

As discussed below, this formula differs from the Polak–Ribière formula by second
order and higher terms, so it must also have superlinear convergence. The accuracy
of this algorithm more than doubles between the first and sixth, seventh and twelfth,
and thirteenth and eighteenth iterations, demonstrating this fact.

The algorithms discussed above are actually performed on the constraint surface,
but extrinsic approximations to these algorithms are certainly possible. By perturba-
tion analysis of the metric given below, it can be shown that the conjugate gradient
method differs from its flat space counterpart only by cubic and higher terms close to
the solution; therefore, a flat space conjugate gradient method modified by projecting
search directions to the constraint’s tangent space will converge superlinearly. This
is basically the method proposed by Bradbury and Fletcher [9] and others for the
single eigenvector case. For the Grassmann (invariant subspace) case, we have per-
formed line searches of the function φ(t) = trQ(t)TAQ(t), where Q(t)R(t) := Y + t∆

330 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

is the compact QR decomposition and Y T∆ = 0. The QR decomposition projects
the solution back to the constraint surface at every iteration. Tangency of the search
direction at the new point is imposed via the projection I − Y Y T .

The thick gray curve (CG-3) illustrates the superlinear convergence of this method
when the Polak–Ribière formula is used. The Fletcher–Reeves formula yields similar
results. In contrast, the thin gray curve (CG-4) shows convergence when conjugacy
through the matrix A is used, i.e., γk = −(HT

kAGk+1)/(HT
kAHk), which has been

proposed by several authors [67, Eq. (5)], [19, Eq. (32)], [36, Eq. (20)]. This method
cannot be expected to converge superlinearly because the matrix A is in fact quite
different from the true Hessian on the constraint surface. This issue is discussed
further in section 4.4.

To compare the performance of Newton’s method to the Rayleigh quotient itera-
tion (RQI), which approximates Newton’s method to high order (or vice versa), RQI
is applied to the approximate conjugate gradient method’s twelfth iterate, shown by
the dashed thick gray curve (NT-2).

3.5.2. Orthogonal procrustes problem on the Stiefel manifold. The or-
thogonal Procrustes problem [32]

min
Y ∈Vn, p

‖AY −B‖F A, B given matrices,(3.5)

is a minimization problem defined on the Stiefel manifold that has no known analytical
solution for p different from 1 or n. To ensure that the objective function is smooth
at optimum points, we shall consider the equivalent problem

min
Y ∈Vn, p

1

2
‖AY −B‖2F .(3.6)

Derivatives of this function appear at the end of section 3.2. MATLAB code
for Newton’s method applied to this problem appears below. Convergence of this
algorithm for the case V5, 3 and test matrices A and B is illustrated in Figure 3.2 and
Table 3.1. The quadratic convergence of Newton’s method and the conjugate gradient
algorithm is evident. The dimension of V5,3 equals 3(3− 1)/2 + 6 = 9; therefore, the
accuracy of the conjugate gradient should double every nine iterations, as it is seen
to do in Figure 3.2. Note that the matrix B is chosen such that a trivial solution
Ŷ = In, p to this test optimization problem is known.

MATLAB Code for Procrustes Problem on the Stiefel Manifold

n = 5; p = 3;

A = randn(n);

B = A*eye(n,p);

Y0 = eye(n,p); % Known solution Y0

H = 0.1*randn(n,p); H = H - Y0*(H’*Y0); % small tangent vector H at Y0

Y = stiefgeod(Y0,H); % Initial guess Y (close to know solution Y0)

% Newton iteration (demonstrate quadratic convergence)

d = norm(Y-Y0,’fro’)

while d > sqrt(eps)

Y = stiefgeod(Y,procrnt(Y,A,B));

d = norm(Y-Y0,’fro’)

end

ORTHOGONALITY CONSTRAINTS 331

CONJUGATE GRADIENT
NEWTON

STEEPEST DESCENT

0 5 10 15 20 25 30 35 40 45
10−15

10−10

10−5

100

ITERATION

E
R

R
O

R

Fig. 3.2. Convergence of the conjugate gradient and Newton’s method for the orthogonal Pro-
crustes problem on the Stiefel manifold V5, 3. The error is the Frobenius norm between the ith iterate
and the known solution. Quadratic convergence of the conjugate gradient and Newton methods is
evident. The Newton iterates correspond to those of Table 3.1.

function stiefgeod

function [Yt,Ht] = stiefgeod(Y,H,t)

%STIEFGEOD Geodesic on the Stiefel manifold.

% STIEFGEOD(Y,H) is the geodesic on the Stiefel manifold

% emanating from Y in direction H, where Y’*Y = eye(p), Y’*H =

% skew-hermitian, and Y and H are n-by-p matrices.

%

% STIEFGEOD(Y,H,t) produces the geodesic step in direction H scaled

% by t. [Yt,Ht] = STIEFGEOD(Y,H,t) produces the geodesic step and the

% geodesic direction.

[n,p] = size(Y);

if nargin < 3, t = 1; end

A = Y’*H; A = (A - A’)/2; % Ensure skew-symmetry

[Q,R] = qr(H - Y*A,0);

MN = expm(t*[A,-R’;R,zeros(p)]); MN = MN(:,1:p);

Yt = Y*MN(1:p,:) + Q*MN(p+1:2*p,:); % Geodesic from (2.45)

if nargout > 1, Ht = H*MN(1:p,:) - Y*(R’*MN(p+1:2*p,:)); end

% Geodesic direction from (3.3)

332 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Table 3.1
Newton’s method applied to the orthogonal Procrustes problem on the Stiefel manifold using

the MATLAB code given in this section. The matrix A is given below the numerical results, and
B = AI5, 3. The quadratic convergence of Newton’s method, shown by the Frobenius norm of the

difference between Yi and Ŷ = I5,3, is evident. This convergence is illustrated in Figure 3.2. It is

clear from this example that the difference Yi − Ŷ approaches a tangent vector at Ŷ = In, p, i.e.,

Ŷ T (Yi − Ŷ)→ skew-symmetric.

Iterate i ‖Yi − Ŷ ‖F Yi

0 2.68× 10−01

 0.98341252163956 −0.09749309852408 −0.06630579165572
0.08482117605077 0.99248149019173 −0.02619408666845
0.08655810575052 0.02896396566088 0.98816425471159
0.01388126419090 0.00902267322408 0.00728525462855
0.13423928340551 0.06749272129685 −0.13563090573981

1 6.71× 10−02

 0.99954707914921 0.01554828497046 0.00423211303447
−0.01656743168179 0.99905154070826 0.01216605832969
−0.00306529752246 −0.01070234416262 0.99915251911577
−0.00910501510207 −0.01286811040265 0.00924631200657
−0.02321334579158 −0.03706941336228 0.03798454294671

2 1.49× 10−02

 0.99993878247585 0.00296823825310 0.00486487784745
−0.00301651579786 0.99998521441661 0.00192519989544
−0.00479673956404 −0.00191288709538 0.99996440819180
−0.00311307788732 −0.00157358730922 0.00121316839587
−0.00897953054292 −0.00382429023234 0.00650669969719

3 9.77× 10−05

 0.99999999888990 0.00000730457866 −0.00003211124313
−0.00000730341460 0.99999999951242 0.00000603747062

0.00003210887572 −0.00000603508216 0.99999999682824
0.00000457898008 −0.00001136276061 0.00002209393458
0.00003339025497 −0.00002750041840 0.00006919392999

4 4.81× 10−08

 1.00000000000000 0.00000000813187 0.00000001705718
−0.00000000813187 1.00000000000000 0.00000000613007
−0.00000001705718 −0.00000000613007 1.00000000000000
−0.00000001001345 −0.00000000397730 0.00000000429327
−0.00000002903373 −0.00000000827864 0.00000002197399

5 2.07× 10−15

 1.00000000000000 0.00000000000000 0.00000000000000
0.00000000000000 1.00000000000000 0.00000000000000
0.00000000000000 0.00000000000000 1.00000000000000
0.00000000000000 0.00000000000000 0.00000000000000
0.00000000000000 0.00000000000000 0.00000000000000

A = 0.59792470347241 −1.60148995048070 1.29611959631725 0.00742708895676 −0.09653196026400

−0.34991267564713 1.03005546700300 0.38145454055699 0.14195063498923 −0.16309797180034
0.16783050038338 0.51739189509778 −0.42204935150912 1.75394028742695 −0.63865179066515
0.24927536521443 −1.34694675520019 0.92362255783368 0.62648865033822 −0.31561702752866
−0.24846337483192 −0.44239067350975 −1.52598136000449 0.89515519875598 0.87362106204727

function procrnt

function H = procrnt(Y,A,B)

%PROCRNT Newton Step on Stiefel Manifold for 1/2*norm(A*Y-B,’fro’)^2.

% H = PROCRNT(Y,A,B) computes the Newton step on the Stiefel manifold

% for the function 1/2*norm(A*Y-B,’fro’)^2, where Y’*Y = eye(size(Y,2)).

[n,p] = size(Y);

AA = A’*A; FY = AA*Y - A’*B; YFY = Y’*FY; G = FY - Y*YFY’;

% Linear conjugate gradient to solve a Newton step

dimV = p*(p-1)/2 + p*(n-p); % == dim Stiefel manifold

ORTHOGONALITY CONSTRAINTS 333

% This linear CG code is modified directly from Golub and Van Loan [45]

H = zeros(size(Y)); R1 = -G; P = R1; P0 = zeros(size(Y));

for k=1:dimV

normR1 = sqrt(stiefip(Y,R1,R1));

if normR1 < prod(size(Y))*eps, break; end

if k == 1, beta = 0; else, beta = (normR1/normR0)^2; end

P0 = P; P = R1 + beta*P; FYP = FY’*P; YP = Y’*P;

LP = AA*P - Y*(P’*AA*Y) ... % Linear operation on P

- Y*((FYP-FYP’)/2) - (P*YFY’-FY*YP’)/2 - (P-Y*YP)*(YFY/2);

alpha = normR1^2/stiefip(Y,P,LP); H = H + alpha*P;

R0 = R1; normR0 = normR1; R1 = R1 - alpha*LP;

end

function stiefip

function ip = stiefip(Y,A,B)

%STIEFIP Inner product (metric) for the Stiefel manifold.

% ip = STIEFIP(Y,A,B) returns trace(A’*(eye(n)-1/2*Y*Y’)*B),

% where Y’*Y = eye(p), Y’*A & Y’*B = skew-hermitian, and Y, A,

% and B are n-by-p matrices.

ip = sum(sum(conj(A).*(B - Y*((Y’*B)/2)))); % Canonical metric from (2.39)

3.6. Convergence rates of approximate methods. The algorithms pre-
sented in the previous sections are idealized in that geometrically natural ideas such
as geodesics and parallel translation are used in their definitions. However, approx-
imations can yield quadratic rates of convergence. In the limit, the Riemannian
algorithms approach their Euclidean counterparts in the tangent plane of the solution
point. A perturbation analysis shows which terms are necessary and which terms are
not necessary to achieve quadratic convergence. The following argument holds for
any Riemannian manifold and, therefore, applies to either the Grassmann or Stiefel
manifold case.

Consider the conjugate gradient method applied to a function F (Y) starting at a
point Y within distance ε (small) of the solution Ŷ . For a manifold of dimension d, we
must perform a sequence of d steps that take us within distance O(ε2) of the solution
Ŷ . The Riemannian conjugate gradient method

Hnew = −Gnew + γτHold, γ =
〈Gnew − τGold, Gnew〉

‖Gold‖2 ;

Ynew = Y (tmin), Y (0) = Yold, Ẏ (0) = Hnew

does this, but we wish to approximate this procedure. Within a ball of size O(ε)
around Ŷ , these quantities have sizes of the following orders:

Order Quantity

O(1) tmin, γ
O(ε) G, H (new or old)
O(ε2) ‖G‖2, ‖H‖2 (new or old)
O(ε3) 〈τGold, Gnew〉

Also, by perturbation analysis of the Riemannian metric [18], [79, Vol. 2, Chap. 4,

334 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Props. 1 and 6], we have

Y (ε) = Y (0) + ε∆ +O(ε3),

τG(ε) = G+O(ε2),

〈 , 〉 = I +O(ε2),

where Y (ε) is a geodesic in direction ∆, τG(ε) is parallel translation of G along Y (ε),
and the last approximation is valid for an orthonormal basis of the tangent plane
at Y (ε∆) and I is the identity.

Inserting these asymptotics into the formulas for the conjugate gradient method
shows that near the solution, eliminating the Riemannian terms gives O(ε3) perturba-
tions of the conjugate gradient sequence and, therefore, does not affect the quadratic
rate of convergence. Furthermore, it can also be seen that eliminating the Polak–
Ribière term −〈τGold, Gnew〉

/‖Gold‖2, yielding the Fletcher–Reeves algorithm, per-
turbs the conjugate gradient sequence by O(ε2) terms, which does not affect the
quadratic rate of convergence. Thus the approximate conjugate gradient methods
discussed in section 3.5.1 converge quadratically.

4. Examples: Insights and applications. In this section, we consider ideas
from the literature as applications of the framework and methodology developed in
this paper. It is our hope that some readers who may be familiar with the algorithms
presented here will feel that they now really see them with a new deeper but ultimately
clearer understanding. It is our further hope that developers of algorithms that may
somehow seem new will actually find that they also already fit inside of our geometrical
framework. Finally, we hope that readers will see that the many algorithms that have
been proposed over the past several decades are not just vaguely connected to each
other, but are elements of a deeper mathematical structure. The reader who sees the
depth and simplicity of section 4.10, say, has understood our message.

4.1. Rayleigh quotient iteration. If A is a symmetric matrix, it is well known
that RQI is a cubically convergent algorithm. It is easy to derive formulas and show
that it is true; here, we will explain our view of why it is true. Let r(x) denote the
Rayleigh quotient xTAx, and, abusing notation, let r(θ) denote the Rayleigh quotient
on a geodesic with θ = 0 corresponding to an eigenvector of A.

Here is the intuition. Without writing down any formulas, it is obvious that r(θ)
is an even function of θ; hence θ = 0 is an extreme point. Newton’s optimization
method, usually quadratically convergent, converges cubically on nondegenerate even
functions. Keeping in mind that A − r(x)I is the second covariant derivative of the
Rayleigh quotient, inverting it must amount to applying Newton’s method. Following
this intuition, RQI must converge cubically. The intuition is that simple.

Indeed, along a geodesic, r(θ) = λ cos2 θ+α sin2 θ (we ignore the degenerate case
α = λ). The kth step of Newton’s method for the univariate function r(θ) is readily
verified to be

θk+1 = θk − 1
2 tan(2θk) = − 4

3θ
3
k +O(θ5

k).

We think of updating θ as moving along the circle. If we actually moved tangent to
the circle by the Newton update − 1

2 tan(2θk) and then projected to the circle, we
would have the RQI

θk+1 = θk − arctan
(

1
2 tan(2θk)

)
= −θ3

k +O(θ5
k).

ORTHOGONALITY CONSTRAINTS 335

θ

x

ξ

NEWTON RQI

−θ3

θ3−43−

Fig. 4.1. Cubic convergence of RQI and Newton’s method applied to Rayleigh’s quotient. The
vector ξ is an eigenvector.

This is the mechanism that underlies RQI. It “thinks” Newton along the geodesic,
but moves along the tangent. The angle from the eigenvector goes from θ to −θ3

almost always. (Readers comparing with Parlett [65, Eq. (4-7-3)] will note that only
positive angles are allowed in his formulation.)

When discussing the mechanism, we only need one variable: θ. This is how the
mechanism should be viewed because it is independent of the matrix, eigenvalues, and
eigenvectors. The algorithm, however, takes place in x space. Since A− r(x)I is the
second covariant derivative of r(x) in the tangent space at x, the Newton update δ is
obtained by solving Π(A − r(x)I)δ = −ΠAx = −(A − r(x)I)x, where Π = I − xxT
is the projector. The solution is δ = −x+ y/(xT y), where y = (A− r(x)I)−1x. The
Newton step along the tangent direction is then x → x + δ = y/(xT y), which we
project to the unit sphere. This is exactly an RQI step. These ideas are illustrated
in Figure 4.1.

One subtlety remains. The geodesic in the previous paragraph is determined by
x and the gradient rather than x and the eigenvector. The two geodesics converge to
each other by the inverse iteration process (almost always) allowing the underlying
mechanism to drive the algorithm.

One trivial example where these issues arise is the generalization and derivation of
Davidson’s method [74, 26, 22]. In this context there is some question as to the inter-
pretation of D−λI as a preconditioner. One interpretation is that it preconditions the
eigenproblem by creating better eigenvalue spacings. We believe that there is a more
appropriate point of view. In linear conjugate gradient for Ax = b, preconditioners
are used to invert M which is an approximation to A (the Hessian of 1

2x
TAx− xT b)

against the gradient. This is an approximate Newton step. In nonlinear conjugate
gradient, there is no consensus as to whether inverting the Hessian (which is approx-
imated by D − λI!) would constitute the ideal preconditioner, but it is a Newton
step. Therefore, with the link between nonlinear conjugate gradient preconditioning

336 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

and approximate Newton step, we see that Davidson’s method is deserving of being
called a preconditioner from the conjugate gradient point of view.

4.2. Coordinate singularities of symmetric matrices. An important open
problem in numerical linear algebra is the complete understanding of the influence of
singularities on computations [52, 17]. In this section we shall describe the singularity
associated with multiple eigenvalues of symmetric matrices in terms of coordinate
singularities, i.e., the breakdown of the coordinate representation. In section 4.10, we
will describe how understanding this coordinate singularity underlies a regularization
approach to eigenvalue optimization.

Matrix factorizations are nothing more than changes in variables or coordinate
changes. In the plane, Cartesian and polar coordinates both give orthogonal systems,
but polar coordinates have a coordinate singularity at the origin. A small perturbation
near the origin can violently change the angle coordinate. This is ill-conditioning. If
the r coordinate goes through the origin we have a singularity of the form |r|.

Consider traceless, symmetric, 2-by-2 matrices as follows:

A =

(
x y
y −x

)
.

The positive eigenvalue is r =
√
x2 + y2, and one of the orthogonal eigenvectors

is (
cos 1

2 θ

sin 1
2 θ

), where tan θ = y/x. The conversion between matrix elements and the

eigendecomposition is exactly the conversion from Cartesian to polar coordinates.
Whatever ill-conditioning one associates with a symmetric matrix with two close
eigenvalues, it is the same numerical difficulty associated with the origin in polar
coordinates. The larger eigenvalue behaves like |r| at the origin, and the eigenvector
behaves like θ changing violently when perturbed. If one wants to think about all
2-by-2 symmetric matrices, add z as the trace, and the resulting interpretation is
cylindrical coordinates.

We now generalize. Let Sn be the space of n-by-n symmetric matrices. Suppose
that the largest p eigenvalues λ1, . . . , λp coalesce. The corresponding eigenvectors are
not uniquely determined, but the invariant subspace is. Convenient parameterizations
are

Sn ≡ Symmetric Matrices = Rp × Vn, p × Sn−p,
Sn, p ≡ {Sn : λ1 has multiplicity p } = R×Gn, p × Sn−p.

That is, any symmetric matrix may be parameterized by its p largest eigenvalues,
the corresponding eigenvectors in order, and the (n − p)-by-(n − p) symmetric op-
erator on the space orthogonal to these eigenvectors. To parameterize a symmetric
matrix with eigenvalue λ of multiplicity p, we must specify the invariant subspace
corresponding to this eigenvalue and, once again, the (n − p)-by-(n − p) symmetric
operator on the orthogonal subspace. It is worth mentioning that the parameters in
these decompositions give an orthonormal system (surfaces with constant parameters
intersect orthogonally). The codimension of Sn, p in Sn is p(p+ 1)/2− 1, obtained by
adding p− 1 (corresponding to λ2, . . . , λp) to p(p− 1)/2 (the codimension of Gn, p in
Vn, p).

Another interpretation of the well-known fact that when eigenvalues coalesce,
eigenvectors, but not invariant subspaces, are ill-conditioned, is that the Stiefel man-
ifold collapses to the Grassmann manifold. As with polar coordinates we have a
coordinate singularity corresponding to ill-conditioning near Sn, p. Near this set, a

ORTHOGONALITY CONSTRAINTS 337

small perturbation will violently move the Stiefel component. The singularity asso-
ciated with the coalescing of eigenvalues is very much the singularity of the function
f(x) = |x|.

4.3. The CS decomposition. The CS decomposition [45] should be recognized
as the geodesic between two points on the Grassmann manifold. Any n-by-n orthog-
onal matrix Q may be written as

Q =

(
V 0
0 U

)C −S 0
S C 0
0 0 I

(Ṽ 0
0 Ũ

)T
(4.1)

for some p-by-p orthogonal matrices V and Ṽ and (n − p)-by-(n − p) orthogonal
matrices U and Ũ , and p angles θi where C = diag(cos θ1, . . . , cos θp) and S =
diag(sin θ1, . . . , sin θp). Comparing this with the geodesic formula (2.65) and letting
θi = tσi (i = 1, . . . , p) where σi are the diagonal elements of Σ, we see that the first p
columns of the CS decomposition traverse a geodesic emanating from Y (0) = (I0) (the
origin). The next p columns give an orthogonal basis for the velocity vector along the
geodesic (in fact, they are the orthogonal component of its polar decomposition).

As is well known, the θi are the principal angles between the subspaces spanned
by the first p columns of Q and the origin. In general, let θi (i = 1, . . . , p) be
the principal angles between the two subspaces spanned by the columns of n-by-p
orthonormal matrices Y1 and Y2, i.e., U(cos Θ)V T is the singular value decomposition
of Y T1 Y2, where Θ is the diagonal matrix of principal angles. Also let θ and sin θ
represent the p-vectors formed by the θi and sin θi. These principal angles provide
several different definitions of the distance between two subspaces as follows:

1. arc length: d(Y1, Y2) = ‖θ‖2,
2. Fubini-Study: dFS(Y1, Y2) = arccos |detY T1 Y2| = arccos(

∏
i cos θi),

3. chordal 2-norm: dc2(Y1, Y2) = ‖Y1U − Y2V ‖2 = ‖2 sin 1
2θ‖∞,

4. chordal Frobenius-norm: dcF (Y1, Y2) = ‖Y1U − Y2V ‖F = ‖2 sin 1
2θ‖2,

5. projection 2-norm [45]: dp2(Y1, Y2) = ‖Y1Y
T
1 − Y2Y

T
2 ‖2 = ‖ sin θ‖∞,

6. projection F-norm: dpF (Y1, Y2) = 2−1/2‖Y1Y
T
1 − Y2Y

T
2 ‖F = ‖ sin θ‖2.

The arc length distance is derived from the intrinsic geometry of the Grassmann
manifold. The chordal 2-norm and Frobenius-norm distances are derived by em-
bedding the Grassmann manifold in the vector space Rn×p, then using the 2- and
Frobenius-norms, respectively, in these spaces. Note that these distances may be
obtained from the minimization problems

dc2 or cF (Y1, Y2) = min
Q1, Q2∈Op

‖Y1Q1 − Y2Q2‖2 or F .

The projection matrix 2-norm and Frobenius-norm distances are derived by embed-
ding the Grassmann manifold in the set of n-by-n projection matrices of rank p, then
using the 2- and Frobenius-norms, respectively. The Fubini-Study distance is derived
via the Plücker embedding of Gn, p into the projective space P(

∧p
(Rn)) (by taking

wedge products between all columns of Y), then using the Fubini-Study metric [54].2

Note that all metrics except the chordal and projection matrix 2-norm distances are
asymptotically equivalent for small principal angles, i.e., these embeddings are isome-
tries, and that for Y1 6= Y2 we have the strict inequalities

d(Y1, Y2) > dFS(Y1, Y2),(4.2)

2We thank Keith Forsythe for reminding us of this distance.

338 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

d(Y1, Y2) > dcF (Y1, Y2) > dpF (Y1, Y2),(4.3)

d(Y1, Y2) > dcF (Y1, Y2) > dc2(Y1, Y2),(4.4)

d(Y1, Y2) > dpF (Y1, Y2) > dp2(Y1, Y2).(4.5)

These inequalities are intuitively appealing because by embedding the Grassmann
manifold in a higher dimensional space, we may “cut corners” in measuring the dis-
tance between any two points.

4.4. Conjugate gradient for the eigenvalue problem. Conjugate gradient
algorithms to minimize 1

2y
TAy (A symmetric) on the sphere (p = 1) is easy and

has been proposed in many sources. The correct model algorithm for p > 1 pre-
sented in this paper is new. We were at first bewildered by the number of variations
[2, 9, 33, 34, 3, 39, 35, 36, 69, 70, 38, 67, 19, 46, 93], most of which propose “new” algo-
rithms for conjugate gradient for the eigenvalue problem. Most of these algorithms are
for computing extreme eigenvalues and corresponding eigenvectors. It is important to
note that none of these methods are equivalent to Lanczos [31]. It seems that the cor-
rect approach to the conjugate gradient algorithm for invariant subspaces (p > 1) has
been more elusive. We are only aware of three papers [2, 70, 36] that directly consider
conjugate gradient style algorithms for invariant subspaces of dimension p > 1. None
of the proposed algorithms are quite as close to the new idealized algorithms as the
p = 1 algorithms are. Each is missing important features which are best understood
in the framework that we have developed. We discuss these algorithms below.

The simplest nontrivial objective function on the Grassmann manifold Gn, p is
the quadratic form

F (Y) =
1

2
trY TAY,

where A is a symmetric n-by-n matrix. It is well known that the solution to the
minimization of F is the sum of the p smallest eigenvalues of A, with an optimal Y
providing a basis for the invariant subspace corresponding to the p smallest eigenval-
ues.

To solve the eigenvalue problem, one may use the template directly from sec-
tion 3.3 after deriving the gradient

∇F (Y) = AY − Y (Y TAY)

and the second covariant derivative of F (Y)

HessF (∆1,∆2) = tr
(
∆T

1A∆2 − (∆T
1 ∆2)Y TAY

)
.

The line minimization problem may be solved as p separate two-by-two problems
in parallel, or it may be solved more completely by solving the 2p-by-2p eigenvalue
problem. This does not follow the geodesic directly, but captures the main idea of the
block Lanczos algorithm which in some sense is optimal [23, 24].

If one is really considering the pure linear symmetric eigenvalue problem, then
pure conjugate gradient style procedures must be inferior to Lanczos. Every step of
all proposed nonpreconditioned conjugate gradient algorithms builds vectors inside
the same Krylov space in which Lanczos gives an optimal solution. However, explor-
ing conjugate gradient is worthwhile. When the eigenvalue problem is nonlinear or
the matrix changes with time, the Lanczos procedure is problematic because it stub-
bornly remembers past information that perhaps it would do well to forget. (Linear

ORTHOGONALITY CONSTRAINTS 339

conjugate gradient, by contrast, benefits from the memory of this past information.)
Applications towards nonlinear eigenvalue problems or problems that change in time
drive us to consider the conjugate gradient method. Even the eigenvalue problem still
plays a worthy role: it is the ideal model problem that allows us to understand the
procedure much the way the Poisson equation on the grid is the model problem for
many linear equation solvers.

Conjugate gradient on the sphere (p = 1) computes the smallest eigenvalue of a
symmetric matrix A. Two papers [67, 19] consider imposing conjugacy through A.
This is an unfortunate choice by itself because A is quite different from the Hessian
A − r(x)I, where r(x) is the Rayleigh quotient. A few authors directly consider
conjugacy through the unconstrained Hessian [39, 93]. Others attempt to approximate
conjugacy through the Hessian by using Polak–Ribiére or Fletcher–Reeves [9, 33, 34,
3, 35, 38, 46, 93, 69]. It is quite possible that most of these variations might well
be competitive with each other and also our idealized algorithm, but we have not
performed the numerical experiments because ultimately the p = 1 case is so trivial. A
comparison that may be of more interest is the comparison with restarted Lanczos. We
performed an informal numerical experiment that showed that the conjugate gradient
method is always superior to two step Lanczos with restarts (as it should be since
this is equivalent to the steepest descent method), but is typically slightly slower than
four step Lanczos. Further experimentation may be needed in practice.

Turning to the p > 1 case, the three papers that we are aware of are [2, 70,
36]. The algorithm proposed in Alsén [2], has a built-in extra feature not in the
idealized algorithm. Though this may not be obvious, it has one step of orthogonal
iteration built in. This may be viewed as a preconditioning procedure giving the
algorithm an advantage. The Sameh–Wisniewski [70] algorithm begins with many of
the ideas of an idealized Grassmann algorithm, including the recognition of the correct
tangent on the Grassmann manifold (though they only mention imposing the Stiefel
constraint). Informal experiments did not reveal this algorithm to be competitive,
but further experimentation might be appropriate. The more recent Fu and Dowling
algorithm [36] imposes conjugacy through A and, therefore, we do not expect it to be
competitive.

4.5. Conjugate gradient for the generalized eigenvalue problem. It is
well known that the generalized eigenvalue problem Ax = λBx may also be posed as
a constrained optimization problem. Now we must find

min trY TAY

subject to the constraint that

Y TBY = Ip.

With the change of variables

Ȳ = B1/2Y,(4.6)

∆̄ = B1/2∆,(4.7)

Ā = B−1/2AB−1/2(4.8)

the problem becomes

min tr Ȳ TĀȲ subject to Ȳ T Ȳ = Ip.

340 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

The numerical algorithm will be performed on the nonoverlined variables, but the
algorithm will be mathematically equivalent to one performed on the overlined vari-
ables.

Notice that the condition on tangents in this new coordinate system is that

∆TBY = 0.

It is readily checked that the gradient of the trace minimization problem becomes

G = (B−1 − Y Y T)AY

(note that GTBY = 0).
Geodesics may be followed in any direction ∆ for which ∆TBY = 0 by computing

a compact variation on the SVD of ∆ as follows:

∆ = UΣV T , where UTBU = I.

For simplicity, let us assume that ∆ has full rank p. The V vectors are the
eigenvectors of the matrix ∆TB∆, while the U vectors are the eigenvectors of the
matrix ∆∆TB corresponding to the nonzero eigenvalues. There is also a version
involving the two matrices 0 0 ∆

B 0 0
0 ∆T 0

 and

 0 0 B
∆T 0 0
0 ∆ 0

 .

This SVD may be expressed in terms of the quotient SVD [45, 27].
Given the SVD, we may follow geodesics by computing

Y (t) = (Y V U)

(
C
S

)
V T .

All the Y along this curve have the property that Y TBY = I. For the problem of
minimizing 1

2 trY TAY , line minimization decouples into p two-by-two problems just
as in the ordinary eigenvalue problem.

Parallel transport, conjugacy, and the second covariant derivative may all be
readily worked out.

4.6. Electronic structures computations. In this section, we briefly survey
a research area where conjugate gradient minimization of nonquadratic but smooth
functions on the Stiefel and Grassmann manifolds arise, the ab initio calculation of
electronic structure within the local density approximation. Such approaches use only
the charge and mass of electrons and atomic nuclei as input and have greatly furthered
understanding of the thermodynamic properties of bulk materials [12], the structure
and dynamics of surfaces [51, 61], the nature of point defects in crystals [60], and
the diffusion and interaction of impurities in bulk materials [84]. Less than ten years
ago, Car and Parrinello [13] in a watershed paper proposed minimization through
simulated annealing. Teter and Gillan [42, 83] later introduced conjugate gradient
based schemes and demonstrated an order of magnitude increase in the convergence
rate. These initial approaches, however, ignored entirely the effects of curvature on
the choice of conjugate search directions. Taking the curvature into partial account
using a generalization of the Riemannian projection led to a further improvement in
computation times by over a factor of three under certain conditions [5].

ORTHOGONALITY CONSTRAINTS 341

Our ability to compute ab initio, using only the charge and mass of electrons
and atomic nuclei as input, the behavior of systems of everyday matter has advanced
greatly in recent years. However, the computational demands of the approach and
the attendant bounds on the size of systems which may be studied (several hundred
atoms) have limited the direct impact of the approach on materials and chemical
engineering. Several ab initio applications which will benefit technology tremendously
remain out of reach, requiring an order of magnitude increase in the size of addressable
systems. Problems requiring the simultaneous study of thousands of atoms include
defects in glasses (fiber optics communications), complexes of extended crystalline
defects (materials’ strength and processing), and large molecules (drug design).

The theoretical problem of interest is to find the smallest eigenvalue E0 of the
Schrödinger equation in the space of 3N -dimensional skew-symmetric functions,

Hψ = E0ψ,

where the Hamiltonian operator H is defined by

H =
∑

1≤n≤N

(
−1

2
∇2
n + Vion(rn)

)
+

1

2

∑
1<n�m≤N

1

‖rn − rm‖2 .

Here, N is the number of electrons in the system under study, now typically on the
order of several hundred, ri is the position of the ith electron, Vion(r) is the potential
function due to the nuclei and inner electrons, and the second summation is recognized
as the usual Coulomb interactions. Directly discretizing this equation at M gridpoints
in space would lead to absurdly huge eigenvalue problems where the matrix would
be MN -by-MN . This is not just a question of dense versus sparse methods, a direct
approach is simply infeasible.

The fundamental theorems which make the ab initio approach tractable come
from the density functional theory of Hohenberg and Kohn [50] and Kohn and Sham
[55]. Density functional theory states that the ground states energy of a quantum
mechanical system of interacting electrons and ions is equal to the solution of the
problem of minimizing an energy function over all possible sets of N three-dimensional
functions (electronic orbitals) obeying the constraints of orthonormality. Practical
calculations generally use a finite basis to expand the orbitals, but for purposes of
discussion, we may discretize the problem onto a finite spatial grid consisting of M
points. The Kohn–Sham minimization then becomes

E0 = min
XTX=IN

E(X)(4.9)

≡ min
XTX=IN

tr(XTHX) + f
(
ρ(X)

)
,

where each column of X is a different electronic orbital sampled on the spatial grid, ρ is
the vector ρi(X) ≡∑n |Xin|2, H is an M -by-M matrix (single-particle Hamiltonian),
and f is a function which we leave unspecified in this discussion. In full generality
the X are complex, but the real case applies for physical systems of large extent that
we envisage for this application [66], and we, accordingly, take X to be real.

Recent advances in computers have enabled such calculations on systems with
several hundreds of atoms [4, 11]. Further improvements in memory and performance
will soon make feasible computations with upwards of a thousand atoms. However,
with growing interest in calculations involving larger systems has come the awareness
that as the physical length of systems under study increases, the Hessian about the

342 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

minimum of (4.9) becomes increasingly ill-conditioned and nonconjugate minimization
approaches exhibit a critical slowing down [83]. This observation prompted workers
[42, 83] to apply conjugate gradient concepts to the problem, and now dozens of
researchers have written papers using some form of the conjugate gradient method.
In particular, one has a Grassmann problem when the number of electrons in each
state is constant (i.e., two one spin up and one spin down). This is what happens in
calculations on semiconductors and “closed shell” atoms and molecules. Otherwise,
one has a Stiefel problem such as when one has metals or molecules with partially
filled degenerate states.

The framework laid out in this paper may be of practical use to the ab initio
density-functional community when the inner product computation through the Hes-
sian of E(X) is no more computationally complex to evaluate than calculating the
energy function E(X) or maintaining the orthonormality constraints XTX = IN . A
suitable form for this inner product computation is

1

2

∑
in, jm

Yin
∂2E

∂Xin∂Xjm
Zjm = tr

(
Y T (H + V)Z

)
+
∑
ij

σi

(
2
∂2f

∂ρi∂ρj

)
τj(4.10)

− tr
(
XT (H + V)(XY TZ)

)
,

where V is the diagonal matrix defined by Vij = (∂f/∂ρi)δij , σi ≡
∑
n YinXin,

τi ≡
∑
n ZinXin. Written this way, the first two terms of (4.10) have the same

form and may be evaluated in the same manner as the corresponding terms in (4.9),
with σ and τ playing roles similar to ρ. The third term, coming from the curvature,
may be evaluated in the same way as the first term of (4.10) once given the object
XY TZ, which is no more computationally complex to obtain than the Gram–Schmidt
orthonormalization of an object like X.

4.7. Subspace tracking. The problem of computing the principal invariant
subspace of a symmetric or Hermitian matrix arises frequently in signal processing
applications, such as adaptive filtering and direction finding [64, 72, 6, 73, 68]. Fre-
quently, there is some time-varying aspect to the signal processing problem, and a
family of time-varying principal invariant subspaces must be tracked. The variations
may be due to either the addition of new information as in covariance matrix up-
dating, a changing signal environment, or both. For example, compute the principal
invariant subspace of either of the covariance matrices

Rk = Rk−1 + xkx
T
k k = 1, 2, . . . , and xk is given,(4.11)

R(t) = a continuous function of t(4.12)

at every iteration or at discrete times. Equation (4.11) typically arises from updating
the sample covariance matrix estimate; (4.12), the more general case, arises from a
time-varying interference scenario, e.g., interference for airborne surveillance radar
[85, 77]. Solving this eigenvalue problem via the eigenvalue or singular value decom-
positions requires a large computational effort. Furthermore, only the span of the
first few principal eigenvectors may be required, whereas decomposition techniques
compute all eigenvectors and eigenvalues, resulting in superfluous computations. Ap-
proaches to this problem may be classified as standard iterative methods [44], methods
exploiting rank 1 updates [64, 53, 73, 94, 58, 81, 14, 57], i.e., (4.11), Lanczos based
methods [20, 91, 90], gradient based methods [64, 92, 10], conjugate gradient based
methods [38, 19, 71, 93, 75, 36, 78], which are surveyed by Edelman and Smith [31],

ORTHOGONALITY CONSTRAINTS 343

Rayleigh–Ritz based methods [37, 20], and methods that exploit covariance matrix or
array structure [68, 91, 90].

If the subspace does not change quickly over (discrete or continuous) time, then
the desired solution will be close to the previously computed solution, and an iterative
gradient-based algorithm such as the conjugate gradient algorithm may be compu-
tationally attractive for the subspace tracking problem. Thus the subspace tracking
problem is treated as a time-varying optimization problem. Other conjugate gradient
methods for computing principal invariant subspaces in a signal processing context
have appeared [19, 71, 93, 36]; however, these conjugate gradient techniques do not
exploit the structure of the subspace constraint (see section 4.4). Instead, we employ
the conjugate gradient method on the Grassmann manifold, or an approximation of
it discussed in section 3.5. Comon and Golub [20] describe and compare a wide vari-
ety of different algorithms for the problem of exponential covariance matrix updates,
with particular emphasis on Lanczos and gradient-based algorithms. Yang, Sarkar,
and Arvas [93] survey some conjugate gradient algorithms applied to computing the
principal invariant subspace of a fixed symmetric matrix. We adopt the general as-
sumption that the matrix may change arbitrarily over time, but that it must vary
“slowly enough” so that using a conjugate gradient based approach is computation-
ally efficient. This last constraint is, of course, dependent upon the application. For
the example of space-time adaptive processing for airborne radar with a rotating
antenna, Smith [78] shows that this method is capable of tracking the principal in-
variant subspace of clutter interference; however, when the interference dimension p
is increased to account for new interference eigenvalues, one does better to compute
the eigendecomposition from scratch and use it to initiate a new subspace track.

4.8. Newton’s method for invariant subspace computations. Methods
for refining estimates for invariant subspace computations have been proposed by
Chatelin [15, 16], Dongarra, Moler, and Wilkinson [29], and Stewart [80]. Demmel
[28, Sect. 3] proposes a unified approach by showing that they are all solutions to a
Riccati equation.

These algorithms, when applied to symmetric matrices, are all variations on our
geometrical Newton algorithm and may be understood in this context. There is noth-
ing special about the eigenvalue problem; Newton’s method for any function on the
Grassmann manifold yields a Sylvester equation in the tangent space. The reason
a Riccati equation arises rather than a Sylvester equation is that the previous algo-
rithms formulate the problem in an affine space with arbitrary constraints. Previous
researchers knew the quadratic term in the Riccati equation belonged there and knew
that it somehow is related to the orthogonality constraints, but we now see that it is
an artifact of a flat space derivation.

Let us take a closer look. Previous researchers proposed algorithms for invariant
subspaces by asking for a solution to the matrix equation

AY − Y B = 0

made nondegenerate by imposing the affine constraint

ZTY = I

for some arbitrary choice of Z. In the Dongarra et al. case, Z may be obtained
by inverting and transposing an arbitrary p-by-p minor of the n-by-p matrix Y . In
Moler’s Matlab notation Z=zeros(n,p); Z(r,:)=inv(Y(r,:))’, where r denotes a
p-vector of row indices. For Stewart, Z = Y (Y TY)−1.

344 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

A mathematically insightful approach would require no arbitrary choice for Z. We
would simply specify the problem by performing Newton’s method on the function
F (Y) = 1

2 trY TAY on the Grassmann manifold. The stationary points of F (Y) are
the invariant subspaces. There is no need to specify any further constraints, and there
are no degeneracies. (Notice that asking for the solution to AY = Y (Y TAY) subject
to Y TY = I is a degenerate problem.)

Newton’s method requires the solution ∆ to the Sylvester equation

Π
(
A∆−∆(Y TAY)

)
= −ΠAY,

where Π = (I−Y Y T) denotes the projection onto the tangent space of the Grassmann
manifold and G = ΠAY is the gradient. The solution is ∆ = −Y +Z(Y TZ)−1, where
Z is the solution to the Sylvester equation AZ − Z(Y TAY) = Y . Y may be chosen
so that Y TAY is diagonal, yielding simultaneous RQIs. If we move along the tangent
and project rather than the geodesic we have the iteration sending Y to the Q factor
in the QR decomposition of Z.

4.9. Reduced gradient methods, sequential quadratic programming,
and Lagrange multipliers. In this section, we generalize beyond the Stiefel and
Grassmann manifolds to show how the language and understanding of differential ge-
ometry provides insight into well-known algorithms for general nonlinear constrained
optimization. We will show the role that geodesics play in these algorithms. In the
next subsection, we will then apply the geometrical intuition developed here to di-
rectly formulate regularized sequential quadratic programs as is needed in eigenvalue
optimization.

Here we study sequential quadratic programming (SQP) and reduced gradient
methods (RGM). By SQP we mean the algorithm denoted as Newton SQP by Boggs
and Tolle [7, p. 14], SQP by Nash and Sofer [59, p. 512], and QP-based projected
Lagrangian by Gill, Murray, and Wright [41, p. 238, Eq. (6.41)]. By RGM, we specif-
ically mean the method sometimes denoted as the reduced Hessian method [7, p. 25],
other times simply denoted RGM [59, p. 520], and yet other times considered an
example of an RGM [41, p. 221, Eq. (6.17)]. The difference is that RGM is derived
based (roughly) on the assumption that one starts at a feasible point, whereas SQP
does not.

We begin by interpreting geometrically the Lagrangian function as it is used in
constrained optimization. Consider the optimization problem

min
x∈Rn

f(x) given the constraint that h(x) = 0 ∈ Rp.(4.13)

For simplicity we consider the case where the level surfaces h(x) = c are manifolds
(∂h/∂x has full rank everywhere) and we work with the Euclidean metric. In the
Euclidean case, the formulations are routine in the optimization community, but we
have not seen the geometric intuition (particularly geometric interpretations away
from the optimization point and the role that geodesics play “behind-the-scenes”) in
the optimization references that we have consulted. Numerical Lagrange multiplier
issues are discussed in [40] and [41], for example. In this paper, we give the new
interpretation that the Hessian of the Lagrangian is the correct matrix for computing
second derivatives along geodesics at every point, not only as an approximation to
the result at the optimal point.

At every point x ∈ Rn, it is possible to project the gradient of f onto the tangent
space of the level surface through x. This defines a sort of flattened vector field.

ORTHOGONALITY CONSTRAINTS 345

In terms of formulas, projection onto the tangent space (known as computing least-
squares Lagrange multiplier estimates) means finding λ that minimizes the norm of

Lx = fx − λ · hx,(4.14)

i.e.,

λ = fxh
T
x (hxh

T
x)−1.(4.15)

At every point x ∈ Rn (not only the optimal point) Lagrange multipliers are the
coordinates of fx in the normal space to a level surface of the constraint, i.e., the row
space of hx. (Our convention is that fx is a 1-by-n row vector, and hx is a p-by-n
matrix whose rows are the linearizations of the constraints.)

If x(t) is any curve starting at x(0) = x that is constrained to the level surface at
x, then Lxẋ computes the derivative of f along the curve. (In other words, Lx is the
first covariant derivative.) The second derivative of f along the curve is

d2

dt2
f
(
x(t)

)
= ẋTLxxẋ+ Lxẍ.(4.16)

At the optimal point Lx is 0, and, therefore, Lxx is a second-order model for f on
the tangent space to the level surface. The vanishing of the term involving Lx at the
optimal point is well known.

The idea that we have not seen in the optimization literature and that we believe
to be new is the geometrical understanding of the quantity at a nonoptimal point:
at any point at all, Lx is tangent to the level surface while ẍ(t) is normal when x
is a geodesic. The second term in (4.16) conveniently vanishes here too because we
are differentiating along a geodesic! Therefore, the Hessian of the Lagrangian has a
natural geometrical, meaning it is the second derivative of f along geodesics on the
level surface, i.e., it is the second covariant derivative in the Euclidean metric.

We now describe the RGM geometrically. Starting at a point x on (or near) the
constraint surface h(x) = 0, the quadratic function

Lxẋ+ 1
2 ẋ

TLxxẋ

models f (up to a constant) along geodesics emanating from x. The ẋ that minimizes
this function is the Newton step for the minimum for f . Intrinsic Newton would move
along the geodesic in the direction of ẋ a length equal to ‖ẋ‖. Extrinsically, we can
move along the tangent directly from x to x + ẋ and then solve a set of nonlinear
equations to project back to the constraint surface. This is RGM. It is a static
constrained Newton method in that the algorithm models the problem by assuming
that the points satisfy the constraints rather than trying to dynamically move from
level surface to level surface as does the SQP.

In SQP, we start on some level surface. We now notice that the quadratic function

Lxẋ+ 1
2 ẋ

TLxxẋ(4.17)

can serve as a model not only for the first and second covariant derivative of f on the
level surface through x but also on level surfaces for points near x. The level surface
through x is specified by the equation hxẋ = 0. Other parallel level surfaces are
hxẋ+ c = 0. The right choice for c is h(x), which is a Newton step towards the level
surface h(x) = 0. Therefore, if the current position is x, and we form the problem

346 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

of minimizing Lxẋ+ 1
2 ẋ

TLxxẋ subject to the constraint that hxẋ+ h(x) = 0, we are
minimizing our model of f along geodesics through a level surface that is our best
estimate for the constraint h(x) = 0. This is the SQP method.

Practicalities associated with implementing these algorithms are discussed in the
aforementioned texts. Generalizations to other metrics (non-Euclidean) are possible,
but we do not discuss this in detail. Instead we conclude by making clear the re-
lationship between Lagrange multipliers and the Christoffel symbols of differential
geometry.

To derive the geodesic equation, let f(x) = xk, the kth coordinate of x. From
(4.15), the Lagrange multipliers are hTxk(hxh

T
x)−1. Since fxx = 0 we then have

that the geodesic equations are ẍk = ẋTLkxxẋ (k = 1, . . . , n), where Lkxx denotes,
−hTxk(hxh

T
x)−1 · hxx, the Hessian of the Lagrangian function of xk. The matrix

Γk = −Lkxx is the Christoffel symbol of differential geometry.

4.10. Eigenvalue optimization. The geometric approach allows the formula-
tion of sequential quadratic programming problems when the Lagrange multiplier for-
malism breaks down due to coordinate singularities. Specifically, the geometric insight
from the previous subsection is that during the execution of a sequential quadratic
program there are three types of directions. The first direction is towards the con-
straint manifold. SQP performs a Newton step in that direction. The second family
of directions is parallel to the constraint manifold. SQP forms a quadratic approxima-
tion to the objective function in the parallel level surface obtained from the Newton
step. The remaining directions play no role in an SQP and should be ignored.

Consider the problem of minimizing the largest eigenvalue of A(x), an n-by-n real
symmetric matrix-valued function of x ∈ Rm when it is known that at the minimum,
exactly p of the largest eigenvalues coalesce. Overton and Womersley [63] formulated
SQPs for this problem using Lagrange multipliers and sophisticated perturbation
theory. The constraint in their SQP was that the p largest eigenvalues were identical.
Here, we will consider the case of m > p(p + 1)/2. One interesting feature that
they observed was the nondifferentiability of the largest eigenvalue at the optimum.
Following the geometry of the previous section, a new algorithm without Lagrange
multipliers may be readily devised. There will be no Lagrange multipliers because
there will be no consideration of the third directions mentioned above.

We will write A for A(x). Let Λ = Y TAY , where the orthonormal columns of Y
span the invariant subspace for the p largest eigenvalues of A, λ1, . . . , λp. We let
F (A) = λ1 and L(A) = tr(Λ) = λ1 + · · · + λp. Unlike the function F (A), L(A) is a
differentiable function at the optimal point. One might have guessed that this L(A)
was the right L(A), but here is how one can logically deduce it.

The trick is to rely not on the Lagrange multiplier formalism of constraint func-
tions, but rather on the geometry. Geometry has the power to replace a long com-
plicated derivation with a short powerful one. Once the techniques are mastered,
geometry provides the more intuitive understanding. There is no convenient h(A) to
express the constraint of multiple eigenvalues; artificially creating one leads to unnec-
essary complications due to the coordinate singularity when one moves from the level
surface h(A) = 0 to another level surface. The right way to understand the coordinate
singularity was described in section 4.2. The direction of the Newton step must be
the first order constraint of the coallescing of the eigenvalues. Using the notation of
section 4.2, the parallel directions are the tangent vectors of Sn, p. All other directions
play no role. The natural level surfaces are thereby obtained by shifting the p largest
eigenvalues by a constant and developing the orthogonal eigenvector matrix Q(0) as

ORTHOGONALITY CONSTRAINTS 347

in (2.32).
The message from section 4.9 is that whatever function we are interested in, we

are only interested in the component of the gradient in the direction parallel to Sn, p.
The very construction of a Lagrangian L then may be viewed as the construction of
an appropriate function with the property that Lx is parallel to the tangent vectors
of Sn, p. Of course the tangent space to Sn, p (see section 4.2) includes projection ma-
trices of the form

∑p
i=1 αiyiy

T
i , where yi is the eigenvector corresponding to λi, only

when the αi are all equal. This corresponds to an identical shift of these eigenvalues.
Therefore, to form the correct gradient of the objective function F (A) = λ1 every-
where, we should replace the true gradient, which is well known to be the spectral
projector y1y

T
1 , with its component in the direction Y Y T , which is an Sn, p tangent

vector. Integrating, we now see that the act of forming the Lagrangian, which we now
understand geometrically to mean replacing y1y

T
1 with Y Y T (projecting the gradient

to the surface of uniform shifts), amounts to nothing more than changing the objective
function from F (x) to L(x) = tr(Λ) = trY TAY . While one might have guessed that
this was a convenient Langrangian, we deduced it by projecting the gradient of f(x)
on the tangent space of a level surface. The components of f(x) that we removed
implicitly would have contained the Lagrange multipliers, but since these components
are not well defined at the coordinate singularity, it is of little value to be concerned
with them.

Now we must explicitly consider the dependence of L on x. Our optimization step
is denoted ∆x, and Ȧ and Ä, respectively, denote [Ax∆x] and [Axx∆x∆x] (notation
from [63]). It is easy to verify that

Lx = trY TȦY,(4.18)

Lxx = tr(Y TÄY + Y TȦẎ + Ẏ TȦY),(4.19)

where Ẏ is the solution to

Ẏ Λ− (I − Y Y T)AẎ = (I − Y Y T)ȦY(4.20)

that satisfies Y T Ẏ = 0. The resulting sequential quadratic program over ∆x is then

min Lx +
1

2
Lxx,(4.21)

subject to the linear constraint (on ∆x) that

Y T ȦY + Λ = αI,(4.22)

where the scalar α is arbitrary.
Let us explain all of these steps in more detail. The allowable Ẏ are Grassmann

directions, Y T Ẏ = 0. Otherwise, we are not parallel to the constraint surface. Equa-
tion (4.18) is the derivative of Y TAY . Noting that AY = Y Λ and Y T Ẏ = 0, two
terms disappear. Equation (4.19) is trivial but we note the problem that we do not
have an explicit expression for Ẏ , we only have A, Y and Ȧ. Fortunately, the pertur-
bation theory for the invariant subspace is available from (4.20). It may be derived
by differentiating AY = Y Λ and substituting Λ̇ = Y TȦY .3 The solution to (4.20) is
unique so long as no other eigenvalue of A is equal to any of λ1, . . . , λp.

3Alert readers may notice that this is really the operator used in the definition of “sep” in
numerical linear algebra texts. The reader really understands the theory that we have developed in
this paper if he or she can now picture the famous “sep” operator as a Lie bracket with a Grassmann
tangent and is convinced that this is the “right” way to understand “sep.”

348 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Block Rayleigh
Quotient

Newton Subspace
Improvement
Demmel 87
 Chatelin 84, 93
 Dongarra, Moler, Wilkinson 83
 Stewart 73

Newton on the
Grassmann
Manifold

RQI

PCG or
Approximate
Newton on the
Grassmann
Manifold

Nonlinear PCG
Gillan 89
Arias 92
Payne, Teter, Allan 92

Blk Inv Iteration

Alsen 71
Block PCG

Inv Iteration

CG on the
Grassmann
Manifold

Nonlinear CG

Linear Eigenvalue
CG

Sameh, Wisniewski 82
Fu, Dowling 95

Hessian

PR or FR

Conjugate
through A
Chen, Sarkar 86

Power
Method

Gradient Flows
SD on the
Grassmann

Perdon, Gamb. 89
PCG
Davidson

Manifold

Geradin 71

Bradbury, Flet. 66
Fox, Kapoor 69
Fried 69, 72
Anderson 71
Haimi-Cohen,
Cohen, 87
Ruhe, 74
Yang, Sarkar,
Arvas 89
Fuhrmann, Liu 84

p>1 p=1

Fig. 4.2. Taxonomy of algorithms defined from the Grassmann manifold.

The linear constraint on ∆x is the one that infinitesimally moves us to the con-
straint surface. It is the condition that moves us to a diagonal matrix. Therefore,
Λ̇ = Y TȦY when added to Λ must be a scalar multiple of the identity. This is a
linear condition on Ȧ and, therefore, on ∆x. The α does not explicitly appear in the
constraint.

ORTHOGONALITY CONSTRAINTS 349

5. Conclusions. This paper offers a new approach to the algorithms in numeri-
cal analysis involving orthogonality constraints. We have found that these algorithms
should be understood as optimization algorithms in the correct geometrical setting;
however, they rarely are.

As a concluding example of the insight gained, we propose a Grassmann based
taxonomy for problems related to the symmetric eigenproblem. This taxonomy allows
us to view algorithms not as isolated entities, but as objects with a coherent mathe-
matical structure. It is our hope that developers of new algorithms and perturbation
theories will benefit from the analytical approach that lead to our taxonomy.

In this taxonomy, algorithms are viewed as either restrictions or approximations
of their parent. Ultimately, we have Newton’s method on arbitrary Riemannian man-
ifolds as the root. One can then restrict to a particular manifold such as the Stiefel
manifold or, as we illustrate in Figure 4.2, the Grassmann manifold. Along the vertical
axis in the left column we begin with Newton’s method which may be approximated
first with preconditioned conjugage gradient (PCG) or approximate Newton methods,
then pure conjugate gradient, and finally steepest descent. Moving from left to right
the idealized algorithms are replaced with more practical versions that specialize for
particular problems. The second column contains block algorithms, while the third
contains single eigenvector related algorithms. This abstraction would not be possible
without geometry.

Acknowledgments. The first author would like to thank Jim Demmel, Velvel
Kahan, and Beresford Parlett who have stressed the importance of geometry in nu-
merical linear algebra. We also thank Scott Axelrod, Victor Guillemin, and Shoshichi
Kobayashi for a number of interesting conversations concerning differential geometry
and Roger Brockett for the idea of investigating conjugate gradient methods on sym-
metric spaces. We further wish to thank Dianne O’Leary, Mike Todd, Mike Overton,
and Margaret Wright for equally interesting conversations in the area of numerical op-
timization. We are indebted to the San Diego crowd consisting of Scott Baden, Beth
Ong, Ryoichi Kawai (University of Alabama), and John Weare for working together
towards understanding the electronic structure problem. In particular the first author
thanks John Weare for his hospitality during visits in San Diego, where we explored
the issue of conjugate gradient minimization. Steve Vavasis asked the penetrating
question of how this relates to Lagrange multipliers which we answer in section 4.9.
Furthermore, Ross Lippert has made a number of valuable suggestions that are ac-
knowledged in this paper. We are indebted to Gene Golub for inviting Steve Smith
to the 1993 Householder Symposium in Lake Arrowhead, California which serendipi-
tously launched this collaboration.

We would especially like to thank our editor Mike Overton and the reviewers who
went far beyond the call of duty with many very valuable suggestions that enhanced
the readability and relevance of this paper.

REFERENCES

[1] D. Abbott, ed., The Biographical Dictionary of Scientists; Mathematicians, P. Bedrick Books,
New York, 1986.

[2] B. M. Alsén, Multiple Step Gradient Iterative Methods for Computing Eigenvalues of Large
Symmetric Matrices, Tech. report UMINF-15, University of Ume̊a, Sweden, 1971.

[3] I. Andersson, Experiments with the Conjugate Gradient Algorithm for the Determination
of Eigenvalues of Symmetric Matrices, Tech. report UMINF-4.71, University of Ume̊a,
Sweden, 1971.

350 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

[4] T. A. Arias and J. D. Joannopoulos, Ab initio theory of dislocation interactions: From
close-range spontaneous annihilation to the long-range continuum limit, Phys. Rev. Lett.,
73 (1994), pp. 680–683.

[5] T. A. Arias, M. C. Payne, and J. D. Joannopoulous, Ab initio molecular dynamics: Analyt-
ically continued energy functionals and insights into iterative solutions, Phys. Rev. Lett.,
71 (1992), pp. 1077–1080.

[6] G. Bienvenu and L. Kopp, Optimality of high resolution array processing using the eigensys-
tem approach, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-31 (1983), pp. 1235–
1248.

[7] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numerica, (1995),
pp. 199–242.

[8] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,
2nd ed., Academic Press, New York, 1986.

[9] W. W. Bradbury and R. Fletcher, New iterative methods for solutions of the eigenproblem,
Numer. Math., 9 (1966), pp. 259–267.

[10] R. W. Brockett, Dynamical systems that learn subspaces, in Mathematical Systems Theory:
The Influence of R. E. Kalman, Springer-Verlag, Berlin, 1991.

[11] K. Brommer, M. Needels, B. E. Larson, and J. D. Joannopoulos, Ab initio theory of
the Si(111)-(7×7) surface reconstruction: A challenge for massively parallel computation,
Phys. Rev. Lett., 68 (1992), pp. 1355–1358.

[12] F. Buda, R. Car, and M. Parrinello, Thermal expansion of c-Si via ab initio molecular
dynamics., Phys. Rev. B, 41 (1990), pp. 1680–1683.

[13] R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional
theory, Phys. Rev. Lett., 55 (1985), pp. 2471–2474.

[14] B. Champagne, Adaptive eigendecomposition of data covariance matrices based on first-order
perturbations, IEEE Trans. Signal Processing, 42 (1994), pp. 2758–2770.

[15] F. Chatelin, Simultaneous newton’s iteration for the eigenproblem, Comput. Suppl., 5 (1984),
pp. 67–74.

[16] F. Chatelin, Eigenvalues of Matrices, John Wiley & Sons, New York, 1993.
[17] F. Chatelin and V. Frayssé, Lectures on Finite Precision Computations, SIAM, Philadelphia,

PA, 1996.
[18] I. Chavel, Riemannian Geometry—A Modern Introduction, Cambridge University Press, Lon-

don, 1993.
[19] H. Chen, T. K. Sarkar, S. A. Dianat, and J. D. Brulé, Adaptive spectral estimation by

the conjugate gradient method, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-34
(1986), pp. 272–284.

[20] P. Comon and G. H. Golub, Tracking a few extreme singular values and vectors in signal
processing, Proc. IEEE, 78 (1990), pp. 1327–1343.

[21] S. H. Crandall, Rotordynamic software, in Rotating Machinery Dynamics, Proceedings of
the Third International Symposium on Transport Phenomena and Dynamics of Rotating
Machinery (ISROMAC-3), J. H. Kim and W.-J. Wang, eds., Hemisphere Publishing, New
York, 1992, pp. 3–21.

[22] M. Crouzeix, B. Philippe, and M. Sadkane, The Davidson method, SIAM J. Sci. Comput.,
15 (1994), pp. 62–76.

[23] J. K. Cullum, The simultaneous computation of a few of the algebraically largest and smallest
eigenvalues of a large, sparse, symmetric matrix, BIT, 18 (1978), pp. 265–275.

[24] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue
Computations, Vol. 1, Birkhäuser, Stuttgart, 1985.

[25] B. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, CA, 1995.
[26] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding

eigenvectors of large real symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.
[27] B. De Moor, The Riemannian singular value decomposition, in Proc. 3rd Internat. Workshop

on SVD and Signal Processing, Vol. 3, M. Moonen and B. D. Moor, eds., Elsevier Science,
1995, pp. 61–78.

[28] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Computing, 38
(1987), pp. 43–57.

[29] J. J. Dongarra, C. B. Moler, and J. H. Wilkinson, Improving the accuracy of computed
eigenvalues and eigenvectors, SIAM J. Numer. Anal., 20 (1983), pp. 23–45.

[30] A. Edelman, Large dense numerical linear algebra in 1993: The parallel computing influence,
J. Supercomputing Applications, 7 (1993), pp. 113–128.

[31] A. Edelman and S. T. Smith, On conjugate gradient-like methods for eigen-like problems,
BIT, 36 (1996), pp. 494–508. See also Proc. Linear and Nonlinear Conjugate Gradient-

ORTHOGONALITY CONSTRAINTS 351

Related Methods, Loyce Adams and J. L. Nazareth, eds., SIAM, Philadelphia, PA, 1996.
[32] L. Eldén, Algorithms for the regularization of ill-conditioned least-squares problems, BIT, 17

(1977), pp. 134–145.
[33] R. L. Fox and M. P. Kapoor, A miminimization method for the solution of the eigenproblem

arising in structural dynamics, in Proc. 2nd Conf. Matrix Methods in Structural Mechanics,
L. Berke, R. M. Bader, W. J. Mykytow, J. S. Przemieniecki, and M. H. Shirk, eds., Wright-
Patterson Air Force Base, OH, 1969, pp. 271–306.

[34] I. Fried, Gradient methods for finite element eigenproblems, AIAA J., 7 (1969), pp. 739–741.
[35] I. Fried, Optimal gradient minimization scheme for finite element eigenproblems, J. Sound

Vibration, 20 (1972), pp. 333–342.
[36] Z. Fu and E. M. Dowling, Conjugate gradient eigenstructure tracking for adaptive spectral

estimation, IEEE Trans. Signal Processing, 43 (1995), pp. 1151–1160.
[37] D. R. Fuhrmann, An algorithm for subspace computation, with applications in signal process-

ing, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 213–220.
[38] D. R. Fuhrmann and B. Liu, An iterative algorithm for locating the minimal eigenvector of

a symmetric matrix, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1984,
pp. 45.8.1–4.

[39] M. Geradin, The computational efficiency of a new minimization algorithm for eigenvalue
analysis, J. Sound Vibration, 19 (1971), pp. 319–331.

[40] P. E. Gill and W. Murray, The computation of Lagrange multipier estimates for constrained
minimization, Math. Programming, 17 (1979), pp. 32–60.

[41] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, 2nd ed., Academic
Press, New York, 1981.

[42] M. J. Gillan, Calculation of the vacancy formation energy in aluminium, J. Physics, Con-
densed Matter, 1 (1989), pp. 689–711.

[43] S. Goedecker and L. Colombo, Efficient linear scaling algorithm for tight-binding molecular
dynamics, Phys. Rev. Lett., 73 (1994), pp. 122–125.

[44] G. Golub and D. O’Leary, Some history of the conjugate gradient and Lanczos methods,
SIAM Rev., 31 (1989), pp. 50–102.

[45] G. H. Golub and C. F. V. Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[46] R. Haimi-Cohen and A. Cohen, Gradient-type algorithms for partial singular value decompo-
sition, IEEE Trans. Pattern. Anal. Machine Intell., PAMI-9 (1987), pp. 137–142.

[47] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press,
New York, 1978.

[48] H. G. Grassmann, Die Ausdehnungslehre, Enslin, Berlin, 1862.
[49] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Res. National Bureau of Standards, 49 (1952), pp. 409–436.
[50] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864–

B871.
[51] S. Ihara, S. L. Ho, T. Uda, and M. Hirao, Ab initio molecular-dynamics study of defects on

the reconstructed Si(001) surface, Phys. Rev. Lett., 65 (1990), pp. 1909–1912.
[52] W. Kahan and J. Demmel, Personal communication, 1994–96.
[53] J. Karhunen, Adaptive algorithms for estimating eigenvectors of correlation type matrices, in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1984, pp. 14.6.1–4.
[54] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1 and 2, Wiley,

New York, 1969.
[55] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects,

Phys. Rev., 140 (1965), pp. A1133–A1138.
[56] R. A. Lippert, Personal communication (see also http://www.mit.edu/people/ripper/grass/

grassmann.html), 1995.
[57] G. Mathew, V. U. Reddy, and S. Dasgupta, Adaptive estimation of eigensubspace, IEEE

Trans. Signal Processing, 43 (1995), pp. 401–411.
[58] M. Moonen, P. Van Dooren, and J. Vandewalle, A singular value decomposition updating

algorithm for subspace tracking, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1015–1038.
[59] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw–Hill, New York,

1995.
[60] M. Needels, J. D. Joannopoulos, Y. Bar-Yam, and S. T. Pantelides, Oxygen complexes

in silicon, Phys. Rev. B, 43 (1991), pp. 4208–4215.
[61] M. Needels, M. C. Payne, and J. D. Joannopoulos, High order reconstructions of the

Ge(100) surface, Phys. Rev. B, 38 (1988), pp. 5543–5546.
[62] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press,

352 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

New York, 1983.
[63] M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues of

symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 698–718.
[64] N. L. Owsley, Adaptive data orthogonalization, in Proc. IEEE Internat. Conf. Acoust., Speech,

Signal Processing, 1978, pp. 109–112.
[65] B. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ, 1980.
[66] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative

minimization techniques for ab initio total-energy calculations: Molecular dynamics and
conjugate gradients, Rev. Mod. Phys, 64 (1992), pp. 1045–1097.

[67] A. Perdon and G. Gambolati, Extreme eigenvalues of large sparse matrices by Rayleigh quo-
tient and modified conjugate gradients, Comput. Methods Appl. Mech. Engrg., 56 (1986),
pp. 251–264.

[68] R. Roy and T. Kailath, ESPRIT—estimation of signal parameters via rotational invariance
techniques, IEEE Trans. Acoust., Speech, Signal Processing, 37 (1989), pp. 984–995.

[69] A. Ruhe, Iterative eigenvalue algorithms for large symmetric matrices, in Numerische Behand-
lung von Eigenwertaaufgaben Oberwolfach 1972, Internat. Series Numerical Math., Vol. 24,
1974, pp. 97–115.

[70] A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized
eigenvalue problem, SIAM J. Numer. Anal., 19 (1982), pp. 1243–1259.

[71] T. P. Sarkar and N. Sangruji, An adaptive nulling system for a narrow-band signal with a
look direction constraint utilizing the conjugate gradient method, IEEE Trans. Antennas,
Propagation, 37 (1989), pp. 940–944.

[72] R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. An-
tennas, Propagation, AP-34 (1986), pp. 276–280. Reprinted from Proc. RADC Spectrum
Estimation Workshop, Griffiss Air Force Base, NY, 1979.

[73] R. Schreiber, Implementation of adaptive array algorithms, IEEE Trans. Acoust., Speech,
Signal Processing, ASSP-34 (1986), pp. 1038–1045.

[74] G. L. G. Sleijpen and H. A. Van der Vorst, A Jacobi–Davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[75] S. T. Smith, Geometric Optimization Methods for Adaptive Filtering, Ph.D. thesis, Harvard
University, Cambridge, MA, 1993.

[76] S. T. Smith, Optimization techniques on Riemannian manifolds, in Fields Institute Commu-
nications, Vol. 3, AMS, Providence, RI, 1994, pp. 113–146.

[77] S. T. Smith, Space-Time clutter covariance matrix computation and interference subspace
tracking, in Proc. 29th Asilomar Conf. Signals, Systems, Computers, Vol. 2, 1995, pp. 1193–
1197.

[78] S. T. Smith, Subspace tracking with full rank updates, 31st Asilomar Conf. Signals, Systems,
Computers, Vol. 1, 1997, pp. 793–797.

[79] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vols. 1–3, 2nd ed., Publish
or Perish, Houston, TX, 1979.

[80] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-
value problems, SIAM Rev., 15 (1973), pp. 727–764.

[81] G. W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Processing,
40 (1992), pp. 1535–1541.

[82] E. Stiefel, Richtungsfelder und fernparallelismus in n-dimensionalem mannig faltigkeiten,
Commentarii Math. Helvetici, 8 (1935–1936), pp. 305–353.

[83] M. P. Teter, M. C. Payne, and D. C. Allan, Solution of Schrödinger’s equation for large
systems, Phys. Rev. B, 40 (1989), pp. 12255–12263.

[84] C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, Theory of hydrogen diffusion and
reactions in crystalline silicon, Phys. Rev. Lett., 60 (1988), pp. 2761–2764.

[85] J. Ward, Space-Time adaptive processing for airborne radar, Tech. report 1015, DTIC No.
ESC-TR-94-109, MIT Lincoln Laboratory, December 1994. See also Proc. IEEE Internat.
Conf. Acoust., Speech, Signal Processing, Detroit, MI, May 1995, Vol. 5, pp. 2809–2812.

[86] R. C. Ward and L. J. Gray, Eigensystem computation for skew-symmetric matrices and a
class of symmetric matrices, ACM Trans. Math. Software, 4 (1978), pp. 278–285.

[87] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag,
New York, 1983.

[88] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.
[89] Y.-C. Wong, Differential geometry of Grassmann manifolds, Proc. Nat. Acad. Sci. U.S.A., 57

(1967), pp. 589–594.
[90] G. Xu and T. Kailath, Fast estimation of principal eigenspace using Lanczos algorithm,

SIAM J. Matrix Anal. Appl., 15 (1994), pp. 974–994.

ORTHOGONALITY CONSTRAINTS 353

[91] G. Xu and T. Kailath, Fast subspace decomposition, IEEE Trans. Signal Processing, 42 (1994),
pp. 539–551.

[92] J.-F. Yang and M. Kaveh, Adaptive eigenspace algorithms for direction or frequency estima-
tion and tracking, IEEE Trans. Acoust., Speech, Signal Processing, 36 (1988), pp. 241–251.

[93] X. Yang, T. P. Sarkar, and E. Arvas, A survey of conjugate gradient algorithms for solution
of extreme eigen-problems of a symmetric matrix, IEEE Trans. Acoust., Speech, Signal
Processing, 37 (1989), pp. 1550–1556.

[94] K.-B. Yu, Recursive updating the eigenvalue decomposition of a covariance matrix, IEEE
Trans. Signal Processing, 39 (1991), pp. 1136–1145.

A STABLE AND EFFICIENT ALGORITHM FOR
THE INDEFINITE LINEAR LEAST-SQUARES PROBLEM∗

S. CHANDRASEKARAN† , M. GU‡ , AND A. H. SAYED§

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 354–362

Abstract. We develop an algorithm for the solution of indefinite least-squares problems. Such
problems arise in robust estimation, filtering, and control, and numerically stable solutions have been
lacking. The algorithm developed herein involves the QR factorization of the coefficient matrix and
is provably numerically stable.

Key words. backward stability, error analysis, indefinite least-squares problems

AMS subject classifications. 15A06, 65F05, 65G05

PII. S0895479896302229

1. Introduction. Many optimization criteria have been used for parameter es-
timation, starting with the standard least-squares formulation of Gauss (ca. 1795)
and moving to more recent works on total least-squares (TLS) and robust (or H∞)
estimation (see, e.g., [4, 5, 7, 8, 10, 11]). The latter formulations have been motivated
by an increasing interest in estimators that are less sensitive to data uncertainties and
measurement errors. They can both be shown to require the minimization of indef-
inite quadratic forms, where the standard inner product of two vectors, say aT b, is
replaced by an indefinite inner product of the form aTJb for a given signature matrix

J =

(
Ip 0
0 −Iq

)
,

where Ip and Iq are the identity matrices of dimensions p and q, respectively.
In this paper, we consider the indefinite least-squares problems of the form

min
x

(A x− b)T J (A x− b) ,(1.1)

where A ∈ Rm×n is a given matrix with m ≥ n; b ∈ Rm is a given vector; and
p+ q = m. This problem reduces to the standard linear least-squares problem when
q = 0. This is a characteristic of the so-called Krein spaces [5, 10].

Contrary to standard least-squares problems that always have solutions, the in-
troduction of J with both positive and negative inertia can lead to minimization
problems that are not necessarily solvable. Under certain solvability conditions, how-
ever, they lead to normal equations with positive-definite coefficient matrices. In this
paper, we propose an algorithm for the solution of (1.1). We show that it is backward
stable.

In section 2 we discuss situations where problem (1.1) might arise. In section 3
we solve problem (1.1). In section 4 we perform an error analysis.

∗Received by the editors April 17, 1996; accepted for publication (in revised form) by N. J. Higham
July 8, 1997; published electronically October 20, 1998.

http://www.siam.org/journals/simax/20-2/30222.html
†Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106 (shiv@ece.ucsb.edu).
‡Department of Mathematics, University of California, Los Angeles, CA 90095 (mgu@

math.ucla.edu).
§Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (sayed@

ee.ucla.edu).

354

INDEFINITE LEAST-SQUARES 355

Throughout this paper, a flop is a real floating-point operation α ◦ β, where α
and β are real floating-point numbers and ◦ is one of the operations +, −, ×, or ÷.
In our error analysis, we assume the following model for floating-point arithmetic:

fl(α ◦ β) = (α (1 + η1)) ◦ (β (1 + η2)) ,

where fl(α ◦ β) is the floating-point result of the operation ◦, and |ηi| ≤ ε with ε
being the machine precision. For simplicity, we ignore the possibility of overflow and
underflow.

2. Motivation of indefinite quadratic forms. We briefly indicate in this sec-
tion how indefinite quadratic forms arise in the context of TLS and robust estimation
methods.

Let A ∈ Rm×n be a given matrix with m ≥ n, and let b ∈ Rm be a given vector,
which are assumed to be linearly related via an unknown vector of parameters x ∈ Rn,

b = A x+ v.(2.1)

The vector v ∈ Rm explains the mismatch between Ax and the given vector (or
observation) b.

2.1. The TLS problem. The TLS method has been devised to deal with data
errors in both A and b; it incorporates possible errors in the matrix A into the problem
formulation. More specifically, given (A, b) and assuming that both data quantities are

noisy, the TLS problem seeks a matrix Â and a vector x̂ that minimize the following
optimization problem (defined in terms of the Frobenius norm):

min
Â,x̂

∥∥∥[Â−A Â x̂− b
]∥∥∥2

F
⇐⇒ min

Â,̂b∈R(Â)

∥∥∥[A b
]− [Â b̂

]∥∥∥2

F
.(2.2)

The optimal solution Â is regarded as an approximation for A, which in turn is used
to determine an x̂ that guarantees b̂ ∈ R(Â). The solution of the TLS problem is
known to be given by the following construction [7, p. 36].

Assume A is m× n with m > n (i.e., A is a nonsquare matrix). Let {σ1, . . . , σn}
denote the singular values of A, with σ1 ≥ · · · ≥ σn ≥ 0. Also, let {σ̄1, . . . , σ̄n, σ̄n+1}
denote the singular values of the extended matrix

[
A b

]
. If σ̄n+1 < σn, then the

unique solution x̂ of (2.2) is given by

x̂ =
(
AT A− σ̄2

n+1In
)−1

AT b.

This form of the solution shows that the TLS solution can also be obtained by mini-
mizing the indefinite quadratic cost function

min
x

[‖b−A x‖22 − σ̄2
n+1‖ x ‖22

]
.

The cost function can be rewritten in the form

min
x

([
b
0

]
−
[

A
σ̄n+1

]
x

)T [
In 0
0 −In

]([
b
0

]
−
[

A
σ̄n+1

]
x

)
,

where In denotes the identity matrix of size n × n. This is a special case of the
indefinite quadratic cost function to be studied in this paper (see (1.1)). A similar
cost function also arises in the solution of a least-squares problem with bounded
errors-in-variables [3].

356 S. CHANDRASEKARAN, M. GU, AND A. SAYED

2.2. Robust or H∞-smoothing. In recent years there has been an interest in
(suboptimal) min-max estimation, with the belief that the resulting so-called robust
or H∞ algorithms will be more robust and less sensitive to modeling assumptions
(e.g., [8, 11]). In this section, we review the H∞-smoothing formulation, which can be
shown to include as a special case the standard least-squares solution. The application
to parameter estimation given in this section follows [5, 10].

Consider again the model (2.1). Assume that an arbitrary vector x̂ is picked as an
estimate for the unknown x. Then, no matter what the given (A, b) are, it is always
possible to find a vector v̂ that matches (2.1), i.e., that satisfies

b = A x̂+ v̂ .

The particular choice x̂ induces an error norm ‖x− x̂‖2 and a noise norm ‖v̂‖2. But
since x̂ has been picked arbitrarily, these norms may be arbitrarily large or small.
That is, the estimate may be good or bad, and one would like to develop a procedure
that picks an estimate that always guarantees a certain level of performance.

To clarify this point even further, consider the case when the norm of the original
perturbation v in (2.1) is small. In this case, the data vector b is only a slight
perturbation apart from Ax. So one expects in this situation to be able to come up
with a better estimate for x than in the case when the noise v is large. In other words,
one would like to define a procedure that picks an x̂ in such a way that if the original
perturbation v is small, then so will be the resulting error (x− x̂).

This idea can be formalized and leads to a so-called robust estimation problem.
In this context, one seeks an estimate x̂ (affine in b, say x̂ = Kb + k for some K ∈
Rn×m, k ∈ Rn) in order to guarantee that the following bound holds irrespective of
the nature of the noise component v:

find x̂ such that max
v 6=0

‖ x− x̂ ‖22
‖ v ‖22

≤ γ2(2.3)

for a specified value of γ (say γ = 1 or some other value). The resulting estimate x̂,
when it exists (and this depends on the value of γ), will guarantee that the maximum
2-norm gain from the disturbance v to the estimation error (x − x̂) will always be
less than γ2; hence the qualification “robust” estimate since it guarantees that if the
disturbance v is small, then so will be the estimation error.

It is not difficult to see that, since v = b − Ax, an alternative way of requiring
expression (2.3) to hold is to equivalently require the indefinite quadratic cost function

J =‖ A x− b ‖22 − γ−2 ‖ x− x̂ ‖22

to be nonnegative for all x. That is, the optimization problem (2.3) over v is now an
optimization problem over x. We shall not pursue in detail the complete solution of
the robust smoothing problem here (instead, see [2, 5, 10]). We only note that J can
be rewritten in the form

J =

([
c
0

]
−
[

A
γ−1

]
z

)T [
In 0
0 −In

]([
c
0

]
−
[

A
γ−1

]
z

)
,

where z = x− x̂ and c = b−Ax̂. This is again a special case of (1.1).

INDEFINITE LEAST-SQUARES 357

3. Solution of the indefinite least-squares problem. It is known that (see [5])
problem (1.1) has a unique solution if and only if

ATJA is symmetric positive-definite.(3.1)

If this condition does not hold, then (1.1) can either have no solution or infinitely
many solutions. We shall assume throughout this paper that condition (3.1) holds
and, therefore, that problem (1.1) has a unique solution. In particular, condition (3.1)
implies that p ≥ n.

To solve (1.1), we first note that the quadratic cost function can be rewritten as

(A x− b)T J (A x− b) = xT
(
AT J A

)
x− 2

(
AT J b

)T
x+ bT J b

= (x− xs)T
(
AT J A

)
(x− xs)

+bT J b− (AT J b)T (AT J A)−1 (
AT J b

)
,

where xs is the unique solution of the linear system of equations(
AT J A

)
xs =

(
AT J b

)
.(3.2)

It follows from condition (3.1) that xs is the unique solution to (1.1). Parallel to
the usual least-squares problem, we refer to (3.2) as the normal equation associated
with (1.1).

One straightforward approach to solving (3.2) is to directly form the coeffi-
cient matrix and the right-hand side, and then solve the equation by computing the
Cholesky factorization of the coefficient matrix. However, this approach is in general
not backward stable even for the usual least-squares problem, where J is the identity
matrix (see [4, Chap. 5]).

In the following, we derive a new stable algorithm for computing xs. We first
compute the QR factorization of the matrix A, say

A =

(
Q1

Q2

)
R = Q R ,

where R ∈ Rn×n is upper triangular; Q1 ∈ Rp×n and Q2 ∈ Rq×n; and Q =
(QT1 QT2)T is column orthogonal, i.e.,

QT Q = QT1 Q1 +QT2 Q2 = In.

It follows from condition (3.1) that R is nonsingular. For our purposes, we explicitly
compute the matrix Q as well. The cost of this decomposition is about 4n2m− 4

3n
3

flops.
Now substituting the QR factorization of A into (3.2) and simplifying, we obtain(

QT J Q
)
R xs =

(
QT1 Q1 −QT2 Q2

)
R xs = QT J b.(3.3)

We remark that the fact that Q is orthogonal is not needed to get (3.3). In fact, this
equation is equivalent to (3.2) for any factorization A = QR as long as R ∈ Rn×n is
nonsingular. This fact will be very important for our error analysis in section 4.

We also remark that condition (3.1) implies that the matrix

2 QT1 Q1 − In = QT1 Q1 −QT2 Q2

358 S. CHANDRASEKARAN, M. GU, AND A. SAYED

is symmetric positive-definite. Hence the singular values of Q1 are all between 1/
√

2
and 1. In other words, Q1 is very well-conditioned, even though the matrix QT1 Q1 −
QT2 Q2 itself could be very ill-conditioned.

To solve the linear system of equations (3.3), we form the matrix QT1 Q1 −QT2 Q2

explicitly and then compute its Cholesky factorization

QT1 Q1 −QT2 Q2 = L LT ,

where L ∈ Rn×n is lower triangular. The cost of this decomposition is about n2m+ 1
3n

3

flops. To compute xs, we then compute the right-hand side in (3.3) and perform one
forward and two backward substitutions. These computations cost about O(mn)
flops. Hence the total cost for computing xs is about (5m − n)n2 flops. We shall
establish in section 4.2 that the proposed algorithm is backward stable.

Remark. A referee pointed out that an alternative method to solve the indefinite
least-squares problem (1.1) can be derived by using hyperbolic Householder trans-
forms (see Berry and Cybenko [1] and Rader and Steinhardt [9]). This alternative is
potentially less expensive than the one in section 3, although it might not be backward
stable.

4. Error analysis. We now perform an error analysis for the proposed solution
to the indefinite least-squares problem. We begin with some definitions and well-
known results.

4.1. Preliminaries. We use the definition of stability in [12, pp. 75–76]. Let
F(X) be a function of the input data X . We say that an algorithm for computing
F(X) is backward stable if its output is exactly F(X̄), where X̄ is a small perturbation
of X .

Let A ∈ Rm×n and B ∈ Rn×l. When the matrix–matrix product A·B is computed
in the straightforward way, the computed product fl (A ·B) satisfies (see [4, pp. 66–
68])

fl (A ·B) = A ·B +O (ε · ‖A‖2 ‖B‖2) .

Let b ∈ Rm. When the matrix–vector product A ·b is computed in the straightforward
way, the computed product satisfies (see [6, Chap. 3])

fl (A · b) = (A+ δA) · b,

where ‖δA‖2 = O(ε · ‖A‖2). Let

A+ δÂ = Q̂ R̂

be the computed QR factorization of A (say, by Householder transformations) with

δÂ ∈ Rm×n, Q̂ ∈ Rm×n, and R̂ ∈ Rn×n. Then R̂ is upper triangular. The computed
QR factorization is stable in that (see [6, Chap. 18])

Q̂T Q̂ = In + ∆1 with ∆1 = ∆T
1 = O(ε) ∈ Rn×n and ‖δÂ‖2 = O(ε · ‖A‖2).

Let M ∈ Rn×n be a symmetric positive-definite matrix, and assume that a nu-
merical Cholesky factorization of M can be successfully computed

M + δM = L̂L̂T ,

INDEFINITE LEAST-SQUARES 359

where L̂ ∈ Rn×n is lower triangular. Then δM is symmetric and satisfies ‖δM‖2 =
O(ε · ‖M‖2). For details see [6, Chap. 10].

Let R ∈ Rn×n be a nonsingular upper (or lower) triangular matrix; let b ∈ Rn be
a vector; and let x̂ be the computed solution via backward (or forward) substitution
to the linear system of equations

Rx = b.

Then x̂ satisfies

(R+ δR) x̂ = b,(4.1)

where (see [6, Chap. 8])

|δR| ≤ n ε

1− n ε · |R|.

Here |δR| and |R| are matrices of moduli of δR and R, respectively, and the inequality
is meant entrywise. It follows that δR = O(ε · ‖R‖2).

4.2. Analysis of the indefinite least-squares solution. Let

A+ δÂ =

(
Q̂1

Q̂2

)
R̂ = Q̂ R̂

be the numerical QR factorization of A, with R̂ ∈ Rn×n upper triangular. It fol-
lows from section 4.1 that ‖δÂ‖2 = O(ε · ‖A‖2) and that Q̂ is numerically column
orthogonal, i.e.,

Q̂T Q̂ = Q̂T1 Q̂1 + Q̂T2 Q̂2 = In + ∆1,(4.2)

where ∆1 = ∆T
1 = O(ε) ∈ Rn×n.

We first assume that the matrix Q̂T1 Q̂1 − Q̂T2 Q̂2 has been computed and success-
fully Cholesky factorized, so that

Q̂T1 Q̂1 − Q̂T2 Q̂2 + ∆2 = L̂ L̂T .(4.3)

It follows from section 4.1 that ∆2 ∈ Rn×n is symmetric and ‖∆2‖2 = O(ε).

Let x̂s be the computed solution to (3.3). For simplicity we assume that R̂ is
nonsingular and x̂s 6= 0. According to section 4.1, x̂s satisfies(

L̂+ δL̂1

) (
L̂+ δL̂2

)T (
R̂+ δR̂

)
x̂s =

(
Q̂+ δQ̂

)T
J b,(4.4)

where

‖δR̂‖2 = O(ε · ‖R̂‖2) , ‖δQ̂‖2 = O(ε), and ‖δL̂i‖2 = O(ε · ‖L̂‖2) for i = 1, 2.

Since R̂ is a nonsingular upper triangular matrix, it follows from (4.1) that R̂+ δR̂ is
also nonsingular, and hence

ŷ
def
=
(
R̂+ δR̂

)
x̂s 6= 0.

360 S. CHANDRASEKARAN, M. GU, AND A. SAYED

We will write some of the round-off errors in (4.4) into Q̂1 and b. To this end, define

∆3 = v ŷT + ŷ vT , where v =

I − ŷ ŷT

2 ‖ŷ‖22
‖ŷ‖22

·
(
δL̂1 L̂

T + L̂ δL̂T2 + δL̂1 δL̂
T
2

)
ŷ.

It is easy to verify that ∆3 ∈ Rn×n is symmetric and satisfies(
L̂+ δL̂1

) (
L̂+ δL̂2

)T (
R̂+ δR̂

)
x̂s =

(
L̂L̂T + ∆3

)(
R̂+ δR̂

)
x̂s.

Furthermore,

‖∆3‖2 ≤ 2 ‖v‖2 ‖ŷ‖2

≤ 2

∥∥∥∥I − ŷ ŷT

2 ‖ŷ‖22

∥∥∥∥
2

‖ŷ‖22
·
∥∥∥δL̂1 L̂

T + L̂ δL̂T2 + δL̂1 δL̂
T
2

∥∥∥
2
‖ŷ‖2 ‖ŷ‖2

= O

(
ε · ‖L̂‖22 ·

∥∥∥∥I − ŷ ŷT

2 ‖ŷ‖22

∥∥∥∥
2

)
= O (ε) ,

where we have used the fact that

‖L̂‖22 =
∥∥∥Q̂T1 Q̂1 − Q̂T2 Q̂2 + ∆2

∥∥∥
2
≤ 1 +O(ε) and

∥∥∥∥I − ŷ ŷT

2 ‖ŷ‖22

∥∥∥∥
2

≤ 1.

Combining the above with equations (4.3) and (4.4), we have(
Q̂T1 Q̂1 − Q̂T2 Q̂2 + ∆2 + ∆3

)(
R̂+ δR̂

)
x̂s =

(
Q̂+ δQ̂

)T
J b.

Similar to section 3, relations (4.2) and (4.3) imply that the singular values of Q̂1 are

all between 1/
√

2 +O(ε) and 1 +O(ε). Hence Q̂1 is very well-conditioned.

In the following we shall rewrite ∆2 + ∆3 as a perturbation to Q̂1. Let P̂ ∈ Rp×p

be the unique symmetric positive-definite matrix such that

P̂ 2 = Ip + Q̂1

(
Q̂T1 Q̂1

)−1

(∆2 + ∆3)
(
Q̂T1 Q̂1

)−1

Q̂T1 ,

and let (P̂ + I)
1
2 be the unique symmetric positive-definite square root of P̂ + I. It

follows that

P̂ − Ip =
(
P̂ + I

)− 1
2 · Q̂1

(
Q̂T1 Q̂1

)−1

(∆2 + ∆3)
(
Q̂T1 Q̂1

)−1

Q̂T1 ·
(
P̂ + I

)− 1
2

,

and that

‖P̂ − Ip‖2 ≤
∥∥∥∥(P̂ + I

)− 1
2

∥∥∥∥
2

·
∥∥∥∥Q̂1

(
Q̂T1 Q̂1

)−1

(∆2 + ∆3)
(
Q̂T1 Q̂1

)−1

Q̂T1

∥∥∥∥
2

·
∥∥∥∥(P̂ + I

)− 1
2

∥∥∥∥
2

≤
∥∥∥∥Q̂1

(
Q̂T1 Q̂1

)−1

(∆2 + ∆3)
(
Q̂T1 Q̂1

)−1

Q̂T1

∥∥∥∥
2

= O(ε) .

INDEFINITE LEAST-SQUARES 361

Now define

Q̃ =

(
P̂ Q̂1

Q̂2

)
= Q̂+O(ε).

Since both P̂ and Q̂1 are very well-conditioned, it follows that Q̃ is itself very well-
conditioned. Hence

Q̃T J Q̃ =
(
Q̂T1 P̂

)(
Q̂T1 P̂

)T
− Q̂T2 Q̂2

= Q̂T1

(
Ip + Q̂1

(
Q̂T1 Q̂1

)−1

(∆2 + ∆3)
(
Q̂T1 Q̂1

)−1

Q̂T1

)
Q̂1 − Q̂T2 Q̂2

= Q̂T1 Q̂1 − Q̂T2 Q̂2 + ∆2 + ∆3.

Hence we can now rewrite equation (4.4) simply as(
Q̃T J Q̃

) (
R̂+ δR̂

)
x̂s =

(
Q̂+ δQ̂

)T
J b.(4.5)

In the following, we write the round-off errors on the right-hand side as an error in b.(
Q̂+ δQ̂

)T
J b =

(
Q̃T + Q̃T Q̃

(
Q̃T Q̃

)−1 (
δQ̂+ Q̂− Q̃

)T)
J b

= Q̃T J (b+ δb) ,

where

δb = J Q̃
(
Q̃T Q̃

)−1 (
δQ̂+ Q̂− Q̃

)T
J b,

and hence ‖δb‖2 = O(ε · ‖b‖2). Equation (4.5) can now be rewritten as(
Q̃T J Q̃

) (
R̂+ δR̂

)
x̂s = Q̃T J (b+ δb) .(4.6)

Finally we define the perturbation in A as

δA = δÂ+
(
Q̃− Q̂

)
R̂+ Q̃ δR̂.

Then it follows that ‖δA‖2 = O(ε · ‖A‖2). It can be easily checked that

A+ δA = Q̃
(
R̂+ δR̂

)
.(4.7)

With these backward errors, we note that (4.6) is exactly the equation (3.3) for the
perturbed indefinite least-squares problem

min
x

((A+ δA) x− (b+ δb))
T
J ((A+ δA) x− (b+ δb)) .

Hence the new algorithm in section 3 is backward stable. Note that the matrix Q̃ is
in general not orthogonal, and hence the factorization (4.7) is in general not a QR
factorization.

362 S. CHANDRASEKARAN, M. GU, AND A. SAYED

Now we consider the case where one fails to numerically compute the Cholesky
factorization (4.3). This can happen only if the matrix

Q̂T1 Q̂1 − Q̂T2 Q̂2 + ∆2

is not symmetric positive-definite for a symmetric ∆2 ∈ Rn×n with a small 2-norm.
With the techniques developed above, it is straightforward to show that this implies
that there exists a δA ∈ Rm×n such that the matrix (A + δA)TJ(A + δA) is not
symmetric positive-definite. In other words, the indefinite least-squares problem (1.1)
does not have a unique solution for a slightly perturbed A. Such a problem cannot
be expected to have a numerically meaningful solution in general.

5. Conclusion. In this paper we proposed a stable and efficient algorithm for
solving the indefinite least-squares problem. Our error analysis shows that this algo-
rithm is backward stable.

Acknowledgments. The authors thank the anonymous referees for their helpful
comments and suggestions.

REFERENCES

[1] M. Berry and G. Cybenko, Hyperbolic Householder algorithms for factoring structured ma-
trices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 499–520.

[2] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Parameter estimation in the
presence of bounded data uncertainties, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 235–
252.

[3] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, An efficient algorithm for a
bounded errors-in-variables model, SIAM J. Matrix Anal. Appl., to appear.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[5] B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in Krein spaces - Part I: Theory,
IEEE Trans. Automat. Control, 41 (1996), pp. 18–33.

[6] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[7] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects

and Analysis, SIAM, Philadelphia, PA, 1991.
[8] P. Khargonekar and K. M. Nagpal, Filtering and smoothing in an H∞-setting, IEEE Trans.

Automat. Control, AC-36 (1991), pp. 151–166.
[9] C. M. Rader and A. O. Steinhardt, Hyperbolic Householder transforms, SIAM J. Matrix

Anal. Appl., 9 (1988), pp. 269–290.
[10] A. H. Sayed, B. Hassibi, and T. Kailath, Fundamental Inertia Conditions for the Min-

imization of Quadratic Forms in Indefinite Metric Spaces, Oper. Theory: Adv. Appl.,
Birkhauser, Cambridge, MA, 1996.

[11] U. Shaked and Y. Theodor, H∞-optimal estimation: A tutorial, in Proc. IEEE Conference
on Decision and Control, Tucson, AZ, 1992, pp. 2278–2286.

[12] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

BACKWARD PERTURBATION BOUNDS FOR
LINEAR LEAST SQUARES PROBLEMS∗

MING GU†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 363–372

Abstract. Recently, Higham, Waldén, Karlson, and Sun have provided formulas for computing
the best backward perturbation bounds for the linear least squares problem. In this paper we provide
several backward perturbation bounds that are easier to compute and optimal up to a factor less than
2. We also show that any least squares algorithm that is stable in the sense of Stewart is necessarily
a backward stable algorithm. Our results make it possible to measure numerically the amount of
accuracy in any alleged solution of a least squares problem.

Key words. linear least squares problem, perturbation, stability

AMS subject classifications. 15A06, 65F05, 65G05

PII. S0895479895296446

1. Introduction. Given a matrix M ∈ Rm×n with m ≥ n and a vector h ∈ Rm,
the linear least squares problem is

min
x
‖M x− h‖2.(1.1)

Assume that M has full column rank, then the unique solution to (1.1) is

xM =
(
MT M

)−1
MT h.

Let A be an algorithm for solving (1.1) and let x̂M ∈ Rn be the numerical solution
computed by A in machine precision ε. We say that A is numerically stable if for any
such M and h, there exist small perturbation matrices and vectors δM ∈ Rm×n,
δh ∈ Rm, and δx̂M ∈ Rn such that (see Stewart [18, pp. 75–76])

‖(M + δM) (x̂M + δx̂M)− (h+ δh)‖2 = min
x
‖(M + δM) x− (h+ δh)‖2 ,(1.2)

where ‖δM‖2 ≤ τ ‖M‖2, ‖δh‖2 ≤ τ ‖h‖2, and ‖δx̂M‖2 ≤ τ ‖x̂M‖2, with τ > 0 being
a small multiple of ε.

It is well known that if M is ill conditioned, then x̂M can be very different from
the exact solution xM (see Higham [11, Chapter 19]). We will call x̂M a stable solution
to (1.1) if it satisfies (1.2).

One straightforward method for solving (1.1) is to compute the QR-factorization
of M using Householder transformations (see, for example, Businger and Golub [5]).
This method is stable since it produces a numerical solution x̂M which satisfies (1.2)
with δh = 0 and δx̂M = 0 (see, for example, [11, Chapter 19]). However, if M is a
structured matrix such as the Toeplitz matrix, then this method can be inefficient.
There is a vast literature on fast methods for solving structured linear least squares
problems in O(mn) floating point operations or less, as opposed to O(mn2) floating

∗Received by the editors December 27, 1995; accepted for publication (in revised form) by Z.
Strakos June 24, 1997; published electronically October 20, 1998. This work was supported in part
by NSF Career Award CCR-9702866 and by the Applied Mathematical Sciences Subprogram of the
Office of Energy Research, U.S. Department of Energy under contract DE-AC03-76SF00098.

http://www.siam.org/journals/simax/20-2/29644.html
†Department of Mathematics, University of California, Los Angeles, CA 90095-1555 (mgu@math.

ucla.edu).

363

364 MING GU

point operations normally required by the above QR-factorization method. Some of
these fast methods produce numerical solutions that satisfy (1.2) with nonzero δh
and δx̂M (see, for example, Gu [9]), while others can be numerically unstable (see
Bojanczyk and Brent [2, 4], Bojanczyk, Brent, and de Hoog [3], Brent [4], Chun,
Kailath, and Lev-Ari [6], Cybenko [7, 8], Luk and Qiao [14], Nagy [15], Park and
Eldén [16], Qiao [17], and Sweet [19]).

These fast methods vary greatly for different matrix structures. In order to be
able to provide a general procedure to verify numerically the stability properties of
these methods, it is necessary to solve the following problem:

(P) Given a vector x̂M ∈ Rn, verify whether it is a stable solution to (1.1).

In this paper, we will solve Problem (P) by finding out whether there exist small
perturbations δM , δh, and δx̂M , for which x̂M + δx̂M satisfies (1.2). For simplicity,
we assume throughout this paper that M 6= 0 and h 6= 0.

1.1. Backward perturbation bounds. A restricted version of Problem (P) is

the problem of whether there exists a small perturbation δ̂M ∈ Rm×n for which∥∥∥(M + δ̂M) x̂M − h
∥∥∥

2
= min

x
‖(M + δ̂M) x− h‖2,(1.3)

where ‖δ̂M‖2 ≤ τ ‖M‖2, with τ > 0 being a small multiple of ε. We will call x̂M
a backward stable solution to (1.1) if it satisfies (1.3). A backward stable solution is
clearly a stable solution. As mentioned above, solving (1.1) via the QR-factorization
of M produces an x̂M that satisfies (1.3). Hence, this method is backward stable.

In general, the matrix δ̂M in (1.3) is not uniquely defined. Recently, Waldén,
Karlson, and Sun [20] and Higham [11, Chapter 19] have provided the following

formula for computing the smallest ‖δ̂M‖F among all the possible matrices δ̂M that
satisfy (1.3).

Theorem 1.1. Let r = h −M x̂M . Then the optimal normwise backward error
in F-norm is

E (x̂M) := min
{
‖δ̂M‖F , where δ̂M is a solution to (1.3)

}

=

0 if r = 0,
‖MT h‖2
‖h‖2 if x̂M = 0,

min {η, σmin ([M η C])} otherwise,

where η = (‖r‖2)/‖x̂M‖2, C = I − (r rT)/rT r, and σmin ([M η C]) is the smallest
singular value of [M η C].

According to Theorem 1.1, x̂M is a backward stable solution (and hence a stable
solution) if E (x̂M) is small. However, Theorem 1.1 does not say whether x̂M is a
stable solution if E (x̂M) is not small. Although Waldén, Karlson, and Sun [20] have
also considered perturbations in h, they have not solved Problem (P).

Another problem with Theorem 1.1 is that while E (x̂M) is optimal, it is not very
straightforward to compute for large m. Since the matrix [M η C] is m-by-(m+n),
computing its smallest singular value with a dense singular value decomposition (SVD)
routine such as xGESVD in LAPACK [1] requires O(m3) floating point operations.
Furthermore, since η can be very large for x̂M ≈ 0, there could be some numerical
difficulties in computing E (x̂M) accurately as well.

PERTURBATION BOUNDS FOR LEAST SQUARES PROBLEMS 365

1.2. Main results. We provide an alternative F-norm bound on δ̂M that is
easier to compute and that differs from E (x̂M) by at most a factor less than 2. To
solve Problem (P) completely, we further show that a stable solution in the sense
of (1.2) is necessarily a backward stable solution in the sense of (1.3). Hence, any
stable least squares algorithm is necessarily backward stable, and a numerical solution
x̂M is a stable solution in the sense of (1.2) if and only if E (x̂M) is small.

The aforementioned alternative F-norm bound on δ̂M requires O(mn2) floating
point operations to compute. For m � n, this cost is much less than the O(m3)
operations required for the SVD of [M η C] in Theorem 1.1. This bound was used
extensively in our numerical comparison of various fast methods for solving structured
linear least squares problems (see Gu [9]). On the other hand, we note that our new
bound still costs much more than O(mn) operations, hence it may not be suitable for
run-time stability verification of fast methods for the linear least squares problem.

2. Alternative backward perturbation bounds. In this section, we express
our results in terms of the SVD of M . While it is possible to express these results
without the SVD, the resulting expressions are more complicated.

Let M = Q (
D
0

) WT be the SVD of M , where Q ∈ Rm×m and W ∈ Rn×n are

orthogonal, and D ∈ Rn×n is a non-negative diagonal. Rewrite

h = Q

(
h1

h2

)
and r = h−M x̂M = Q

(
r1

r2

)
,

where h1 and r1 = h1 − D (WT x̂M) ∈ Rn and h2 = r2. It is well known that
γ := ‖r2‖2 = ‖h−M xM‖2, h1 = D (WT xM) and that r1 = 0 if x̂M = xM .

Theorem 2.1. Let η = (‖r‖2)/‖x̂M‖2 and define1

σ̃ =

√
rT1 D2 (D2 + η2I)

−1
r1

γ2/η2 + η2 rT1 (D2 + η2I)
−2

r1

and Ẽ (x̂M) =

‖D r1‖2
‖r‖2 if x̂M = 0,

min (η, σ̃) otherwise.

Then

1 ≤ Ẽ (x̂M)

E (x̂M)
≤
√

5 + 1

2
.

Proof. Theorem 2.1 obviously holds for x̂M = 0. Hence in the following we assume
that x̂M 6= 0. By definition, σmin ([M η C]) is the smallest non-negative σ such that

f(σ) := det
(

([M η C]) ([M η C])
T − σ2I

)
= 0.

Replacing M by its singular value decomposition and simplifying,

f(σ) = det
(
M MT + η C2 − σ2I

)
= det

(
M MT + (η2 − σ2) I − η2 r rT

‖r‖22

)
1It is easy to check that Ẽ (x̂) is continuous at x̂ = 0:

Ẽ (0) = lim
x̂→0
Ẽ (x̂) =

‖MT h‖2
‖h‖2

.

366 MING GU

=
(
η2 − σ2

)m−n−1
det

((
D2 0
0 0

)
+ (η2 − σ2) I − η2

‖r‖22

(
r1

γ

) (
rT1 γ

))
=
(
η2 − σ2

)m−n
det
(
D2 + (η2 − σ2) I

)
·
(

1− η2 γ2

‖r‖22 (η2 − σ2)
− η2

‖r‖22
rT1
(
D2 + (η2 − σ2) I

)−1
r1

)
.

Hence, σmin ([M η C]) is the smallest non-negative σ < η such that

1− η2 γ2

‖r‖22 (η2 − σ2)
− η2

‖r‖22
rT1
(
D2 + (η2 − σ2) I

)−1
r1 = 0.(2.1)

This equation can be rewritten as

1− η2 γ2

‖r‖22 η2
− η2

‖r‖22
rT1
(
D2 + η2 I

)−1
r1

=
η2 γ2

‖r‖22 (η2 − σ2)
− η2 γ2

‖r‖22 η2
+

η2

‖r‖22
rT1
(
D2 + (η2 − σ2) I

)−1
r1

− η2

‖r‖22
rT1
(
D2 + η2 I

)−1
r1.

Since ‖r‖22 = ‖r1‖22 + γ2, the above equation can be simplified, after some algebra,
into

σ2 =
rT1 D2

(
D2 + η2I

)−1
r1

γ2/(η2 − σ2) + η2 rT1 (D2 + (η2 − σ2)I)
−1

(D2 + η2I)
−1

r1

.(2.2)

We note that the expression on the right-hand side is σ̃2 if σ = 0. Since γ2/η2 ≤
γ2/(η2 − σ2) and

rT1
(
D2 + η2I

)−2
r1 ≤ rT1

(
D2 + (η2 − σ2)I

)−1 (
D2 + η2I

)−1
r1

for σ ≤ η, (2.2) implies that σmin ([M η C]) ≤ σ̃. It follows that E (x̂M) ≤ Ẽ (x̂M).
We now assume that σ̃ > η. In this case we have Ẽ (x̂M) = η. We claim that

σmin ([M η C]) ≥ β η, where β =

√
5− 1

2
.(2.3)

We show this by contradiction. Assume that this was false, so that σmin ([M η C]) <
β η. We note that γ2/η2 > (1− β2) γ2/(η2 − σ2) and that

rT1
(
D2 + η2I

)−2
r1 > (1− β2) rT1

(
D2 + (η2 − σ2)I

)−1 (
D2 + η2I

)−1
r1

for σ < β η. Equation (2.2) now implies that

σ̃ <
σmin ([M η C])

1− β2
<

β η

1− β2
= η,

which is a contradiction. Hence, relation (2.3) is indeed valid and we have

β η ≤ E (x̂M) ≤ η.

PERTURBATION BOUNDS FOR LEAST SQUARES PROBLEMS 367

So Theorem 2.1 holds in this case.
We further consider the case where σ̃ ≤ η. In this case we have Ẽ (x̂M) = σ̃ and

β := σmin ([M η C]) /σ̃ ≤ 1. Similar to the above we have

σ̃ ≤ σmin ([M η C])

1− β2
≤ σ̃ β

1− β2
,

which simplifies to

1− β2 ≤ β or β ≥
√

5− 1

2
.

It follows that
√

5− 1

2
σ̃ ≤ E (x̂M) ≤ σ̃.

So Theorem 2.1 holds in this case as well.
Hence Ẽ (x̂M) differs from the smallest possible backward perturbation E (x̂M) by

a factor of at most (
√

5 + 1)/2 < 2. To compute Ẽ (x̂M), we only need to compute
D (the singular values of M) and QT r, and we do not need to compute Q and
W explicitly. This computation can be done, for example, by using the subroutines
xGESVD in LAPACK [1]. Since the matrix M is m-by-n, this computation requires
O(mn2) floating point operations, which is much cheaper than O(m3) for m� n.

Equation (2.1) provides an efficient way to compute σmin ([M η C]) (and hence
E (x̂M)) as well. In fact, (2.1) is similar to the secular equations solved in Gu and
Eisenstat [10] and Li [13], and their methods can be easily modified to compute
σmin ([M η C]). Both computing the SVD of M and solving (2.1) can be done
reliably.

Recently, Karlson and Waldén [12] discussed a method for estimating E (x̂M) that
requires O(mn) floating point operations. While their method is more efficient than
ours, it can be unreliable in that its estimates can differ from E (x̂M) by an arbitrary
factor [12]. In contrast, our estimate Ẽ (x̂M) is guaranteed to differ from E (x̂M) by a
factor less than 2.

In the rest of this section we analyze E (x̂M) for several special cases.
Corollary 2.2. Assume that ‖r1‖2 ≤ α γ. Define

σ̃1 =

√
rT1 D2 (D2 + η2I)

−1
r1

‖x̂M‖2 .

Then

1√
1 + α2

≤ σ̃1

E (x̂M)
≤
√

5 + 1

2
.

Proof. Since ‖r‖22 = ‖r1‖22 + γ2 and η2 = ‖r‖22/‖x̂M‖22, the assumption implies
that

‖x̂M‖22
1 + α2

≤ γ2

η2
≤ γ2

η2
+ η2 rT1

(
D2 + η2I

)−2
r1

≤ γ2

η2
+
η2 rT1 r1

η4
=
‖r‖22
η2

= ‖x̂M‖22.

368 MING GU

We also have

σ̃1

σ̃
=

√
γ2

η2 + η2 rT1 (D2 + η2I)
−2

r1

‖x̂M‖2 .

Consequently,

1√
1 + α2

≤ σ̃1

σ̃
≤ 1.

Corollary 2.2 follows by combining the above relations with Theorem 2.1 and the fact
that σ̃1 ≤ η.

The least squares problem (1.1) has a small residual if γ = ‖h −M xM‖2 ≈ 0
and large residual otherwise; and x̂M = xM if and only if r1 = 0. Since a good
approximate solution x̂M always makes r1 small, Corollary 2.2 implies that, for large
residual problems, x̂M is a backward stable solution if and only if σ̃1 is small.

Corollary 2.3 below gives a backward perturbation bound for small residual prob-
lems.

Corollary 2.3. Assume that

‖r1‖2 ≥ α γ and η ≤ σmin(M).

Then

√
5− 1

2

√
2α2

4 + α2
η ≤ E (x̂M) ≤ η.

Proof. Let β = 2α2/(4 + α2) be a scalar. Then,

σ̃2 − β η2 =
rT1 D2

(
D2 + η2I

)−1
r1

γ2/η2 + η2 rT1 (D2 + η2I)
−2

r1

− β η2

=
rT1 D2

(
D2 + η2I

)−1
r1 − β γ2 − β η4 rT1

(
D2 + η2I

)−2
r1

γ2/η2 + η2 rT1 (D2 + η2I)
−2

r1

.

Since η ≤ σmin(M) = σmin(D), we have

rT1 D2
(
D2 + η2I

)−1
r1 ≥ ‖r1‖22

2
and η4 rT1

(
D2 + η2I

)−2
r1 ≤ ‖r1‖22

4
.

Combining these relations and simplifying,

σ̃2 − β η2 ≥ ‖r1‖22/2− β γ2 − β ‖r1‖22/4
γ2/η2 + η2 rT1 (D2 + η2I)

−2
r1

≥ α2 γ2/2− β γ2 − β α2 γ2/4

γ2/η2 + η2 rT1 (D2 + η2I)
−2

r1

= 0.

It follows that σ̃2 ≥ β η2 and that√
β η ≤ Ẽ (x̂M) ≤ η.

Corollary 2.3 follows by combining this relation with Theorem 2.1.

PERTURBATION BOUNDS FOR LEAST SQUARES PROBLEMS 369

3. A stable solution is a backward stable solution. In this section we solve
Problem (P) by showing that a stable solution in the sense of (1.2) is a backward stable
solution in the sense of (1.3). Hence a numerical solution x̂M is a stable solution in
the sense of (1.2) if and only if E (x̂M) is small. Theorem 3.1 below, together with
Theorem 2.1, formed the basis of our study on the numerical accuracy of the various
methods for solving structured linear least squares problems (see Gu [9]).

To prove Theorem 3.1 below, we need a certain amount of notation. In (1.2), let

the SVD of M + δM be Q̂ (
D̂
0

) ŴT . Define δ̂xM = ŴT δx̂M ,

Q̂T h =

(
ĥ1

ĥ2

)
, δĥ = Q̂T δh =

(
δĥ1

δĥ2

)
, and r̂ = h− (M + δM) x̂M ,

where ĥ1 and δĥ1 ∈ Rn and ĥ2 and δĥ2 ∈ R(m−n). We also define

η̂ =
‖r̂‖2
‖x̂M‖2 and r̂1 = D̂ δ̂xM − δĥ1.

We adopt the convention that ‖δx̂M‖2/‖x̂M‖2 = 0 if δx̂M = 0 and x̂M = 0.
Theorem 3.1. In (1.2) let δM , δb, and δx̂M be small perturbations of M , b, and

x̂M , respectively. Then there exists a matrix δ̂M ∈ Rm×n satisfying (1.3) with

‖δ̂M‖2
‖M‖2 ≤

‖δM‖2
‖M‖2 + 2

(
1 +
‖δM‖2
‖M‖2

) (‖δx̂M‖2
‖x̂M‖2 +

‖δh‖2
‖h‖2

)/(
1− 2

‖δh‖2
‖h‖2

)
.

Proof. We prove this theorem by applying backward perturbation bounds in
section 2 to M + δM . We note that

(h+ δh)− (M + δM) (x̂M + δx̂M) = Q̂

(
0

ĥ2 + δĥ2

)
and that

(M + δM) δx̂M − δh = Q̂

(
D̂ δ̂xM − δĥ1

−δĥ2

)
,

where we have used the fact that x̂M + δx̂M is the exact solution to the perturbed
least squares problem (1.2). Hence, we can rewrite r̂ as

r̂ = ((h+ δh)− (M + δM) (x̂M + δx̂M)) + ((M + δM) δx̂M − δh)

= Q̂

(
D̂ δ̂xM − δĥ1

ĥ2

)
.

In the following we derive an upper bound on E (x̂M) with M + δM as the coefficient
matrix in the least squares problem.

We first assume that ‖ĥ2‖2 ≤ ‖r̂1‖2. By Theorem 2.1,

E (x̂M) ≤ η̂ =
‖r̂‖2
‖x̂M‖2 ≤

√
2
‖r̂1‖2
‖x̂M‖2 ≤

√
2
‖D̂ δ̂xM‖2 + ‖δĥ1‖2

‖x̂M‖2

≤
√

2

(
‖D̂‖2 ‖δ̂xM‖2‖x̂M‖2 +

‖δĥ1‖2
‖x̂M‖2

)
.(3.1)

370 MING GU

Since x̂M + δx̂M is the exact solution to (1.2), it follows that

D̂ WT (x̂M + δx̂M) = ĥ1 + δĥ1,

and hence

‖ĥ1 + δĥ1‖2 ≤ ‖D̂‖2 ‖x̂M + δx̂M‖2 ≤ ‖D̂‖2 ‖x̂M‖2
(

1 +
‖δx̂M‖2
‖x̂M‖2

)
.(3.2)

On the other hand,

Q̂T h =

(
ĥ1

ĥ2

)
=

(
ĥ1 + δĥ1

0

)
+

(−δĥ1

ĥ2

)
.

Taking 2-norms on both sides, and noting that ‖δĥ1‖2 ≤ ‖δh‖2,

‖h‖2 ≤
∥∥∥ĥ1 + δĥ1

∥∥∥
2

+
∥∥∥δĥ1

∥∥∥
2

+
∥∥∥ĥ2

∥∥∥
2
≤
∥∥∥ĥ1 + δĥ1

∥∥∥
2

+ ‖δh‖2 + ‖r̂1‖2
=
∥∥∥ĥ1 + δĥ1

∥∥∥
2

+ ‖δh‖2 +
∥∥∥D̂ δ̂xM − δĥ1

∥∥∥
2
.

Plugging in the 2-norm upper bound (3.2) and simplifying, we get

‖h‖2
‖x̂M‖2 ≤ ‖D̂‖2

(
1 + 2

‖δx̂M‖2
‖x̂M‖2

)/(
1− 2

‖δh‖2
‖h‖2

)
.

In (3.1) we have

E (x̂M) ≤
√

2

(
‖D̂‖2 ‖δ̂xM‖2‖x̂M‖2 +

‖δĥ1‖2
‖h‖2

‖h‖2
‖x̂M‖2

)

≤
√

2

(
‖D̂‖2 ‖δ̂xM‖2‖x̂M‖2 +

‖δh‖2
‖h‖2

‖h‖2
‖x̂M‖2

)
.

Plugging in the upper bound on (‖h‖2)/‖x̂M‖2 and simplifying, we obtain

E (x̂M) ≤
√

2 (‖M‖2 + ‖δM‖2)

(‖δx̂M‖2
‖x̂M‖2 +

‖δh‖2
‖h‖2

)/(
1− 2

‖δh‖2
‖h‖2

)
≤ 2 (‖M‖2 + ‖δM‖2)

(‖δx̂M‖2
‖x̂M‖2 +

‖δh‖2
‖h‖2

)/(
1− 2

‖δh‖2
‖h‖2

)
,(3.3)

where we have used the facts that

‖D̂‖2 = ‖M + δM‖2 ≤ ‖M‖2 + ‖δM‖2 and ‖δ̂xM‖2 = ‖δx̂M‖2.

Now we assume that ‖ĥ2‖2 ≥ ‖r̂1‖2. By Corollary 2.2 we have E (x̂M) ≤ √2 σ̃1,
where

σ̃1 =

√
r̂T1 D̂2

(
D̂2 + η̂2I

)−1

r̂1

‖x̂M‖2 .

PERTURBATION BOUNDS FOR LEAST SQUARES PROBLEMS 371

Since r̂1 = D̂ δ̂xM − δĥ1, it follows that

σ̃1 ≤

√(
D̂ δ̂xM

)T
D̂2

(
D̂2 + η̂2I

)−1 (
D̂ δ̂xM

)
‖x̂M‖2 +

√
δĥT1 D̂2

(
D̂2 + η̂2I

)−1

δĥ1

‖x̂M‖2

≤ ‖D̂‖2 ‖δ̂xM‖2‖x̂M‖2 +

√
δĥT1 D̂2

(
D̂2 + η̂2I

)−1

δĥ1

‖x̂M‖2 .

Since ‖r̂‖2 = η̂ ‖x̂M‖2, it follows from the above relation that

σ̃1 ≤ ‖D̂‖2 ‖δx̂M‖2‖x̂M‖2 +
‖δĥ1‖2
‖x̂M‖2 and σ̃1 ≤ ‖D̂‖2 ‖δx̂M‖2‖x̂M‖2 +

‖D δĥ1‖2
‖r̂‖2 .

Combining these with relation (3.2) we obtain

σ̃1 ≤ ‖D̂‖2 ‖δx̂M‖2‖x̂M‖2 + min

(
‖δh‖2

‖ĥ1 + δĥ1‖2
,
‖δh‖2
‖r̂‖2

)
‖D̂‖2

(
1 +
‖δx̂M‖2
‖x̂M‖2

)
= ‖D̂‖2 ‖δx̂M‖2‖x̂M‖2 +

‖δh‖2
max

(
‖ĥ1 + δĥ1‖2, ‖r̂‖2

) ‖D̂‖2 (1 +
‖δx̂M‖2
‖x̂M‖2

)
.

Since ‖r̂‖2 ≥ ‖ĥ2‖2, it follows that

max
(
‖ĥ1 + δĥ1‖2, ‖r̂‖2

)
≥ max

(
‖ĥ1 + δĥ1‖2, ‖ĥ2‖2

)
≥ 1√

2

√
‖ĥ1 + δĥ1‖22 + ‖ĥ2‖22

=
1√
2

∥∥∥∥(ĥ1 + δĥ1

ĥ2

)∥∥∥∥
2

≥ 1√
2

(‖h‖2 − ‖δh‖2).

Consequently,

σ̃1 ≤ ‖D̂‖2 ‖δx̂M‖2‖x̂M‖2 +

√
2 ‖δh‖2

‖h‖2 − ‖δh‖2 ‖D̂‖2
(

1 +
‖δx̂M‖2
‖x̂M‖2

)
.

From this relation we get

E (x̂M) ≤ 2 (‖M‖2 + ‖δM‖2)

(‖δx̂M‖2
‖x̂M‖2 +

‖δh‖2
‖h‖2

)/(
1− ‖δh‖2‖h‖2

)
≤ 2 (‖M‖2 + ‖δM‖2)

(‖δx̂M‖2
‖x̂M‖2 +

‖δh‖2
‖h‖2

)/(
1− 2

‖δh‖2
‖h‖2

)
,

which is identical to (3.3).

In both cases, there exists a matrix δ̂M1 ∈ Rm×n with ‖δ̂M1‖F = E (x̂M) such
that

‖(M + δM + δ̂M1) x̂M − h‖2 = min
x
‖(M + δM + δ̂M1) x− h‖2.

Now we define δ̂M = δM + δ̂M1. It follows that

‖(M + δ̂M) x̂M − h‖2 = min
x
‖(M + δ̂M) x− h‖2 and ‖δ̂M‖2 ≤ ‖δM‖2 + E (x̂M) .

372 MING GU

The theorem follows immediately by plugging the upper bound (3.3) into this re-
lation.

Acknowledgments. The author is grateful to the anonymous referees for many
suggestions that improved the presentation of the paper and for pointing out the
paper [12] to him.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, 2nd ed., SIAM, Philadelphia, PA, 1994.

[2] A. Bojanczyk and R. P. Brent, Parallel solution of certain Toeplitz least-squares problems,
Linear Algebra Appl., 77 (1986), pp. 43–60.

[3] A. W. Bojanczyk, R. P. Brent, and F. de Hoog, QR factorization of Toeplitz matrices,
Numer. Math., 49 (1986), pp. 81–94.

[4] R. P. Brent, Parallel algorithms for Toeplitz systems, in Numerical Linear Algebra, Digital
Signal Processing and Parallel Algorithms, G. H. Golub and P. Van Dooren, eds., Springer,
1990.

[5] P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transforma-
tions, Numer. Math., 7 (1965), pp. 269–276.

[6] J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and triangular fac-
torization, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 899–913.

[7] G. Cybenko, A general orthorgonalization technique with applications to time series analysis
and signal processing, Math. Comp., 40 (1983), pp. 323–336.

[8] G. Cybenko, Fast Toeplitz orthorgonalization using inner products, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. 734–740.

[9] M. Gu, New fast algorithms for structured linear least squares problems, SIAM J. Matrix Anal.
Appl., 20 (1998), pp. 244–269.

[10] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 79–92.

[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[12] R. Karlson and B. Waldén, Practical estimation of optimal backward perturbation bounds

for the linear least square problem, BIT, 1996, submitted.
[13] R.-C. Li, Solving Secular Equations Stably and Efficiently, manuscript, October 1992.
[14] F. T. Luk and S. Qiao, A fast but unstable orthogonal triangularization technique for Toeplitz

matrices, Linear Algebra Appl., 88/89 (1987), pp. 495–506.
[15] J. G. Nagy, Fast inverse QR factorization for Toeplitz matrices, SIAM J. Sci. Statist. Comput.,

14 (1993), pp. 1174–1183.
[16] H. Park and L. Eldén, Stability Analysis and Fast Algorithms for Triangularization of

Toeplitz Matrices, Tech. report Lith-Mat-R-95-16, Department of Mathematics, Linköping
University, Sweden, May 1995.

[17] S. Qiao, Hybrid algorithm for fast Toeplitz orthogonalization, Numer. Math., 53 (1988),
pp. 351–366.

[18] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
[19] D. R. Sweet, Fast Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1–21.
[20] B. Waldén, R. Karlson, and J.-G. Sun, Optimal backward perturbation bounds for the linear

least square problem, Numer. Linear Alg. Appl., 2 (1995), pp. 271–286.

ACCURATELY COUNTING SINGULAR VALUES OF BIDIAGONAL
MATRICES AND EIGENVALUES OF SKEW-SYMMETRIC

TRIDIAGONAL MATRICES∗

K. V. FERNANDO†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 373–399

This paper is dedicated to Gene H. Golub and William Kahan.

Abstract. We have developed algorithms to count singular values of a real bidiagonal matrix
which are greater than a specified value. This requires the transformation of the singular value prob-
lem to an equivalent symmetric eigenvalue problem. The counting of singular values is paramount
in the design of bisection- and multisection-type algorithms for computing singular values on serial
and parallel machines.

The algorithms are based on the eigenvalues of BBt, BtB, and the 2n × 2n zero–diagonal
tridiagonal matrix which is permutationally equivalent to the Jordan–Wielandt form [0

Bt
B
0], where

B is an n × n bidiagonal matrix. The two product matrices, which do not have to be formed
explicitly, lead to the progressive and stationary qd algorithms of Rutishauser. The algorithm based
on the zero–diagonal matrix, which we have named the Golub–Kahan form, may be considered as a
combination of both the progressive and stationary qd algorithms.

We study important properties such as the backward error analysis, the monotonicity of the
inertia count and the scaling of data which guarantee the accuracy and integrity of these algorithms.
For high relative accuracy of tiny singular values, the algorithm based on the Golub–Kahan form is
the best choice. However, if such accuracy is not required or requested, the differential progressive
and differential stationary qd algorithms with certain modifications are adequate and more efficient.

We also show how to transform the real skew-symmetric tridiagonal eigenvalue problem to a real
bidiagonal singular value problem. Thus, the eigenvalues of a skew-symmetric matrix can be readily
counted using algorithms developed here for bidiagonal matrices.

Key words. bisection, multisection, singular values, eigenvalues, monotonic arithmetic, error
analysis, parallel algorithms, qd algorithms, bidiagonal matrices, symmetric tridiagonal matrices,
skew-symmetric tridiagonal matrices

AMS subject classifications. 15A18, 34L15, 65F15

PII. S089547989631175X

1. Introduction. We have developed algorithms to count the number of singular
values of a bidiagonal matrix which are greater (or less) than a specified value. This
requires the transformation of the singular value problem to an equivalent symmetric
eigenvalue problem. The counting of singular values (or equivalent eigenvalues) is
paramount in the design of bisection- and multisection-type algorithms for computing
singular values. The algorithms are embarrassingly parallel and, hence, suitable for
multiprocessor environments.

Bisection is one of the most powerful methods available for computing eigenvalues
of a real symmetric matrix. It has been in use on serial machines since the discovery by
Givens in the 1950s [11] and the bisection/multisection approach is becoming the al-
gorithm of choice on parallel machines. Early implementations of bisection algorithms
were based on the Sturm counts obtained by computing the principal minors of the
shifted tridiagonal symmetric matrix T − τI where T is a real symmetric tridiagonal
matrix and τ is the shift. Chapter 5 of Wilkinson [28] and section 8.4.1 of Golub and

∗Received by the editors November 8, 1996; accepted for publication (in revised form) by A.
Edelman November 12, 1997; published electronically October 20, 1998. The preliminary work was
carried out while the author was visiting Professor James Demmel and his (Sca)LAPACK group
at the Electrical Engineering and Computer Science Department of the University of California at
Berkeley. The work of this author was partially supported by NSF grant ASC-9005933 and ONR
contract N000014-90-J-1372.

http://www.siam.org/journals/simax/20-2/31175.html
†NAG Ltd., Wilkinson House, Jordan Hill, Oxford OX2 8DR, UK (vince@nag.co.uk).

373

374 K. V. FERNANDO

Van Loan [14] give further details. However, the computation of the principal minors
is susceptible to overflow/underflow and other numerical problems. More recent im-
plementations depend upon the application of Sylvester–Jacobi inertia theorem1 to
the LDL t factorization of the shifted matrix. There are inexpensive ways to overcome
overflow/underflow and other numerical problems in the factorization method as indi-
cated by Barth, Martin, and Wilkinson [3] and unequivocally by Kahan [17]. Kahan
[18] has also shown that IEEE arithmetic [15] provides a natural framework for the
implementation of the continued fractions associated with these algorithms. Demmel
and Gragg [5] have extended the classes of matrices which are easily amenable to
bisection-type algorithms. Problems associated with bisection on parallel computers
have recently been studied by Demmel, Dhillon, and Ren [7].

In this report, we study the counting mechanism to locate singular values of an
n × n real bidiagonal matrix B. This is achieved by transforming the bidiagonal
singular value problem to an equivalent symmetric tridiagonal eigenvalue problem. In
fact, there are at least three principal ways to count singular values of a bidiagonal
matrix. The first technique considers the eigenvalues of the Jordan–Wielandt form of
B [

0 B
Bt 0

]
,(1)

which are given by the singular values and the negated singular values of B. Alter-
natively, it is possible to consider the eigenvalues of BBt or BtB, which are given
by the squared singular values of B. The last two approaches lead to many variants
of the qd algorithms of Rutishauser [10], [21], [22]. Fortunately, it is not required to
form the numerically undesired matrix products BBt and BtB explicitly to count the
eigenvalues.

We also show that eigenvalues of a real skew-symmetric tridiagonal matrix can
be counted by transforming that problem to an equivalent bidiagonal singular value
problem. This derived bidiagonal matrix is (approximately) half the size of the original
skew-symmetric tridiagonal matrix and, hence, this is a rather economical way to
count eigenvalues of a skew-symmetric tridiagonal matrix. It is well known that
singular values of bidiagonal matrices can be computed to high relative precision
if a suitable algorithm is used [6], [2], [10]. Because of this relationship between
skew-symmetric tridiagonal and bidiagonal matrices, the high relative accuracy is
also inherited by skew-symmetric tridiagonal matrices.

This report is organized as follows. In section 2, the notation is developed and
the transformations between the bidiagonal singular value problem and equivalent
eigenproblems are studied. The formal connection between the skew-symmetric eigen-
problem and the bidiagonal singular value problem is also discussed.

In section 3, the three main algorithms for computing singular values are pre-
sented. The first and the second are the stationary qd algorithm and the progressive
qd algorithm of Rutishauser. The third is based on a 2n × 2n zero–diagonal tridi-
agonal matrix which we have named the Golub–Kahan form to honor their discovery
and the use of this matrix in [13]. This matrix is permutationally equivalent to (1).
The qd algorithms are less expensive than the algorithm for the Golub–Kahan form
as there are only half the number of divisions, (which is the most expensive out of
the four basic arithmetic operations). The connections between these algorithms are
also highlighted. In particular, the continued fraction expansion associated with the

1Kahan [17] attributes this LDL t factorization approach to Boris Davison, 1959.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 375

Golub–Kahan form can be separated into odd and even continued fractions.2 The
differential stationary algorithm represents the odd branch while the differential pro-
gressive algorithm matches the even branch.

Section 4 studies effects due to finite precision. The Rutishauser’s differential
forms of the two qd algorithms and the algorithm for the Golub–Kahan form are
conformable with backward error analysis with relative perturbations on the elements.
We also study a modified form of differential algorithms which are backward stable
with absolute perturbations. We are unaware of any singular value or eigenvalue
algorithms, which furnish more accurate singular values than the algorithms we have
analyzed in this section. In particular, the algorithm developed for the Golub–Kahan
form provides the highest accuracy.

Section 5 is devoted to the analysis of the monotonicity of the computed inertia
count. In exact arithmetic, the number of negative eigenvalues of a real symmet-
ric matrix never decreases monotonically with the shift. However, in finite precision
arithmetic, the monotonicity of the count can break down. Violation of monotonic-
ity can lead to spurious and missing singular values. There are ways to overcome
this problem on serial computers as it was for the routine xSTEBZ in LAPACK
[1]. However, it is rather difficult to cope with nonmonotonic algorithms on parallel
computers. Following the work of Kahan [17], we show that the algorithm for the
Golub–Kahan form retains the monotonicity of the count if monotonic (e.g., IEEE)
arithmetic is used. Unfortunately, the Rutishauser’s differential qd algorithms do not
possess this property although the differential qd algorithms with some modifications
do give monotonic counts.

Finally, in section 6, we show how to scale bidiagonal matrices to maximize the
high relative accuracy of the algorithms. The qd algorithms are more difficult to scale
than the algorithm for the Golub–Kahan form.

The Rutishauser’s differential qd algorithms have a backward error analysis with
relative error terms but do not have the monotonicity property, whereas the modified
differential qd algorithms have the monotonicity property but relative accuracy for
small singular values is not present. However, the algorithm for the Golub–Kahan
form has a backward error analysis in a relative sense and the monotonicity property
as well. Furthermore, the Golub–Kahan form is easy to scale. Thus the algorithm
based on the Golub–Kahan form is the overall winner if the accuracy of the com-
puted singular values is paramount. However, if the cost (dominated by the division
operation) is more important than the accuracy of the tiny singular values, then the
differential qd algorithms are recommended.

Table 1 gives a summary of our analysis. The stationary qd (sqd), progressive
qd (pqd), differential stationary (dsqd), and differential progressive (dpqd) are the
four main qd algorithms of Rutishauser which were originally designed for computing
eigenvalues of tridiagonal matrices. The sqd and pqd probably give eigenvalues with
absolute accuracy but no error analyses are provided in this paper. The four classical
qd algorithms and the two extensions described in this table are defined in the relevant
sections.

In our opinion, the algorithm associated with the Golub–Kahan form is the pri-
mary algorithm for computing singular values of a bidiagonal matrix. The odd/even
decomposition of the associated continued fraction gives the differential stationary
and progressive qd algorithms. Algebraic manipulations to cut down the cost of com-
puting lead to the nondifferential qd algorithms and the modified qd algorithms. This

2See Wall [26], Lorentzen and Waadeland [19] for details of the odd/even decomposition of a
continued fraction.

376 K. V. FERNANDO

Table 1
The main results.

Algorithm Monotonicity Accuracy Divisions Loop count Prefix
sqd yes absolute ? n− 1 n− 1 s = stationary
pqd yes absolute ? n− 1 n− 1 p = progressive

dsqd ? relative n− 1 n− 1 d = differential
dpqd ? relative n− 1 n− 1

mdsqd yes absolute n− 1 n− 1 m = modified
mdpqd yes absolute n− 1 n− 1

for G-K yes relative 2n− 1 2n− 1 Golub–Kahan form

hierarchal classification is illustrated in Table 2 where B is taken as an upper bidiag-
onal matrix. However, it should be noted that this classification does not represent
the historical order of discovery or development.

Table 2
Classification of algorithms.

Primary Secondary Tertiary Continued Matrix
fraction

for G-K G-K form of B

dsqd odd BtB

sqd odd BtB

mdsqd odd BtB

dpqd even BBt

pqd even BBt

mdpqd even BBt

Recently, Fernando [9], [8] developed new algorithms to compute eigenvectors of
a tridiagonal matrix by solving a problem posed by Wilkinson. By using the Golub–
Kahan form of a bidiagonal matrix, the algorithms in [9], [8] can be used to obtain
singular vectors of a bidiagonal matrix. Similarly, the qd algorithms, which are derived
from the Golub–Kahan form, can be extended to compute singular vectors. This topic
is studied elsewhere.

2. Preliminaries.

2.1. Notation. Uppercase Roman letters denote matrices while lowercase Ro-
man and Greek letters denote scalars. The singular values of an n× n real matrix C
are arranged in monotone decreasing order and denoted by σ1, σ2, . . . , σn; their union
is σ[C]. The matrix Ct indicates the transpose of C.

We shall be concerned mainly with bidiagonal matrices and we take them to be
upper bidiagonal. The diagonal elements of the bidiagonal matrix B are denoted by
ai and the off-diagonals by bi:

B =

a1 b1

a2 b2
. .

. .
an−1 bn−1

an

 .

We often express the matrix B in terms of the qd variables qi and ei where qi = a2
i ,

i = 1, . . . , n and ei = b2i , i = 1, . . . , n− 1. For notational convenience we assume that

SINGULAR VALUES AND EIGENVALUES OF MATRICES 377

b0 = bn = 0, e0 = en = 0. Without loss of generality, we assume that none of the
off-diagonal elements bi are zero; otherwise, the matrix B splits into two submatrices.

2.2. Inertia. We make frequent references to the LDL t factorization of a shifted
symmetric tridiagonal matrix T − τI as the product of a lower bidiagonal matrix L, a
diagonal matrix D, and the transpose of L where τ is a real scalar value and I is the
identity matrix. The factors are unique if the factorization exists. We use ν to denote
the number of negative elements of D, which according to the Sylvester–Jacobi inertia
theorem, gives the number of negative eigenvalues of T − τI.

2.3. Monotonicity of the inertia count. Let τ1 and τ2 be two shifts such
that τ2 > τ1. In exact arithmetic, the outputs given by any reliable algorithm for
computation of inertia should satisfy ν(τ2) ≥ ν(τ1). However, if the monotonicity
property is not present then a routine could indicate that ν(τ2) < ν(τ1), which would
lead to the inconsistent conclusion that there are a negative number of eigenvalues
(equal to ν(τ2)−ν(τ1)) in the half-open interval [τ1, τ2). Demmel, Dhillon, and Ren [7]
have designed a 2×2 matrix example to show the nonmonotonicity of the bisect routine
in EISPACK [23]. The highly efficient parallel-prefix bisection algorithms of Mathias
[20] also suffer from nonmonotonicity. The well-known technical report by Kahan
[17], is a prerequisite for researchers who are seriously interested in monotonicity and
other arithmetic issues in bisection algorithms and LDL t factorization.

2.4. Characterization of singular values via eigenvalues. There are many
ways to convert a singular value problem to an equivalent eigenvalue problem as
indicated in section 8.3 of Golub and Van Loan [14]. It is well known that the
eigenvalues of CtC are equal to the eigenvalues of CCt and that the eigenvalues are
the squared singular values of the real square matrix C, an observation which dates
back to Beltrami [4],

λi[C
tC] = λi[CC

t] = σ2
i [C], i = 1, . . . n.

The second approach, which was first exploited by Jordan [16], is to define a
2n× 2n symmetric matrix,

A =

[
0 C
Ct 0

]
.

The eigenvalues of A are then given by the union of the singular values of C and the
negated singular values of C, λ[A] = {σ[C]} ∪ {−σ[C]} as presented in Theorem 4.2
of Stewart and Sun [25]. For historical details, refer to Stewart [24].

If C is bidiagonal (that is, C = B), then Golub and Kahan discovered that
A can be condensed to a tridiagonal matrix with zero diagonal entries by using a
permutational similarity transformation equivalent to a perfect shuffle. In recognition
of this seminal work [13], we call this tridiagonal matrix, which we denote by T0, the
Golub–Kahan form. We identify the related skew-symmetric form by S0:

T0 =

0 a1

a1 0 b1
b1 0 a2

a2 0 .
. 0 .

. 0 an
an 0

, S0 =

0 a1

−a1 0 b1
−b1 0 a2

−a2 0 .
. 0 .

. 0 an
−an 0

.

378 K. V. FERNANDO

The skew-symmetric form S0 is less well known than the symmetric form T0. However,
Ward and Gray [27] proposed an algorithm for computing the eigenvalues of skew-
symmetric forms S0, which may be considered as an analogue of the Golub algorithm
[12] for computing eigenvalues of the symmetric form.

2.5. Eigenvalues of skew-symmetric tridiagonal matrices. It is known [27]
that eigenvalues of a 2n× 2n skew-symmetric matrix can be determined by comput-
ing the singular values of an n× n matrix. If the dimension n of the skew-symmetric
matrix is odd, we pad it with a zero row and a column to make it even and, hence,
our approach applies to any general real skew-symmetric matrix. Note that any real
skew-symmetric matrix can be reduced to tridiagonal form using orthogonal similar-
ity transformations. The basis for our algorithm for computing eigenvalues of S0 is
contained in the following theorem, which is easy to prove.

Theorem 2.1. The eigenvalues of the complex Hermitian form
√−1 S0 are given

by {σi[B]} ∪ {−σi[B]}.
Remark. Thus, by computing the singular values of the equivalent real bidiago-

nal matrix B of the associated complex Hermitian form, the eigenvalues of a skew-
symmetric matrix can be determined. Since the algorithms for computing eigenvalues
of S0 are identical to that of computing T0, we do not make any further comments
about skew-symmetric tridiagonal matrices.

3. The algorithms.

3.1. Inertia of BtB − τI via the sqd algorithm. We study the inertia of
the shifted symmetric tridiagonal matrix BtB − τI where τ is an eigenvalue shift.
The inertia of this matrix BtB − τI could be determined by knowing the signs of
the diagonal pivot matrix D(τ) = diag (q̃1, q̃2, . . . , q̃n) of the LDL t factorization of
BtB − τI. It is easy to establish that Gaussian elimination (without pivoting) gives
the following algorithm for q̃i(τ):

q̃i = αi − βi−1

q̃i−1
− τ for i = 1, . . . , n,(2)

where the diagonal elements αi and the off-diagonal elements
√
βi of the symmetric

tridiagonal matrix BtB are given by

αi = a2
i + b2i−1 = qi + ei−1 for i = 1, . . . , n,

βi = a2
i b

2
i = qiei for i = 1, . . . , n− 1

with β0 = 0. Note that the LDL t factorization exists if q̃(τ) 6= 0 for i = 1, . . . , n− 1.
Readers who are familiar with qd algorithms might recognize (2) as the (nondifferen-
tial) sqd algorithm of Rutishauser [21], [22].

Following Rutishauser, we define an auxiliary variable ti as ti = qi − q̃i, then (2)
can be transformed to a recurrence for ti,

ti = τ + ei−1
ti−1

q̃i−1
for i = 2, . . . , n with t1 = τ.(3)

Once a particular ti is computed, the corresponding pivot q̃i is given by q̃i = qi − ti.
Equation (3) corresponds to the differential form of the sqd algorithm of Rutishauser.
This requires n − 1 additional multiplications compared with (2). The incentive for
this extra work is the low errors due to round-off in floating-point arithmetic as

SINGULAR VALUES AND EIGENVALUES OF MATRICES 379

demonstrated in a later section. Now we state the basic algorithm for counting the
negative eigenvalues of BtB − τI based on (3). On exit, the algorithm outputs ν(τ),
the number of eigenvalues of BtB which are less than τ .

Algorithm 1. dsqd

ν := 0

t := τ

q̃ := q1 − t
if q̃ < 0 then ν := 1

for i = 2, n

t := τ + ei−1 ∗ t/q̃
q̃ := qi − t
if q̃ < 0 then ν := ν + 1

endfor

In modern architecture, the appearance of a conditional can slow down the operations
in a pipeline. Thus, in a production version of the algorithm, the conditional q̃ < 0
should be removed from the inner loop. As an example, it is possible to replace the
conditional by ν := ν + [0.5 − sign(0.5, q̃)], where the sign function is as defined in
Fortran. However, we do not study such implementation issues in this report.

We now rearrange terms in (3) to give a marginally different qd algorithm. This
modified version has the advantage of having the monotonicity property as demon-
strated in a later section. However, by gaining monotonicity, the modified algorithm
loses out on round-off errors.

Definition 3.1 (modified differential stationary qd (mdsqd)).
The mdsqd is of the form

ti = τ + ei−1

[
qi−1

q̃i−1
− 1

]
, q̃i = qi − ti.(4)

3.2. Inertia of BBt−τI via the pqd algorithm. Instead of using the matrix
BtB − τI, it is possible to use the symmetric tridiagonal matrix BBt − τI to count
the singular values of B. As previously, Gaussian elimination (without pivoting) can
be used to obtain the diagonal pivots of the LDL t transformation of BBt − τI. In
this case we denote the pivots (which are the diagonal elements of D(τ)) as q̂i. They
can be computed using the recursion

q̂i = αi − βi−1

q̂i−1
− τ for i = 1, . . . , n,(5)

where the diagonal elements αi and the off-diagonal elements
√
βi of the symmetric

tridiagonal matrix BBt are given by

αi = a2
i + b2i = qi + ei for i = 1, . . . , n,

βi = a2
i+1b

2
i = qi+1ei for i = 1, . . . , n− 1

with β0 = 0. The LDL t factorization of BBt−τI exists if q̂i(τ) 6= 0 for i = 1, . . . , n−
1. The above recursion may be recognized as the (nondifferential) pqd algorithm of
Rutishauser, if we define an auxiliary variable si as si = q̂i − ei. Then (5) can be
rewritten as

si = si−1
qi
q̂i−1

− τ for i = 2, . . . , n with s1 = q1 − τ.(6)

380 K. V. FERNANDO

The recursion (6) requires n − 1 additional multiplications compared with (5) and
it is the differential form of the pqd algorithm of Rutishauser. This qd algorithm,3

with the given name dqds, was extensively studied by Fernando and Parlett [10].
Following Rutishauser, Fernando and Parlett used the notation di to denote si of (6).
In this report we do not use di as it can be confused with the diagonal pivots of
the LDL t factorization. Now we state the basic algorithm for counting the negative
eigenvalues of BBt−τI based on (6). On exit, Algorithm 2 outputs ν(τ), the number
of eigenvalues of BBt which are less than τ .

Algorithm 2. dpqd

ν := 0

s := q1 − τ
q̂ := q1 + e1

if q̂ < 0 then ν := 1

for i = 2, n

s := qi ∗ s/q̂ − τ
q̂ := s+ ei

if q̂ < 0 then ν := ν + 1

endfor

Instead of (6), it is possible to define a modified version to acquire the monotonicity
property.

Definition 3.2 (modified differential progressive qd (mdpqd)).
The mdpqd is of the form

si =

[
1− ei−1

q̂i−1

]
qi − τ, q̂i = si + ei.(7)

3.3. Inertia of the Golub–Kahan form T0. In this section we study the
2n×2n zero–diagonal symmetric tridiagonal matrix T0. As stated in an earlier section,
the eigenvalues of T0 are given by the singular values of B and the negated singular
values of B.

The diagonal matrix D(ρ) of the LDL t factorization of the tridiagonal matrix
T0− ρI can be obtained by Gaussian elimination (without pivoting). In this case, we
denote the pivots as di and they are given by

di = −ρ− zi−1

di−1
for i = 2, . . . , 2n with d1 = −ρ,(8)

where zi = a2
i = qi if i is odd and zi = b2i = ei if i is even with z0 = b0 = 0. The LDL t

factorization of T0 − ρI exists if di(ρ) 6= 0 for i = 1, . . . , 2n− 1. On exit, Algorithm 3
gives ν(ρ), the number of eigenvalues of T0 − ρI which are less than ρ.

Algorithm 3. Inertia of the Golub–Kahan form

ν := 0

d := −ρ
if d < 0 then ν := 1

for i = 1, 2n− 1

3Rutishauser intended this algorithm for computing eigenvalues of a tridiagonal matrix. Fernando
and Parlett “misused” it for computing accurate singular values of a bidiagonal matrix.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 381

d := −ρ− zi/d
if d < 0 then ν := ν + 1

endfor
Algorithms 1 and 2 have n fewer divisions than Algorithm 3 but n − 1 more

multiplications. Since divisions are more expensive than multiplications in modern
architecture (perhaps by a factor of six on a typical workstation), the cost is nearly
doubled in the third algorithm. The modified algorithms mdsqd and mdpqd have the
same number of divisions as the Rutishauser’s differential algorithms.

3.4. Relationships between the algorithms. Our intention is to show that
Algorithm 3 contains information given by both the dpqd algorithm and the dsqd
algorithm for nonzero ρ. In the previous section, we derived the recursion for the
Golub–Kahan form T0 as

di = −ρ− zi−1/di−1, i = 1, . . . , 2n(9)

with z0 = 0. We also recall that Z = (a2
1, b

2
1, a

2
2, . . . , b

2
n−1, a

2
n) = (q1, e1, q2, . . . , en−1, qn).

The recursion (9) can be rewritten in the form

xi = −ρ− b2i−1/yi−1, yi = −ρ− a2
i /xi, i = 1, . . . , n,

where (d1, d2, d3, . . . , d2n) = (x1, y1, x2, . . . , yn) .
Theorem 3.3. If the LDL t factorization of T0 − ρI exists for τ = ρ2 > 0 then

the recursion for the Golub–Kahan form

xi = −ρ− ei−1/yi−1, i = 2, . . . , n with x1 = −ρ,(10)

yi = −ρ− qi/xi, i = 1, . . . , n(11)

is related to the dsqd algorithm

ti = τ + ei−1ti−1/(qi−1 − ti−1) for i = 2, . . . , n with t1 = τ,(12)

and the dpqd algorithm

si = si−1qi/(si−1 + ei−1)− τ for i = 2, . . . , n with s1 = q1 − τ(13)

via the relationships ti = −xiρ and si = yiρ.
Proof. By eliminating yi−1 in (10) by substituting (11) we get

xi = −ρ+
ei−1

ρ+ qi−1/xi−1

and multiplying both sides by ρ

(ρxi) = −ρ2 +
qi−1

qi−1 + (ρxi−1)
(ρxi−1).(14)

By comparing the preceding equation with (12) and noting that ρ2 = τ we obtain the
claimed result ti = −ρxi. Similarly, it is possible to show that si = yiρ.

Remark. The algebraic manipulations in the preceding proof are equivalent to
decomposing a continued fraction expansion into its odd and even parts [19], [26].

Corollary 3.4. For nonzero ρ,

ti = τ
q̂i−1

si−1
,(15)

382 K. V. FERNANDO

-

6

-

?
Z̄ Z̆

Z Z̃

dsqd

exact

dsqd

computed

change each

qi, i 6= 1 6= n, by 1 ULP

ei by 3 ULPs

change each

q̆i, i 6= 1 6= n, by 2 ULPs

q̆1, q̆n by 1 ULP

Fig. 1. Effects of round-off in dsqd.

si = τ
q̃i
ti
.(16)

Proof. By multiplying (10) by ρ we obtain (ρxi) = −ρ2 + ei−1ρ
2/(ρyi−1). Since

ρxi = −ti, ρyi−1 = qi, and ρ2 = τ , we get ti = τ(1 + ei−1/si−1). We confirm (15) by
noting that q̂i−1 = ei−1 + si−1. A similar reasoning leads to (16).

4. Backward error analyses.

4.1. Round-off error. Our model of arithmetic is such that the floating-point
result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + ς) =
(x ◦ y)

(1 + δ)
,

where ς and δ depend on x, y, ◦, and the arithmetic unit but satisfy |ς| < ε, |δ| < ε for
a given ε that depend only on the arithmetic unit. Typically, ε is less than or equal
to the machine precision of the machine. We shall choose freely the form (ς or δ) that
suits the analysis. We omit the phrase at most in front of the number of units in the
last place held (ULPs) in our error theorems. The notation fl(.) indicates computed
values in floating-point arithmetic.

4.2. The differential stationary qd. Data for the dsqd algorithm consists
of a representable positive qd array Z = [q1, e1, . . . , qn] and a positive representable
eigenvalue shift τ . The algorithm computes intermediate quantities {ti, q̃i} and finally
ν(τ), the number of negative q̃i(τ).

Theorem 4.1. In the absence of underflow (including denormalization), overflow
or infinity, the dsqd algorithm computes a ν that is exact for a positive qd array Z̄,
where q̄i differs from qi by 1 ULP and ēi differs from ei by 3 ULPs (except that q̄1 = q1

and q̄n = qn). See Figure 1.

Proof. Let ti and q̃i denote the representable quantities computed by the dsqd
algorithm. We write down the exact relations that connect the q, e, and t quantities
and then interpret these relations so that they reveal an exact dsqd algorithm acting
on perturbed data. Let Z̆ = [q̆1, ĕ1, q̆2, ĕ2, . . . , ĕn−1, q̆n] be the output of the dsqd
algorithm in exact arithmetic with input Z̄. However, in this algorithm, ĕi is not

SINGULAR VALUES AND EIGENVALUES OF MATRICES 383

computed. Recall that for i = 1, . . . , n

ti = fl

(
τ + ei−1 ∗ ti−1

q̃i−1

)
, q̃i = fl (qi − ti) .

The ti suffer from possible errors in the three operations /, ∗, and +, which we choose
to account for in the following way. For i = 1, . . . , n

ti =

[
τ + ei−1(1 + ε∗)(1 + ε/)ti−1/q̃i−1

]
(1 + εi+)

.(17)

However, t1 = τ as no arithmetic operation takes place and, hence, ε1+ = 0. We have
not bothered to put the superscript i on ε∗ or ε/ because they play a straightforward
role in the analysis. Similarly, we write

q̃i =
(qi − ti)
(1 + εi−)

.(18)

The constraint that drives our choices is that τ should be unperturbed each time it
appears. Consequently, we invoke the (unrepresentable) quantities

t̄i = ti(1 + εi+)(19)

instead of the ti themselves. However, t̄1 = t1, ε
1
+ = 0. Now we can write down an

exact instance of the dsqd algorithm. For i = 2, . . . n

t̄i = ti(1 + εi+), by (19)

= τ +
ei−1(1 + ε∗)(1 + ε/)ti−1(1 + εi−1

−)

qi−1 − ti−1
, by (17) and (18)

= τ +
ēi−1ti−1

qi−1 − ti−1
,

where

ēi−1 = ei−1(1 + ε∗)(1 + ε/)(1 + εi−1
−).(20)

We also define

q̄i = qi(1 + εi+), i = 1, . . . , n where ε1+ = εn+ = 0,(21)

so that t̄i−1/(q̄i−1−t̄i−1) = ti−1/(qi−1−ti−1) and thus an exact instance of the dsqd al-
gorithm in terms of the unrepresentable quantities is given by t̄i = τ+ēi−1t̄i−1/(q̄i−1−
t̄i−1). Then,

q̆i = q̄i − t̄i, by definition

= (1 + εi+)(qi − ti), by (19) and (21)

= (1 + εi+)(1 + εi−)q̃i, by (18).(22)

Provided that no underflow (including denormalization), overflow, zero, or infinity
occurs then (22) shows that q̆i < 0 if and only if q̃i < 0. Thus ν(τ), the number of
negative q̃i(τ), is also exact for the qd array Z̄ defined by (20), (21), and eigenvalue
shift τ as claimed.

384 K. V. FERNANDO

-

6

-

?
Z̄ Z̆

Z Ẑ

dpqd

exact

dpqd

computed

change each

qi, i 6= 1 by 3 ULPs

ei by 1 ULP

change each

q̆i, i 6= 1 by 2 ULPs

q̆1 by 1 ULP

Fig. 2. Effects of round-off in dpqd.

4.3. The dpqd. Data for the dpqd algorithm consists of a representable positive
qd array Z = [q1, e1, . . . , qn] and a nonnegative representable eigenvalue shift τ. The
algorithm computes intermediate quantities {si, q̂i} and finally ν(τ), the number of
negative q̂i(τ).

Theorem 4.2. In the absence of underflow (including denormalization), over-
flow, or infinity, the dpqd algorithm computes a ν that is exact for a positive qd array
Z̄ where q̄i differs from qi by 3 ULPs and ēi by differs from ei by 1 ULP (except that
q̄1 = q1 and q̄n = qn. See Figure 2.

Proof. Let q̂i and si denote the representable quantities computed by the dpqd.
We write down the exact relations that connect the q, e, p, and s quantities and then
interpret these relations so that they reveal an exact dpqd algorithm acting on per-
turbed data. Let Z̆ = [q̆1, ĕ1, q̆2, ĕ2, . . . , ĕn−1, q̆n] be the output of the dpqd algorithm
in exact arithmetic with input Z̄. However, in this algorithm ĕi are not required as
information on inertia is contained in q̆i. Recall that

si = fl

(
si−1 ∗ qi

q̂i−1
− τ
)
, i = 1, . . . , n,

q̂i = fl (si + ei) , i = 1, . . . , n− 1, q̂n = sn.

The si suffer from possible errors in the three operations /, ∗, and −, which we choose
to account for in the following way. For i = 1, . . . , n,

si =

[
si−1(1 + ε∗)(1 + ε/)qi/q̂i−1 − τ

]
(1 + εi−)

.(23)

However, s1 = (q1 − τ)/(1 + ε1−) where ε∗ = ε/ = 0 in this initial step. We write

q̂i =
(si + ei)

(1 + εi+)
, i = 1, . . . , n− 1 with q̂n = sn, εn+ = 0.(24)

The constraint that drives our choices is that τ should be unperturbed each time it
appears. Consequently, we invoke the (unrepresentable) quantities

s̄i = (1 + εi−)si(25)

SINGULAR VALUES AND EIGENVALUES OF MATRICES 385

instead of the si themselves. Now we can write down an exact instance of the dpqd
algorithm. For i = 1, . . . , n,

s̄i = si(1 + εi−)

=
si−1qi(1 + ε∗)(1 + ε/)

q̂i−1
− τ , by (23)

=
si−1qi(1 + ε∗)(1 + ε/)(1 + εi−1

+)

si−1 + ei−1
− τ, by (24)

=
si−1(1 + εi−1

−)qi(1 + ε∗)(1 + ε/)(1 + εi−1
+)

si−1(1 + εi−1
−) + ei−1(1 + εi−1

−)
− τ

=
s̄i−1q̄i

s̄i−1 + ēi−1
− τ,

where

ēi−1 = ei−1(1 + εi−1
−),(26)

q̄i = qi(1 + ε∗)(1 + ε/)(1 + εi+), q̄1 = q1,(27)

Z̄ = [q̄1, ē1, q̄2, ē2, . . . , ēn−1, q̄n] .

By definition,

q̆i = s̄i + ēi, i = 1, . . . , n− 1 with q̆n = s̄n.(28)

It follows from (28), (25), (26), and (24) that

q̆i = (1 + εi−)(si + ei) = (1 + εi+)(1 + εi−)q̂i.(29)

Provided that no underflow (including denormalization), overflow, zero, or infinity
occurs, then (29) shows that q̆i < 0 if and only if q̂i < 0. Thus ν(τ), the number of
negative q̂i(τ), is also exact for the qd array Z̄ defined by (26), (27), and the eigenvalue
shift τ as claimed.

4.4. The factorization of the Golub–Kahan form. Data for Algorithm 3
consists of a representable positive qd array

Z = [q1, e1, q2, e2, . . . , en−1, qn] = [z1, z2, . . . , z2n−2, z2n−1]

and a representable singular value shift ρ. The algorithm computes intermediate quan-
tities {di}and finally ν(ρ), the number of negative di(ρ).

Theorem 4.3. In the absence of underflow (including denormalization), over-
flow, or infinity, Algorithm 3 computes a ν that is exact for a positive qd array Z̄,
where q̄i differs from qi by 2 ULPs (except that q̄1 differs from q1 by 1 ULP) and ēi
differs from ei by 2 ULPs. See Figure 3.

Proof. Let di denote the representable quantities computed by Algorithm 3.
We write down the exact relations that connect the q, e, and d quantities and then
interpret these relations so that they reveal an exact algorithm acting on perturbed
data. Recall that for i = 2, . . . , 2n, di = −fl(ρ + zi−1/di−1). Initially, d1 = −ρ. So

we set d̆1 = d1. The remaining di suffer from possible errors in the two operations /,
and +, which we choose to account for in the following way:

di =
− [ρ+ zi−1(1 + ε/)/di−1

]
(1 + εi+)

.(30)

386 K. V. FERNANDO

-

6

-

?
Z̄ d̆i

Z di

LDLt

exact

LDLt

computed

change each

zi, i 6= 1 by 2 ULPs

z1 by 1 ULP

change each

d̆i, i 6= 1 by 1 ULP

Fig. 3. Effects of round-off in Algorithm 3.

The constraint that drives our choices is that ρ should be unperturbed each time it
appears. Consequently, we invoke the (unrepresentable) quantities

d̆i = di(1 + εi+), ε1+ = 0(31)

instead of the di themselves. Now we can write down an exact instance of Algorithm 3
for the Golub–Kahan form. For i = 2, . . . , 2n

d̆i = di(1 + εi+)

= −ρ− zi−1(1 + ε/)

di−1
, by (30)

= −ρ− zi−1(1 + ε/)(1 + εi−1
+)

di−1(1 + εi−1
+)

= −ρ− z̄i−1

d̆i−1

, by (31),

where

z̄i−1 = zi−1(1 + ε/)(1 + εi−1
+).(32)

Provided that no underflow (including denormalization), overflow, zero, or infinity

occurs, then (31) shows that d̆i < 0 if and only if di < 0. Thus ν(ρ), the number
of negative di(ρ), is also exact for the qd array Z̄ defined by (32) and singular value
shift ρ as claimed.

4.5. The msdqd. The dsqd algorithm is based on the LDL t factorization of
BtB − τI. We now state without proof the algorithm we get if BtB − ∆ − τI is
factorized where ∆ is a diagonal matrix.

Lemma 4.4. Let the diagonal pivots (as given by the diagonal matrix D) of
the LDL t factorization of BtB + ∆ − τI are given by q̃i, i = 1, . . . , n where ∆ =
diag(δ1, . . . , δn). The q̃i are then given by ti = τ−δi+ei−1∗(qi−1/q̃i−1−1), q̃i = qi−ti.
Our intention is to show that the mdsqd algorithm, in floating point arithmetic, is
equivalent to the factorization of a matrix B̄tB̄+∆−τI, where ∆ is a diagonal matrix
which contains perturbational terms and B̄ is a relatively perturbed version of B,

SINGULAR VALUES AND EIGENVALUES OF MATRICES 387

-

6

-

?
Z̄ Z̆

Z Z̃

LDL t of

B̄tB̄ + ∆− τI
exact

mdsqd

computed

change each

qi, i 6= 1 6= n by 1 ULP

ei by 4 ULPs

change each

q̆i, i 6= 1 6= n by 2 ULPs

q̆1, q̆n by 1 ULP

Fig. 4. Effects of round-off in mdsqd.

where the relative perturbations are comparable to that induced by the Rutishauser’s
differential stationary algorithm.

Theorem 4.5. In the absence of underflow (including denormalization), over-
flow, or infinity, the mdsqd algorithm computes a ν that is exactly given by the LDL t

factorization of B̄tB̄ + ∆− τI, where q̄i differs from qi by 1 ULP and ēi differs from
ei by 4 ULPs (except that q̄1 = q1 and q̄n = qn) and ∆ = diag(δ1, . . . , δn), δi is
approximately equal to 2ēi−1 times the machine precision. See Figure 4.

Proof. Let ti and q̃i denote the representable quantities computed by the LDL t

factorization. We write down the exact relations that connect the q, e, and t quantities
and then interpret these relations so that they reveal an exact LDL t factorization (as
in Lemma 4.4) acting on perturbed data. Let Z̆ = [q̆1, ĕ1, q̆2, ĕ2, . . . , ĕn−1, q̆n] be the
output of the LDL t factorization of B̄tB̄+ ∆− τI algorithm in exact arithmetic with
input Z̄. However, in this algorithm, ĕi are not computed. Recall that for i = 1, . . . , n,

ti = fl

(
τ + ei−1 ∗

(
qi−1

q̃i−1
− 1

))
, q̃i = fl (qi − ti) .

The ti suffer from possible errors in the three operations /, ∗, and +, which we choose
to account for in the following way. For i = 2, . . . , n

ti =

{
τ + ei−1(1 + ε∗)(1 + ε−)

[
(1 + ε/)

−1qi−1/q̃i−1 − 1
]}

(1 + εi+)
.(33)

Similarly, we write

q̃i = (qi − ti)(1 + εi−).(34)

The constraint that drives our choices is that τ should be unperturbed each time it
appears. Consequently, we invoke the (unrepresentable) quantities

t̄i = ti(1 + εi+)(35)

instead of the ti themselves. Now we can write down an exact instance of the LDL t

factorization (see Lemma 4.4). For i = 2, . . . , n

t̄i = ti(1 + εi+), by (35)

388 K. V. FERNANDO

= τ + ei−1(1 + ε∗)(1 + ε−)

[
(1 + ε/)

−1(1 + εi−1
−)−1qi−1

qi−1 − ti−1
− 1

]
, by (33) and (34)

= τ + ei−1(1 + ε∗)(1 + ε−)(1 + ε/)
−1(1 + εi−1

−)−1[
ti−1

qi−1 − ti−1
− (ε/ + εi−1

− + ε/ε
i−1
−)

]
= τ +

ēi−1ti−1

qi−1 − ti−1
− δi,

where

ēi−1 = ei−1(1 + ε∗)(1 + ε−)(1 + εi−1
−)−1(1 + ε/)

−1,(36)

δi = ēi−1(ε/ + εi−1
− + ε/ε

i−1
−).

With an eye on (34) we define

q̄i−1 = qi−1(1 + εi−1
+)(37)

so thatt̄i−1/(q̄i−1 − t̄i−1) = ti−1/(qi−1 − ti−1) and thus an exact instance of the
LDL t factorization in terms of the unrepresentable quantities is given by t̄i = τ +
ēi−1t̄i−1/(q̄i−1 − t̄i−1)− δi. Then,

q̆i = q̄i − t̄i by definition

= (1 + εi+)(qi − ti), by (35) and (37)

= (1 + εi+)(1 + εi−)−1q̃i, by (34)(38)

with ε1+ = 0. Provided that no underflow (including denormalization), overflow, zero,
infinity occurs, then (38) shows that q̆i < 0 if and only if q̃i < 0. Thus ν(τ), the number
of negative q̃i(τ), is given by the pivots of the exact factorization of B̄tB̄ + ∆− τI as
claimed.

4.6. The mpdqd. The analysis in this case is similar to that of the mdsqd
algorithm and, hence, we state the following result without proof.

Theorem 4.6. In the absence of underflow (including denormalization), over-
flow, or infinity, the mdpqd algorithm computes a ν that is exactly given by the LDL t

factorization of B̄B̄t + ∆− τI, where q̄i differs from qi by 4 ULPs and ēi differs from
ei by 1 ULP (except that q̄1 = q1) and ∆ = diag(δ1, . . . , δn), δi is approximately equal
to 2q̄i times the machine precision (except that δ1 = 0). See Figure 5.

4.6.1. Rutishauser’s differential algorithms. In the dsqd algorithm the off-
diagonal elements of B, on average, are more affected than the diagonal elements
while in dpqd algorithm the opposite is true. Thus, if the diagonal elements are more
dominant than the off-diagonals then one will be tempted to use the dsqd algorithm.
However, if the off-diagonals are dominant then the dpqd algorithm should be selected.
In the algorithm for the Golub–Kahan form, the errors are equal for both diagonals
and off-diagonals and hence, as far as the errors are concerned, it is the algorithm of
choice if information regarding diagonal dominance is not available. Table 3 shows
the errors sustained in each algorithm. The following extends Theorems 4.1, 4.2, and
4.3.

Corollary 4.7. In the absence of underflow (including denormalization), over-
flow, or infinity, Algorithms 1, 2, and 3 compute singular values to relatively high

SINGULAR VALUES AND EIGENVALUES OF MATRICES 389

-

6

-

?
Z̄ Z̆

Z Ẑ

LDL t of

B̄B̄t + ∆− τI
exact

mdpqd

computed

change each

qk, k 6= 1 by 4 ULPs

ek by 1 ULP

change each

q̆i, i 6= 1, by 2 ULPs

q̆1 by 1 ULP

Fig. 5. Effects of round-off in mdpqd.

Table 3
ULP changes on qd variables.

q1 qi qn ei Total
dsqd 0 1 0 3 4n− 5
dpqd 0 3 3 1 4n− 4

Golub–Kahan 1 2 2 2 4n− 3

accuracy. In particular, the bidiagonal matrix B̄ associated with Z̄ (that is, āi =
√
q̄i,

b̄i =
√
ēi) satisfies

σi[B̄] = σi[B]exp{(2n− k)ε}, i = 1, . . . , n,

where k = 5/2, 2, and 3/2 for Algorithms 1, 2, and 3, respectively.
Proof. This follows from Theorem 2 in Demmel and Kahan [6].
Remark. We are unaware of any other algorithm for computing singular values

(or eigenvalues) of a matrix which is more accurate than the three primary algorithms
described in this report. Note that any singular value of B, even tiny ones, can be
determined to within 2n ULPs if the stipulated conditions are satisfied. However,
the tiny error bounds are still pessimistic and often the computed singular values are
within a couple of ULPs of the exact value.

4.6.2. mdqd algorithms. The modified algorithms contain the diagonal per-
turbational term ∆ in the LDL t factorization in addition to the relative perturbations
on the elements of B. However, the relative perturbations are comparable to the
Rutishauser’s differential algorithms and, hence, we do not make further comments
on the effects due to these relative perturbations.

The mdsqd algorithm is based on the LDL t factorization of (B̄tB̄ + ∆) − τI
rather than B̄tB̄− τI and, hence, this algorithm counts the number of eigenvalues of
the perturbed matrix (B̄tB̄ + ∆). Since δi = ēi−1(ε/ + εi−1

− + ε/ε
i−1
−), ||∆||2 is (ap-

proximately) bounded by 2 max2≤i≤n ēi−1 times the machine precision. From Weyl’s
theorem, we know that the diagonal perturbation cannot disturb the eigenvalues of
B̄tB̄ by more than ||∆||2 and, hence, the worst case perturbation of eigenvalues due
to ||∆||2 are essentially determined by the maximal ēi, which is within four ULPs of
max2≤i≤n ei−1. If the eigenvalue approximated by τ is greater than (or approximately
equal to) max2≤i≤n ei−1, then the ∆ perturbation is tiny and, hence, the modified

390 K. V. FERNANDO

algorithm gives relative accuracy; otherwise, it provides eigenvalues with absolute
accuracy.

A similar analysis is possible for the mdpqd algorithm. It can be shown that the
worst case eigenvalue perturbation due to ∆ in the LDL t factorization of B̄B̄t+∆−τI
is (approximately) bounded by 2 max2≤i≤n q̄i times the machine precision. Thus, if the
eigenvalue approximated by τ is greater than (or approximately equal to) max2≤i≤n qi,
then the ∆ perturbation is relatively small. Hence, the modified algorithm provides
relative accuracy for such τ .

5. Monotonicity of the inertia count.

5.1. Monotonic arithmetic. The integer ν(τ) counts the eigenvalues of BBt

or BtB which are less than τ . In the context of the Golub–Kahan form, ν(ρ) counts
the eigenvalues of T0 which are less than ρ. So by definition, ν is monotone increasing
in τ or ρ, but that is in the context of exact arithmetic. Our aim is to prove that
in floating-point arithmetic the computed values of ν are also monotonic in τ or ρ
provided that the arithmetic unit obeys certain reasonable axioms. Such arithmetic
units are said to provide monotonic arithmetic operations [17].

Axioms. For any machine representable normalized numbers a, b, and c:

(+) if a < ã and fl(a+ b) > fl(ã+ c), then b > c;
(⊕) if a ≤ ã and fl(a+ b) > fl(ã+ c), then b > c;
(×) if a > 0 and fl(a ∗ b) > fl(a ∗ c), then b > c;

(÷) if a > 0, b 6= 0, c 6= 0 and fl(ab) > fl(ac), then

{
c > b if sign{b} = sign{c},
c < b if b > 0 , c < 0,

if underflow (including denormalization), overflow, or infinity does not occur.

For a particular algorithm we use either the (+) axiom or the (⊕) axiom. IEEE
arithmetic [15], [18] always satisfies these axioms.

The monotonicity of the bisection algorithm for symmetric tridiagonal matrices
was first established by Kahan in a well-known unpublished report [17]. Since the
Golub–Kahan form is a symmetric tridiagonal matrix, albeit with a zero diagonal,
the analysis of Kahan is readily applicable to the Golub–Kahan form. However, in
our analysis we use the weaker axiom (+) rather than (⊕). The monotonicity proofs
of the modified differential algorithms are new.

5.2. The Golub–Kahan form. The integer ν(ρ) counts the number of eigen-
values of a given matrix that are less than ρ. So by definition, ν(ρ) is monotone
increasing in ρ but that is in the context of exact arithmetic. In the present context
ν(ρ) counts the number of negative values among {d1, . . . , dn}, where di satisfies

di = −ρ− zi−1

di−1
, i = 1, . . . , n(39)

and d0 = 1 and z0 = 0. Recall that Z = (a2
1, b

2
1, a

2
2, . . . , b

2
n−1, a

2
n) = (q1, e1, q2, . . . ,

en−1, qn) and (39) comes from Algorithm 3.

We prove that the computed values of ν(ρ) are also monotonic in ρ provided that
the arithmetic unit obeys the axioms. Our argument imitates that of Kahan [17] but
expresses it differently. In exact arithmetic each dk(ρ), k = 2, . . . , n is a rational
function, monotonic decreasing in ρ for all ρ except for the poles. In practice we need
appropriate definitions of poles and zeros.

Next-after. For each representable number x let ~x denote the next representable
number exceeding x.

Pole. [p, ~p] is a pole of dk if dk(p) < dk(~p). The signs may or may not differ.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 391

Zero. [z, ~z] is a zero of dk if dk(~z) ≤ −θ < 0 < θ ≤ dk(z), where θ is a care-
fully chosen positive threshold below which computed absolute values of dk are not
permitted to fall.

Threshold. The recurrence (39) is supplemented with

if − θ ≤ dk < θ, then dk = −θ(40)

and θ ≥ η, where η is the smallest representable normalized positive number.
Remark. The cost of the above threshold operation per se is minute. However, in

advanced architecture, such conditionals can become a bottleneck in the processing
of pipelined instructions. If the system fully supports IEEE binary arithmetic (with
signed zeros and infinities), then it is unnecessary to implement the threshold rule [5],
[18]. We do not study such implementation issues in this report.

We begin the proof with two simple observations. For k ≥ 2, between two distinct
zeros of dk, there must be a pole which changes sign but there could also be several
poles that do not change sign. However, d1(ρ) = −ρ has a single, rather fat, zero
at [−θ, θ], because of the threshold, but no poles. The proof that computed νk(ρ)
is actually monotone in ρ is composed of three lemmata of which the last two will
provide a contradiction.

Lemma 5.1. If [p, ~p] is a pole of dk, k > 1, then [p, ~p] is either a zero or a
same-sign pole of dk−1.

Proof. Since [p, ~p] is a pole of dk,

dk(p) = fl

{
−p− zk−1

dk
− 1(p)

}
< dk(~p) = fl

{
−~p− zk−1

dk
− 1(~p)

}
.

By the (+) axiom, fl{zk−1/dk−1(p)} > fl{zk−1/dk−1(~p)}. There are two cases. If
sign{dk−1(p)} = sign{dk−1(~p)} then, by the (÷) axiom dk−1(p) < dk−1(~p) and, by
definition, [p, ~p] is a pole of dk−1. On the other hand, since zi > 0, the only way the
signs can differ is if dk−1(p) ≥ θ > 0 and dk−1(~p) ≤ −θ < 0. By definition, [p, ~p] is a
zero of dk.

Lemma 5.2. If νi(ρ), i = 1, . . . , k − 1 are each monotonically nondecreasing
functions of ρ and if [p, ~p] is a pole of dk, then νk−1(~p)− νk−1(p) ≥ 1.

Proof. Apply Lemma 5.1 repeatedly with j = k, k−1, . . . , 2, 1, until there occurs
a dj for which [p, ~p] is a zero and not a pole. There must be such a j because d1 has
no poles. Let j now indicate that index; that is, [p, ~p] is a zero of dj and a same-sign
pole of di for i = j + 1, . . . , k − 1. Clearly, 1 ≤ j ≤ k − 1. Now consider νj . Since
dj(p) > 0 > dj(~p),

νj(~p) = νj−1(~p) + 1, because dj(~p) < 0,

≥ νj−1(p) + 1, by the nondecreasing assumption on νj−1,

= νj(p) + 1, because dj(p) > 0.

Thus,

νj(~p)− νj(p) ≥ 1.(41)

Since [p, ~p] is a same-sign pole of di for i = j + 1, . . . , k − 1 we have

νi(~p)− νi−1(~p) = νi(p)− νi−1(p), sign{di(~p)} = sign{di(p)}.
Thus,

νi(~p)− νi(p) = νi−1(~p)− νi−1(p), i = j + 1, . . . , k − 1.(42)

392 K. V. FERNANDO

On adding all the (42) relations to (41) we find

νk−1(~p)− νk−1(p) = νj(~p)− νj(p) ≥ 1.(43)

Next we establish a consequence of the failure of monotonicity for νk.
Lemma 5.3. Suppose that νi(ρ) fails to be monotonic nondecreasing in ρ for some

i and let k be the smallest such index. Then dk has a pole [y, ~y] and νk−1(~y)−νk−1(y) =
0.

Proof. If νk is not monotonic, then there is a y with νk(y) > νk(~y). Rewrite this
as

[νk(y)− νk−1(y)]− [νk(~y)− νk−1(~y)] > νk−1(~y)− νk−1(y).(44)

The last inequality is a consequence of k’s minimality. A careful consideration of
sign{dk(y)} and sign{dk(~y)} shows that the only way (44) can hold is if dk(y) <
0, dk(~y) > 0 and, by definition, [y, ~y] is, therefore, a pole of dk. Since νk−1(~y) −
νk−1(y) < 1, it must vanish as claimed.

Theorem 5.4. If axioms (+) and (÷) hold, then each computed function νk(ρ)
is monotone nondecreasing in ρ in Algorithm 3.

Proof. The conclusion of Lemma 5.3 contradicts the conclusion to Lemma 5.2.
Consequently, there is no smallest index k for which νk fails to be monotonic.

5.3. Nondifferential qd algorithms. It is possible to prove the monotonicity
property for nondifferential versions of qd algorithms by essentially following the proof
given for Algorithm 3.

The pqd algorithm may be written in the form

q̂i = αi −
(
τ +

βi−1

q̂i−1

)
, i = 1, . . . , n,(45)

where αi = qi + ei, βi = qi+1ei. We count the negative values of q̂i, ν(τ) for a
given (eigenvalue) shift τ . The recursion for the sqd algorithm is identical to (45),
except that the αs and the βs are different. For the sqd algorithm, they are given by
αi = qi + ei−1, βi = qiei.

Lemma 5.5. If [p, ~p] is a pole of q̂k, then [p, ~p] is either a zero or a same-sign
pole of q̂k−1.

Proof. Since [p, ~p] is a pole of q̂k,

q̂k(p) = fl

{
αk −

[
p− βk−1

q̂k−1
(p)

]}
< q̂k(~p) = fl

{
αk −

[
~p− zk−1

q̂k−1
(~p)

]}
.

As a consequence of the (⊕) axiom, fl{p+βk−1/q̂k−1(p)} > fl{~p+βk−1/q̂k−1(~p)}. By
applying the same axiom again, fl{βk−1/q̂k−1(p)} > fl{βk−1/q̂k−1(~p)}. There are two
cases. If sign{q̂k−1(p)} = sign{q̂k−1(~p)}, then by the (÷) axiom q̂k−1(p) < q̂k−1(~p)
and, by definition, [p, ~p] is a pole of q̂k−1. On the other hand, since βi > 0, the only
way the signs can differ is if q̂k−1(p) ≥ θ > 0 and q̂k−1(~p) ≤ −θ < 0. By definition,
[p, ~p] is a zero of q̂k.

We assume that |q̃k| below the threshold θ are set to −θ in sqd:

if − θ ≤ q̃k < θ then q̃k = −θ.(46)

For q̂k in pqd, a similar threshold rule is used. The rest of the proof is identical to that
of Algorithm 3 and, hence, we state the main result of this section without further
ado.

Theorem 5.6. If axioms (⊕) and (÷) hold, then each computed function νk(τ)
is monotone nondecreasing in τ for the (nondifferential) pqd and the (nondifferential)
sqd.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 393

5.4. The msdqd algorithm. In this section we study the monotonicity of the
mdsqd algorithm

ti(τ) = τ + ei−1

{
qi−1(τ)

q̃i−1(τ)
− 1

}
for i = 2, . . . , n with t1 = τ,

q̃i(τ) = qi − ti(τ) for i = 1, . . . , n.

The following is the critical lemma which we have to prove.
Lemma 5.7. If [p, ~p] is a pole of q̃k, k > 1, then [p, ~p] is either a zero or a

same-sign pole of q̃k−1.
Proof. Since [p, ~p] is a pole of q̃k,

q̃k(p) = fl

{
qk −

[
p+ ek−1

(
qk−1

q̃k−1
(p)− 1

)]}
< q̃k(~p)

= fl

{
qk −

[
~p+ ek−1

(
qk−1

q̃k−1
(~p)− 1

)]}
,

By invoking the (⊕) axiom, fl{p+ek−1(qk−1/q̃k−1(p)−1)} > fl{~p+ek−1(qk−1/q̃k−1(~p)−
1)}. Using the same axiom again, fl{ek−1(qk−1/q̃k−1(p)−1)} > fl{ek−1(qk−1/q̃k−1(~p)−
1)}. By calling the (×) axiom followed by the (⊕) axiom, fl{qk−1/q̃k−1(p)} >
fl{qk−1/q̃k−1(~p)}. There are two cases. If sign{q̃k−1(p)} = sign{q̃k−1(~p)} then, by
(÷) axiom, q̃k−1(p) < q̃k−1(~p) and, by definition, [p, ~p] is a pole of q̃k−1. On the
other hand, since qk > 0, the only way the signs can differ is if q̃k−1(p) ≥ θ > 0 and
q̃k−1(~p) ≤ −θ < 0. By definition, [p, ~p] is a zero of q̃k.

The rest of the proof is similar to the one previously described and, hence, we
state our main result without further details.

Theorem 5.8. If axioms (⊕), (×), and (÷) hold then each computed function
νk(τ) is monotone non-decreasing in τ as given by the mdsqd algorithm.

5.5. The mpdqd Algorithm. In this section we study the monotonicity of the
mdsqd algorithm

si(τ) = qi

{
1− ei−1

q̂i−1
(τ)

}
− τ for i = 2, . . . , n with s1 = q1 − τ,

q̂i(τ) = ei + si(τ) for i = 1, . . . , n.

The following is essential to establish monotonicity.
Lemma 5.9. If [p, ~p] is a pole of q̂k, k > 1 then [p, ~p] is either a zero or a

same-sign pole of q̂k−1.
Proof. Since [p, ~p] is a pole of q̂k,

q̂k(p) = fl

{
ek +

[
qk

(
1− ek−1

q̂k−1
(p)

)
− p
]}

< q̂k(~p)

= fl

{
ek +

[
qk

(
1− ek−1

q̂k−1
(~p)

)
− ~p
]}

,

By invoking the (⊕) axiom, fl{qk(1−ek−1/q̂k−1(p))−p} < fl{qk(1−ek−1/q̂k−1(~p))−
~p}. Using the (×) axiom and followed by the (⊕) axiom, fl{ek−1/q̂k−1(p)) − p} >
fl{ek−1/q̂k−1(~p)) − ~p}. By calling the (⊕) axiom again, fl{ek−1/q̂k−1(p))} >

394 K. V. FERNANDO

Table 4
Parameters of IEEE machines.

Single precision Double precision

β 2 2

Ω (1− 2ε) ∗ 2128 (1− 2ε) ∗ 21024

Ω̂ 2127 21023

η 2−126 2−1022

ε 2−24 2−53

fl{ek−1/q̂k−1(~p))}. There are two cases. If sign{q̂k−1(p)} = sign{q̂k−1(~p)} then by
the (÷) axiom, q̂k−1(p) < q̂k−1(~p) and, by definition, [p, ~p] is a pole of q̂k−1. On the
other hand, since ek−1 > 0, the only way the signs can differ is if q̂k−1(p) ≥ θ > 0 and
q̂k−1(~p) ≤ −θ < 0. By definition, [p, ~p] is a zero of q̂k.

The rest of the proof is similar to the previously described and, hence, we state
our main result for the mdpqd algorithm without further details.

Theorem 5.10. If axioms (⊕), (×), and (÷) hold then each computed function
νk(τ) is monotone nondecreasing in τ as given by the mdpqd algorithm.

5.6. Rutishauser’s differential qd algorithms. It does not seem to be possi-
ble to establish monotonicity for the Rutishauser’s differential algorithms based solely
on the axioms of monotonic arithmetic. In particular, there are no results correspond-
ing to Lemmas 5.7 or 5.9. However, it might be possible to obtain weaker versions of
these lemmata which could be adequate in practice.

6. Coping with underflow and overflow. In this section we propose ways to
avoid overflow and reduce the occurrences of underflow of the variables in the three
main algorithms. When underflow occurs, we try to minimize the adverse effects.
These objectives are achieved by scaling ai and bi of the bidiagonal matrix. Our aim
is to compute the singular values, even the tiny ones, to relatively high accuracy.

6.1. Machine parameters. To avoid being pedantic we assume that β, the base
of the machine, is two. The following notation is used for other machine parameters:
Ω is the overflow threshold: the largest positive real number which can be represented

on the machine;
Ω̂ is an approximation to Ω such that Ω̂ = 2j ≤ Ω where the integer j is maximal;
η is the underflow threshold: the smallest positive real number which can be repre-

sented without denormalization on the machine;
ε = βk = 2k is the machine precision: k is the largest integer such that fl(1 + ε) = 1.

Machine parameters for systems which conform to the IEEE data format [15]
are displayed in Table 4. In practice, it is often possible to assume that Ω̂ = 1/η
for machines which conform to the IEEE format. Also note that η1/2 � ε for IEEE
standard machines.

Theorem 6.1. If g and h are two machine representable normalized positive
numbers, then underflow in the subtraction g−h can occur only if max(g, h) < η/ε .

Proof. If the computed value g − h underflows then the exact g − h satisfies
|g − h| < η. By definition g − h 6= 0 (if g = h then it is exact cancellation not
underflow). Since g and h are two unequal representable numbers |g−h| ≥ εmax(g, h).
Hence, εmax(g, h) ≤ |g − h| < η and thus max(g, h) < η/ε.

6.2. The Golub–Kahan form. In the model of arithmetic used for error anal-
ysis we did not allow for underflow. We now show that underflow is not possible
except for very tiny shifts. The proof is trivial.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 395

Corollary 6.2. If ρ > 0 then underflow in the subtraction di = fl(−ρ −
zi−1/di−1) can occur only if max(ρ,−zi−1/di−1) < η/ε with di−1 < 0.

Remark. In IEEE double precision, the bound for underflow is ρ < η/ε = 2−969

and in IEEE single precision ρ < η/ε = 2−102.

6.2.1. Systems without IEEE ∞. If IEEE signed ∞ is not supported, then
to avoid overflow and to decrease the chance of underflow the matrix B has to be
scaled. We also assume that there is no gradual underflow and, hence, there is no
machine representable nonzero number between −η and η.

Kahan [17] has studied this problem for symmetric tridiagonal matrices and our
scaling is influenced by his work. Basically, the scaling factor is taken as 2m, where
m is an integer so that scaling does not introduce any round-off errors. The integer
m is chosen such that it is maximal and satisfies 2m max(maxi ai,maxi bi) ≤ {γΩ̂}1/2
where γ satisfies ε > γ = 2l ≥ η and l is an integer.

Equivalently,

22m max(max
i
qi,max

i
ei) ≤ γΩ̂.(47)

The new scaled qd parameters are then given by

qi ← (2mai)
2, ei ← (2mbi)

2.(48)

If any scaled ei underflows then the matrix will split into two submatrices. Similarly,
if any qi is zero, the matrix should be processed to extract this zero singular value.
It is easily seen from (48) that any ai or bi, which is less than

√
η2−m, forces the

corresponding scaled qi or ei to underflow to zero.
If it is required to compute tiny singular values to high relative accuracy then

γ should be assigned to a high value to avoid underflow of scaled qi and ei. This is
particularly important if the magnitudes of the elements of the matrix B vary very
widely. In general,

√
η is a reasonable choice for γ. Note that ε >

√
η > η on machines

conforming to the IEEE data representation.
We recall the threshold setting (40): if − θ ≤ di < θ then di ← −θ. If zi = γΩ̂

and |di| = γ then zi/|di| = Ω̂. Hence, to avoid overflow of the quotient zi/di, the
threshold θ can be set to γ.

In [17], effects due to the threshold setting is accounted for by perturbing the ith
diagonal value of the tridiagonal matrix. However, in our problem, the tridiagonal
matrix has a zero diagonal and we are keen to respect this structural property. We
now consider the worst case due to threshold setting.

Theorem 6.3. Suppose that if di = θ, then di is set to −θ. If z̄i is the perturbed
value of zi which will give di = θ without invoking the threshold rule, then θ/ρ =
(z̄i−1 − zi−1)/(z̄i−1 + zi−1).

Proof. This follows directly from the fact that θ = −ρ − zi−1/di−1 and − θ =
−ρ− z̄i−1/di−1. By removing di−1 from the above two equations we get the claimed
result.

As a consequence of the above theorem we get the following bound for the shift
ρ, which will lead to low relative errors when the threshold rule is invoked for di.

Corollary 6.4. If ρ ≥ 2θ/ε then the required relative perturbation on zi−1 to
account for the threshold rule is no more than one ULP.

The Gershgorin theorem tells us that the eigenvalue with the largest magnitude
of the scaled matrix T0 is bounded by maxi(|ai| + |bi|). Thus, it is meaningless (in
exact arithmetic) to use a shift ρ which has a magnitude greater than 2

√
γΩ for the

scaled matrix. That is,

ρ ≤ 2
√
γΩ.(49)

396 K. V. FERNANDO

Table 5
Scaling of the Golub–Kahan form.

Variable Bounds Remarks See

qi qi ≤ γΩ̂ typically γ =
√
η (47)

ei ei ≤ γΩ̂ (47)

di γ ≤ |di| ≤ Ω̂

ρ ρ ≤ 2
√
γΩ̂ Gershgorin bound (49)

ρ ρ ≥ η/ε no underflow Corollary 6.2

ρ ρ ≥ 2θ/ε tiny threshold error Corollary 6.4
typically θ = γ

The bounds for the scaled variables are tabulated in Table 5.
We have included overflow control to Algorithm 3 and present it as Algorithm 4

where we have assumed that the singular value shift ρ is positive.
Algorithm 4. Inertia of the Golub–Kahan form with overflow control for ρ > 0

d := −ρ
ν := 1

for i = 1, 2n− 1

if − θ ≤ d < θ then d := −θ
d := −ρ− zi/d
if d < 0 then ν := ν + 1

endfor

6.3. The differential stationary algorithm. For this algorithm we can show
also that underflow is not possible except for very tiny shifts. The next result follows
from Theorem 6.1.

Corollary 6.5. If τ > 0, then underflow due to addition in

ti = fl{τ + ei−1

(
ti−1

q̃i−1

)
}(50)

can occur only if max{τ, ei−1(ti−1/q̃i−1)} < η/ε with q̃i−1 < 0.
Remark. In IEEE double precision, the bound for underflow is τ < η/ε = 2−969

and in IEEE single precision τ < η/ε = 2−102. Thus underflow is not possible except
for very tiny shifts. Note that for the Golub–Kahan form, the bounds are expressed
in terms of the singular value shift σ(=

√
τ).

The scaling for the mdsqd algorithm is identical to the unmodified algorithm and,
hence, it is not described separately.

6.3.1. Systems without IEEE ∞. If q̃i is tiny then the quotient ti−1/q̃i−1 in
(50) can overflow. It is not difficult to establish that the maximum value of |ti−1/q̃i−1|
is when |q̃i−1| is minimal since ti−1/q̃i−1 = qi−1/q̃i−1− 1. Suppose that the threshold
rule q̃i−1 ← −θ if − θ ≤ q̃i−1 < θ is invoked with θ = γ. Then we could choose the
maximal integer m such that

22m(max
i=1,n

qi) ≤ γΩ̂.(51)

However, ei−1(ti−1/q̃i−1) in (50) can also overflow. This calamity can be avoided by
having the condition

24m(max
i=1,n−1

qiei) ≤ γΩ̂.(52)

SINGULAR VALUES AND EIGENVALUES OF MATRICES 397

Table 6
Scaling of the dsqd algorithm.

Variable Bounds Remarks See

qi qi ≤ γΩ̂ typically γ =
√
η (51)

qiei qiei ≤ γΩ̂ (51)

ei ei ≤ ζΩ̂ typically ζ = γ (53)

q̃i γ ≤ |q̃i| ≤ Ω̂

τ τ ≤ (γ + ζ)Ω̂ +
√
γΩ̂ Gershgorin bound (54)

τ τ ≥ η/ε no underflow Corollary 6.5

qi qi ≥ 2θ/ε tiny threshold error Corollary 6.7
typically θ = γ

Table 7
Scaling of the dpqd algorithm.

Variable Bounds Remarks

qi qi ≤ ζΩ̂ typically γ =
√
η, ζ = γ

qi+1ei qi+1ei ≤ γΩ̂

ei ei ≤ γΩ̂

q̂i γ ≤ |q̂i| ≤ Ω̂

τ τ ≤ (γ + ζ)Ω̂ +
√
γΩ̂ Gershgorin bound

τ τ ≥ η/ε no underflow

ei ei ≥ 2θ/ε tiny threshold error
typically θ = γ

To bound the origin of the largest Gershgorin circle, we also impose the extra condition

22m(max
i=1,n−1

ei) ≤ ζΩ̂,(53)

where typically ζ = γ. However, with extra care, values greater than γ may be
possible for ζ. The Gershgorin upper limit for the eigenvalues of the scaled matrix
BtB is then given by

λmax[BtB] ≤ qi + ei−1 +
√
qiei +

√
qi−1ei−1 ≤ (γ + ζ)Ω̂ + 2

√
γΩ̂.(54)

We now study the effects due to the threshold on q̃i.
Theorem 6.6. Suppose that when q̃i = θ then q̃i is set to −θ. If q̄i is the

perturbed value of qi, which will force q̃i to be −θ without the threshold rule, then
2θ/qi = (qi − q̄i)/qi.

Proof. This follows directly from the fact that θ = qi − ti and− θ = q̄i − ti. By
removing ti from the above two equations we get the claimed result.

As a consequence of the above theorem we get the following bound for qi, which
will lead to low relative errors if the threshold rule is used for q̃i.

Corollary 6.7. If qi ≥ 2θ/ε then the required relative perturbation on qi to
account for the threshold rule is no more than one ULP.

Bounds are tabulated in Table 6.

6.4. The differential progressive algorithm.

6.4.1. Systems without IEEE ∞. Scaling of the pqd algorithms is similar to
the sqd algorithm and, hence, details are omitted; Table 7 gives a summary.

398 K. V. FERNANDO

Acknowledgments. Invigorating discussions with Professor Gene Golub are
greatly appreciated. Jeremy Du Croz and Neil Swindells commented on drafts of
the paper. Arithmetic issues were discussed with Michael Pont. The author wishes to
thank Professor Gene Golub and Jeremy Du Croz for the Ward and Gray reference.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, Release 2.0, SIAM, Philadelphia, PA, 1995.

[2] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[3] W. Barth, R. S. Martin, and J. H. Wilkinson, Calculation of the eigenvalues of a symmetric
tridiagonal matrix by the method of bisection, in Handbook for Automatic Computation,
Vol. II: Linear Algebra, J. H. Wilkinson and C. Reinsch, eds., Springer-Verlag, Berlin, 1971,
pp. 249–256.

[4] E. Beltrami, Sulle funzioni bilineari, Giornale di matematiche ud uso Degli Studenti Delle
Universita, 11 (1873), pp. 98–106.

[5] J. Demmel and W. Gragg, On computing accurate singular values and eigenvalues of acyclic
matrices, Linear Algebra Appl., 185 (1993), pp. 203–218.

[6] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[7] J. W. Demmel, I. Dhillon, and H. Ren, On the correctness of some bisection-like parallel
algorithms in floating point arithmetic, Electron. Trans. Numer. Anal., 3 (1995), pp. 116–
149.

[8] K. V. Fernando, Accurate BABE Factorization of Tridiagonal Matrices for Eigenproblems,
Tech. report TR5/95, Numerical Algorithms Group Ltd., Wilkinson House, Jordan Hill,
Oxford OX2 8DR, 1995.

[9] K. V. Fernando, Computing an eigenvector of a tridiagonal matrix: Part I: Basic results,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1013–1034.

[10] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[11] W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric Matrix,
Tech. report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, TN, 1954.

[12] G. H. Golub, Least squares, singular values and matrix approximations, Aplikace Matematiky,
13 (1987), pp. 44–51.

[13] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1989.

[15] Institute for Electrical and Electronics Engineers, Standard for Binary Floating Point
Arithmetic, Vol. Standard 754-1985, ANSI/IEEE, New York, 1985.

[16] C. Jordan, Mèmoire sur les formes bilinéaires, J. Math. Pures Appl., 19 (1874), pp. 35–54.
[17] W. Kahan, Accurate Eigenvalues of a Symmetric Tri-Diagonal Matrix, Tech. report CS 41,

Computer Science Department, Stanford University, CA, 1966.
[18] W. Kahan, Lecture Notes on the Status of the IEEE Standard 754 for Binary Floating-Point

Arithmetic, in preparation, Electrical Engineering and Computer Science Department, Uni-
versity of California, Berkeley, CA, May 1996.

[19] L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North–Holland,
Amsterdam, 1992.

[20] R. Mathias, The stability of parallel prefix matrix multiplication, SIAM J. Sci. Comput., 16
(1996), pp. 956–973.

[21] H. Rutishauser, Vorlesungen über numerische Mathematik, Birkhäuser-Verlag, Basel, 1976.
[22] H. Rutishauser, Lectures on Numerical Mathematics, Birkhäuser, Boston, 1990.
[23] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,

and C. B. Moler, Matrix Eigensystem Routines – EISPACK Guide, Lecture Notes in
Comput. Sci. 6, Springer-Verlag, Berlin, 1976.

[24] G. W. Stewart, On the early history of the singular value decomposition, SIAM Rev., 35
(1993), pp. 551–566.

[25] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, San Diego, CA,
1990.

[26] H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.

SINGULAR VALUES AND EIGENVALUES OF MATRICES 399

[27] R. C. Ward and L. J. Gray, Eigensystem computation for skew-symmetric matrices and a
class of symmetric matrices, ACM Trans. Math. Software, 4 (1978), pp. 278–285.

[28] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

THE CHEBYSHEV POLYNOMIALS OF A MATRIX∗

KIM-CHUAN TOH† AND LLOYD N. TREFETHEN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 400–419

Abstract. A Chebyshev polynomial of a square matrix A is a monic polynomial p of specified
degree that minimizes ‖p(A)‖2. The study of such polynomials is motivated by the analysis of
Krylov subspace iterations in numerical linear algebra. An algorithm is presented for computing
these polynomials based on reduction to a semidefinite program which is then solved by a primal-
dual interior point method. Examples of Chebyshev polynomials of matrices are presented, and it
is noted that if A is far from normal, the lemniscates of these polynomials tend to approximate
pseudospectra of A.

Key words. matrix polynomial, Chebyshev polynomial of a matrix, semidefinite programming,
Krylov subspace iteration

AMS subject classifications. 15A60, 41A99, 65F10, 90C99

PII. S0895479896303739

1. Introduction. Let A be an N ×N matrix and n a nonnegative integer. The
degree n Chebyshev polynomial of A is the unique monic polynomial p∗n of degree n
such that

‖p∗n(A)‖ = minimum,(1)

where ‖ · ‖ denotes the matrix 2-norm. To be precise, p∗n is unique provided that n is
less than or equal to the degree of the minimal polynomial of A; otherwise we have
p∗n(A) = 0, and the problem ceases to be interesting.

This notion of the polynomial that minimizes ‖p(A)‖ seems so simple and natural
that one would expect it to be a standard one. We suspect it may have been considered
before, perhaps decades ago in the literature of approximation theory. Nevertheless,
we have been unable to find any literature on this problem before our 1994 paper
with Greenbaum [7]. In that paper, Chebyshev polynomials of matrices are defined,
and it is proved that they exist (obvious by compactness) and that they are unique
under the condition just mentioned (not obvious).

Even if they are not discussed explicitly, Chebyshev polynomials of matrices are
never far away from any discussion of convergence of Krylov subspace iterations in
numerical linear algebra. For these iterations, convergence depends on certain vector
norms ‖p(A)q‖ being as small or nearly as small as possible, where q is a starting
vector. Most of the convergence properties of applied interest do not depend too
strongly on q, and thus it is the near-minimality of ‖p(A)‖ that is often the heart
of the matter [22]. For finding eigenvalues, the principal iterative method in this
category is the Arnoldi iteration, which becomes the Lanczos iteration if A is real
and symmetric. For solving systems of equations, the analogous methods include
GMRES, biconjugate gradients, CGS, QMR, and Bi-CGSTAB in the general case and
conjugate gradients if A is symmetric positive definite [6]. (For systems of equations,
the notion of a Chebyshev polynomial of A should be normalized differently by the

∗Received by the editors May 17, 1996; accepted for publication (in revised form) by R. Freund
August 13, 1997; published electronically October 26, 1998. This research was supported by NSF
grant DMS-9500975CS and DOE grant DE-FG02-94ER25199.

http://www.siam.org/journals/simax/20-2/30373.html
†Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singa-

pore 119260 (mattohkc@math.nus.sg).
‡Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,

UK (Nick.Trefethen@comlab.ox.ac.uk).

400

CHEBYSHEV POLYNOMIALS OF A MATRIX 401

condition p(0) = 1 instead of the condition that p is monic. In [7], a Chebyshev
polynomial of a matrix is called an ideal Arnoldi polynomial, and its analogue with
this other normalization is called an ideal GMRES polynomial.)

The motivation for the term “Chebyshev polynomial of a matrix” is as follows.
All readers will be familiar with the classical Chebyshev polynomials {Tn}, which are
2n−1 times monic polynomials of minimal ‖ · ‖∞-norm on the interval [−1, 1]. This
notion was generalized by Faber in 1920 to the idea of the Chebyshev polynomials
of S, where S is a compact set in the complex plane C: the monic polynomials of
minimal ‖ · ‖∞-norm over S [5], [24]. Now suppose that A is a hermitian or, more
generally, a normal matrix, having a complete set of orthogonal eigenvectors. Then
by a unitary reduction to diagonal form, it is easily shown that the nth Chebyshev
polynomial of A as defined by (1) is precisely the nth Chebyshev polynomial of S in
this latter sense, where S is the spectrum of A. Such a polynomial can be computed,
for example, by generalizations of the Remez algorithm [15].

Chebyshev polynomials of normal matrices, then, are trivial; the matrix problem
reduces to a scalar problem. But what if A is an arbitrary square matrix, with
nonorthogonal eigenvectors or perhaps no complete set of eigenvectors? This is the
subject of this paper, and our purpose is twofold.

First, we describe an algorithm for computing Chebyshev polynomials of matri-
ces. The optimization problem implicit in (1) is far from smooth, and unless the
degree is very small, these problems are quite difficult if approached by general meth-
ods of unconstrained optimization. The algorithm we describe, which we believe is
the first to have been developed for this problem, is based instead on interior point
methods for semidefinite programming. With this algorithm, we can reliably com-
pute Chebyshev polynomials for matrices of order ≤ 50 in less than a minute on
workstations available in 1996. No parameters are involved that must be tuned. We
should mention, however, that although our algorithm is reasonably fast, it is not
fast enough to easily handle matrix dimensions of the order of 1,000 or more.

Second, we present computed examples, the first we know of to have been pub-
lished. A few numerical coefficients are listed for possible comparison by later authors,
but our main aim is to give insight into the behavior of Chebyshev polynomials of
matrices, largely with the aid of pictures. A natural question is, how are the coeffi-
cients of the polynomials affected by the degree and nature of the nonnormality of
A? For a partial answer, we plot lemniscates |p∗n(z)| = constant of our polynomials
and find that in many cases they approximate pseudospectra of A.

2. Reduction to a semidefinite program. Let {B0, B1, . . . , Bn} be a linearly
independent set of matrices in CN×N . The Chebyshev problem (1) is a special case
of a norm minimization problem involving linear functions of matrices:

min
x∈Cn

∥∥∥∥∥
n∑
k=1

xkBk −B0

∥∥∥∥∥ .(2)

For our special case, B0 = An and

Bk = Ak−1, k = 1, . . . , n,

and the numbers xk are the coefficients (actually their negatives) of the Chebyshev
polynomial of A.

It is well known that (2) can be expressed as a semidefinite program [11], [23].
We shall not show in detail how this is done. One difference between our work and

402 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

what has been done before is that the existing literature, as far as we are aware,
considers only real matrices.

Theorem 1. The norm minimization problem (2) is equivalent to the following
semidefinite program involving hermitian matrices:

− max
x∈Cn, λ∈R

λ

s.t.

n∑
k=1

(αk Ak + βk An+k) + λA2n+1 + Z = A0,(3)

Z ≥ 0,

where αk = Re(xk), βk = Im(xk),

A2n+1 =

(
I 0
0 I

)
, A0 =

(
0 B0

B∗0 0

)
,

Ak =

(
0 Bk
B∗k 0

)
, An+k =

(
0 iBk
−iB∗k 0

)
,(4)

k = 1, . . . , n, and Z ≥ 0 means that Z is positive semidefinite.
Proof. Problem (2) is equivalent to the problem of minimizing −λ such that∥∥∥∥∥

n∑
k=1

xkBk − B0

∥∥∥∥∥ ≤ −λ.(5)

Using the fact that for any M ∈ CN×N ,

‖M‖ = λmax

([
0 M
M∗ 0

])
,

where λmax(·) denotes the maximum eigenvalue, (5) can be rewritten as

λmax

([
0 B(x)

B(x)∗ 0

])
≤ −λ,

where B(x) =
∑n
k=1 xkBk −B0. But this is equivalent to(

0 B(x)
B(x)∗ 0

)
+ λ

(
I 0
0 I

)
+ Z = 0, Z ≥ 0.

By writing this equation out in full, we get (3).

3. Transformation to a better-conditioned basis. Before we discuss how
the semidefinite program (3) can be solved by interior point methods, we must address
the issue of change of basis in (2), as the numerical stability of these algorithms
depends on the conditioning of the basis {B1, . . . , Bm}. This is an essential point for
the computation of Chebyshev polynomials of matrices. The power basis is usually
highly ill conditioned, as can be seen by considering the special case of a diagonal
matrix, where we get the phenomenon of ill-conditioning of the basis of monomials
{xk}, familiar in approximation theory. For numerical stability in most cases, the
power basis must be replaced by a better-conditioned alternative.

Suppose {B̂0, B̂1, . . . , B̂n} is another linearly independent set of matrices in
CN×N related linearly to {B0, B1, . . . , Bn} by

[B1 | · · · |Bn] =
[
B̂1 | · · · | B̂n

]
T,

B0 = c B̂0 −
[
B̂1 | · · · | B̂n

]
t,

CHEBYSHEV POLYNOMIALS OF A MATRIX 403

where T is an n × n nonsingular matrix, t is an n-vector, and c is a nonzero scalar.
(The notation here means that Bk = T1kB̂1 + · · · + TnkB̂n for k ≥ 1 and B0 =

cB̂0 − (t1B̂1 + · · ·+ tnB̂n).) The following theorem describes how (2) is modified by
this change of basis. The proof is straightforward, and we shall omit it.

Theorem 2. The minima

min
x∈Cn

∥∥∥∥∥
n∑
k=1

xkBk − B0

∥∥∥∥∥
and

|c| min
x̂∈Cn

∥∥∥∥∥
n∑
k=1

x̂kB̂k − B̂0

∥∥∥∥∥
are the same, and the unique vectors x and x̂ that achieve them are related by

x̂ =
1

c
(Tx+ t).

We are aware of three choices of basis that are particularly attractive for practical
computations.

Scaled power basis. Suppose B0, . . . , Bn are given as in (2). A simple way to get
a better conditioned basis is to scale the norm of A to 1. With such a scaling, we
have B̂0 = B0/α0 and

B̂k = Bk/αk, k = 1, . . . , n,

where α0 = ‖A‖n and αk = ‖A‖k−1, k = 1, . . . , n. Hence T = diag(α1, . . . , αn),
t = 0, and c = α0 in (2).

Faber polynomial basis. Even the best-scaled power basis is often highly ill con-
ditioned. A more powerful idea is to consider the basis {F0(A), . . . , Fn(A)} defined
by the Faber polynomials F0, . . . , Fn associated with some region Ω in the complex
plane containing the spectrum of A. The Faber polynomials {Fn} are the natural
analogues for a general region Ω in C of the monomials {zn} for the unit disk or the
Chebyshev polynomials {Tn} for [−1, 1]; see [2]. In most cases, {Fn(A)} will be far
better conditioned than any power basis.

For the Faber basis, the matrix T in (2) is upper triangular, with columns con-
taining the coefficients of F0, . . . , Fn−1. The scalar c is the positive number cap(Ω)n,
where cap(Ω) is the logarithmic capacity of Ω. The vector t is the vector of co-
efficients of the expansion of the degree n − 1 polynomial cFn(z) − zn in terms of
F0(z), . . . , Fn−1(z).

Of course, one must choose a region Ω for which the associated Faber polynomials
can be obtained either analytically or numerically. If Ω is chosen to be an ellipse or
an interval, then the Faber polynomials are simply the scaled Chebyshev polynomials
{Tn}. More generally, if Ω is chosen to be a polygonal domain, the Faber polynomials
can be computed numerically via Schwarz–Christoffel mapping. We have used the
Matlab Schwarz–Christoffel toolbox for this purpose, due to Driscoll [4].

Orthonormal basis. Finally, our third idea is a more elementary one, but powerful
in practice. One may simply orthonormalize the power basis {I, A, . . . , An} with
respect to the “trace inner product” 〈A, B〉 = tr(AB∗) in CN×N to obtain a basis
{Q1, Q2, . . . , Qn+1} that is typically well conditioned even in the 2-norm. This can
be done by a modified Gram–Schmidt procedure similar to that used in the Arnoldi
iteration:

404 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

Q1 = N−1/2I

for k = 1 : n

V = AQk

for j = 1 : k

hjk = 〈V,Qj〉
V = V − hjkQj

hk+1,k = 〈V, V 〉1/2
Qk+1 = V/hk+1,k.

To obtain the matrix T in (2), we note that there is a unique (n+ 1)× (n+ 1) upper
triangular matrix R such that

[I |A | · · · |An] R = [Q1 |Q2 | · · · |Qn+1] ,

and the columns of R can be computed from the following recurrence relation (in
Matlab notation):

R(1, 1) = 1/
√
N,

hk+1,k rk+1 =

[
0
rk

]
−
[
R(1 : k, 1 : k) hk

0

]
,

where rk = R(1 : k, k) and hk = (h1k, . . . , hkk)T , for k = 1, . . . , n. It is now easy to
see that

T = R−1(1 : n, 1 : n), c = R−1(n+ 1, n+ 1), t = R−1(1 : n, n+ 1),

again in Matlab notation.

For simplicity, we use the orthonormal basis in the examples reported in this
paper. Although it is more expensive to compute than the other two bases, the
amount of time taken remains small compared to the time required for solving (3).

We note that transformation to a better-conditioned basis does not eliminate any
ill-conditioning that is inherent in the Chebyshev minimization problem itself.

4. Solution by primal-dual interior point method. Assuming a suitable
basis has been chosen, we now turn to the problem of how (3) can be solved by interior
point methods similar to those in linear programming, specifically, by Mehrotra-type
primal-dual predictor-corrector algorithms. Extensive research has been done on
both the algorithms and the theory of semidefinite programming (SDP). We refer the
reader to [1], [9], [10], [11], [12], [16], [23], and [25] for details.

A general SDP has the form

(D) : max
y∈IRn

bT y

s.t.

n∑
k=1

ykAk + Z = C, Z ≥ 0,(6)

where C, Z, Ak, k = 1, . . . , n, are N ×N hermitian matrices and b ∈ IRn. The idea
behind an interior point method is to use a suitable barrier function, − log det(Z) in
the case of SDP, to transform the semidefinite constrained convex problem (D) into

CHEBYSHEV POLYNOMIALS OF A MATRIX 405

a parametrized family (by µ) of equality constrained convex problems whose optimal
solutions (X(µ), y(µ), Z(µ)) satisfy the optimality conditions

n∑
k=1

ykAk + Z = C,

〈X, Ak〉 = bk, k = 1, . . . , n,(7)

XZ = µI,

where X and Z are hermitian positive definite. The parameter µ > 0 is to be driven
explicitly to zero (as fast as possible), and in the limit µ→ 0, an optimal solution of
(6) is obtained.

Mehrotra-type primal-dual predictor-corrector algorithms essentially consist of a
sequence of modified Newton iterations. Usually, one step of Newton’s iteration is
applied to (7) for each new µ.

It is readily shown that application of Newton’s method to (7) gives rise to the
equations

n∑
k=1

(∆y)k Ak + ∆Z = C − Z −
n∑
k=1

yk Ak,

〈∆X, Ak〉 = bk − 〈X, Ak〉, k = 1, . . . , n,

(8)

∆X Z + X ∆Z = µI − XZ.(9)

In order to keep ∆X hermitian (this is desirable since the fundamental objects
in an SDP are hermitian matrices), (9) is usually symmetrized with respect to an
invertible matrix P , whereupon it becomes

P (∆X Z +X ∆Z)P−1 + P−∗(Z ∆X + ∆Z X)P ∗ = R,(10)

where

R = 2µI − P (XZ)P−1 − P−∗(ZX)P ∗.(11)

Different choices of P give rise to different Newton steps. For example, P = I
gives rise to what is known as the Alizadeh–Haeberly–Overton (AHO) direction [1];
P = Z1/2 gives rise to the Monteiro direction [10]; and P = W−1/2, where W =
Z−1/2(Z1/2XZ1/2)1/2Z−1/2, gives rise to the Nesterov–Todd (NT) direction [12].

The general algorithmic framework of a Mehrotra-type predictor-corrector
method is as follows.

Algorithm. Given an initial iterate (X0, y0, Z0) with X0, Z0 positive definite,

for k = 0, 1, . . . ,

(Let the current and the next iterate be (X, y, Z) and (X+, y+, Z+), respectively.)
1. Predictor step. Compute the Newton step (δX, δy, δZ) from (8) and (10)

with µ = 0 in (11).
2. Determine the real parameter µ = σ 〈X, Z〉/n, where

σ =
〈X + α δX, Z + β δZ〉2

〈X, Z〉2 .

406 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

Here α and β are suitable steplengths chosen to ensure that X +α δX and Z + β δZ
are positive definite. Generally, α and β have the form

α = min

(
1,

−τ
λmin(X−1δX)

)
, β = min

(
1,

−τ
λmin(Z−1δZ)

)
,(12)

where τ < 1 is a control parameter.
3. Corrector step. Compute the Newton step (∆X,∆y,∆Z) from (8) and (10)

with the right-hand side matrix R given by

R = 2µI − P (XZ + δXδZ)P−1 − P−∗(ZX + δZδX)P ∗.

4. Update (X, y, Z) to (X+, y+, Z+) by

X+ = X + α∆X, y+ = y + β∆y, Z+ = Z + β∆Z,

where α and β are defined by (12) with δX, δZ replaced by ∆X, ∆Z.

We shall not discuss implementation details of the above algorithm—for exam-
ple, how to solve efficiently for the search directions (δX, δy, δZ) and (∆X,∆y,∆Z)
from the linear systems of 2N2 +n equations (8) and (10); we refer the reader to [16]
for such details. Instead, we just note that the search directions are typically com-
puted via a Schur complement equation. For such an implementation, each iteration
has a complexity of O(nN3) + O(n2N2), which is equal to O(nN3) for our Cheby-
shev approximation problem since n < N . Computations have shown that careful
implementations of the predictor-corrector algorithm that use a Schur complement

equation can typically reduce the duality gap of an SDP to about ε
2/3
mach for the three

search directions mentioned above, namely, the AHO, Monteiro, and NT directions.
For these three directions, each iteration has a complexity of at most 12nN3, and
the number of iterations needed to reduce the duality gap by a factor of 1010 seldom
exceeds 20.

In all of our computations we use the NT direction for the following reasons.
Although the orders of complexity for computing these three directions are the same,
computing the AHO direction is about twice as expensive as computing the Monteiro
or NT directions. Of the latter two, the NT direction has the virtue of being primal-
dual symmetric. This implies that primal-dual predictor-corrector algorithms based
on the NT direction are likely to be more robust than those based on the Monteiro
direction, in the sense that the problems of stagnation, such as taking very small
steplengths, are less likely to occur.

5. The special case when A is normal. It is worth setting down the form our
algorithm takes in the special case where A is normal, i.e., unitarily diagonalizable.
As we have already mentioned in the introduction, we may assume in this case that
A is diagonal, so that the Chebyshev problem (1) reduces to the classical Chebyshev
approximation problem on the spectrum Λ(A) of A, i.e.,

‖p∗n(A)‖ = ‖p∗n‖Λ(A) = minimum.

For this special case, the Chebyshev polynomials of A can be computed cheaply by
the predictor-corrector algorithm discussed in the last section by exploiting the block
diagonal structure present in the associated SDP problem.

As in the general case, we consider the norm minimization problem (2), but the
matrices Bk, k = 0, . . . , n, are now diagonal: Bk = diag(dk) for each k. Since the

CHEBYSHEV POLYNOMIALS OF A MATRIX 407

2-norm of a diagonal matrix is the ‖ ·‖∞-norm of its diagonal vector, (2) is equivalent
to the minimax problem

min
x∈Cn

max
1≤l≤N

∣∣∣∣∣
n∑
k=1

xkd
(l)
k − d

(l)
0

∣∣∣∣∣ ,(13)

where d
(l)
k denotes the lth component of the N -vector dk. As before, (13) can be

expressed as an SDP.
Theorem 3. The minimax problem (13) is equivalent to the following SDP

involving block diagonal hermitian matrices:

− max
x∈Cn, λ∈IR

λ

s.t.

n∑
k=1

(αk Ak + βk An+k) + λA2n+1 + Z = A0, Z ≥ 0,(14)

where αk = Re(xk), βk = Im(xk),

A2n+1 = diag

([
1 0
0 1

]N
l=1

)
, A0 = diag

[0 d
(l)
0

d
(l)
0 0

]N
l=1

 ,

Ak = diag

[0 d
(l)
k

d
(l)
k 0

]N
l=1

 , An+k = diag

[0 i d
(l)
k

−i d(l)
k 0

]N
l=1

 ,(15)

k = 1, . . . , n. The matrices Ak consist of N blocks of 2×2 matrices on the diagonal.
A proof of the above theorem is similar to that of Theorem 1, based on the

observation that for any complex number a we have

|a| = λmax

([
0 a
ā 0

])
.

We omit the details.
Also, the process of transformation to a better-conditioned basis for (14) is exactly

the same as for the general case. However, note that (14) cannot be obtained as a
direct consequence of Theorem 1 by specializing the matrices Bk to diagonal matrices.

If the initial iterate (X0, Z0) is chosen to have the same block diagonal structure
as the matrices Ak, then this structure is preserved throughout for (Xk, Zk). By
exploiting this block diagonal structure, the work for each iteration of the predictor-
corrector algorithm is reduced to O(n2N) flops as opposed to O(nN3) for nonnormal
matrices. In practice, we can compute the degree-25 Chebyshev polynomial of a
normal matrix of dimension 1000 in Matlab in about 12 minutes on a Sun Ultra
Sparcstation.

It would be interesting to know how this special case of our algorithm for normal
matrices compares with other methods for linear complex Chebyshev approximation,
such as the Remez semiinfinite programming methods discussed in [15], but we have
not investigated this.

6. Computed examples. We turn now to computed examples of Chebyshev
polynomials of matrices. Our aim is to demonstrate the effectiveness of our algorithm
and to give some insight into the behavior of these polynomials. This is not a subject
we fully understand, but the experimental observations are fascinating.

408 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

Most of our experimental results will be presented as plots. To “plot” a polyno-
mial p∗n, we show its roots in the complex plane and also the boundary of a region
that we call the Chebyshev lemniscate1 for that polynomial and the given matrix A.
This region is defined by the equation

Ln(A) = {z : |p∗n(z)| ≤ ‖p∗n(A)‖}.

The Chebyshev lemniscates characterize where in the complex plane the Cheby-
shev polynomials of A “live,” just as the spectrum or the pseudospectra characterize
(though not precisely, unless A is normal) where in the complex plane A itself “lives.”
As a minimum, since ‖p∗n‖Λ(A) ≤ ‖p∗n(A)‖, we know that the Chebyshev lemniscate
contains the spectrum

Λ(A) ⊂ Ln(A).(16)

In each example we present, the dimension of the matrix A is 48×48 or 100×100,
though we typically print only its 5× 5 or 6× 6 analogue. For each example, we give
plots showing the Chebyshev lemniscates (solid curves) of A, typically of degrees
n = 8 and n = 16. The zeros of the Chebyshev polynomials are shown as small
circles, and the eigenvalues of A are shown as solid dots.

For comparison with the Chebyshev lemniscate, each of our plots also shows a
dotted curve. This is the boundary of an ε-pseudospectrum of A. The value of ε has
been chosen “by hand” to make the match with the Chebyshev lemniscate a good
one. (The ε-pseudospectrum of A is the set Λε(A) = {z : ‖(zI −A)−1‖ ≥ ε−1} in the
complex plane; see [14] and [21].)

For all of these examples, the Chebyshev polynomials were computed in Matlab
by the methods described in the previous sections.

Primal-dual predictor-corrector algorithms are highly efficient and robust for solv-
ing SDPs. For the set of examples we present here, it takes an average of 12 iterations
to reduce the duality gap by a factor of 1010. (This number is rather insensitive to
the dimension of A; it would be essentially the same for matrices of dimensions 5× 5
or 200 × 200. This insensitivity to problem size is one of the remarkable features of
primal-dual interior point methods.) For a 48× 48 real matrix, each iteration takes
about 5 and 7 seconds for n = 8 and n = 16, respectively, on a Sun Ultra Sparcsta-
tion. The corresponding numbers for a 48× 48 complex matrix are about 30 seconds
and 45 seconds.

Here are our examples. Omitted entries are all zero.

Example 1. Diagonal.

A = diag(d) (100× 100),

where d is a vector whose first entry is 1 and the rest of whose entries are distributed
uniformly in the interval [−1, 0.8]. Thus the spectrum of A consists of points that
densely fill the interval [−1, 0.8] and an outlier at z = 1.

1Properly speaking, the word lemniscate refers to the boundary of Ln, and Ln itself is a
lemniscatic region, but this expression is cumbersome, and we shall avoid it.

CHEBYSHEV POLYNOMIALS OF A MATRIX 409

Example 2. Bidiagonal.

A =

d1 0.2
d2 0.2

. . .
. . .

. . . 0.2

dN

(100× 100),

where the vector d is the same as that in Example 1. The spectrum is the same as
in Example 1.

Example 3. Grcar [21].

A =

1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1

 (48× 48).

Example 4. Ellipse.

A =

0 3
2 0 3

2 0 3
2 0 3

2 0

 (48× 48).

Example 5. Bull’s head [14].

A =

0 0 1 .7
2i 0 0 1 .7

2i 0 0 1 .7
2i 0 0 1

2i 0 0
2i 0

 (48× 48).

Example 6. Lemniscate1 [14].

A =

1 1
−1 1

1 1
−1 1

1 1
−1

 (48× 48).

Example 7. Lemniscate2 [20].

A =

1 α

5 α
5 α

1 α
5 α

5

 (48× 48),

410 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

where α = (256/27)1/3.
Example 8. Gauss–Seidel [14].

A =

0 1
2

0 1
4

1
2

0 1
8

1
4

1
2

0 1
16

1
8

1
4

1
2

0 1
32

1
16

1
8

1
4

1
2

0 1
64

1
32

1
16

1
8

1
4

(48× 48).

This is the matrix that corresponds to a Gauss–Seidel iteration applied to the stan-
dard 3-point discrete Laplacian on a grid of N points.

Example 9. Beam–Warming [20].

A =

−1.5 2.0 −1.5

− 1
3 − 1

2 1 − 1
6

− 1
3 − 1

2 1 − 1
6

− 1
3 − 1

2 1

0.7 −2.6 2.1

 (48× 48).

Example 10. Wilkinson [21].

A =

1
N 1

2
N 1

. . .
. . .
N−1
N 1

1

 (48× 48).

Example 11. Chebyshev points.

A =

x1 γ1

x2 γ2

. . .
. . .

xN−1 γN−1

xN

 (48× 48),

where γk = 0.5− xk, xk = cos
(
k−1
N−1π

)
, k = 1, . . . , N .

Example 12. Random [21].

A = random (48× 48),

where by random we mean that the entries of A are independently drawn from the
real normal distribution with mean 0 and variance 1/N .

Example 13. Random triangular [21].

A = random triangular (48× 48),

by which we mean that A is the strictly upper triangular part of the random matrix
of Example 12.

CHEBYSHEV POLYNOMIALS OF A MATRIX 411

Table 1
Computed coefficients of p∗8 for the Grcar and bull’s head matrices (Examples 3 and 5). All

but perhaps the last two digits printed are believed to be correct.

Grcar Bull’s head
computed p∗8 computed p∗8

1 1

−7.90306320 −0.00279600− 0.00031731 i

41.3354079 0.03375518 + 0.00745584 i

−150.565236 −0.22640678− 0.07463880 i

419.059092 0.90451365 + 0.40702758 i

−897.405790 −2.12812512− 1.29015885 i

1464.45030 2.67821078 + 2.33940114 i

−1722.68403 −1.34847513− 2.19132640 i

1271.98751 0.05968294 + 0.74912144 i

Table 2
Norms ‖p∗8(A)‖ for Examples 1–14. All digits printed are believed to be correct, as the estimated

relative accuracies are all less than 10−11.

Example Computed ‖p∗8(A)‖

1. Diagonal 0.0063675408

2. Bidiagonal 0.0551494047

3. Grcar 1766.3135313

4. Ellipse 7710.2711611

5. Bull’s head 1239.4186173

6. Lemniscate1 1.0000000000

7. Lemniscate2 834.73857463

8. Gauss–Seidel 0.0049251285

9. Beam–Warming 7.4348443860

10. Wilkinson 6.2747795054

11. Chebyshev points 46.395131600

12. Random 2.9537221027

13. Random triangular 0.0039633789

14. Convection-diffusion 2623904.6097

Example 14. Convection-diffusion matrix [13], [18]. The matrix A is the projec-
tion of the 2N×2N Chebyshev spectral discretization matrix of a convection-diffusion
operator onto the invariant subspace associated with the N eigenvalues of maximal
real part (N = 48).

In Table 1, for later authors who may wish to compare the coefficients of some
Chebyshev polynomials of matrices, we list the coefficients of p∗8 for the matrices of
Examples 3 and 5. In Table 2, we list ‖p∗8(A)‖ for all 14 examples.

The plots for our 14 examples are shown in Figures 1–14.

Let us first consider Example 1, the special case where A is diagonal. For any
Chebyshev polynomial of a matrix, we know that the Chebyshev lemniscate must
contain the spectrum (16). In the present case, by the characterization theorems for
the classical complex Chebyshev approximation problem [3, p. 143], we know that
the nth Chebyshev lemniscate must in fact touch the spectrum Λ(A) at no fewer
than n + 1 points. This property is evident in Figure 1, where we see that Ln(A)
hugs Λ(A) rather closely, and increasingly so as n increases (see the cover illustration
of [22]). It is interesting also to note how quickly one of the roots of the polynomials

412 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

Fig. 1. Diagonal. Since A is normal, the Chebyshev lemniscate touches the spectrum at at
least n+ 1 points, and the roots of p∗n lie in the convex hull of the spectrum.

Fig. 2. Bidiagonal—a nonnormal analogue of Example 1. The dotted curves are the ε = 10−1.5

pseudospectrum of A.

p∗n, which are analogous to the “Ritz values” often taken as eigenvalue estimates in
Arnoldi or Lanczos iterations, converges to the outlier eigenvalue at z = 1. By n = 6,
one of the roots of p∗6 is already very close to the outlier, and the distance between
them decreases geometrically as n increases. In the remainder of the spectrum, on
the other hand, no individual Ritz value is converging rapidly to any one eigenvalue
of A. Rather, it is the Chebyshev lemniscate generated by these Ritz values jointly
that is capturing the spectrum.

CHEBYSHEV POLYNOMIALS OF A MATRIX 413

−2 0 4
−4

0

4

−2 0 4

ε = 10−0.8 ε = 10−0.8n = 8 n = 16

Fig. 3. Grcar—a nonnormal Toeplitz matrix.

−6 0 6
−6

0

6

−6 0 6

ε = 10−0.8 ε = 10−0.8n = 8 n = 16

Fig. 4. Ellipse. The eigenvalues are all real, but the pseudospectra bulge into the complex
plane.

−3.5 0 2.5
−2.5

0

3.5

−3.5 0 2.5

ε = 10−1 ε = 10−1

n = 8 n = 16

Fig. 5. Bull’s head—our only example with complex entries, hence a figure with no symme-
tries.

414 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

−2 0 2
−2

0

2

−2 0 2

ε = 10−1.5 ε = 10−1.5n = 8 n = 16

Fig. 6. Lemniscate1. The zeros of p∗n are {−1, 1}. The dotted and solid curves coincide almost
exactly.

0 4 8
−4

0

4

0 4 8

ε = 10−0.8 ε = 10−1.0n = 8 n = 16

Fig. 7. Lemniscate2. Here one eigenvalue of the matrix has twice the multiplicity of the
other.

One might expect Ln(A) to approximate Λ(A) even if A is nonnormal. But from
Figures 2–14, the reader will see that this does not happen. Nonetheless, though
Ln(A) does not always approximate Λ(A) very closely, it still gains some information
about A. The plots show that for these examples, to a rather startling degree,

Ln(A) ≈ Λε(A)(17)

for some ε ≥ 0, where Λε(A) is again the ε-pseudospectrum of A. In particular, the
agreement of the Chebyshev lemniscate of p∗n with a pseudospectrum of A is far closer
in most of these examples than the agreement of the roots of p∗n with the eigenvalues
of A. For example, consider Figure 2, the bidiagonal matrix that is the nonnormal
analogue of Example 1 with the same spectrum.

Except for the outlier eigenvalue, the roots of p∗n bear no resemblance to indi-
vidual eigenvalues of A. On the other hand, the Chebyshev lemniscates of these
polynomials show a striking resemblance to the ε = 10−1.5 pseudospectrum of A.
Clearly the Chebyshev polynomial is approximating A in a fashion that goes beyond
approximation of individual eigenvalues.

The other examples illustrate the same effect. In every case, the lemniscate of

CHEBYSHEV POLYNOMIALS OF A MATRIX 415

−0.5 0 1.5
−1

0

1

−0.5 0 1.5

ε = 10−1.8 ε = 10−1.8n = 8 n = 16

Fig. 8. Gauss–Seidel. Half of the eigenvalues are at the origin.

−2.5 0 1.5
−2

0

2

−2.5 0 1.5

ε = 10−1.1 ε = 10−1.5n = 8 n = 16

Fig. 9. Beam–Warming—a “quasi-Toeplitz” matrix.

the Chebyshev polynomial shows a compelling approximation to the pseudospectrum.
We do not claim that this effect is universal (these examples have been picked for
their pronounced and cleanly structured nonnormality), but it is certainly common.

A partial explanation of this phenomenon is as follows. It is well known that a
matrix polynomial p(A) can be expressed as a Cauchy integral

p(A) =
1

2πi

∫
p(z) (zI −A)−1dz,

where the integration is over any closed contour or union of contours enclosing the
spectrum of A once in the counterclockwise direction [8]. Taking absolute values gives
the inequality

‖p(A)‖ ≤ 1

2π

∫
|p(z)| ‖(zI −A)−1‖ |dz|.(18)

Now suppose we seek p such that ‖p(A)‖ is small. When the degree of p is
smaller than the dimension of A, it is impossible to achieve this in general by putting
zeros of p wherever A has eigenvalues, which would make the integral zero. Instead,
we must settle for making |p(z)| small where ‖(zI−A)−1‖ is large. This immediately
suggests a link between lemniscates of p and pseudospectra of A.

416 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

−1.5 0 2.5
−2

0

2

−1.5 0 2.5

ε = 10−1.0 ε = 10−1.0n = 8 n = 16

Fig. 10. Wilkinson—evenly spaced eigenvalues on the real axis.

−3 0 2
−2.5

0

2.5

−3 0 2

ε = 10−0.8 ε = 10−1.0n = 8 n = 16

Fig. 11. Chebyshev points—unevenly spaced eigenvalues.

From this kind of reasoning we can derive bounds on ‖p∗n(A)‖. For example, to
minimize ‖p(A)‖ one might seek to minimize ‖p‖Λε(A) for some ε that is not too small

(hence |p(z)| is small over the region where ‖(zI − A)−1‖ is larger than ε−1). From
(18) and the minimality of ‖p∗n(A)‖ we conclude that

‖p∗n(A)‖ ≤ Lε
2πε

min
p
‖p‖Λε(A),(19)

where Lε is the arclength of the boundary of Λε(A). At this point one runs into the
fact that minp ‖p‖Λε(A) can be huge if ε is not small, since the minimum typically
increases geometrically with ε. Therefore, a compromise must be made on ε so that
the quantity minp ‖p‖Λε(A)/ε on the right-hand side of (19) is as small as possible.

For some matrices A and choices of n and ε, the estimate just described can be
quite good. It is not always very good, however, and so far our attempts to make a
more precise link between lemniscates of Chebyshev polynomials and pseudospectra of
the underlying matrix have been unsuccessful except in certain limiting cases n→∞
described in [17]. Rather than present partial results that do not bring this matter to
a very satisfactory state, we prefer to leave the explanation of the behavior of Figures
2–14 as an open problem.

CHEBYSHEV POLYNOMIALS OF A MATRIX 417

−1.5 0 1.5
−1.5

0

1.5

−1.5 0 1.5

ε = 10−1.0 ε = 10−1.2n = 8 n = 16

Fig. 12. Random. This matrix is only mildly nonnormal.

−0.6 0 0.6
−0.6

0

0.6

−0.6 0 0.6

ε = 10−1.6 ε = 10−3.0n = 8 n = 16

Fig. 13. Random triangular. The nonnormality is now pronounced.

7. Conclusions. This paper has made two contributions. The first is a reason-
ably fast and apparently robust algorithm for computing the Chebyshev polynomials
of a matrix, based on primal-dual interior point methods in semidefinite program-
ming. The second is an experimental study of these polynomials that indicates that
the associated lemniscates sometimes closely approximate certain pseudospectra of
A.

We have said little about applications in iterative numerical linear algebra, though
that was our original motivation. There are many possibilities here that might be
explored now that an algorithm is available. For example, our algorithm may prove
useful in analyzing the convergence of Krylov subspace iterations, or the construc-
tion of preconditioners for such iterations, by means of model problems of moderate
dimension.

It was mentioned in the introduction that for applications to iterative solution
of equations rather than eigenvalue calculations it is appropriate to minimize ‖p(A)‖
with the normalization p(0) = 1 instead of limz→∞ p(z)/zn = 1. Plots of lemniscates
for these “ideal GMRES polynomials” can be found in the first author’s disserta-
tion [17]. Because this normalization gives a special status to the origin, these prob-
lems are no longer translation-invariant in the complex plane, and the lemniscates
take special pains to avoid the origin. They also tend to display scallop patterns near

418 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

−5 0 1
−3

0

3

−5 0 1

ε = 10−0.8 ε = 10−0.8n = 8 n = 16

Fig. 14. Convection-diffusion. A matrix approximation to the canonical nonnormal differential
operator.

the spectrum or pseudospectra.

Interesting connections can also be made to the notion of a generalized Kreiss
matrix theorem. The usual Kreiss matrix theorem relates the norms ‖An‖ to the
behavior of the pseudospectra of A near the unit disk. Generalizations are obtained
by looking at norms ‖p(A)‖ for other polynomials p and the behavior of the pseu-
dospectra near other regions. These matters are investigated in [19].

We consider the idea of the Chebyshev polynomials of a matrix a natural one,
suggesting many questions to be explored. We hope that more will be learned about
the behavior of these polynomials in the years ahead and that applications in other
areas will be found.

REFERENCES

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability, and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[2] J. H. Curtiss, Faber polynomials and the Faber series, Amer. Math. Monthly, 78 (1971),
pp. 577–596.

[3] P. J. Davis, Interpolation and Approximation, Dover, New York, 1975.
[4] T. A. Driscoll, A MATLAB toolbox for Schwarz-Christoffel mapping, ACM Trans. Math.

Software, 22 (1996), pp. 168–186.
[5] G. Faber, Über Tschebyscheffsche Polynome, J. Reine Angew. Math., 150 (1920), pp. 79–106.
[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University

Press, Baltimore, MD, 1989.
[7] A. Greenbaum and L. N. Trefethen, GMRES/CR and Arnoldi/Lanczos as matrix approx-

imation problems, SIAM J. Sci. Comput., 15 (1994), pp. 359–368.
[8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
[9] C.-J. Lin and R. Saigal, An Infeasible Start Predictor-Corrector Method for Semi-Definite

Linear Programming, manuscript, Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, MI, 1995.

[10] R. D. C. Monteiro, Primal–dual path-following algorithms for semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 663–678.

[11] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Program-
ming, Stud. Appl. Math. 13, SIAM, Philadelphia, PA, 1994.

[12] Y. E. Nesterov and M. J. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim., 8 (1998), pp. 324–364.

[13] S. C. Reddy and L. N. Trefethen, Pseudospectra of the convection-diffusion operator, SIAM
J. Appl. Math., 54 (1994), pp. 1634–1649.

CHEBYSHEV POLYNOMIALS OF A MATRIX 419

[14] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices,
Linear Algebra Appl., 169 (1992), pp. 153–185.

[15] P. T. P. Tang, A fast algorithm for linear complex Chebyshev approximations, Math. Comp.,
51 (1988), pp. 721–739.

[16] M. J. Todd, K.-C. Toh, and R. H. Tütüncü, On the Nesterov–Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769-796.

[17] K.-C. Toh, Matrix Approximation Problems and Nonsymmetric Iterative Methods, Ph.D.
thesis, Cornell University, Ithaca, NY, 1996.

[18] K.-C. Toh and L. N. Trefethen, Calculation of pseudospectra by the Arnoldi iteration,
SIAM J. Sci. Comput., 17 (1996), pp. 1–15.

[19] K.-C. Toh and L. N. Trefethen, The Kreiss matrix theorem on a general complex domain,
SIAM J. Matrix Anal. Appl., to appear.

[20] L. N. Trefethen, Spectra and Pseudospectra: The Behavior of Non-Normal Matrices and
Operators, in preparation.

[21] L. N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991, D. F. Griffiths and
G. A. Watson, eds., Longman Scientific and Technical, Harlow, UK, 1992.

[22] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[23] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[24] H. Widom, Extremal polynomials associated with a system of curves in the complex plane,

Adv. Math., 3 (1969), pp. 127–232.
[25] Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming

to semidefinite programming, SIAM J. Optim., 8 (1998), pp. 365–386.

THE ASYMPTOTIC BEHAVIOR OF THE EIGENVALUES OF A
SINGULARLY PERTURBED LINEAR PENCIL∗

BRANKO NAJMAN†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 420–427

Abstract. The pencil T̃ (λ, ε) = ελ2I + λC + K, a singular perturbation of the linear pencil

T̃ (λ, 0) = λC + K, is considered, and the asymptotic behavior of its large eigenvalues (i.e., those
converging to infinity as ε goes to zero) is analyzed. The Newton diagram method is employed to

determine the leading power of the Puiseux ε-expansion of the large eigenvalues of T̃ (λ, ε). These
leading powers are completely identified either in the case when C is diagonalizable and nonsingular,
or when both C and K are hermitian matrices. In the remaining cases, some partial information is
still obtained.

Key words. matrix pencil, eigenvalue, singular perturbation, Puiseux expansion

AMS subject classifications. 15A18, 15A22, 47A56, 47A55

PII. S0895479896299949

1. Introduction. The investigation of the eigenvalues of analytically perturbed
matrix polynomials is a part of the analytic perturbation theory [1], [4]. In recent
years it has attracted considerable attention and new approaches have been applied,
proving new results and deepening our understanding of some special cases (see [2],
[5], [6], [7], [8]). In this paper, the pencil

T̃ (λ, ε) = ελ2I + λC +K

is studied. It can be considered as a second order (hence singular) perturbation of

the linear pencil T̃ (λ, 0) = λC +K. Throughout the paper, it is assumed that K and
C are n × n matrices and that the pencil µK + C is regular, i.e., the determinant
q(µ) = det(µK + C) is not identically equal to zero. It is evident that the perturbed
pencil has more finite eigenvalues than the unperturbed; thus some of the eigenvalues
λ(ε) of T̃ (λ, ε) “converge to ∞” as ε→ 0. We call these eigenvalues “ large ,” and we
are interested in their asymptotic behavior. This behavior is determined by the first
nonvanishing term of the Puiseux expansion

λ(ε) =

∞∑
j=1

γj

(
1

εp

)j
,(1.1)

which holds in a deleted neighborhood of ε = 0 with some rational number p. In
the following, the first nonvanishing term of this Puiseux expansion is called the first
term, and the exponent −jp of the first term is called the leading exponent of the
expansion (1.1).

∗Received by the editors March 1, 1996; accepted for publication (in revised form) by M. Overton
May 7, 1998; published electronically October 29, 1998.

http://www.siam.org/journals/simax/20-2/29994.html
†The author is deceased. Former address: Department of Mathematics, University of Za-

greb, Bijenicka 30, 41001 Zagreb, Croatia. Final work on this paper was done by Heinz Langer
(hlanger@mail.zserv.tuwien.ac.at) and Julio Moro (jmoro@math.uc3m.es).

420

SINGULARLY PERTURBED MATRIX PENCILS 421

We employ the Newton diagram method, which has previously been applied in
[5], [6], [7], [8]. We show, in particular, that

1) the total multiplicity of the “ large ” eigenvalues is n+ a, where n is the size
of the matrices C and K and a is the algebraic multiplicity of zero as the
root of the polynomial q;

2) if C is diagonalizable and nonsingular, then all the n “ large ” eigenvalues λ(ε)
have Puiseux expansions with the first term γ

ε , γ 6= 0, i.e.,

1

λ(ε)
=

1

γ
ε+ o(|ε|) (ε→ 0);

3) if C is diagonalizable and singular with a zero eigenvalue of multiplicity b,
then exactly n−b “ large ” eigenvalues λ(ε) have Puiseux expansions with the
first term γ

ε , γ 6= 0, and exactly a+ b “ large ” eigenvalues λ(ε) have Puiseux
expansions with the first term (γ/εp), γ 6= 0, for some 0 < p ≤ 1

2 ;
4) if C is diagonalizable and a = b, then, in addition to the n − a “ large ”

eigenvalues, which have Puiseux expansions with the first term γ
ε , γ 6= 0, there

are 2a “ large ” eigenvalues which have Puiseux expansions starting with the
first term γ√

ε
, γ 6= 0;

5) if C and K are hermitian and one of them is uniformly definite, then a = b
and case 4 applies;

6) if C and K are hermitian and indefinite, then, in addition to the n−b “ large ”
eigenvalues λ(ε), which have Puiseux expansions with the first term γ/ε,
γ 6= 0, the remaining a + b “ large ” eigenvalues have Puiseux expansions
completely determined by the canonical form of the pair (C,K); see Theorem
3.2 for the precise statement.

2. The results. Note that

T̃ (λ, ε) = λ2T

(
1

λ
, ε

)
,(2.1)

where

T (µ, ε) = µ2K + µC + εI

can be considered as a perturbation of T (µ, 0) = µ2K + µC.

From (2.1) it follows that for every eigenvalue λ 6= 0 of T̃ (· , ε), the number
µ0 = (1/λ0) is an eigenvalue of T (· , ε) and conversely. The analysis of the eigenvalues

near ∞ of T̃ (· , ε) reduces to the analysis of the eigenvalues near zero of T (· , ε) and
vice versa.

Let

t(µ, ε) = detT (µ, ε) =

i=2n∑
i=0

k=n∑
k=0

tik
i!k!

µiεk,

where

tik =
∂i+kt

∂µi∂εk
(0, 0).

Then the eigenvalues µ of T (· , ε) admit expansions

µ(ε) =

∞∑
j=1

δjε
pj ,(2.2)

422 BRANKO NAJMAN

and we are interested in the first nonvanishing term of this expansion; the correspond-
ing exponent is again called the leading exponent of the expansion (2.2). In order to
determine it, we use the Newton diagram method, which was used also in [5], [6],
[7], [8]. Recall that this method consists of the following (see [1, Appendix A.7] and
[10, section I.2]). For i, k ≥ 0, plot all the points (i, k) with tik 6= 0 on a Cartesian
grid and take the lower boundary of the convex hull of all the plotted points. This
lower boundary is called the Newton diagram ND(t) of t. Then consider the falling
part of the Newton diagram. It is a polygonal line, and the slopes of the different
segments of this polygonal line, multiplied by −1, are the leading exponents of the
expansions (2.2). Moreover, the length of the horizontal projection of each segment
is the number of eigenvalues with that particular leading exponent. In the following,
by E(t) we denote the extremal points of ND(t); these are simply the points where
the slopes of the segments of ND(t) change.

Set a = 0 if det C 6= 0, and let a be the multiplicity of zero as the root of the
polynomial q(µ) = det(µK + C) if detC = 0.

Proposition 2.1. The points Pi = (0, n) and Pe = (n+a, 0) are extremal points
of the Newton diagram ND(t)of t.

Proof. Evidently,

t0k =
dk

dεk
det(εI)|ε=0 =

dk

dεk
εn = n!δnk,

ti0 =
di

dµi
det T (µ, 0)|µ=0 =

di

dµi
(µn det(µK + C))|µ=0 =

di

dµi
(µnq(µ))|µ=0;

hence

ti0 =

0 if i < n,

n! det C if i = n,
i!

(i− n)!

di−nq
dµi

(0) if i > n.

It follows that ti0 = 0 if i < n+ a, tn+a,0 6= 0, and, consequently, Pi, Pe ∈ E(t).
The coefficients tik can be considered as sums∑

det[f1, . . . , fn](2.3)

of determinants, where each column fj is either the jth column of T (µ, ε) or it is
obtained by differentiating the jth column of T (µ, ε) with respect to µ or ε. Therefore,
if i+ k < n, then at least one column in each determinant is a column of T (µ, ε), and
therefore is zero at µ = ε = 0. Hence no point of (i, k) with i+ k < n may appear on
the Newton diagram ND(t).

Recall that a “ large ” eigenvalue λ(ε) of T̃ (λ, ε) is an eigenvalue with the property
limε→0 |λ(ε)| = ∞. The next theorem is an easy consequence of Proposition 2.1 and
the above consideration.

Theorem 2.2. The pencil T̃ has n + a “ large ” eigenvalues. At least a of them
have Puiseux expansions (1.1) with the first term γε−p for some γ 6= 0, p ∈ (0, 1).
If a = 0, then all “ large ” eigenvalues have Puiseux expansions with the first term γ

ε
for some γ 6= 0; if a ≥ 1, then there are at most n− 1 eigenvalues with the first term
γ
ε , and at least a+ 1 “ large ” eigenvalues have Puiseux expansions with the first term
(γ/εp) for some γ 6= 0, p ∈ (0, 1).

SINGULARLY PERTURBED MATRIX PENCILS 423

Proof. According to Proposition 2.1 the points Pi = (0, n) and Pe = (n+a, 0) are
always on ND(t), while no point (0, k) with k < n and no point (i, 0) with i < n+ a
are on ND(t). Since no point (i, k) with i + k < n belongs to ND(t), the negative
slope of the steepest segment (that is, of the first segment) is at most one. If a = 0,
then ND(t) reduces to the line of slope −1 connecting Pi with (n, 0). If a ≥ 1, the
first segment with p = 1 can have a horizontal projection of length at most n−1, since
otherwise ND(t) would hit the horizontal axis at (n, 0), which is impossible.

Denote by b the defect of C, that is, the dimension of the kernel of C. Evidently,
a = 0 if and only if b = 0. In the following we assume that C is diagonalizable. Then b
coincides with the multiplicity of zero as a root of the polynomial p(µ) = det(C−µI).

Proposition 2.3. Assume that C is diagonalizable. Then the following state-
ments hold:

(a) If b ≥ 1, then a ≥ b.
(b) The point Pm = (n− b, b) is an extremal point of ND(t).
(c) If the set E(t) contains other points besides Pi, Pm, and Pe, then the part of

the ND(t) between Pm and Pe lies to the right of the line x + 2y = n + b;
there are no points of E(t) between Pi and Pm.

Proof. (a) Let S be a nonsingular and D a diagonal matrix such that C =
S−1DS, and set H = SKS−1. Then q(µ) = det(µH + D), and b is the num-
ber of zero diagonal entries of D. Without loss of generality, we can assume D =
diag(0, . . . , 0, db+1, . . . , dn) with dj 6= 0 for j = b+ 1, . . . , n. Then

q(µ) = det

[
µH1 µH2

µH3 D4 + µH4

]
= µb det

[
H1 µH2

H3 D4 + µH4

]
,

where H1 is a b× b matrix, and H4 and D4 = diag (db+1, . . . , dn) are (n− b)× (n− b)
matrices. It follows that

djq

dµj
(0) = 0 if j < b,

dbq

dµb
(0) = b! det

[
H1 0
H3 D4

]
= b! db+1 · · · dn detH1;

hence a ≥ b.
(b), (c). Without loss of generality, we can assume b > 0 and

T (µ, ε) =

[
µ2H1 + εI µ2H2

µ2H3 µ2H4 + µD4 + εI

]
.

First we show that Pm = (n− b, b) belongs to ND(t). To this end we write tn−b,b as a
sum of determinants (2.3). The columns f1, . . . , fn are obtained from the correspond-
ing columns of T (µ, ε) by differentiating (n− b)-times with respect to µ, b-times with
respect to ε, and setting µ = ε = 0. It is easy to see that the only nonzero term in
this sum arises if we differentiate the last n − b columns with respect to µ and the
first b columns with respect to ε; hence tn−b,b = db+1 · · · dn 6= 0.

Now let 0 < k ≤ b and consider the coefficients (2.3) in the expansion of t.
The column fj is obtained by differentiating the jth column of T (λ, ε). If j ≤ b and

424 BRANKO NAJMAN

fj 6= 0, then fj is obtained by differentiating with respect to ε once or differentiating
with respect to µ twice. If j > b and fj 6= 0, then fj is obtained by differentiating
with respect to ε once or differentiating with respect to µ once or twice. Assume
f1, . . . , fm are all nonzero and l ≤ k of the f1, . . . , fb are obtained by differentiating
once with respect to ε. Then b−l of these columns are obtained by differentiating twice
with respect to µ. The remaining columns fb+1, . . . , fn are obtained by differentiating
(k− l)-times with respect to ε and (i− 2(b− l))-times with respect to µ. This implies
i − 2(b − l) ≥ n − b − (k − l), i.e., i ≥ n + b − k − l ≥ n + b − 2k. Hence tik = 0 if
i < n+ b− 2k, implying (b) and (c).

By the same reasoning as in the second part of the proof, more information
can be obtained about the coefficients tik. For example, the representation (2.3) of
t1,n−1 contains determinants which are zero because the first b columns have not
been differentiated with respect to µ; hence they become zero when we set µ =
0; any nonzero contribution must originate from each of the first b columns being
differentiated once with respect to ε and not differentiated with respect to µ. It follows
that

t1,n−1 = b!
∂

∂µ

∂n−b−1

∂εn−b−1
det(µ2H4 + µD4 + εI)|ε=0,µ=0

= b! (n− b− 1)! (db+1 + · · ·+ dn);(2.4)

hence t1,n−1 = 0 if trD4 = 0. Similarly, t1,n−2 = 0 since all the determinants in
the expansion contain a zero column and t2,n−2 = b!(n − b − 2)!σ2, where σ2 is the
second symmetric function of the db+1, . . . , dn. Analogously, tij = 0 if i + j < n and
ti,n−i = γiσi, where γi 6= 0 depends only on n and b, and σi is the ith elementary
symmetric function of db+1, . . . , dn.

Corollary 2.4. If a = b, then E(t) = {Pi, Pm, Pe}.
From Proposition 2.3 and Corollary 2.4 we obtain the following theorem.
Theorem 2.5. Assume that C is diagonalizable.
a) If C is nonsingular, then all the n “large” eigenvalues have Puiseux expan-

sions with the first term γ
ε , γ 6= 0.

b) If C is singular, then n−b “ large ” eigenvalues have Puiseux expansions with
the first term γ

ε , γ 6= 0, and a + b “ large ” eigenvalues have Puiseux expan-
sions with the first term (γ/εp), γ 6= 0, p ≤ 1

2 .
c) If a = b, then n − a “ large ” eigenvalues have Puiseux expansions with the

first term γ
ε , γ 6= 0, and 2a “ large ” eigenvalues have Puiseux expansions with

the first term γ√
ε
, γ 6= 0.

3. The hermitian case. In this section we consider the case of hermitian ma-
trices C and K. Then Theorem 2.5 applies; however, more specific results can be
obtained using the canonical form of the pencil µK + C (see [9], [3]). Denote

J(1, σ) = σ, H(h, 1, σ) = σh,

and, if m > 1,

J(m,σ) = σ

1

·
·

·
1

 , H(h,m, σ) = σ

h

· 1
· ·

· ·
h 1

 ,

SINGULARLY PERTURBED MATRIX PENCILS 425

where h ∈ C, σ ∈ {−1, 1}. Then there exists a nonsingular matrix X such that

K = X∗K1X, C = X∗C1X,

K1 =

(
b⊕
j=1

J(mj , σj)

)
⊕
(

q⊕
k=1

J(m̂k, σk)

)
⊕
(−r⊕
l=−1

H(0,ml, σl)

)
,

C1 =

(
b⊕
j=1

H(0,mj , σj)

)
⊕
(

q⊕
k=1

H(hk, m̂k, σk)

)
⊕
(−r⊕
l=−1

J(ml, σl)

)

with σj , σk, σl ∈ {−1, 1}, hk ∈ C, j = 1, . . . , b, k = 1, . . . , q, l = −1, . . . ,−r, and the
nonreal h appear only symmetric—that means together with h.

Without loss of generality, we assume that the numbers m1, . . . ,mb are ordered
in ascending order:

m1 = · · · = mn1
< mn1+1 = · · · = mn1+n2

< · · ·
< mn1+···+ns−1+1 = · · · = mn1+···+ns

and set ñj := n1 + · · ·+ nj , m̃j := mñj , j = 1, . . . , s; hence 0 < m̃1 < · · · < m̃s. Then
b = ñs is the geometric multiplicity and

a = m1 + · · ·+mb = n1m̃1 + · · ·+ nsm̃s

is the algebraic multiplicity of the eigenvalue 0 of the pencil µK1 + C1. Moreover,

T (µ, ε) = X∗T1(µ, ε)X, where T1(µ, ε) = µ2K1 + µC1 + εP1

with the positive matrix P1 = (XX∗)−1. Evidently, the eigenvalues of T and T1

coincide; therefore, in the following we consider T1 instead of T and write T instead
of T1.

Introduce for j = 1, . . . , s− 1 the s− 1 points

P (j) = (n− b+ n1(m̃1 + 1) + · · ·+ nj(m̃j + 1), b− n1 − · · · − nj)
= (n− b+ ñj + n1m̃1 + · · ·+ njm̃j , b− ñj).

The point Pm is formally given as P (0) and Pe as P (s).
Proposition 3.1. The set E(t) of the extremal points of the Newton diagram of

t consists of the s+ 2 points Pi, Pm, P
(1), . . . , P (s−1), Pe.

Proof. The matrix T (µ, ε) can be written in the form

T (µ, ε) =

 T11(µ, ε) εP12 εP13

εP ∗12 T22(µ, ε) εP23

εP ∗13 εP ∗23 T33(µ, ε)

with T11(µ, ε) corresponding to the first b blocks, T22(µ, ε) to the middle q, and
T33(µ, ε) to the last r blocks. Again, all the off-diagonal blocks in Tii(µ, ε) are equal
to the corresponding blocks of P1 = (XX∗)−1 multiplied by ε. The off-diagonal blocks
do not contribute to the Newton diagram of t except for the term εn detP1, in the
sense that

t(µ, ε) = εn detP1 + detT11(µ, ε) detT22(µ, ε) detT33(µ, ε) + · · · ,

426 BRANKO NAJMAN

where · · · stands for higher order terms giving rise to points which lie strictly above
the Newton diagram. The diagonal blocks of T11(µ, ε) are of the form

µ2J(mj , σ1) + µH(0,mj , σj) + εP
(1)
j ,

where P
(1)
j is the corresponding block of P1; it is a positive definite matrix. Its

determinant is of the form

αjµ
2mj + βjµ

mj−1ε+ γjε
mj +

∑
δijµ

iεj ,

where αj , βj , and γj are not zero and the terms δijµ
iεj do not contribute to the

Newton diagram of detT11(µ, ε). Similarly, the diagonal blocks of T22(µ, ε) are of the

form µ2J(m̂k, σk) + µH(hk, m̂k, σk) + εP
(2)
k , where again P

(2)
k is the corresponding

(positive definite) principal submatrix of P1. Its determinant is of the form

α′kµ
2m̂k + β′kµ

m̂k + γ′kε
mk +

∑
δ′ijµ

iεj ,

where again α′k, β
′
k, γ
′
k 6= 0 and the terms δ′ijµ

iεj are nonessential. The diagonal

blocks of T33(µ, ε) are of the form µ2H(0,ml, σl) +µJ(ml, σl) + εP
(1)
l with P

(l)
l being

a principal submatrix of P1. Its determinant is of the form

α′′l µ
ml + γ′′l ε

ml +
∑

δ′′ijµ
iεj

with α′′l , γ
′′
l 6= 0, and δ′′ijµ

iεj representing nonessential terms. We know from Proposi-

tion 2.3 that Pm = (n− b, b) ∈ E(t). The corresponding term µn−bεb in t(µ, ε) comes
from the product of all terms βjµ

mj−1ε, β′kµ
mk , and α′′l µ

ml in

detT11(µ, ε) detT22(µ, ε) detT33(µ, ε).

The points (i, k) lying on ND(t) and with i > n−b are obtained from similar products,
where the exponent of ε decreases as little as possible with the least possible exponent
for µ. The way to do this is to gradually replace terms βjµ

mj−1ε by terms αjµ
2mj in

the previous product, starting from terms with the index m̃1, the smallest dimension,
then doing the same with terms with the index m̃2, etc. Each of these substitutions
lowers the exponent of ε in 1 and increases that of µ in m̃j + 1. This gives rise to the
points P (j) and shows that there are no nonzero terms akjµ

kεj with (k, j) to the left
of the polygonal line determined by Pi and P (l), l = 0, . . . , s.

From Proposition 3.1 one immediately obtains the following theorem.
Theorem 3.2. There are n − b “ large ” eigenvalues λj(ε) which behave asymp-

totically as (γj/ε) if ε → 0 with γj 6= 0, j = 1, . . . , n − b, and for each j = 1, . . . , s,
there are nj(m̃j + 1) “ large ” eigenvalues λjντ (ε) which behave asymptotically as

γjνΘ1+m̃j ,τε
−1/(1+m̃j) if ε → 0 with γjτ 6= 0, τ = 1, . . . , 1 + m̃j , ν = 1, . . . , nj , where

Θmτ = exp
(

2πi
m (τ − 1)

)
.

REFERENCES

[1] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Akademie-Verlag,
Berlin, 1984.

[2] I. Gohberg, P. Lancaster, and L. Rodman, Perturbations of analytic hermitian matrix
functions, Appl. Anal., 20 (1985), pp. 23–48.

SINGULARLY PERTURBED MATRIX PENCILS 427

[3] I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products,
Birkhäuser, Basel, 1983.

[4] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New
York, 1996.

[5] H. Langer and B. Najman, Remarks on the perturbation of analytic matrix functions II,
Integral Equations Operator Theory, 12 (1989), pp. 392–407.

[6] H. Langer and B. Najman, Remarks on the perturbation of analytic matrix functions III,
Integral Equations Operator Theory, 15 (1992), pp. 798–806.

[7] H. Langer, B. Najman, and K. Veselić, Perturbation of the eigenvalues of quadratic matrix
polynomials, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 474–489.

[8] M. Radjabalipour and A. Salemi, On eigenvalues of perturbed quadratic matrix polynomials,
Integral Equations Operator Theory, 22 (1995), pp. 242–247.

[9] R. C. Thompson, Pencils of real symmetric and skew matrices, Linear Algebra Appl., 147
(1991), pp. 323–371.

[10] M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear
Equations, Noordhoff, Leyden, 1974.

RANK MODIFICATIONS OF SEMIDEFINITE MATRICES
ASSOCIATED WITH A SECANT UPDATE FORMULA∗

MOODY T. CHU† , R. E. FUNDERLIC‡ , AND GENE H. GOLUB§

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 428–436

Abstract. This paper analyzes rank modification of symmetric positive definite matrices H
of the form H −M + P , where H −M denotes a step of reducing H to a lower-rank, symmetric
and positive semidefinite matrix and (H −M) + P denotes a step of restoring H −M to a sym-
metric positive definite matrix. These steps and their generalizations for rectangular matrices are
fully characterized. The well-known BFGS and DFP updates used in Hessian and inverse Hessian
approximations provided the motivation for the generalizations and are special cases with H and P
having rank one.

Key words. rank-one reduction, Wedderburn theorem, BFGS update, DFP update, quasi-
Newton methods, rank subtractivity, rank additivity

AMS subject classifications. 65F30, 65K05, 49D15

PII. S1064827597326651

1. Introduction. In many applications, it is necessary to alter modestly a given
matrix in order to delete some old information or to take in some new information.
This paper concerns rank modifications during such an alteration process. We use
the terminology that a matrix M reduces the rank of H by rank(M) to mean that
the rank of the difference H −M is rank(M) less than that of H. Likewise, we say a
matrix P restores the rank of H −M if (H −M) + P has rank the same as that of
H. Given a symmetric and positive definite matrix H, the purpose of this paper is to
address the following two issues:

1. Characterize conditions on M so that H −M is symmetric, positive semidef-
inite and that rank(H −M) = rank(H)− rank(M).

2. Characterize conditions on P so that H−M+P is symmetric, positive definite
and that rank(H −M + P) = rank(H −M) + rank(P), knowing that M has
reduced the rank of H by rank(M).

These points will be seen to completely generalize the BFGS update formula in terms
of rank reduction and rank restoration. Furthermore, the rank reduction and restora-
tion steps generalize naturally to rectangular matrices.

There are many other ways to describe rank modifications. For example,

H+ = MHcM
T + PPT

is another scheme to modify the rank of a given Hc. That is, if M is some lower-rank
matrix, then rank(MHcM

T) ≤ rank(H). With a suitable choice of P , the rank of
H+ can be restored to that of the original Hc. An application of this can be found

∗Received by the editors July 3, 1996; accepted for publication (in revised form) by P. Gill April
9, 1998; published electronically October 29, 1998.

http://www.siam.org/journals/simax/20-2/30602.html
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 (chu@

math.ncsu.edu). The research of this author was supported in part by National Science Foundation
grant DMS-9422280.
‡Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206

(ref@adm.csc.ncsu.edu).
§Department of Computer Science, Stanford University, Stanford, CA 94305 (golub@sccm.

stanford.edu). The research of this author was supported in part by National Science Foundation
grant CCR-9505393.

428

RANK MODIFICATIONS OF A SECANT UPDATE FORMULA 429

in [8, Theorem 3.4.3]. As another example, any symmetric update with rank at most
two of a symmetric positive definite matrix Hc is of the form

H+ = Hc +
[
y z

] [p q
q r

] [
yT

zT

]
,(1.1)

where y, z are vectors and p, q, r are scalars. Brodlie, Gourlay, and Greenstadt [2]
studied a special case of (1.1); i.e.,

H+ = Hc +
[
u Hcv

] [vTHcv 1
1 0

] [
uT

(Hcv)T

]
.(1.2)

Their strategy expresses the update in product form

H+ = (I + uvT)Hc(I + uvT)T ,

thereby maintaining the positive semidefiniteness.
Our motivation of considering rank modifications in the form H −M + P comes

from a well-known secant update formula, the BFGS (or its dual DFP) update that
approximates the Hessian (or its inverse) of a given real-valued nonlinear function.
More details about these secant updates can be found in, for example, [5, 8]. For the
purpose of illustrating our general results we quickly recapitulate the formula involved
in the BFGS (or DFP) update as follows. Suppose a twice continuously differentiable
function f : Rn −→ R is to be optimized. Let G(x) stand for its Hessian matrix. Let
xc and x+ denote, respectively, the current and the next approximate of the optimal
solution. The secant equation to be satisfied by the approximation H+ of G(x+) (or
K+ of G(x+)−1) is

H+sc = yc (or K+yc = sc),(1.3)

where

sc := x+ − xc,
yc := g(x+)− g(xc).

The BFGS update H+ from Hc (or DFP update K+ from Kc) is given by

H+ := Hc − Hcscs
T
c Hc

sTc Hcsc
+
ycy

T
c

yTc sc

(
or K+ := Kc − Kcycy

T
c Kc

yTc Kcyc
+
scs

T
c

sTc yc

)
.(1.4)

The dual relationship between BFGS and DFP with the interchanges H ↔ K and
yc ↔ sc is well known. Since only the format of the update matters in our discussion,
we will refer only to BFGS in the sequel.

The BFGS formula has been studied, extensively applied, and is well understood
within the optimization community. For example, it is easy to see that the second
term on the right side of (1.4) precisely reduces the rank of Hc by one, while the third
term on the right side precisely restores the rank by one. Furthermore, it is easy to
see that the matrix that is rank reduced by the second term is positive semidefinite
[8, Exercise 3.10]. It is an important property [8, Theorem 3.2.2] that yTc sc > 0 is
sufficient for the rank restored matrix to be positive definite.

The format of BFGS fits our general theme H −M + P as a special case where
M and P are of rank one. From this viewpoint, we develop general conditions on how

430 M. T. CHU, R. E. FUNDERLIC, AND G. H. GOLUB

the rank modification should be carried out to maintain the positive semidefiniteness
and hence generalize the class of BFGS update both in terms of choices for update
vectors and rank of the modifications.

We will see that any matrix of the form

M = HS(STHS)−1STH(1.5)

when subtracted from H reduces the rank of H by rank(M). Conversely, if the
rank of H is symmetrically reduced, then the reducing matrix must be of the form
(1.5). Moreover, the conditions under which H −M is positive semidefinite if H is
positive semidefinite will be characterized. Similarly, we characterize and analyze the
conditions on Λ and Y in order for the rank-restoration step of adding a matrix P of
the form Y Λ−1Y T to H−M to be effective. For this rank restoration we show exactly
how matrices Λ and Y must relate to M to maintain positive definiteness. In short,
we will see that the underlying rationale for the rank-one steps of rank reduction and
restoration in the BFGS formula generalizes naturally to matrices M and P of rank
higher than one.

We begin in section 2 with a brief discussion of several known results used as
tools to help understand the phenomena of rank reduction and restoration. In par-
ticular, we review the Wedderburn rank-reduction formula and its generalization.
These rank-subtractivity characterizations, i.e., rank(H −M) = rank(H)− rank(M),
are important for both the rank-reduction and rank-restoration steps. The rank-
subtractivity characterizations are followed by a rank-addition characterization, i.e.,
rank(A+P) = rank(A) + rank(P), that is key to understanding the restoration step.
Finally, a spectral result due to Weyl [18] and a simple consequence show that the re-
duction step results in a positive semidefinite matrix. In section 3 we present our main
results. We begin with a general rank-reduction result for symmetric positive definite
matrices followed by a general rank-restoration theorem for rectangular matrices and
a symmetric rank-restoration theorem. We conclude with a general characterization of
maintaining positive definiteness followed by showing its consistency with the BFGS
update. Finally, in section 4 we summarize our results and suggest future study of
the simultaneous use of multiple vectors for quasi-Newton methods.

2. Preliminaries. We begin with a simple, but far reaching result proved by
Wedderburn [17, p. 69]. (See Acknowledgment 2.)

Lemma 2.1. If x ∈ Rn and y ∈ Rm are vectors such that ω = yTAx 6= 0, then
the matrix

B := A− ω−1AxyTA(2.1)

has rank exactly one less than the rank of A.

Egerváry [7], though apparently unaware of Wedderburn’s result, proved the com-
plete characterization of rank-one subtractivity.

Lemma 2.2. Let u ∈ Rm and v ∈ Rn. Then the rank of the matrix B =
A−σ−1uvT is less than that of A if and only if there are vectors x ∈ Rn and y ∈ Rm
such that u = Ax, v = AT y, and σ = yTAx, in which case rank(B) = rank(A)− 1.

The Wedderburn rank-one reduction formula (2.1) has led to a general matrix
factorization process [3] including the LDU and QR decompositions, the Lanczos
algorithm, and the singular value decomposition as its special cases. It was also
Lemma 2.2 and its known generalizations that suggested the generalized view of the

RANK MODIFICATIONS OF A SECANT UPDATE FORMULA 431

BFGS update. The following result by Cline and Funderlic [4] generalizes the Wedder-
burn rank-one formula to higher rank modifications and is key in our rank-reduction
step.

We introduce the terminology full rank factorization [1] of a matrix A to mean any
factorization XΛY T of A such that X and Y each have rank(A) linearly independent
columns and Λ is nonsingular. One way to show such factorizations always exist is to
consider an ordered singular value factorization. The diagonal matrix can be reduced
to having only nonzero singular values, and the appropriate last rows or columns can
be deleted from the other factors.

Lemma 2.3 (general rank-subtractivity lemma). Let UR−1V T be a given full
rank factorization of a given matrix M . Then rank(A−M) = rank(A)− rank(M) if
and only if U = AX, V T = Y TA, and Y TAX = R for some matrices X and Y .

We remark that the results in both directions of Lemma 2.3 include somewhat
subtle implicit considerations of size and rank. For example, X, Y , U , and V each
have full column rank equal to rank(M) = rank(R) since Y TAX = R and UR−1V T

is a full rank decomposition of M .
The next result which is the symmetric analogue of Lemma 2.3 is fundamental

in understanding symmetric rank modifications. It seems to have been overlooked in
the various papers on rank subtractivity.

Lemma 2.4 (symmetric rank-subtractivity lemma). Let H and M be symmetric
matrices. Then rank(H −M) = rank(H)− rank(M) if and only if there is a matrix
S such that M = HS(STHS)−1STH.

Proof. We first prove the if part. By the assumption that STHS is invertible,
the form of M is a full column rank factorization. Lemma 2.3 immediately gives rank
subtractivity.

Now we prove the only if part. Due to its symmetry, a full rank decomposition
of M of the form

M = UR−1UT(2.2)

always exists. By Lemma 2.3, there are matrices S and Y such that U = HS, UT =
Y TH = STHT = STH, and Y THS = R. But Y TH = STH so that R = STHS.
Substituting in (2.2) gives

M = HS(STHS)−1STH.

The assertion is proved.
This symmetric version is directly related to the BFGS formula and is used for

our general symmetric H −M + P scheme. The rank-one case of Lemma 2.4, as is
known, gives that the first step of BFGS always reduces the rank of Hc by one, and in
addition the converse shows that if the first step reduces the rank of Hc by one, then
the matrix that produced the reduction must be of the form M = Hs(sTHs)−1sTH.

The following result from [4, Theorem 3.1] is the key in the rank-restoration step.
Lemma 2.5 (general rank-additivity lemma). Let A and P be any matrices that

are additively compatible. Then rank is additive,

rank(A+ P) = rank(A) + rank(P),

if and only if there is a matrix B such that AB = 0, BA = 0, and PBP = P .
This rank-additivity result can be understood quite intuitively and reasonably;

e.g., let A := diag(1, 0, 0) and P := diag(0, 0, 2). Then a sufficient matrix B is

432 M. T. CHU, R. E. FUNDERLIC, AND G. H. GOLUB

diag(0, 0, 1
2) as B annihilates A on both sides and is an appropriate generalized inverse

for P . If P were rather diag(1, 0, 2), then there is no matrix B that both annihilates
A and (generalized) inverts P .

The next result appears in [13, p. 70]. Stewart and Sun [16, p. 203] traced the
result back to a 1912 paper by Weyl [18] and showed its relation to the Wielandt–
Hoffman theorem.

Lemma 2.6 (Weyl). Let H and B be symmetric and the eigenvalues of H, B,
and H +B be denoted by ηi, βi, and λi, respectively, with orderings

ηn ≤ ηn−1 ≤ · · · ≤ η1,

βn ≤ βn−1 ≤ · · · ≤ β1,

λn ≤ λn−1 ≤ · · · ≤ λ1.

Then

ηn ≤ λi − βi ≤ η1(2.3)

for i = 1, . . . , n.
The following result is a simple consequence of Weyl’s lemma, but plays an im-

portant role in the rank-reduction step.
Lemma 2.7. If H ∈ Rn×n is symmetric positive definite and B is symmetric,

then H +B has at least n− rank(B) positive eigenvalues.
Proof. Arrange all the eigenvalues as in Weyl’s lemma, Lemma 2.6. Observe that

the smallest eigenvalue ηn of H is positive. Also exactly n− rank(B) eigenvalues βi,
say, i = r, r − 1, . . . , r − (n − rank(B) − 1) for a certain r, of B are zero. It follows
from (2.3) that at least these eigenvalues λi, i = r, r − 1, . . . , r − (n − rank(B) − 1),
of H +B must be positive.

3. Main results. We now give the four major results associated with rank mod-
ification. The first ensures positive semidefiniteness in the reduction step. The sec-
ond generalizes restoration for rectangular matrices. Next restoration is restricted
to rank-reduced symmetric matrices, and finally positive definite rank restoration is
characterized. The well-known rank-reduction and rank-restoration steps of the BFGS
formula are special cases of the generalized treatment.

Theorem 3.1 (rank-reduction theorem). Suppose that H is symmetric positive
semidefinite, M is symmetric, and rank(H−M) = rank(H)−rank(M). Then H−M
is positive semidefinite.

Proof. We first prove the theorem when H is positive definite. By letting the
matrix −M take the role of B in Lemma 2.7, H −M must have at least n− rank(M)
positive eigenvalues. From the hypothesis that H−M is rank subtractive, H−M has
rank(M) zero eigenvalues. Thus we have accounted for all the eigenvalues of H −M ,
and they are all either positive or zero. Thus H −M is positive semidefinite.

Suppose now H is only semidefinite. We can diagonalize H so that any rank
deficiency is depicted by trailing zeros in the lower-right block of the diagonal matrix
D = UTHU . The rank-subtractivity hypothesis and Lemma 2.4 ensure that

M = HS(STHS)−1STH

for some matrix S. The inertia of

H −M = H −HS(STHS)−1STH

RANK MODIFICATIONS OF A SECANT UPDATE FORMULA 433

is equivalent to that of

D −DZ(ZTDZ)−1ZTD,

where UTS = Z. Note that the zero structure in D eliminates any effect from Z in
the lower-right corner of D. Thus it suffices to consider the leading nonzero portion
of D which is positive definite.

The rank-subtractivity, Lemma 2.3, and rank-additivity, Lemma 2.5, lemmas can
be thought of as characterizations of rank reduction and restoration for arbitrary
matrices. We now characterize rank restoration of any matrix A := H −M such that
A’s rank is subtractive; i.e., rank(H −M) = rank(H)− rank(M). Though this result
is more general than needed for our main symmetric theme, it may provide future
insights for nonsymmetric or rectangular matrix applications (e.g., Gerber and Luk
[9] make use of rectangular matrices for Broyden methods and Deuflhard and Freund
[6] develop secant methods with nonsymmetric matrices).

Theorem 3.2 (general rank-restoration theorem). Suppose rank(H − M) =
rank(H)− rank(M). (Therefore, by Lemma 2.3,

M = HS2(ST1 HS2)−1ST1 H

for some matrices S1 and S2.) Let P be a matrix of rank(M), and let P = Y1Λ−1Y T2
be a full rank decomposition. Then the following results hold:

1. If Y T2 S2 and Y T1 S1 are nonsingular, then the rank is restored; i.e.,

rank[(H −M) + P] = rank(H).(3.1)

2. Conversely, if H has full column or row rank and (3.1) holds, then Y T2 S2 or
Y T1 S1 are nonsingular, respectively.

Proof. To prove the first part of the theorem, define

A := H −M = H −HS2(ST1 HS2)−1ST1 H

and

B := S2(Y T2 S2)−1Λ(ST1 Y1)−1ST1 .

Clearly both AS2 = 0 and ST1 A = 0; therefore, AB = 0 and BA = 0. Furthermore,
by direct verification, PBP = P . Thus from the general rank-additivity lemma,
Lemma 2.5, we have

rank[(H −M) + P] = rank(H −M) + rank(P) = rank(H)− rank(M) + rank(P).

Note that

rank(P) = rank(Yi) = rank(Y Ti Si) = rank(ST1 HS2) = rank(M), i = 1, 2,

where the first and the last equalities are due to the full rank decomposition, while the
second and the third equalities follow from the nonsingularity of Y Ti Si and ST1 HS2.
The assertion (3.1) therefore is proved.

We prove the second part of the theorem by contradiction. Suppose H has full
column rank and Y T2 S2 is singular. Then there would be a nonzero vector x such
that S2x 6= 0 and Y T2 S2x = 0. But then (H −M + P)S2x = 0, a contradiction to

434 M. T. CHU, R. E. FUNDERLIC, AND G. H. GOLUB

H −M + P having full column rank since rank(H −M + P) = rank(H). The proof
of the full row rank case is similar.

We return to our general symmetric theme with the following version of the above
general result.

Theorem 3.3 (symmetric rank-restoration theorem). Suppose H and M are
symmetric matrices satisfying rank(H −M) = rank(H) − rank(M). (Therefore, by
Lemma 2.4,

M = HS(STHS)−1STH

for some matrix S.) Let P be a symmetric matrix of rank(S), and let P = Y Λ−1Y T

be a full rank decomposition. Then the following results hold:
1. If Y TS is nonsingular, then the rank is restored; i.e.,

rank[(H −M) + P] = rank(H).(3.2)

2. Conversely, if H is nonsingular and (3.2) holds, then Y TS is nonsingular.
Proof. The proof follows immediately from Theorem 3.2 with the choice S :=

S1 = S2.
Notice that in Theorem 3.3 the restoration step (adding a matrix P) specifically

presupposes a reduction step (subtracting a matrix M) that has a necessary structure.
The actual relationship of the restoration step to the reduction step is particularly
important. Just as M has a factor S, P has a factor Y . For rank to be restored, Y
and S must be related in the fundamental way of the symmetric restoration theorem.

It is also important to note that the assumption of H being nonsingular (or
having full column or row rank in the more general restoration theorem) cannot be
weakened in the second part of the above theorem. To see this, use the notation of
ei to denote principal axis vectors, and let H = diag(1, 1, 0) = e1e

T
1 + e2e

T
2 , M =

diag(1, 0, 0) = e1e
T
1 , and P = diag(0, 0, 1) = e3e

T
3 . These choices result in a successful

rank restoration to H −M +P = diag(1, 0, 1), i.e., rank(H −M +P) = rank(H) = 2;
however, yT s = eT3 e1 = 0, a singular matrix of order one.

Finally, we recall that our main concerns, motivated by the BFGS formula, are not
only the rank restoration, but also the maintenance of positive definiteness. Toward
this end, we provide the next result which completes the generalization proposed at
the beginning of this paper.

Corollary 3.4. Let H, M , P , S, and Y be the same as in Theorem 3.3. Suppose
further that H is positive definite. Then H −M +P is positive definite if and only if
P is positive semidefinite and Y TS is nonsingular.

Proof. We first prove the if part. Note that the nonsingularity of Y TS already
implies the nonsingularity ofH−M+P from the first part of the symmetric restoration
theorem, Theorem 3.3. To infer that H −M + P is positive definite we need only
determine that it is positive semidefinite. We know from the reduction theorem,
Theorem 3.1, that H−M is positive semidefinite. Together with the assumption that
P is positive semidefinite, H −M + P is positive definite.

We now prove the only if part. First, Y TS is nonsingular by the second part
of the symmetric restoration theorem, Theorem 3.3, since H −M + P has full rank;
therefore

rank(P) = rank(H −M + P)− rank(H −M).

By Theorem 3.1, where the role of H is played by H −M + P and M by H −M , we
conclude that P is positive semidefinite.

RANK MODIFICATIONS OF A SECANT UPDATE FORMULA 435

We now show the consistency of the general higher rank results with the BFGS
rank-one case. Recall that implicitly assumed in the BFGS formula (1.4) are that
sTc Hcsc 6= 0 and yTc sc 6= 0. The latter inequality means that Y TS is nonsingular
in the symmetric restoration theorem. Thus the BFGS formula, composed of its
reduction and restoration steps, yields a symmetric nonsingular matrix. Moreover,
H+ is positive definite if and only if (yTc sc)

−1ycy
T
c is positive semidefinite, which is

equivalent to yTc sc > 0. In summary, if Hc is positive definite and sc and yc are any
vectors such that yTc sc > 0, then sTc Hcsc > 0 and P is positive semidefinite so that
H+ is positive definite. Conversely, if there are vectors sc and yc for which H+ is
positive definite, then necessarily yTc sc > 0.

4. Summary and conclusions. The two rank-one updates involved in the
BFGS formula have the function of, in addition to satisfying the secant equation,
first reducing and then restoring the rank of the original matrix by one while main-
taining positive definiteness. These notions of rank reduction and rank restoration,
along with maintaining positive definiteness, have been generalized in this paper to in-
clude higher rank modifications in the form H−M +P . Specifically, the Wedderburn
result and its generalization, Lemma 2.3, provide an exact prescription for the form of
the rank update, whereas the rank-restoration results, Theorem 3.3 and Corollary 3.4,
specify how such an update will maintain positive definiteness. Theorem 3.2, our most
general result, characterizes rank restoration for rectangular matrices.

In addition to reaffirming some fundamental results known in the BFGS formula
with our emphasis on rank modification, the theory developed here should help to
understand higher rank modifications of the Hessian matrix. We hope this will lead
to new considerations or development of a multivector update where, e.g., the heuristic
secant equation is replaced by more sophisticated multistep formulas (see, for example,
[15, Chapter 7]).

Acknowledgment 1. Professor R. E. Hartwig has kindly pointed out a quicker
proof of Theorem 3.1, not directly related to eigenvalues. Let H = LLT denote the
Cholesky decomposition of H. Then

H −M = L
(
I − LTS(STLLTS)−1STL

)
LT .(4.1)

Note that the middle factor I−LTS(STLLTS)−1STL in (4.1) is a projection matrix.
It follows that H −M is positive semidefinite. The proof based on Weyl’s lemma, on
the other hand, gives additional insight into the spectrum of H −M .

Acknowledgment 2. While this paper was going through copy editing by SIAM,
Professor L. Hubert sent us the preprint [14], in which it was pointed out that the
1979 result by Cline and Funderlic [4], Lemma 2.3, was available in its complete form
in the applied statistics and psychometrics literature as early as 1957 and should be
attributed to Guttman [11, 12]. The sufficient part was available as early as 1944 [10].
From the discussion in the latter, the result was known and had been applied for some
years prior to 1944. Guttman attributes what we have called Wedderburn’s rank-one
reduction formula to Lagrange. We are grateful to Professor Hubert for setting the
record straight and for connecting numerical linear algebra with applied statistics and
psychometrics in another strong way.

436 M. T. CHU, R. E. FUNDERLIC, AND G. H. GOLUB

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John
Wiley, New York, 1974.

[2] K. W. Brodlie, A. R. Gourlay, and J. Greenstadt, Rank-one and rank-two corrections to
positive definite matrices expressed in product form, J. Inst. Math. Appl., 11 (1973), pp.
73–82.

[3] M. T. Chu, R. E. Funderlic, and G. H. Golub, A rank-one reduction formula and its
applications to matrix factorizations, SIAM Rev., 37 (1995), pp. 512–530.

[4] R. E. Cline and R. E. Funderlic, The rank of a difference of matrices and associated gen-
eralized inverses, Linear Algebra Appl., 24 (1979), pp. 185–215.

[5] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] A. Deuflhard and R. W. Freund, Fast secant methods for the iterative solution of nonsym-
metric linear equations, Sci. Engrg., 2 (1990), pp. 244–276.

[7] E. Egerváry, On rank-diminishing operators and their applications to the solution of linear
equations, Z. Angew. Math. Phys., 11 (1960), pp. 376–386.

[8] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley, Chichester, UK, 1987.
[9] R. R. Gerber and F. T. Luk, A generalized Broyden’s method for solving simultaneous linear

equations, SIAM J. Numer. Anal., 18 (1981), pp. 882–890.
[10] L. Guttman, General theory and methods for matrix factoring, Psychometrika, 9 (1944), pp.

1–16.
[11] L. Guttman, Multiple group methods for common-factor analysis: Their basis, computation,

and interpretation, Psychometrika, 17 (1952), pp. 209–222.
[12] L. Guttman, A necessary and sufficient formula for matrix factoring, Psychometrika, 22

(1957), pp. 79–81.
[13] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York,

1964, and Dover, New York, 1975.
[14] L. Hubert, J. Meulman, and W. Heiser, A Brief Tale of Two Purposes for Matrix Factor-

ization, Preprint, Department of Psychology, University of Illinois, 1998.
[15] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several

Variables, Academic Press, San Diego, CA, 1970.
[16] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[17] J. H. M. Wedderburn, Lectures on Matrices, Colloquium Publications, Vol. XVII, American

Mathematical Society, New York, 1934, and Dover, New York, 1964.
[18] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differential-

gleichungen, Math. Ann., 71 (1912), pp. 441–479.

SUFFICIENT CONDITIONS FOR REGULARITY AND
SINGULARITY OF INTERVAL MATRICES∗

GEORG REX† AND JIRI ROHN‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 437–445

Abstract. Several verifiable sufficient conditions for regularity and singularity of interval matri-
ces are given. As an application, a verifiable sufficient condition is derived for an interval matrix to
have all eigenvalues real.

Key words. interval matrix, regularity, singularity, inverse matrix, eigenvalue, positive definite-
ness

AMS subject classifications. 15A18, 65G10

PII. S0895479896310743

1. Introduction. As is well known, an interval matrix

AI = [A,A] = {A; A ≤ A ≤ A}

(where A and A are n × n matrices and the inequalities are understood compo-
nentwise) is called regular if each A ∈ AI is nonsingular, and it is said to be singular
otherwise (i.e., if it contains a singular matrix). Regularity of interval matrices plays
an important role in the theory of linear interval equations (cf. Neumaier [13]), but it
is also important in another respect since several frequently used properties of interval
matrices (as positive definiteness, P -property, stability, and Schur stability) may be
verified via checking regularity (see Rohn and Rex [24], Rohn [22]).

The problem of checking regularity of interval matrices has been proved to be
NP-hard (Poljak and Rohn [15], [16]; see also Nemirovskii [10]). In its most recent
version [23], the result says that for each rational ε > 0 checking regularity is NP-hard
in the class of interval matrices of the form

[A− εE,A+ εE],

where A is a nonnegative symmetric positive definite rational matrix and E is the
matrix of all ones.

In view of this NP-hardness result and of the current status of the complex-
ity theory (the conjecture P6=NP; cf. Garey and Johnson [3]), no easily performable
(i.e., polynomial-time) algorithms for checking regularity of interval matrices may be
expected to exist. In practical computations we must therefore resort to verifiable
sufficient conditions for both regularity and singularity of interval matrices. In order
to cover a possibly wide class of interval matrices, it is recommendable to have more
such conditions at one’s disposal since some sufficient conditions may be better suited

∗Received by the editors October 15, 1996; accepted for publication (in revised form) by A. Bunse-
Gerstner March 24, 1998; published electronically October 29, 1998. This research was supported by
Charles University Grant Agency grant GAUK 195/96.

http://www.siam.org/journals/simax/20-2/31074.html
†Institute of Mathematics, University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany

(rex@mathematik.uni-leipzig.de).
‡Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, and Institute

of Computer Science, Academy of Sciences, Prague, Czech Republic (rohn@uivt.cas.cz). The research
of this author was supported by the Sächsisches Staatsministerium für Wissenschaft und Kunst in
Dresden, Germany.

437

438 GEORG REX AND JIRI ROHN

for specific classes of interval matrices than the other ones. Such a situation is well
known for the problem of stability of interval matrices which is also NP-hard (Ne-
mirovskii [10], Rohn [23]), where a number of sufficient conditions of different types
are known; see the survey paper by Mansour [9].

The purpose of this paper is threefold. First, we give three sufficient regularity
conditions and three sufficient singularity conditions, grouped into pairs according
to their form (conditions using midpoint inverse, conditions using eigenvalues, and
conditions based on checking positive definiteness). Two of them (Theorems 3.1 and
4.1) are already known; the others (Theorems 3.3, 4.2, 5.1, and 5.2) are new. Second,
we show that all these verifiable sufficient conditions can be derived in a rather uniform
way from two necessary and sufficient conditions that themselves are not of practical
use since they require a number of arithmetic operations which is exponential in the
matrix size n. Third, as an application of the previous results, we give in Theorem
6.1 a verifiable sufficient condition for an interval matrix to have all eigenvalues real.

We shall use the following notations. The absolute value of a matrix A = (aij)
is denoted by |A| = (|aij |); the same notation applies to vectors as well. %(A) is the
spectral radius of A, and λmin(A) and λmax(A) stand for the minimal and maxi-
mal eigenvalue of a symmetric matrix A, respectively. As is well known, λmin(A) =
min‖x‖2=1 x

TAx and λmax(A) = max‖x‖2=1 x
TAx hold for a symmetric matrix A; see

Golub and van Loan [4]. I denotes the unit matrix.

2. Necessary and sufficient conditions. For an interval matrix

AI = [A,A],(2.1)

let us introduce

Ac = 1
2 (A+A)

(the midpoint matrix) and

∆ = 1
2 (A−A)

(the radius matrix). Then we can write (2.1) as

AI = [Ac −∆, Ac + ∆],(2.2)

a form better suited for formulations of the subsequent conditions.
The first known necessary and sufficient condition for singularity of interval ma-

trices is due to Oettli and Prager. In fact, the formulation given below cannot be found
explicitly in their original paper [14], but it follows easily from the basic theorem on
linear interval equations given there when applied to systems with zero right-hand
sides (see Neumaier [13] or Rohn [20]).

Theorem 2.1 (due to Oettli and Prager [14]). An interval matrix (2.2) is singular
if and only if the inequality

|Acx| ≤ ∆|x|(2.3)

has a nontrivial solution.
The proof, given, e.g., in [20], is constructive: if (2.3) holds for some x 6= 0, then

for the vectors y, z ∈ Rn defined by

yi =

{
(Acx)i/(∆|x|)i if (∆|x|)i 6= 0,
1 if (∆|x|)i = 0

SUFFICIENT CONDITIONS FOR REGULARITY AND SINGULARITY 439

and

zj =

{
1 if xj ≥ 0,
−1 if xj < 0

(i, j = 1, . . . , n), the matrix A given by

Aij = (Ac)ij − yizj∆ij

(i, j = 1, . . . , n) belongs to AI and is singular (since Ax = 0). Hence, we can construct
a singular matrix in AI if we know a nontrivial solution to (2.3). However, in view of
the NP-hardness result, such a solution is not to be found easily.

The following necessary and sufficient regularity condition employs again the in-
equality of the form (2.3), with the ≤ sign being converted to >. We emphasize that
the strict inequality is again meant componentwise.

Theorem 2.2 (due to Rohn [21]). An interval matrix (2.2) is regular if and only
if for each orthant O of Rn there exists a solution of the inequality

|Acx| > ∆|x|(2.4)

satisfying Acx ∈ O.
Unlike the previous theorem, the proof of this result is more involved and employs

some nontrivial facts concerning the linear complementarity problem, P -matrices, and
solvability of linear equations. Again, Theorem 2.2 is of little practical use since it
requires a proof of existence of 2n solutions of the inequality (2.4). However, Theorems
2.1 and 2.2 form a basis for deriving some verifiable sufficient conditions for regularity
and singularity of interval matrices that will be given in the three subsequent sections.

3. Sufficient conditions using the midpoint inverse. Two known sufficient
conditions (given below as Corollaries 3.2 and 3.4) use the midpoint inverse A−1

c

in their formulations. Since using the inverse matrix computed in a finite precision
arithmetic may affect validity of these conditions, it is advantageous to formulate
them in terms of an approximate inverse R instead of the exact inverse A−1

c . The first
such formulation appeared, although implicitly, in Rump’s paper [25]. We reprove the
condition here, using another idea based on Theorem 2.1.

Theorem 3.1. Let R be an arbitrary matrix such that

%(|I −RAc|+ |R|∆) < 1(3.1)

holds. Then [Ac −∆, Ac + ∆] is regular.
Proof. Assume to the contrary that [Ac−∆, Ac+∆] is singular, so that by Theorem

2.1 there exists an x 6= 0 satisfying |Acx| ≤ ∆|x|. Then we have

|x| = |(I −RAc)x+RAcx| ≤ |I −RAc| · |x|+ |R| · |Acx|
≤ (|I −RAc|+ |R|∆)|x|,

hence

1 ≤ %(|I −RAc|+ |R|∆)

by the Perron–Frobenius theorem (see Neumaier [13, Cor. 3.2.3]), which is a contra-
diction.

If we take R = A−1
c , we immediately obtain the following result.

440 GEORG REX AND JIRI ROHN

Corollary 3.2. Let Ac be nonsingular and

%(|A−1
c |∆) < 1(3.2)

hold. Then [Ac −∆, Ac + ∆] is regular.
The condition (3.2) was first published by Beeck [2], although allegedly (Neumaier

[12]) its priority is due to Ris, who had proved it earlier in his unpublished Ph.D. thesis
[19].

In his recent papers [28], [26], Rump proved that each regular n×n interval matrix
[Ac −∆, Ac + ∆] satisfies

%(|A−1
c |∆) < (3 + 2

√
2)n

and that for each n ≥ 1 there exists a regular n× n interval matrix such that

%(|A−1
c |∆) > n− 1.

These facts help to clarify the strength of the sufficient condition (3.2).
Since (3.2) is a special case of (3.1) for R = A−1

c , it was believed for some time
that (3.1) is more general than (3.2). Rather surprisingly, it turned out that it is not
so: Rex and Rohn [18] proved that if (3.1) is valid, then Ac is nonsingular and

%(|A−1
c |∆) ≤ %(|I −RAc|+ |R|∆)

holds; hence (3.1) implies (3.2), so that both conditions cover the same class of interval
matrices. This result also shows that the midpoint inverse A−1

c is the best option for
the choice of R. For related results, see Neumaier [11] and Rex [17].

Let us note that condition (3.2) is verifiable in polynomial time since it is equiv-
alent to

(I − |A−1
c |∆)−1 ≥ 0

and the inverse matrix can be evaluated in polynomial time by a modified Gaussian
elimination (Bareiss [1]); this statement is of theoretical interest only since efficient
numerical methods for checking (3.2) are available. The same reasoning applies also
to (3.1) provided R is computed in polynomial time.

Next we prove a sufficient singularity condition of a similar type. Let Aj denote
the jth column of a matrix A.

Theorem 3.3. Let there exist a matrix R such that

(I + |I −AcR|)j ≤ (∆|R|)j(3.3)

holds for some j ∈ {1, . . . , n}. Then [Ac −∆, Ac + ∆] is singular.
Proof. Assumption (3.3) implies

|AcRj | = |AcR|j = |I − (I −AcR)|j ≤ Ij + |I −AcR|j
≤ (∆|R|)j = ∆|Rj |,

so that for x := Rj we have

|Acx| ≤ ∆|x|,
where x 6= 0 due to (3.3); hence [Ac −∆, Ac + ∆] is singular by Theorem 2.1.

SUFFICIENT CONDITIONS FOR REGULARITY AND SINGULARITY 441

Since the vector x = Rj satisfies (2.3), we may employ the procedure described
after Theorem 2.1 to construct a singular matrix contained in [Ac−∆, Ac+∆]. Setting
R = A−1

c , we immediately obtain as a special case a result from [20].
Corollary 3.4. Let Ac be nonsingular and let

max
j

(∆|A−1
c |)jj ≥ 1(3.4)

hold. Then [Ac −∆, Ac + ∆] is singular.
Proof. Let j be the index for which (∆|A−1

c |)jj ≥ 1. Then (3.3) holds with R =
A−1
c , and Theorem 3.3 applies.

While this paper was in the review process, Rump published a generalization of
condition (3.4): if

max
ij

(∆|A−1
c |)ij(∆|A−1

c |)ji ≥ 1(3.5)

holds, then [Ac −∆, Ac + ∆] is singular [27, Thm. 6.5]. Obviously, (3.4) is a special
case of (3.5) for i = j.

4. Sufficient conditions using eigenvalues. If Ac is nearly singular, then the
conditions using approximate midpoint inverse may turn ineffective. Rump [26] was
the first to derive a condition where no inverse matrix computation is required, at the
expense of necessity to evaluate eigenvalues. Here we reprove his result by another
means.

Theorem 4.1. Let

λmax(∆T∆) < λmin(ATc Ac)(4.1)

hold. Then [Ac −∆, Ac + ∆] is regular.
Proof. Assume to the contrary that [Ac −∆, Ac + ∆] is singular, so that

|Acx| ≤ ∆|x|
holds for some x 6= 0, which may be normalized to achieve ‖x‖2 = 1. Then we have

λmin(ATc Ac) ≤ xTATc Acx ≤ |Acx|T |Acx| ≤ (∆|x|)T (∆|x|)
= |x|T∆T∆|x| ≤ λmax(∆T∆),

which contradicts (4.1).
Let us note that the matrices ATc Ac and ∆T∆ are symmetric; hence their eigen-

values appearing in (4.1) are real. Rump [29] and independently Vacek [30] found
counterexamples demonstrating that neither of the conditions (3.2), (4.1) is a conse-
quence of the other one.

The above result employed Theorem 2.1; using Theorem 2.2, we arrive at a suffi-
cient singularity condition formulated in similar terms.

Theorem 4.2. Let

λmax(ATc Ac) ≤ λmin(∆T∆)(4.2)

hold. Then [Ac −∆, Ac + ∆] is singular.
Proof. Assume to the contrary that [Ac −∆, Ac + ∆] is regular. Then according

to Theorem 2.2, applied to the nonnegative orthant O, there exists an x satisfying

Acx > ∆|x|,

442 GEORG REX AND JIRI ROHN

which can be normalized so that ‖x‖2 = 1. Then we have

λmax(ATc Ac) ≥ xTATc Acx > |x|T∆T∆|x| ≥ λmin(∆T∆),

contrary to (4.2).

5. Sufficient conditions using positive definiteness. The necessity of evalu-
ating eigenvalues in Theorems 4.1 and 4.2 may be avoided if we use instead a positive
definiteness check. Let us recall that a symmetric matrix A (it will be seen that
symmetry poses no restriction here) is positive definite if and only if all its leading
principal minors are positive (Sylvester determinant criterion; see Wilkinson [31]).
Since positivity of all leading principal minors may be checked by employing a mod-
ified Gaussian elimination which is performable in polynomial time (Bareiss [1]), we
can see that checking positive definiteness of symmetric matrices may be performed
by a polynomial-time algorithm. This is the advantage of criteria presented in this
section; their disadvantage consists of the fact that they require evaluation of ATc Ac
(or ∆T∆), which squares the condition number.

Theorem 5.1. Let the matrix

ATc Ac − ‖∆T∆‖I(5.1)

be positive definite for some consistent matrix norm ‖ · ‖. Then [Ac −∆, Ac + ∆] is
regular.

Proof. As in the proof of Theorem 4.1, assuming to the contrary that [Ac−∆, Ac+
∆] is singular, we may ensure existence of an x with ‖x‖2 = 1 satisfying

xTATc Acx ≤ |x|T∆T∆|x| ≤ λmax(∆T∆) = %(∆T∆) ≤ ‖∆T∆‖ = ‖∆T∆‖(xTx);

hence

xT (ATc Ac − ‖∆T∆‖I)x ≤ 0,

which means that the matrix (5.1) is not positive definite, which is a contradic-
tion.

Notice that the matrix (5.1) is symmetric, which justifies the discussion made at
the beginning of this section. Since ‖∆T∆‖ ≤ ‖∆T ‖ · ‖∆‖, Theorem 5.1 will remain
valid if we replace (5.1) with the matrix

ATc Ac − ‖∆T ‖ · ‖∆‖I,
which yields a weaker result where, however, ∆T∆ need not be computed. We note
that any of the usual matrix norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞, and ‖ · ‖F is consistent [5] and
may be employed in Theorem 5.1. The theorem will not stay in force if the matrix
(5.1) is replaced by

ATc Ac −∆T∆.

Indeed, for

Ac =

(
1 4
4 1

)
, ∆ =

(
2 2
2 2

)
,

the matrix ATc Ac −∆T∆ = 9I is positive definite, but [Ac −∆, Ac + ∆] contains the
singular matrix (

3 3
3 3

)

SUFFICIENT CONDITIONS FOR REGULARITY AND SINGULARITY 443

(Rump [29]). Finally, we formulate in similar terms a sufficient singularity condition.
Theorem 5.2. Let the matrix

∆T∆−ATc Ac(5.2)

be positive semidefinite. Then [Ac −∆, Ac + ∆] is singular.
Proof. Assume to the contrary that [Ac − ∆, Ac + ∆] is regular. Then Theorem

2.2 (applied to the nonnegative orthant) implies existence of an x 6= 0 satisfying

Acx > ∆|x|
and henceforth also

xTATc Acx > |x|T∆T∆|x| ≥ xT∆T∆x,

which means that

xT (∆T∆−ATc Ac)x < 0

and the matrix (5.2) is not positive semidefinite, which contradicts the assump-
tion.

6. Application: Condition for an interval matrix to have real eigenval-
ues only. As an application of the above results, different from those mentioned in
the introduction, we shall consider the problem of checking that each A ∈ AI has real
eigenvalues only. The single reference on this problem known to us is the paper by
Hollot and Bartlett [6]; the necessary and sufficient condition given there, however, is
not of practical use since it is exponential in the matrix size. We have this verifiable
sufficient condition.

Theorem 6.1. Let Ac have n simple real eigenvalues

λ1(Ac) < λ2(Ac) < · · · < λn(Ac),

and let there exist real numbers µ0, . . . , µn satisfying

µ0 < λ1(Ac) < µ1 < λ2(Ac) < µ2 < · · · < λn(Ac) < µn(6.1)

such that the interval matrix

[Ac − µjI −∆, Ac − µjI + ∆](6.2)

is regular for j = 0, . . . , n. Then each A ∈ AI has n simple real eigenvalues satisfying

µ0 < λ1(A) < µ1 < λ2(A) < µ2 < · · · < λn(A) < µn.(6.3)

Proof. For an A ∈ AI , let

p(λ) = det(A− λI)

denote its characteristic polynomial and let

pc(λ) = det(Ac − λI)

be the characteristic polynomial of Ac. Then for each j ∈ {0, . . . , n} we have |(A −
µjI)− (Ac − µjI)| = |A−Ac| ≤ ∆; hence

A− µjI ∈ [Ac − µjI −∆, Ac − µjI + ∆],

444 GEORG REX AND JIRI ROHN

and regularity of (6.2) implies

p(µj)pc(µj) > 0(6.4)

since p(µj)pc(µj) ≤ 0 would imply, by continuity of the determinant, existence of a
singular matrix in (6.2), which is a contradiction. Now, since all eigenvalues of Ac are
real and simple, (6.1) gives

pc(µj)pc(µj+1) < 0(6.5)

for j = 0, . . . , n− 1. For each such j we have from (6.4)

p(µj)pc(µj)p(µj+1)pc(µj+1) > 0,

which in view of (6.5) implies

p(µj)p(µj+1) < 0;

hence the characteristic polynomial of A has a root in each of the open intervals
(µj , µj+1), j = 0, . . . , n− 1. This proves that A has exactly n simple real eigenvalues
satisfying (6.3).

Regularity of the interval matrix (6.2) may be checked by any of the sufficient
regularity conditions presented above. Theorem 5.1 seems to be particularly suited
here since it requires checking positive definiteness of the matrices

(Ac − µjI)T (Ac − µjI)− ‖∆T∆‖I = ATc Ac − µj(ATc +Ac) + (µ2
j − ‖∆T∆‖)I,

which may be easily updated for different values of µj .

7. Concluding remarks. In a very recent development, Jansson [7] proposed
a necessary and sufficient regularity condition, based on a quite different idea, which
is not a priori exponential (an exponential growth occurs only at worst–case-type
examples). Computational results reported in [8] look promising: interval matrices
up to the size n = 50 were checked in acceptable time. Nevertheless, in view of the
NP-hardness result and of the famous conjecture P6=NP (see Garey and Johnson [3]
for details) there remains only very little hope that necessary and sufficient regularity
conditions verifiable in polynomial time might be found.

Acknowledgments. The second author wishes to acknowledge the support
granted to him by the Sächsisches Staatsministerium für Wissenschaft und Kunst
in Dresden for funding his stay at the Center of Theoretical Sciences of the Uni-
versity of Leipzig. Helpful comments by the referees and by Prof. S. M. Rump are
acknowledged with thanks.

REFERENCES

[1] E. F. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination,
Math. Comp., 103 (1968), pp. 565–578.

[2] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in Interval
Mathematics, Lecture Notes in Comput. Sci. 29, K. Nickel, ed., Springer-Verlag, Berlin,
1975, pp. 150–159.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP–Completeness, Freeman, San Francisco, CA, 1979.

[4] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1996.

SUFFICIENT CONDITIONS FOR REGULARITY AND SINGULARITY 445

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[6] C. V. Hollot and A. C. Bartlett, On the eigenvalues of interval matrices, in Proc. 26th

IEEE Conf. on Decision and Control, Los Angeles, CA, IEEE Computer Society Press, Los
Alamitos, CA, 1987, pp. 794–799.

[7] C. Jansson, Calculation of exact bounds for the solution set of linear interval systems, Linear
Algebra Appl., 251 (1997), pp. 321–340.

[8] C. Jansson and J. Rohn, An algorithm for checking regularity of interval matrices, SIAM J.
Matrix Anal. Appl., to appear.

[9] M. Mansour, Robust stability of interval matrices, in Proc. 28th IEEE Conf. on Decision and
Control, Tampa, FL, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 46–51.

[10] A. Nemirovskii, Several NP-hard problems arising in robust stability analysis, Math. Control
Signals Systems, 6 (1993), pp. 99–105.

[11] A. Neumaier, New techniques for the analysis of linear interval equations, Linear Algebra
Appl., 58 (1984), pp. 273–325.

[12] A. Neumaier, Linear interval equations, in Interval Mathematics 1985, Lecture Notes in Com-
put. Sci. 212, K. Nickel, ed., Springer-Verlag, Berlin, 1985, pp. 109–120.

[13] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, 1990.

[14] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–
409.

[15] S. Poljak and J. Rohn, Radius of Nonsingularity, Research Report, KAM Series 88–117,
Faculty of Mathematics and Physics, Charles University, Prague, 1988.

[16] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals
Systems, 6 (1993), pp. 1–9.

[17] G. Rex, Zum Regularitätsnachweis von Matrizen, Z. Angew. Math. Mech., 75 (1995), pp. S549–
S550.

[18] G. Rex and J. Rohn, A note on checking regularity of interval matrices, Linear and Multilinear
Algebra, 39 (1995), pp. 259–262.

[19] F. N. Ris, Interval Analysis and Applications to Linear Algebra, Ph.D. thesis, Oxford Univer-
sity, Oxford, 1972.

[20] J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 126 (1989), pp. 39–78.
[21] J. Rohn, Linear Interval Equations: Enclosing and Nonsingularity, Research Report, KAM

Series 89–141, Faculty of Mathematics and Physics, Charles University, Prague, 1989.
[22] J. Rohn, Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl.,

15 (1994), pp. 175–184.
[23] J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard,

Comment. Math. Univ. Carolin., 35 (1994), pp. 795–797.
[24] J. Rohn and G. Rex, Interval P -matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1020–

1024.
[25] S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach to Scientific

Computation, U. Kulisch and W. Miranker, eds., Academic Press, New York, 1983, pp. 51–
120.

[26] S. M. Rump, Verification methods for dense and sparse systems of equations, in Topics in
Validated Computations, J. Herzberger, ed., North–Holland, Amsterdam, 1994, pp. 63–
135.

[27] S. M. Rump, Bounds for the componentwise distance to the nearest singular matrix, SIAM J.
Matrix Anal. Appl., 18 (1997), pp. 83–103.

[28] S. M. Rump, Almost sharp bounds for the componentwise distance to the nearest singular
matrix, Linear and Multilinear Algebra, 42 (1998), pp. 93–108.

[29] S. M. Rump, Personal communication.
[30] J. Vacek, Personal communication.
[31] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

TOEPLITZ PRECONDITIONERS CONSTRUCTED FROM LINEAR
APPROXIMATION PROCESSES∗

STEFANO SERRA CAPIZZANO†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 446–465

Abstract. Preconditioned conjugate gradients (PCG) are widely and successfully used methods
to solve Toeplitz linear systems An(f)x = b. Here we consider preconditioners belonging to trigono-
metric matrix algebras and to the band Toeplitz class and we analyze them from the viewpoint of
the function theory in the case where f is supposed continuous and strictly positive. First we prove
that the necessary (and sufficient) condition, in order to devise a superlinear PCG method, is that
the spectrum of the preconditioners is described by a sequence of approximation operators “converg-
ing” to f . The other important information we deduce is that while the matrix algebra approach is
substantially not sensitive to the approximation features of the underlying approximation operators,
the band Toeplitz approach is. Therefore, the only class of methods for which we may obtain im-
pressive evidence of superlinear convergence behavior is the one [S. Serra, Math. Comp., 66 (1997),
pp. 651–665] based on band Toeplitz matrices with weakly increasing bandwidth.

Key words. approximation operators, Toeplitz matrix, matrix algebra, clustering and precon-
ditioning

AMS subject classification. 65F10

PII. S0895479897316904

1. Introduction. Toeplitz matrices and operators arise in and have application
to a wide variety of fields of pure and applied mathematics, i.e., numerical analysis,
probability theory, complex analysis, K-theory, statistical mechanics, and so on, [61].
In this paper, in order to make efficient computations, we consider the approximation
of finite self-adjoint Toeplitz operators An(f) by means of matrix algebra operators
or band Toeplitz operators. Here the Toeplitz matrix An(f) of size n×n is generated
by a Lebesgue-integrable function f in the sense that the entries of An(f) along the
kth diagonal are given by the kth Fourier coefficient ak of f :

[An(f)]i,j = ai−j , ak =
1

2π

∫ π

−π
f(x)e−ikxdx, i2 = −1, k ∈ Z.(1.1)

In some applications [34, 33, 42, 31] the problem is often the solution of linear systems
An(f)x = b, where the dimension n is related to a “grid parameter” of the discretiza-
tion. Therefore, in most of these cases, the systems show very large dimensions and
so we have to find efficient resolution methods.

In previous papers, we have introduced iterative solvers based on band Toeplitz
matrices [29, 44, 30, 47, 46, 48] for the ill-conditioned case, by showing that the
“functional approach” is the most successful to handle the situations in which the
sequence of the Euclidean condition numbers of {An(f)}n is unbounded. By following
these ideas we obtained optimal but also superlinear methods for these ill-conditioned
linear systems.

Here, we come back to the well-conditioned case in which the generating function
f is strictly positive. Until now, the best methods [56, 12, 6, 18, 17, 36, 58, 27, 4,

∗Received by the editors February 14, 1997; accepted for publication (in revised form) by D.
Calvetti January 27, 1998; published electronically November 16, 1998.

http://www.siam.org/journals/simax/20-2/31690.html
†Dipartimento di Energetica, Università di Firenze, Via Lombroso 6/17, 50134 Firenze,

Italy, and Dipartimento di Informatica, Universitá di Pisa, Corso Italia 40, 56100 Pisa, Italy
(serra@mail.dm.unipi.it).

446

PRECONDITIONERS FROM APPROXIMATION PROCESSES 447

38, 23, 24, 53, 52, 25, 26] (see also the very rich survey of R. Chan and M. Ng [11]
and references therein) have been considered to be those based on the preconditioned
conjugate gradient (PCG) methods in which the preconditioners are chosen in some
trigonometric matrix algebras [52]. By following this approach, originated in the
pioneering work of Gilbert Strang [56], superlinear methods have been proposed. In
spite of the variety in the definition of the preconditioners, the performances of all
these PCG methods are substantially equivalent. Actually, with the exception of the
superoptimal preconditioner [58], which is not as good as expected [26], all the other
preconditioners (natural approach [56, 3], optimal [18, 3, 36], and so on) show the same
kind of performances. This fact is especially evident in the paper of R. Chan and M.
Yeung [17], where several circulant preconditioners constructed from approximation
kernels Sn are considered and analyzed.

The related invariance of the convergence features, with respect to the approxi-
mation kernels was, in my opinion, a bit surprising and unnatural. Actually, given a
function f , the Cesàro sum Sn = Cn(f) and the De La Vallée approximation scheme
[63, p. 115] Sn = DLn(f) are uniformly convergent to f for any continuous function
f . However, the related asymptotic rates of convergence are very different since, for
instance, given a regular function f ∈ Ck2π, k ≥ 1, we have ‖Cn(f)−f‖∞ ≤ c1n−1 and
‖DLn(f)−f‖∞ ≤ c2n−kωf(k)(n−1), with ωh(·) denoting the modulus of continuity of
h [63]. So there exists a huge gap in the approximation properties between Cn(f) and
DLn(f) as is well known in the field of the approximation theory [19, 37, 40, 41, 63].

Nevertheless, the circulant preconditioners constructed from these two operators
lead to PCG methods which are really equivalent as stressed by the numerical exper-
iments performed in [17].

In this paper, under weak and feasible assumptions on the properties of a given
sequence of trigonometric algebras A = {An}n, first we prove that a sequence of
matrices αn ∈ An is a good approximation of An(f), in the matrix sense defined in
[52] (see section 3), if and only if αn has eigenvalues defined by a polynomial operator
Sn which approximates f in some sense. In other words, the main fact is that the
superlinearity of the PCG method with αn as n × n preconditioner is equivalent to
saying that Sn − f is “small” on some suitable subset of the fundamental interval
[−π, π]. Therefore, the assumption “Sn converges to f” is a necessary ingredient to
devise a superlinear PCG method, but, unfortunately and surprisingly, if f is positive
then we show that there exists a property of insensitivity to the goodness of the
approximation process and we show that this is something in common and inherent
to all the preconditioners based on trigonometric matrix algebras.

To overcome this problem, that is, to exploit the convergence features of Sn, we
propose the use of band Toeplitz preconditioners with weakly increasing bandwidth
and associated with Sn. The theoretical analysis and the numerical experiments [47]
prove that the band Toeplitz approach is very sensitive to the convergence properties
of the considered approximation process. Therefore, as n goes to infinity, the number
of PCG iterations collapses to 1, while in the case of the matrix algebra approach
this number goes to a constant value which depends on the required accuracy, on the
symbol f , and on the specific matrix algebras, but not on the approximation process
Sn. In conclusion, the unexpected practical result of this analysis is that the band
Toeplitz PCG methods perform better than the matrix algebra PCG methods even
when the generating function of the considered system is continuous and positive.

448 STEFANO SERRA CAPIZZANO

In the ill-conditioned case the superiority of the band Toeplitz (BT) approach is
more evident. First we remark that, when f is nonnegative and has isolated zeros,
the results concerning the matrix algebra approach are in the opposite direction with
respect to the positive case. The better the approximation process the better the
quality of the cluster around the unity of the preconditioned matrices [57, 25]. How-
ever, the cluster is always weak (except for rare exceptions [57, 25, 53]). On the other
side, the BT approach is better because in the case of zeros of finite order it is possible
to construct linear and superlinear preconditioners [7, 27, 13, 14, 44, 54, 47, 48].

This paper is organized in the following way: in the second section we introduce
the most interesting trigonometric matrix algebras and we introduce some classical
approximation schemes which lead to general matrix algebra preconditioners gener-
alizing in various senses those of R. Chan and Yeung. Then, by using the same
approximation processes [28], we introduce some new BT preconditioners. In section
3 we analyze the convergence features of these PCG methods by imposing as a sig-
nificant constraint that the cost per iteration of the proposed procedures must be
upperbounded by O(n log n) operations. This goal is natural in the case of trigono-
metric matrix algebra preconditioners [12, 3, 4] via the fast Fourier/trigonometric
transform (FFT/FTT) [60, 39, 35], while it implies some conditions on the growth of
the bandwidth l(n) as a function of the dimension n of the preconditioners when a BT
technique is used: the asymptotic behavior of the quantity l(n) is the key ingredient
to prove the superlinearity of the PCG methods based on BT preconditioners. A final
section 4 of numerical experiments and of conclusive remarks ends the paper.

2. The preconditioners from linear approximation schemes. In this sec-
tion, first, we give a formal definition of trigonometric matrix algebras and we in-
troduce some of them. Second, we define the concept of approximation of Toeplitz
matrices related to the function f in a given algebra depending on some fixed approx-
imation process of the symbol f itself.

2.1. Trigonometric matrix algebras. Let U be a unitary complex n× n ma-
trix. Then by M(U) we denote the commutative algebra of all the matrices simulta-
neously diagonalized by the U transform, that is,

M(U) = {A = U∆U∗ : ∆ is a diagonal complex matrix}.

Here the symbol ∗ means transpose and conjugate. Now we define a special subset of
matrix algebras that we call trigonometric matrix algebras and we denote them byAT .
Let {vj}j∈N be a sequence of trigonometric functions on an interval I andW = {Wn}n
be a sequence of grids of n points on I, namely, Wn = {x(n)

i , i = 0, . . . , n − 1}. Let

us suppose that the generalized Vandermonde matrix V = kn(vj(x
(n)
i))n−1

i,j=0, where
kn is a suitable scaling factor, is a unitary matrix. Then, an algebra of the form
M(U) is a trigonometric algebra if U = V ∗ with V being a generalized trigonometric
Vandermonde matrix.

Examples of such algebras are the circulant C, the τ , the Hartley H, for which
the matrices U [4] are

U = F =

(
1√
n
eijx

(n)
i

)
, i, j = 0, . . . , n− 1,

Wn =

{
x

(n)
i =

2iπ

n
: i = 0, . . . , n− 1

}
⊂ I = [−π, π],

PRECONDITIONERS FROM APPROXIMATION PROCESSES 449

U = S =

(√
2

n+ 1
sin((j + 1)x

(n)
i)

)
, i, j = 0, . . . , n− 1,

Wn =

{
x

(n)
i =

(i+ 1)π

n+ 1
: i = 0, . . . , n− 1

}
⊂ I = [0, π],

U = H =

(
1√
n

[
sin(jx

(n)
i) + cos(jx

(n)
i)
])

, i, j = 0, . . . , n− 1,

Wn =

{
x

(n)
i =

2iπ

n
: i = 0, . . . , n− 1

}
⊂ I = [−π, π],

respectively. For the class of the ε-circulants [22] we may consider the case of ε on
the unit complex circle because it assures that the matrix U continues to be unitary.
More precisely, if ε = ei2πψ then the matrix U has the following representation:

U = Fε =
(

1√
n
ei(j+ψ)x

(n)
i

)
, i, j = 0, . . . , n− 1,

Wn =
{
x

(n)
i = 2iπ

n : i = 0, . . . , n− 1
}
⊂ I = [−π, π].

Notice that all these algebras are trigonometric with equispaced meshes.

2.2. Approximation schemes and matrix algebra preconditioners. We
introduce a sequence of finite dimensional spaces Vn such that Vn ⊂ Vn+1 and

⋃
Vn

is dense in the space C2π of the continuous 2π periodic functions equipped with the
supremum norm. The correspondence between functions and sequences of nested
Toeplitz matrices defined by Fourier coefficients suggests to us that a natural, but
not compulsory, choice of the spaces Vn is given by the trigonometric polynomials
of degree at most n. When we consider symmetric Toeplitz matrices, the associated
generating function is also even and therefore, in this case, it is natural to define Vn
as the space of even trigonometric polynomials. Let us define Sn : C2π → Vn as a
sequence of linear approximation processes [41, 28, 20, 21] and let An ∈ AT be a
fixed trigonometric matrix algebra of size n. With these notations we indicate by
An(Sn(f)) the matrix belonging to the algebra An such that

An(Sn(f)) = UDU∗, Di,i = Sn(f)(x
(n)
i),

where x
(n)
i are the grid points of the algebra and U is the unitary transformation

related to the matrix algebra An. In the literature, for all the most commonly known
and used algebras, the following approximation processes Sn have been considered.

• The Fourier polynomial Fn(f) =
∑n
j=−n aje

ijx which converges uniformly to
f when f belongs to the Dini–Lipschitz class [53, 63]. (For the definition of
the coefficients ak see (1.1).) On the other hand, this is a quasi-optimal ap-
proximation procedure since the related Lebesgue constant is asymptotically
equal to a constant times log n [63].
• The Cesàro sum Cn(f) = (n + 1)−1

∑n
j=0 Fj(f) uniformly converging to f

for any continuous 2π periodic function. The corresponding low rate of con-
vergence is such that the related approximation error is asymptotical to n−1

(the Voronowskaja result [41]), even for very regular functions.
• The De La Vallée Poussin operator DLn(f) = 2Cn(f)−Cn/2(f) which leads

to the error (up to a small positive constant) of the polynomial of best ap-
proximation [63].

450 STEFANO SERRA CAPIZZANO

2.3. The case of the optimal Frobenius approximation. Let us define the
operator PU defined on Cn×n and taking values in M(U) where both the Banach

spaces are equipped with the Frobenius norm ‖X‖2F =
∑
i,j |xi,j |2. Then

PU (A) = arg min
X∈M(U)

‖A−X‖F

where the minimum exists and is unique since M(U) is a linear finite dimensional
space. By means of simple algebraic arguments, it is possible to prove the following
lemma (see also [10, 9] for the circulant case).

Lemma 2.1 ([26, 8]). With A,B ∈ Cn×n and the previous definition of PU , we
have

1. PU (A) = U∗σ(UAU∗)U , with σ(X) the diagonal matrix having (X)i,i as
diagonal elements,

2. PU (αA+ βB) = αPU (A) + βPU (B) and α, β ∈ C,
3. PU (A∗) = (PU (A))

∗
,

4. trace(PU (A)) =trace(A),
5. ‖PU‖ = 1 with ‖ · ‖ the dual 2 norm,
6. ‖PU‖ = 1 with ‖ · ‖ the dual F norm,
7. ‖A− PU (A)‖2F = ‖A‖2F − ‖PU (A)‖2F .

It is also interesting to note the following result proved and used for specific
matrix algebras [10, 9, 15, 38, 53] but extended in an abstract way in [26].

Lemma 2.2 ([26]). If A is Hermitian (A = A∗), then the eigenvalues of PU (A)
are contained in the closed real interval [λ1(A), λn(A)] where λj(A) are the eigenvalues
of A ordered in a nondecreasing way. Moreover, when A is positive definite PU (A) is
also positive definite.

We notice that the preceding operator among matrices has a correspondence
in terms of approximation processes. Actually we find that [4, 52] PU (An(f)) =
An(Sn(f)), with An =M(U). In particular the following relationships hold.

• If A = {An}n is the circulant class, then the operator Sn is the n-degree
Cesàro sum Cn(f) [17].
• If A = {An}n is the τ class, then the symbol Sn denotes the n-degree Cesàro

sum plus another infinitesimal term involving the Chebyshev polynomials of

the second kind. More precisely, Sn(f) = (Cn(f)) (x)+ cos(x)
n+1

∑
k+1 akUk(cos(x))

where Uk is the kth Chebyshev polynomial of second kind [52].
• If A = {An}n is the Hartley class, then Sn is the n-degree Cesàro sum plus

an infinitesimal correction term involving trigonometric sums. A detailed
expression of Sn(f) is (Cn(f)) (x)− 2

n+1

∑
k ak sin(kx) [4].

2.4. Approximation schemes and BT preconditioners. In this subsection
we are concerned with the construction of BT preconditioners associated with ap-
proximation schemes. Let us consider the nondecreasing sequence l(n) < n and the
approximation processes Sn defined in the preceding subsections; then the BT pre-
conditioner takes the following form: An(Sl(n)(f)).

In section 3 we study the convergence speed of the PCG applied to the considered
kind of Toeplitz linear systems in terms of the generating functions f and g = Sl(n)(f).

Here we recall some known definitions and results to be used in the next section.
Definition 2.3. Let h be a measurable function. The essential range of the

function h defined on I is the set of all y real numbers for which, ∀ε > 0, the Lebesgue
measure of {x ∈ I : h(x) ∈ (y − ε, y + ε)} is positive [45]. The function h is called
“sparsely vanishing” if the Lebesgue measure of {x ∈ I : h(x) = 0} is zero [57, 25].

PRECONDITIONERS FROM APPROXIMATION PROCESSES 451

Theorem 2.4 ([34]). Let mf and Mf be the essinf and the esssup of f in [−π, π].
If mf < Mf , then, ∀n > 0, we have

mf < λi(An(f)) < Mf ,

where λi(X) is the ith eigenvalue of X arranged in nondecreasing order. If mf ≥ 0,
then An(f) is positive definite.

Theorem 2.5. Let f, g ∈ L1[−π, π] be two functions essentially nonnegative, i.e.,
mf ,mg ≥ 0. The matrices An(f), An(g) are positive definite (see Theorem (2.4)) and

the eigenvalues λ
(n)
i of A−1

n (g)An(f) arranged in nondecreasing order are such that

1. λ
(n)
i ∈ (r,R), r,R being the essinf and the esssup of f/g, respectively [27, 7];

2. if g is sparsely vanishing, then
⋃
n∈N

⋃
i≤n λ

(n)
i is dense in the “essential

range” ER(f/g) of f/g [48, 51] and moreover the eigenvalues {{λ(n)
i }i≤n}}n

distribute as f/g [55];

3. limn→∞ λ
(n)
1 = r, limn→∞ λ

(n)
n = R [14, 51].

Notice that Theorem 2.5 suggests a “global property” of distribution of the eigen-
values. For instance, a consequence of the second part of this result is that for any
nonnegative integer k fixed with respect to the dimension n we find the following limit
relations:

lim
n→∞λ

(n)
k = r, lim

n→∞λ
(n)
n−k = R.

Finally, owing to the sophisticated results [1] concerning the convergence speed
of PCG algorithms, we stress that the knowledge of the general distribution of the
preconditioned spectra [50, 55] is useful in order to understand very precisely the
convergence rates of PCG methods based on Toeplitz preconditioners.

3. The analysis of convergence. In the following we focus our attention on
the convergence analysis of several PCG methods applied to systems of the form

An(f)x = b,

where f is positive and continuous. Let us start with the following definitions.
Definition 3.1. Given a sequence A = {An}n of n × n algebras An ∈ AT , we

say that “{An(Sn(f))} (strongly) converges to {An(f)}” if, for any ε > 0, there exists
n̄ such that, for n ≥ n̄, An(f) − An(Sn(f)) has eigenvalues in (−ε, ε) except for a
constant number Qε of outliers.

Definition 3.2. Given a sequence A = {An}n of n×n algebras An ∈ AT , we say
that “{An(Sn(f))} weakly converges to {An(f)}” if, for any ε > 0, there exists n̄ such
that, for n ≥ n̄, An(f) − An(Sn(f)) has eigenvalues in (−ε, ε) except for Qε = o(n)
outliers.

When the number supεQε is a finite number we say that the convergence is also
uniform. The following result due to Tyrtyshnikov gives a criterion for establishing
whether convergence occurs.

Lemma 3.3 ([59]). Let {An} and {Bn} be two sequences of n × n Hermitian
matrices. If ‖An − Bn‖2F = o(n), then the convergence is weak. In particular, when
‖An −Bn‖2F = O(1), then {An} and {Bn} converge in the strong sense.

Here we want to establish whether a given sequence of algebras is good or not for
approximating Toeplitz matrices. We consider a criterion regarding BT matrices.

Definition 3.4. A = {An}n is a good sequence of algebras if and only if {An(p)}
converges to {An(p)} for any trigonometric polynomial p of fixed degree.

452 STEFANO SERRA CAPIZZANO

Observe that circulant, τ , and Hartley matrix algebras are good algebras. (See
also Proposition 3.10 in subsection 3.2.)

Theorem 3.5. Let f be a continuous periodic function and {Sn(f)} be a sequence
of approximation processes. We suppose that ∀ε > 0, ∃n̄ε,Sn such that, for any n ≥
n̄ε,Sn , ∣∣∣Sn(f)(x

(n)
i)− f(x

(n)
i)
∣∣∣ < ε, x

(n)
i ∈ Wn(A),

∀i ∈ {1, . . . , n}/Jε, with Jε set of indices of cardinality constant with regard to n.
Then, under the assumption that A = {An}n is a good sequence of algebras, {An(Sn(f))}
converges to {An(f)}.

Proof. Let pk be the polynomial having degree k of best approximation of f in
supremum norm [37]. Fix the integer M such that ‖f − pM‖∞ < ε/3. Then, by using
the Szegö theorem (see [34, p. 64]) and the assumptions, we have ‖An(f)−An(pM)‖2 <
ε/3, ‖An(Zn(f)− pM)‖2 < ε/3, where Zn(f)(x

(n)
i) = Sn(f)(x

(n)
i) if i is not in Jε and

equals f(x
(n)
i) otherwise. Therefore, from the identity

An(f)−An(Sn(f)) = An(f)−An(pM)− (An(Zn(f))−An(pM))
+An(pM)−An(pM) + (An(Zn(f))−An(Sn(f)))

we have that, except for a term of norm bounded by 2ε/3, the difference An(f) −
An(Sn(f)) coincides with An(pM)−An(pM) plus An(Zn(f))−An(Sn(f)). Since A
is a good sequence of algebras, we may split each Hermitian matrix An(pM)−An(pM)
into two parts. The first one has a norm bounded by ε/3, the second one has constant
rank. Moreover, from the definition of Zn(f), it follows that An(Zn(f))−An(Sn(f))
has rank at most equal to #(Jε). Therefore, by invoking the Cauchy interlace theorem
[62], the claimed result is obtained.

The following corollary is useful to derive and analyze good preconditioners for
the conjugate gradient method.

Corollary 3.6. Under the assumption of Theorem 3.5, if f and Sn(f) are
positive, then we have that for any ε > 0, for n large enough, the matrices of the
sequence {

(An(Sn(f)))−1An(f)
}

have eigenvalues in (1− ε, 1 + ε) except, at most, Qε = O(1) outliers.
Now we want to analyze the asymptotical behavior of the number of iterations

Nη to reach the solution within an accuracy η. We prove that, for n large enough,
this number of iterations is not sensitive to the precision of the approximation scheme
Sn(f). First we summarize some results in the following theorem.

Theorem 3.7. We suppose that ∀ε > 0 ∃n̄ε,Sn such that, for any n ≥ n̄ε,Sn ,∣∣∣Sn(f)(x
(n)
i)− f(x

(n)
i)
∣∣∣ < ε, x

(n)
i ∈ Wn(A),

for all i ∈ {1, . . . , n}/Jε, with Jε set of indices of cardinality constant with respect to
n. In addition, if A = {An}n, with An ∈ AT , is a good sequence of algebras, then
∀ε > 0, there exists n̄ε,Sn such that for any n ≥ n̄ε,Sn we have

An(f)−An(Sn(f)) = LRMε
+ LNε,

where ‖LNε‖2 ≤ ε and LRMε is a term having rank r(Mε) depending only on ε and
on the algebra.

PRECONDITIONERS FROM APPROXIMATION PROCESSES 453

Proof. It is sufficient to recall Theorem 3.5.
Let us fix η > 0 and let us call Nη the number of iterations of the PCG method

such that the relative error computed with regard to the residuals is less than η:

‖rNη‖
‖r0‖ < η.

We notice that we can find ε = ε(η) small enough so that after r(Mε) iterations we
observe superlinear convergence [12, 3, 16]. So the greatest part of iterations is given
by r(Mε), which depends on how well the given sequence A of algebras approximates
the BT matrices. Actually, we may always find ε such that the number of iterations
is bounded by r(Mε) + 1, ε = ε(η) (see also Theorem 3.8).

In conclusion the role of the approximation scheme Sn is marginal and is related
to the dimension n̄ after which we may appreciate a stabilized asymptotical behavior.
Actually, the number of iterations r(Mε) + 1, (with ε = ε(η)), is dependent on the
precision η, on the regularity of the function f (the number Mε), and on the goodness
of the algebra (the function r(·)). Finally notice that Nη = Qε(η) + 1, where Qε is the
number of outliers mentioned in Definition 3.1.

At this point we have proved that if Sn(f) converges to f on W(A) = {Wn(A)},
then, under feasible assumptions on {An(pM)}, M being a fixed integer number,
we have the matrix convergence of {An(Sn(f))} to {An(f)}. Now we consider the
converse problem. Let Pn ∈ An be such that {Pn} converges to {An(f)} in the matrix
sense. The question is: is it true that Pn = An(Sn(f)) for some approximation
scheme Sn(f) for f? In other words, we demonstrated that operator convergence
implies matrix convergence. Is the converse true? Surprisingly enough, the answer is
positive under the usual assumption that {An(pM)} converges to {An(pM)} for any
polynomial pM of fixed degree independent of n.

Theorem 3.8. Let {Pn} be a sequence of positive definite matrices of An con-
verging to {An(f)} in the strong sense. Let us suppose that A is a good sequence
of algebras. Then Pn = An(Sn(f)) where Sn(f) is an approximation scheme for f
“almost everywhere” on W(A) = {Wn(A)}, i.e., ∀ε > 0, ∃n̄ε,Sn such that, for any
n ≥ n̄ε,Sn , ∣∣∣Sn(f)(x

(n)
i)− f(x

(n)
i)
∣∣∣ < ε, x

(n)
i ∈ Wn(A),

∀i ∈ {1, . . . , n}/Jε, with Jε set of indices of cardinality constant with respect to n.
Proof. By definition of strong convergence it follows that, ∀ε > 0, there exists an

integer n̄ such that, for any n ≥ n̄, we find

Pn −An(f) = LRε + εn,(3.1)

where ‖εn‖2 < ε and LRε is a term having constant rank depending on ε and A but
not on n. By the Weierstrass theorem, we may choose a constant M such that f−pM
has supremum norm smaller than ε, pM being a trigonometric polynomial. From this
we may write

Pn −An(f) = Pn −An(pM) + T1 + T2,

where T1 = An(pM)−An(pM) and T2 = An(pM)−An(f). Moreover, by the assump-
tion of the goodness of the algebras A, we have that T1 is the sum of a term of norm

454 STEFANO SERRA CAPIZZANO

smaller than ε and a term of constant rank, while T2 has norm strictly less than ε (see
Theorem 3.5). In conclusion, by recalling (3.1), we find

Pn −An(pM) = UDU∗ = LRε + LNε.

Finally the elements Di,i = λi(Pn) − pM (x
(n)
i) have to be almost all infinitesimal,

that is λi(Pn) = Sn(f)(x
(n)
i) with Sn(f) converging to f almost everywhere on the

grid points of the algebras.
By referring to the optimal approximation in Frobenius’s norm, we noticed that

[52] PU (An(f)) can be expressed as An(Sn(f)) with Sn(f) converging to f in the case
where A is H, τ or C. Now, with the help of Theorem 3.8, we can prove that this is a
general statement holding for any algebra which is good in the sense of Definition 3.4:
in [52] we proved that {PU (An(f))} converges to {An(f)} if A = {An}n is a good
sequence of algebra. So, if A is good, then {PU (An(f))} converges to {An(f)} and
therefore, in light of Theorem 3.8, PU (An(f)) is representable as An(Sn(f)) where
Sn(f) converges to f at least on Wn(A) with, at most, the exception of a constant
number of grid points.

Finally, it should be pointed out that we have similar results when the concept of
weak convergence is considered (see [52] for the optimal Frobenius approximation).

3.1. Some specific algebras. We start by analyzing circulant, τ , and Hartley
algebras from the point of view of the generating functions and of the “goodness” of
these algebras with regard to Definition 3.4.

3.1.1. The circulant algebra. It is well known [22] that the set of the circulant
matrices is generated by the cyclic matrix

Z =

0 . . . 0 1
1 0

. . .
...

0 1 0

in the sense that each matrix of the algebra can be written as a polynomial of Z.
Moreover, the eigenvalues of Z are the nth complex roots of the unity and, therefore,
by exploiting the structure of the powers of Z it is trivial to deduce that the ith
eigenvalue of a circulant matrix C, having the vector (c0, c1, . . . , cn−1) as first column,
is given by p(ωi) where

p(ω) =

n−1∑
k=0

ckω
k, ω ∈ C

and ω
(n)
i = ei

2πi
n . Since we are considering symmetric Toeplitz matrices, we restrict

our attention to the subalgebra of the symmetric circulant matrices. In this case the
symmetry imposes that cj = cn−j ∈ R, j = 1, . . . , n − 1. As a consequence, we may
rewrite the eigenvalue function as cosine sum

c(x) = c0 + 2
m∑
k=0

ck cos(kx), x ∈ [0, 2π],

with n = 2m and the ith eigenvalue as c(x
(n)
i), x

(n)
i = arg ω

(n)
i ∈ W(C). Given a

symmetric Toeplitz matrix An(f), the natural circulant approximation [12] related to

PRECONDITIONERS FROM APPROXIMATION PROCESSES 455

the choice of cj = aj , j = 0, . . . ,m, while the optimal approximation with respect to
the Frobenius norm is given by

cj =
jan−j + (n− j)aj

n
.

By manipulating these relationships and by means of the definition of c(x) or p(ω),
it is easy to prove that the eigenvalue function of the natural approximation is the
Fourier sum of order m, while the eigenvalue function of the optimal approximation
is the Cesàro sum of order n [17].

3.1.2. The τ algebra. This inherently symmetric matrix algebra admits a
Toeplitz generator given by

W =

0 1

1 0
. . .

. . .
. . . 1
1 0

 .

Also in this case we have an analytic expression of the ith eigenvalue [2] of the gen-

erator given by 2 cos(x
(n)
i), where x

(n)
i = iπ

n+1∈ W(τ), i = 1, . . . , n.
An interesting representation of any matrix belonging to the τ class can be given

in terms of an associated Toeplitz matrix: more precisely given a τ matrix T , there
exists a symmetric Toeplitz matrix An

An =

t0 t1 . . . tn−1

t1
. . .

. . .
...

...
. . .

. . . t1
tn−1 . . . t1 t0

(3.2)

and a Hankel matrix

HC(An) =

t2 . . . tn−1 0 0
... ··· ··· 0

tn−1 ··· tn−1

0 ··· ··· ...
0 0 tn−1 . . . t2

such that

T = An −HC(An).(3.3)

When dealing with Toeplitz problems, the Hankel correction yields a precondi-
tioner that works fine, especially when An is banded since An is obtained through a
low rank correction. It follows that the matrix T−1An has only a constant number
(with respect to the dimension n) of eigenvalues different from 1.

This Toeplitz + Hankel representation is also important from a spectral point of
view: actually, it can be proved [2] that the ith eigenvalue of T can be written as

t(x) = t0 + 2
n∑
k=0

tk cos(kx), x ∈ [0, π],

with x = x
(n)
i ∈ W(τ).

456 STEFANO SERRA CAPIZZANO

Now, we consider a complementary point of view. Given a symmetric Toeplitz
matrix An(f), the natural τ approximation [3] is related to the choice of tj = aj ,
j = 0, . . . , n, while the optimal approximation in Frobenius norm is given by

tj =
jan−j + (n− j)aj

n
+O

(
n−1

)
.

More precisely we have that the first column of this τ matrix is an n-dimensional
vector φ with φ1 = a0 − n−2

n+1a2, φ2 = a1 − n−3
n+1a3, φi = n−i+3

n+1 ai−1 − n−i−1
n+1 ai+1,

i = 3, . . . , n− 2, φn−1 = 4
n+1an−2 and φn = 3

n+1an−1.
By manipulating these relationships and by means of the definition of t(x), it is

easy to prove that the eigenvalue function of the natural approximation is the Fourier
sum of order n, while the eigenvalue function of the optimal approximation is the
Cesàro sum of order n plus a linear combination of Chebyshev polynomials of the
second kind (see [25] and the end of section 2.3).

3.2. The Hartley class. The Hartley class does not have a generator, but it
can be described by using circulant matrices. Actually any matrix X belonging to the
algebra H can be expressed as the sum of two independent matrices, the first being
symmetric and circulant C, the second being the product of a special permutation
matrix J by a skewcirculant matrix B. More precisely, J1,1 = Js,n+2−s = 1, s =
2, . . . , n, and

X = C + JB,

where the first column of C has coefficients cj such that cj = cn−j ∈ R, j = 1, . . . , n−
1, and the first column of B has coefficients bj = −bn−j ∈ R, j = 1, . . . , n− 1, b0 = 0.

By performing simple computations [4], we find that the ith eigenvalue of X is
given by

h(x) =

n∑
k=0

hk(cos(kx) + sin(kx)),(3.4)

where hk = ck + bk and x = x
(n)
i ∈ W(H). By exploiting the symmetry of the

coefficients ck we observe that
∑n
k=0 ck sin(kx

(n)
i) = 0, while the antisymmetry of

the coefficients bk implies
∑n
k=0 bk cos(kx

(n)
i) = 0. In conclusion we obtain this more

appealing expression of the eigenvalue function:

h(x) =

n∑
k=0

ck cos(kx) + bk sin(kx).

This representation of h(x) is much more natural since h(x) is split into two parts.
The first is given by a cosines polynomial c(x) =

∑n
k=0 ck cos(kx) which is related

only to the circulant part of the Hartley matrix. The second one is given by a sines
polynomial s(x) =

∑n
k=0 bk sin(kx) associated with the Hankel contribution. Because

we are interested in the approximation of a symmetric Toeplitz matrix generated by
an even function, it is evident that the Hankel contribution and, consequently, the
even part of the generating function h(x), have to be kept small. This fact is proved
in the following theorem.

Theorem 3.9. The weak matrix convergence of a Hartley sequence of matrices
H to the Toeplitz sequence {An(f)} implies that ‖JB‖2F = o(n) or ‖s(x)‖2L2 = o(1).

PRECONDITIONERS FROM APPROXIMATION PROCESSES 457

The strong matrix convergence of a Hartley matrix sequence to the Toeplitz sequence
{An(f)} implies that ‖JB‖2F = O(1) or ‖s(x)‖2L2 = O(n−1).

Proof. We start by noticing that d = ‖An(f)−H‖F ≥ infY ‖Y −JB‖F , where the
infimum is calculated over the Y ’s belonging to the space of the symmetric Toeplitz
matrices and where B is the skew circulant component of the Hartley matrix H.
Therefore we have

d2 ≥ inf
Y

∑
k

∑
i+j−2=k

|Yi,j − bk|2

with bk = −bn−k, k = 1, . . . , n− 1, b0 = 0. Let us define the following sets of indices:

J+
k = {j ∈ {1− n, . . . , n− 1} : j is even and ∃bk on the diagonal j};
J−k = {j ∈ {1− n, . . . , n− 1} : j is even and ∃ − bk on the diagonal j};
I+
k = {j ∈ {1− n, . . . , n− 1} : j is odd and ∃bk on the diagonal j};
I−k = {j ∈ {1− n, . . . , n− 1} : j is odd and ∃ − bk on the diagonal j};
Jk = J+

k ∩ J−k ;
Ik = I+

k ∩ I−k .

From the Hankel structure of JB for n = 2m, it follows that

• the element −b1 occurs only on the main antidiagonal so that all the −b1s
are on even diagonals; #J−1 = n,#I−1 = 0;
• the element b1 occurs only on the second and (n+ 2)th antidiagonals so that

we have two b1s on the central odd diagonals and n − 2 b1s on the central
even diagonals; #J+

1 = n− 2,#I+
1 = 2;

• the element −b2 occurs only on the (n−1)th and (2n)th antidiagonals so that
one −b2 is on the main central diagonal and n− 1 elements equal to −b2 are
on the central odd diagonals; #J−2 = 1,#I−2 = n− 1;
• the element b2 occurs only on the third and (n+ 3)th antidiagonal so that we

have three b2s on the central even diagonals and n − 3 elements equal to b2
on the central odd diagonals; #J+

1 = 3,#I+
1 = n− 3;

• In general, the element −bk, k = 1, . . . ,m, occurs only on the n − (k + 1)th
and 2n− (k + 2)th antidiagonals so that #J−k = n− (k − 1),#I−1 = k − 1 if
k is odd; otherwise we obtain #J−k = k − 1,#I−1 = n− (k − 1);
• Analogously, the element bk, k = 1, . . . ,m occurs only on the n + (k + 1)th

and (k + 2)th antidiagonals so that #J+
k = n − (k + 1),#I−1 = k + 1 if k is

odd; otherwise we obtain #J−k = k + 1,#I−1 = n− (k + 1).

In conclusion, we find that, for any k ∈ {1, . . . ,m}, 2m = n, we have #Ik =
n− (k+ 1) and #Jk = k− 1 if k is even and #Jk = n− (k+ 1) and #Ik = k− 1 if k
is odd. As a matter of fact, we have deduced that #Ik + #Jk is constant and equals
n− 2. Therefore

d2 ≥ inf
Y

∑
k

∑
j∈Ik

 ∑
{(s,t): Bs,t∈{±bk},s−t=j}

|Ys,t − bk|2 + |Ys,t + bk|2

+
∑
k

∑
j∈Jk

 ∑
{(s,t): Bs,t∈{±bk},s−t=j}

|Ys,t − bk|2 + |Ys,t + bk|2

≥ 2
∑
k(#Jk + #Ik)b2k = 2(n− 2)

∑
k b

2
k.

458 STEFANO SERRA CAPIZZANO

So, if d2 = o(n), then
∑
k b

2
k = o(1) which is equivalent to ‖JB‖2F = o(n) and

‖s(x)‖2L2 = o(1). If d2 = O(1), then
∑
k b

2
k = O(n−1) and analogously we find

‖JB‖2F = O(1) and ‖s(x)‖2L2 = O(n−1).
In conclusion, a good Hartley approximation of An(f) is substantially given by a

good symmetric circulant approximation: the contribution of the Hankel part must
be not only small but negligible. By the way, this is the case of the optimal Frobenius
approximation, for which it has been proved [4] that bi = n−1(ai−an−i) and therefore
|bi| = O(n−1 max{|ai|, |an−i|}) so that∑

i

b2i ≤
c

n
‖f‖2L2 ,

with c a suitable positive constant. Since C2π ⊂ L2, we deduce

‖s(x)‖2L2 ,
‖JB‖2F
n

= O(n−1).(3.5)

In addition, we want to mention that (3.5), as well as Theorem 3.9, holds for any f
belonging to the periodic L2 functions.

Finally, we want to show that all these algebras are “good,” and, in particular,
the τ class is “better” with respect to the others.

Proposition 3.10. For any trigonometric even polynomial pM of fixed degree
M independent of n, we have that

• A = τ implies An(pM)−An(pM) = LR1, with rank(LR1) = 2(M − 1);
• A = C implies An(pM)−An(pM) = LR2, with rank(LR2) = 2M ;
• A = H implies An(pM)−An(pM) = LR2 and Hn(pM) = Cn(pM).

Proof. It is enough to refer to the structure of these algebras and to the expression
of the related generating functions.

Theorem 3.11. If Sn(f) converges to f on the grid points W(A), then we may
choose η small enough so that there exists ε = ε(η) and n̄ε,Sn : ∀n ≥ n̄ε,Sn ,

Nη = rank(LR(pMε
)) + 1,

where LR is the low rank matrix related to the goodness of the algebras A and where
the degree M = Mε of the polynomial PM implies ‖Sn(f)−pM‖∞+‖f−pM‖∞ ≤ ε(η)
so that, after rank(L(pMε

)) iterations, only one iteration is required for convergence
within an accuracy η.

Observe that the preceding results tell us a lot about the convergence of the PCG
methods associated with matrix algebra and linear approximation processes. When
there is strong convergence (strong or proper clustering in the terminology used in [59])
we have (after Nη iterations) superlinear convergence, but we may have a sublinear
behavior when the weak convergence (weak or general clustering) case occurs [57, 23].
However, also with regard to the strong matrix algebra convergence, the BT technique
[47] has more potential as described in the following where we prove that, for a suitable
choice of the sequence l(n) and of the operator Sn, we define methods having a total
cost of O(n log n) ops and where Nη = 1 for n large enough.

3.3. BT preconditioning and approximation processes. In this brief sub-
section we analyze the convergence of BT preconditioners generated by an approxima-
tion process Sn(f) converging to the function f . For this purpose we denote by En(f)
the error f − Sn(f); clearly, as n tends to infinity, we have En(f)→ 0. At this point

PRECONDITIONERS FROM APPROXIMATION PROCESSES 459

let us consider An(Sl(n)(f)) as preconditioner where l(n) is a nondecreasing sequence
of nonnegative integers. In the light of Theorem 2.5, the preconditioned matrix

A−1
n (Sl(n)(f))An(f)(3.6)

has eigenvalues belonging to the open set (mn,Mn) with

mn = inf
x

f(x)

Sl(n)(f)(x)
≥ 1− ‖El(n)(f)‖∞

mf − ‖El(n)(f)‖∞ ,

Mn = sup
x

f(x)

Sl(n)(f)(x)
≤ 1 +

‖El(n)(f)‖∞
mf − ‖El(n)(f)‖∞

and mf = min f > 0. The preceding relationships imply that limn→∞ = Mn

mn
= 1 and,

by virtue of the convergence results on PCG methods [1], we find that there exists an
integer n̄ such that, if n ≥ n̄ then the number Nη of iterations to reach the solution
within an accuracy η equals 1. In other words, there exists a bandwidth L̄ depending
on the approximation process, on f and on η, so that the PCG method with coefficient
matrix An(f) and An(SL̄(f)) as preconditioner requires only one iteration. Of course
the integer n̄ depends on how fast the sequence Sl(n)(f) converges to f .

For instance, let us set Sn(f) = Cn(f), the Cesàro sum of f , and Sn(f) = DLn(f)
the De La Vallée Poussin operator [63], where f ∈ C∞2π is chosen such that its best
approximation by polynomials of degreem produces an error which is of orderO(2−m).
By the well-known approximation properties of these two operators, it follows that

‖f − Cn(f)‖∞ ≤ c1
n , c1 > 0,

‖f −DLn(f)‖∞ ≤ c2
2n , c2 > 0.

Now, let us fix l(n) = logn as done in [47]. Therefore, in the first case, i.e., for
Cl(n)(f), we find

mn ≥ 1− c∗1
log n

, Mn ≤ 1 +
c∗∗1

log n
,

while, for the operator DLl(n)(f), we obtain

mn ≥ 1− c∗1
n
, Mn ≤ 1 +

c∗∗1
n
.

By the standard error analysis carried out by Axelsson and Lindskog [1], we deduce
that the minimum integer n̄ for which only one iteration is required is, in the first case,

n̄ ≥ 2
k1
η , k1 being a suitable positive constant. In the second case we find n̄ ≥ k2

η , k2

being a positive constant.
Observe that, due to the slowness of convergence of the Cesàro sum, the first

estimate has only a theoretical appeal, since the value 2k1/η grows too fast with η and
therefore huge dimensions are required to converge within only one PCG iteration.
On the other hand, we point out that in the case of the latter example the degree of
decay of the coefficients ak is also exponential: therefore, if f is strictly positive (the
operators {An(f)}n have uniformly bounded inverse), then the related linear systems
can be globally treated as banded systems.

460 STEFANO SERRA CAPIZZANO

3.3.1. How to choose the bandwidth l(n). The cost per iteration of the PCG
procedure is given by (a) few matrix-vector products and inner-vector products plus
the cost (b) of a solution of a system whose coefficient matrix is just the preconditioned
matrix. Owing to the use of FFTs/FTTs, the cost (a) can be bounded by O(n log n)
ops [60, 35, 39] while the cost (b) is related to the choice of a good band solver and,
of course, to the choice of the bandwidth l(n). Observe that the more l(n) grows,
the fewer PCG iterations are required to reach the convergence and, actually, due
to superlinearity of the procedure we may arrive at only one iteration. Therefore
the “optimal choice” is to maximize l(n) under the constraint that the cost (b) of
the preconditioning system cannot exceed O(n log n) ops. We have the following
possibilities.

• Standard band solvers (related to the Gaussian elimination) [32]: if the band-
width is l, then O(l2n) ops are required. Consequently, with this choice, we
have l(n) ≤ min{c√log n, L̄}.

• Multigrid methods for symmetric Toeplitz systems [29, 30]: we find a cost
of O(ln) ops and then we obtain l(n) ≤ min{c log n, L̄} (the choice made in
[47]).
• A recent displacement-rank recursive technique introduced by Bini and Meini

[5]: the cost is given by O(n log l+ l log2 l) and therefore a bandwidth l(n) =
O(n

logn) is allowed.
Observe that the impact of the third technique on the BT preconditioning tech-

nique is dramatic: since a bandwidth of l(n) = O(n
logn) is allowed, we may really

appreciate the superlinearity of the proposed method. For instance, the value n̄ in the
preceding example with Sn(f) = DLn(f) can be only logarithmic with η−1! On the
other hand the implementation of this technique is not trivial. Nevertheless a FOR-
TRAN code exists and can be found by anonymous FTP at MORSE.DM.UNIPI.IT in
the directory pub/TOEPLITZ/SOFTWARE/BTS, files symm.tar.Z and scalar.tar.Z.

4. Numerical experiments and conclusive remarks.

4.1. Numerical experiments. In all the numerical experiments we consider
two kinds of test functions: fα = (x2/2)+α and fβ = ((x/π)2−1)2 +β. Moreover we
consider two different types of data vectors b. The first is made up by all ones. The
second is randomly generated. In all the tables the numbers between parentheses are
related to the number of PCG iterations when a random data vector b is considered.
The stopping criterion is given by the two-norm of the residual less than 10−7. All
the experiments are done by using MATLAB.

4.1.1. Matrix algebra preconditioners. For the choice of the preconditioners
we considered two algebras, namely the τ class and the circulants, and BT matrices.
Concerning the algebras we have constructed the natural preconditioners (Strang type)
Cnat and τnat whose related approximation process is given by the Fourier polynomial
of degree n/2 and n, respectively, and the optimal preconditioners (T. Chan type)
Copt and τopt whose approximation processes have the same asymptotical behavior as
the Cesàro sum.

Concerning the results displayed in Tables 4.1, 4.2, and 4.3, two remarks are
needed. First we notice that the number of iterations for the τ preconditioners is
generally slightly less than for the circulant case. This agrees with Proposition 3.10
where it is proved that the border conditions are slightly heavier in the circulant case.
Second, if we observe the behavior of the preconditioners τnat and τopt we conclude
that their behavior is substantially identical, in particular for high or large dimensions.

PRECONDITIONERS FROM APPROXIMATION PROCESSES 461

Table 4.1
Number of PCG steps in the case of fα with α = 5 + π2/6.

n τnat Cnat τopt Copt

32 3 (3) 4 (5) 3 (3) 4 (5)
64 3 (3) 4 (5) 3 (3) 4 (5)
128 3 (3) 4 (5) 3 (3) 4 (5)
256 3 (3) 4 (4) 3 (3) 4 (4)
512 3 (3) 4 (4) 3 (3) 4 (4)

Table 4.2
Number of PCG steps in the case of fβ with β = 1.

n τnat Cnat τopt Copt

32 3 (3) 3 (4) 3 (3) 4 (5)
64 3 (3) 3 (4) 3 (3) 4 (5)
128 3 (3) 3 (4) 3 (3) 3 (4)
256 3 (3) 3 (4) 3 (3) 3 (4)
512 2 (3) 3 (4) 3 (3) 3 (4)

Table 4.3
Number of PCG steps in the case of fβ with β = 0.01.

n τnat Cnat τopt Copt

32 3 (3) 4 (5) 3 (4) 7 (10)
64 3 (3) 4 (5) 3 (4) 7 (10)
128 3 (3) 4 (5) 3 (4) 6 (9)
256 3 (3) 4 (5) 3 (4) 5 (8)
512 2 (3) 3 (4) 3 (3) 5 (6)

Table 4.4
Number of PCG steps in the case of fα with α = 5 + π2/6.

n An(Fl1(n)) An(Fl2(n))

32 5 (5) 5 (5)
64 4 (5) 3 (4)
128 4 (4) 3 (3)
256 3 (4) 2 (3)
512 3 (4) 2 (3)

Nevertheless they are characterized by two very different approximation processes, one
substantially faster than the other. This insensitivity to the convergence rate of the
approximation process fully agrees with Theorem 3.7. The same remark holds true if
we analyze the behavior of the preconditioners Cnat and Copt.

4.1.2. BT preconditioners. Here we consider a unique approximation process,
the Fourier process Fl. The bandwidth functions l(n) are of two types: the first one
l1(n) = 2(log(n)−4)+1 of logarithmic order and the second l2(n) = 2 b√n− 4c+1 of√
n-order. The results displayed in Tables 4.4 to 4.7 indicate an evident superlinearity

of the related PCG methods.
Finally, we report two further numerical experiments concerning two cases in

which f has zeros and is nonnegative or has a nondefinite sign. In the nonnegative
case, the approximation process Kl is related to the Chebyshev cosine expansion and
is described in [47]. The superiority with regard to the matrix algebra approach is
impressive as shown in Table 4.8.

The example reported in Table 4.9 is more delicate. In this case f is continuous
and nondefinite since min f = −0.9 and max f = 0.1. Moreover the preconditioner is

462 STEFANO SERRA CAPIZZANO

Table 4.5
Number of PCG steps in the case of fα with α = 0.1.

n An(Fl1(n)) An(Fl2(n))

32 12 (18) 12 (18)
64 11 (13) 7 (8)
128 11 (15) 6 (6)
256 8 (8) 5 (5)
512 8 (8) 4 (4)

Table 4.6
Number of PCG steps in the case of fβ with β = 1.

n An(Fl1(n)) An(Fl2(n))

32 4 (4) 4 (4)
64 3 (3) 2 (3)
128 2 (3) 2 (2)
256 2 (3) 2 (2)
512 2 (2) 1 (2)

Table 4.7
Number of PCG steps in the case of fβ with β = 0.01.

n An(Fl1(n)) An(Fl2(n))

32 7 (10) 7 (10)
64 6 (9) 4 (5)
128 5 (6) 3 (4)
256 4 (5) 2 (3)
512 3 (5) 2 (3)

Table 4.8
Number of PCG steps in the case of f = x4.

n Copt An(Kl1(n))

64 26 21
128 77 15
256 179 13
512 406 11

Table 4.9
Number of PCG steps in the case of fβ with β = −0.9.

n An(Fl2(n))

32 8 (9)
64 4 (5)
128 3 (4)
256 3 (3)
512 2 (3)

also nondefinite since its generating function is the Fourier approximation Fl of f of
degree l = l2(n). Moreover,

sup
x
|Fl2(n)(f)/f − 1| =∞(4.1)

for n large enough since Fl and f have zeros in different positions. Nevertheless
Fl2(n)(f)/f converges to 1 in another sense and, more precisely, in measure [43]:

PRECONDITIONERS FROM APPROXIMATION PROCESSES 463

actually, for any ε > 0 we have that

lim
n→∞m{x : |Fl2(n)(f)/f − 1| > ε} = 0.

This kind of convergence between functions has a counterpart in the spectral distribu-
tion of the eigenvalues of the preconditioned matrices. In fact for n = 256 we observe
that the real part of the eigenvalues of the preconditioned matrix lies between 1 and
1.14 while the imaginary part has absolute value bounded by 5.89 ∗ 10−6. In spite of
(4.1), we have no outliers: we remark that the absence of outliers can be explained
by means of the “boundary layer” argument introduced in [54].

4.2. Final remarks. It should be stressed that, under the constraint that the
approximation operator Sn converges to f , the qualitative convergence of the related
PCG is almost the same in all the cases where the preconditioner associated with Sn
belongs to a trigonometric algebra. This means that the matrix-algebra precondition-
ers are not really sensitive to the order of the approximation. This fact is basically due
to the existence of “border conditions” in the approximation of {An(f)} by {An(Sn)}:
in other words, the difference between An(f) and An(Sn) can be always viewed as the
sum of a part of a small norm which is sensitive to the goodness of the approximation
scheme and a part of constant rank LR which is in a certain sense inherent to the
considered algebra.

To conclude, the presence of LR hides the quality of the convergence of {An(Sn)}
to {An(f)}, for n large enough, in the sense that we expect that a number of steps of
the PCG method close to rank(LR) + 1 are required for the convergence [1].

On the other hand, when we use the BT preconditioning, the border conditions
no longer exist, but, instead of the convergence on the mesh W, we have to require
the uniform convergence of Sn to f . In this case, we may fully appreciate the degree
of convergence of {An(Sl(n))} to {An(f)} when l(n) is a slowly increasing bounded
function. As shown in section 3 and in subsection 4.1, this explanation is plainly
evident from a theoretical and practical point of view. For other numerical results
regarding the “insensitivity” of the matrix algebra approach to the goodness of the
approximation scheme, see the numerical experiments in [17], for the circulant case,
and Table 2 in [53] for the τ case. Finally, for additional numerical evidence of the
superlinearity of the BT preconditioning approach (in the more difficult case where f
has zeros), refer to the last table in [47].

REFERENCES

[1] O. Axelsson and G. Lindskög, The rate of convergence of the preconditioned conjugate gra-
dient method, Numer. Math., 52 (1986), pp. 499–523.

[2] D. Bini and M. Capovani, Spectral and computational properties of band symmetric Toeplitz
matrices, Linear Algebra Appl., 52/53 (1983), pp. 99–126.

[3] D. Bini and F. Di Benedetto, A new preconditioner for the parallel solution of positive
definite Toeplitz linear systems, in Proc. 2nd SPAA Conf., Crete, Greece, 1990, pp. 220–
223.

[4] D. Bini and P. Favati, On a matrix algebra related to the discrete Hartley transform, SIAM
J. Matrix Anal. Appl., 14 (1993), pp. 500–507.

[5] D. Bini and B. Meini, Effective methods for solving banded Toeplitz systems, SIAM J. Matrix
Anal. Appl., to appear.

[6] R. H. Chan Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542–550.

[7] R. H. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating func-
tions, IMA J. Numer. Anal., 11 (1991), pp. 333–345.

464 STEFANO SERRA CAPIZZANO

[8] R. H. Chan, T. F. Chan, and C. Wong, Cosine Transform Based Preconditioners for Total
Variation Minimization Problems in Image Restoration, in Proc. 2nd IMACS Internat.
Symp. on Iterative Methods in Linear Algebra, Blagoevgrad, Bulgaria, 1995, pp. 311–329.

[9] R. H. Chan and X. Jin, A family of block preconditioners for block systems, SIAM J. Sci.
Stat. Comp., 13 (1992), pp. 1218–1235.

[10] R. H. Chan, X. Jin, and M. C. Yeung, The circulant operator in the Banach algebra of
matrices, Linear Algebra Appl., 149 (1991), pp. 41–53.

[11] R. H. Chan and M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[12] R. H. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant precon-
ditioner, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 104–119.

[13] R. H. Chan and P. Tang, Fast band-Toeplitz preconditioners for Hermitian Toeplitz systems,
SIAM J. Sci. Comput., 15 (1994), pp. 164–171.

[14] R. H. Chan and P. Tang, Constrained minimax approximation and optimal preconditioners
for Toeplitz matrices, Numer. Algorithms, 5 (1993), pp. 353–364.

[15] R. H. Chan and M. C. Yeung, Circulant preconditioners for Toeplitz matrices with positive
continuous generating functions, Math. Comp., 58 (1992), pp. 233–240.

[16] R. H. Chan and M. C. Yeung, Jackson’s theorem and circulant preconditioned Toeplitz sys-
tems, J. Approx. Theory, 70 (1992), pp. 191–205.

[17] R. H. Chan and M. C. Yeung, Circulant preconditioners constructed from kernels, SIAM J.
Numer. Anal., 29 (1992), pp. 1093–1103.

[18] T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat.
Comput., 9 (1988), pp. 766–771.

[19] E. Cheney, Introduction to Approximation Theory, McGraw–Hill, New York, 1966.
[20] F. Costabile, M. I. Gualtieri, and S. Serra,1 Asymptotic expansions and extrapolation for

Bernstein polynomials with applications, BIT, 36 (1996), pp. 676–687.
[21] F. Costabile, M. I. Gualtieri, and S. Serra, Asymptotic expansions for some classical

operators and their use in approximation theory, in Proc. in 7th International Coll. on
Differential Equations, D. Bainov, ed., Plovdiv, Bulgaria, 1996, pp. 67–74.

[22] P. Davis, Circulant Matrices, John Wiley and Sons, New York, 1979.
[23] F. Di Benedetto, Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices,

SIAM J. Sci. Comput., 16 (1995), pp. 682–697.
[24] F. Di Benedetto, Preconditioning of block Toeplitz matrices by sine transforms, SIAM J. Sci.

Comput., 18 (1997), pp. 499–515.
[25] F. Di Benedetto and S. Serra Capizzano, A unifying approach to abstract matrix algebra

preconditioning, Numer. Math., to appear.
[26] F. Di Benedetto and S. Serra Capizzano, Optimal and Superoptimal Matrix Algebra Op-

erators, TR. 360, Department of Mathematics, University of Genova, Italy, 1997.
[27] F. Di Benedetto, G. Fiorentino, and S. Serra, C.G. preconditioning for Toeplitz matrices,

Comput. Math. Appl., 25 (1993), pp. 35–45.
[28] Z. Dizian and G. Freud, Linear approximation processes with limited oscillation, J. Approx.

Theroy, 12 (1974), pp. 23–31.
[29] G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991),

pp. 283–305.
[30] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite block

Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comput., 17 (1996),
pp. 1068–1081.

[31] I. Gohberg and I. Fel’dman, Convolution Equations and Projection Methods for Their So-
lution, Transl. Math. Monogr. 41, AMS, Providence, RI, 1974.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1983.

[33] U. Grenander and M. Rosemblatt, Statistical Analysis of Stationary Time Series, 2nd ed.,
Chelsea, New York, 1984.

[34] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd ed., Chelsea, New
York, 1984.

[35] G. Heinig and K. Rost, Representation of Toeplitz-plus-Hankel matrices using trigonometric
transformations with applications to fast matrix-vector multiplication, private communi-
cation, 1997.

1The author Stefano Serra Capizzano and Stefano Serra cited in the references are the same
person.

PRECONDITIONERS FROM APPROXIMATION PROCESSES 465

[36] T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 767–777.

[37] D. Jackson, The Theory of Approximation, AMS, New York, 1930.
[38] X. A. Jin, Hartley preconditioners for Toeplitz systems generated by positive continuous func-

tions, BIT, 34 (1994), pp. 367–371.
[39] T. Kailath and V. Olshevsky, Displacement structure approach to discrete-trigonometric-

transform based preconditioners of G. Strang type and T. Chan type, Calcolo, 33 (1996),
pp. 191–208.

[40] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Co.,
Delhi, 1960.

[41] I. P. Natanson, Constructive Function Theory, I, Frederick Ungar Publishing Co., New York,
1964.

[42] A. Oppenheim, Applications of Digital Signal Processing, Prentice–Hall, Englewood Cliffs, NJ,
1978.

[43] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw–Hill, Singapore, 1986.
[44] S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems,

BIT, 34 (1994), pp. 579–594.
[45] S. Serra, Conditioning and solution, by means of preconditioned conjugate gradient meth-

ods, of Hermitian (block) Toeplitz systems, in Proc. in Advanced Signal Processing Al-
gorithms, Architectures, and Implementations—SPIE Conf., F. Luk, ed., San Diego, CA,
1995, pp. 326–337.

[46] S. Serra, Preconditioning strategies for Hermitian Toeplitz systems with nondefinite generat-
ing functions, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1007–1019.

[47] S. Serra, Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptot-
ically ill-conditioned positive definite Toeplitz systems, Math. Comp., 66 (1997), pp. 651–
665.

[48] S. Serra, New PCG based algorithms for the solution of Hermitian Toeplitz systems, Calcolo,
32 (1995), pp. 153–176.

[49] S. Serra, Sulle proprietà spettrali di matrici precondizionate di Toeplitz, Boll. Un. Mat. Ital.
A, 11 (1997), pp. 463–483.

[50] S. Serra, The extension of the concept of generating function to a class of preconditioned
Toeplitz matrices, Linear Algebra Appl., 267 (1997), pp. 139–161.

[51] S. Serra, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra
Appl., 270 (1998), pp. 109–129.

[52] S. Serra, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer.
Math., to appear. Also invited lecture SIAM Meeting—Minisymposium on “Fast Toeplitz
Solvers,” Stanford, CA, July 14–18, 1997.

[53] S. Serra, Superlinear PCG methods for symmetric Toeplitz systems, Math. Comp., to appear.
[54] S. Serra, How to choose the best iterative strategy for symmetric Toeplitz systems, SIAM J.

Numer. Anal., to appear.
[55] S. Serra Capizzano, An ergodic theorem for classes of preconditioned matrices, Linear Algebra

Appl., 282 (1998), pp. 161–183.
[56] G. Strang, A proposal for Toeplitz matrix calculation, Stud. Appl. Math., 74 (1986), pp. 171–

176.
[57] V. Strela and E. Tyrtyshnikov, Which circulant preconditioner is better?, Math. Comp.,

65 (1996), pp. 137–150.
[58] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 459–473.
[59] E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and

clustering, Linear Algebra Appl., 232 (1996), pp. 1–43.
[60] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia,

PA, 1992.
[61] H. Widom, Toeplitz matrices, in Studies in Real and Complex Analysis, I. Hirshman Jr., ed.,

MAA, 1965.
[62] J. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[63] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, 1959.

INEQUALITIES FOR UNITARILY INVARIANT NORMS∗

XINGZHI ZHAN†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 466–470

Abstract. Let A,B,X be complex matrices with A,B positive semidefinite. It is proved that

(2 + t)||ArXB2−r +A2−rXBr|| ≤ 2||A2X + tAXB +XB2||
for any unitarily invariant norm || · || and real numbers r, t satisfying 1 ≤ 2r ≤ 3, −2 < t ≤ 2. The
case r = 1, t = 0 of this result is the well-known arithmetic-geometric mean inequality due to R.
Bhatia and C. Davis [SIAM J. Matrix Anal. Appl., 14 (1993), pp. 132–136]. Several other unitarily
invariant norm inequalities are derived.

Key words. unitarily invariant norm, Hadamard product, arithmetic-geometric mean inequality

AMS subject classifications. 15A60, 15A18, 15A45, 47A30

PII. S0895479898323823

1. Introduction. Let Mm,n be the space of m×n complex matrices and Mn ≡
Mn,n. Bhatia and Davis [3] proved that for arbitrary A,B,X ∈Mn and any unitarily
invariant norm || · ||,

2||AXB∗|| ≤ ||A∗AX +XB∗B||,(1)

which is known as the arithmetic-geometric mean inequality. This result has aroused
much interest. For different proofs see [3], [6], [7], and [10]. For equivalent inequalities
see [5]. For its geometrical meaning see [2].

We remark that the converse is also true; that is, if (1) holds for all A,B,X ∈Mn,
then || · || must be unitarily invariant. For unitary matrices U, V, setting A = U and
B = V ∗ in (1) gives ||UXV || ≤ ||X||. Replacing X by U∗XV ∗ in this inequality yields
||X|| ≤ ||U∗XV ∗||. Thus ||UXV || = ||X|| for all unitary U, V.

We shall generalize (1) by introducing two parameters r and t. The tool used here
is the induced norm of the Hadamard multiplier operator with respect to unitarily
invariant norms, and the starting point is a result for matrix equations.

2. Preliminaries. The Hadamard product of A = (aij) and B = (bij) ∈ Mn is
A ◦ B ≡ (aijbij) ∈ Mn. Given A ∈ Mn, consider the Hadamard multiplier operator
TA on Mn defined by

TA(X) ≡ A ◦X for X ∈Mn.

We use the same notation to denote a norm on Mn and the induced norm of the linear
operator TA with respect to this norm. Let || · ||∞ be the spectral (operator) norm.
Then

||TA||∞ ≡ sup{||A ◦X||∞ : ||X||∞ ≤ 1, X ∈Mn}.

The following useful fact can be deduced from [1].

∗Received by the editors April 15, 1998; accepted for publication (in revised form) by R. Bhatia,
May 26, 1998; published electronically November 16, 1998.

http://www.siam.org/journals/simax/20-2/32382.html
†Institute of Mathematics, Peking University, Beijing 100871 China (zhan@sxx0.math.pku.

edu.cn).

466

UNITARILY INVARIANT NORM INEQUALITIES 467

Lemma 1. For any unitarily invariant norm || · || on Mn and all A ∈Mn,

||TA|| ≤ ||TA||∞.

For Hermitian A,B ∈ Mn we write A ≥ B to mean that A − B is positive
semidefinite. A real valued function f is said to be matrix monotone increasing on an
interval J if for all Hermitian matrices A and B of all orders whose eigenvalues lie in
J,

A ≥ B implies f(A) ≥ f(B).

It is matrix monotone decreasing if the inequality is reversed after the application of
f. Simple examples of matrix monotone increasing functions on (0, ∞) are xp (0 <
p < 1), logx, and log(1 + x). The following basic fact can be found in [9, Theorem 2].

Lemma 2. A function f : (0, ∞)→ (0, ∞) is matrix monotone increasing if and
only if f(x)/x is matrix monotone decreasing.

Applying this lemma to f(x) = xp(0 < p ≤ 1) we know that xq(−1 ≤ q ≤ 0) is
matrix monotone decreasing. This also follows from the fact that A ≥ B > 0 ⇐⇒
B−1 ≥ A−1 > 0.

We will need the following two results due to Kwong [9, Theorems 9, 10]. For
related work see [8].

Lemma 3. Let the function g(x) = f(x) + h(x) with f positive matrix monotone
increasing and h positive matrix monotone decreasing. Then for any positive definite
A ∈Mn and positive semidefinite P ∈Mn, the solution X of the matrix equation

AX +XA = g(A)P + Pg(A)

is positive semidefinite.
Lemma 4. Let t ∈ (−2, 2]. Under the same hypotheses as in Lemma 3 the solution

Y of the matrix equation

A2Y + Y A2 + tAY A = g(A)P + Pg(A)

is positive semidefinite.
By continuity we may choose f or h not strictly positive; say, let f = 0 or h = 0.

3. Main results.
Lemma 5. Let σ1, σ2, . . . , σn be positive real numbers and t ∈ (−2, 2], r ∈ [−1, 1].

Then the n× n matrix (
σri + σrj

σ2
i + tσiσj + σ2

j

)
i,j=1,2,... ,n

is positive semidefinite.
Proof. Apply Lemma 4 with A = diag(σ1, . . . , σn) and P being the matrix all

of whose entries are 1, f(x) = xr (0 < r ≤ 1), h(x) = 0 and f(x) = 0, h(x) = xr

(−1 ≤ r ≤ 0), respectively.
Using a different technique, Bhatia and Parthasarathy [4, Theorem 5.2] recently

gave another proof of Lemma 5. Further they showed that the interval (−2, 2] of t is
largest possible for the conclusion to hold for all the orders n [4, Theorem 5.1]. We
are now ready to prove the main results.

468 X. ZHAN

Theorem 6. Let A ∈ Mm, B ∈ Mn be positive semidefinite and X ∈ Mm,n be
arbitrary. Then

(2 + t)||ArXB2−r +A2−rXBr|| ≤ 2||A2X + tAXB +XB2||(2)

for any unitarily invariant norm || · || and real numbers r, t satisfying 1 ≤ 2r ≤ 3,
−2 < t ≤ 2.

Proof. We need only consider the square case m = n, since nonsquare matrices can
be augmented to square ones with zero blocks, which does not change their unitarily
invariant norms. We first prove the special case A = B, i.e.,

(2 + t)||ArXA2−r +A2−rXAr|| ≤ 2||A2X + tAXA+XA2||.(3)

By continuity, without loss of generality, assume that A is positive definite. Let A =
UΣU∗ be the spectral decomposition with U unitary and Σ = diag(σ1, σ2, . . . , σn),
σ1 ≥ · · · ≥ σn > 0. Since || · || is unitarily invariant, (3) is equivalent to

(2 + t)||ΣrU∗XUΣ2−r + Σ2−rU∗XUΣr|| ≤ 2||Σ2U∗XU + tΣU∗XUΣ + U∗XUΣ2||,
which may be rewritten as

(2 + t)||[(σri σ2−r
j + σ2−r

i σrj)yij]|| ≤ 2||[(σ2
i + tσiσj + σ2

j)yij]|| for all Y = [yij] ∈Mn.

This is the same as

||G ◦ Z|| ≤ ||Z|| for all Z ∈Mn,

where

G =
2 + t

2

(
σri σ

2−r
j + σ2−r

i σrj
σ2
i + tσiσj + σ2

j

)
∈Mn

or, equivalently,

||TG|| ≤ 1.(4)

See section 2 for the operator TG. 1 ≤ 2r ≤ 3 =⇒ −1 ≤ 2(1− r) ≤ 1. By Lemma 5

G =
2 + t

2
Σr

(
σ

2(1−r)
i + σ

2(1−r)
j

σ2
i + tσiσj + σ2

j

)
Σr

is positive semidefinite. A well-known result of Schur [11] (see also [1, p. 363]) says
that the Hadamard multiplier norm of a positive semidefinite matrix with respect
to the spectral norm is equal to its largest diagonal entry. Now G is a correlation
matrix, i.e., a positive semidefinite matrix with each diagonal entry equal to 1. Thus
||TG||∞ = 1. By Lemma 1 the inequality (4) holds. This proves (3).

Note that for any unitarily invariant norm || · || and any matrix F ,∥∥∥∥(0 F
0 0

)∥∥∥∥ = ||F ||.

For the general case, applying (3) with A and X replaced by(
A 0
0 B

)
and

(
0 X
0 0

)
,

respectively, completes the proof.

UNITARILY INVARIANT NORM INEQUALITIES 469

Denote the modulus of A ∈ Mn by |A| = (A∗A)1/2. The special case r = 1 of
Theorem 6, together with polar decompositions, yields the following corollary.

Corollary 7. Let A ∈ Mm, B ∈ Mn, and X ∈ Mm,n be arbitrary. Then for
any unitarily invariant norm || · || and any t ∈ (−2, 2],

(2 + t)||AXB∗|| ≤ ||A∗AX + t|A|X |B|+XB∗B||.(5)

The inequality (1) corresponds to the case t = 0 of (5).
One of the referees of this paper observed that the case −2 < t ≤ 0 of (5) follows

from (1):

||A∗AX + t|A|X |B|+XB∗B|| ≥ ||A∗AX +XB∗B|| − |t| || |A|X |B| ||
≥ (2 + t)|| |A|X |B| ||
= (2 + t)||AXB∗||.

An immediate consequence of Corollary 7 is the following corollary.
Corollary 8. Let P ∈Mm, Q ∈Mn, and T ∈Mm,n with P,Q positive definite.

Then for any unitarily invariant norm || · || and any t ∈ (−2, 2],

(2 + t)||T || ≤ ||PTQ−1 + tT + P−1TQ||.
Note that the matrix monotone increasing function log(1 + x) < x for all x > 0.

Taking f = log(1 + x) and h = 0 in Lemma 4, using the same ideas as in the proof of
Theorem 6 we obtain the following theorem.

Theorem 9. Let A ∈ Mm, B ∈ Mn be positive semidefinite and X ∈ Mm,n be
arbitrary. Then for any unitarily invariant norm || · || and −2 < t ≤ 2,

(2 + t)||
√
A[log(I +A)X +X log(I +B)]

√
B|| ≤ 2||A2X + tAXB +XB2||,

where I is the identity matrix and
√
A is the unique positive semidefinite square root

of A.
Taking f = log(1 + x) and h = 0 in Lemma 3, using the method in the proof of

Theorem 6 again we get the following theorem.
Theorem 10. Let A ∈ Mm, B ∈ Mn be positive semidefinite and X ∈ Mm,n be

arbitrary. Then

|| log(I +A)X +X log(I +B)|| ≤ ||AX +XB||
for any unitarily invariant norm || · ||.

It is interesting to see that along the above line of argument by taking f = xp

(0 < p ≤ 1) and h = 0 in Lemma 3, we get another proof of the following well-known
Heinz inequality (e.g., [3]): let A,B ≥ 0 and X be arbitrary. Then

||ArXB1−r +A1−rXBr|| ≤ ||AX +XB||
for any unitarily invariant norm and 0 ≤ r ≤ 1.

REFERENCES

[1] T. Ando, R. A. Horn, and C. R. Johnson, The singular values of a Hadamard product: A
basic inequality, Linear and Multilinear Algebra, 21 (1987), pp. 345–365.

[2] E. Andruchow, G. Corach, and D. Stojanoff, Geometric operator inequalities, Linear
Algebra Appl., 258 (1997), pp. 295–310.

470 X. ZHAN

[3] R. Bhatia and C. Davis, More matrix forms of the arithmetic-geometric mean inequality,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 132–136.

[4] R. Bhatia and K. R. Parthasarathy, Positive Definite Functions and Operator Inequalities,
preprint, 1997.

[5] T. Furuta, A note on the arithmetic-geometric mean inequality for every unitarily invariant
matrix norm, Linear Algebra Appl., 208/209 (1994), pp. 223–228.

[6] R. A. Horn, Norm bounds for Hadamard products and an arithmetic-geometric mean inequal-
ity for unitarily invariant norms, Linear Algebra Appl., 223/224 (1995), pp. 355–361.

[7] F. Kittaneh, A note on the arithmetic-geometric mean inequality for matrices, Linear Algebra
Appl., 171 (1992), pp. 1–8.

[8] M. K. Kwong, On the definiteness of the solutions of certain matrix equations, Linear Algebra
Appl., 108 (1988), pp. 177–197.

[9] M. K. Kwong, Some results on matrix monotone functions, Linear Algebra Appl., 118 (1989),
pp. 129–153.

[10] R. Mathias, An arithmetic-geometric-harmonic mean inequality involving Hadamard products,
Linear Algebra Appl., 184 (1993), pp. 71–78.

[11] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen
Veränderlichen, J. Reine Angew. Math., 140 (1911), pp. 1–28.

RELATIVE PERTURBATION THEORY:
II. EIGENSPACE AND SINGULAR SUBSPACE VARIATIONS∗

REN-CANG LI†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 471–492

Abstract. The classical perturbation theory for Hermitian matrix eigenvalue and singular value
problems provides bounds on invariant subspace variations that are proportional to the reciprocals
of absolute gaps between subsets of spectra or subsets of singular values. These bounds may be
bad news for invariant subspaces corresponding to clustered eigenvalues or clustered singular values
of much smaller magnitudes than the norms of matrices under considerations. In this paper, we

consider how eigenspaces of a Hermitian matrix A change when it is perturbed to Ã = D∗AD and

how singular spaces of a (nonsquare) matrix B change when it is perturbed to B̃ = D∗1BD2, where
D, D1, and D2 are nonsingular. It is proved that under these kinds of perturbations, the changes of
invariant subspaces are proportional to the reciprocals of relative gaps between subsets of spectra or
subsets of singular values. The classical Davis–Kahan sin θ theorems and Wedin sin θ theorems are
extended.

Key words. multiplicative perturbation, relative perturbation theory, relative gap, eigenvector,
singular vector, structured Sylvester equation, graded matrix

AMS subject classifications. 15A18, 15A42, 65F15, 65F35, 65G99

PII. S0895479896298506

1. Introduction. Let A and Ã be two n× n Hermitian matrices with eigende-
compositions

(1.1)

A = (U1, U2)

(
Λ1

Λ2

)(
U∗1
U∗2

)
and Ã = (Ũ1, Ũ2)

(
Λ̃1

Λ̃2

)(
Ũ∗1
Ũ∗2

)
,

where U =
(k n−k
U1 U2

)
, Ũ =

(k n−k
Ũ1 Ũ2

)
are unitary, and

Λ1 = diag(λ1, . . . , λk), Λ2 = diag(λk+1, . . . , λn),(1.2)

Λ̃1 = diag(λ̃1, . . . , λ̃k), Λ̃2 = diag(λ̃k+1, . . . , λ̃n).(1.3)

Suppose now that A and Ã are close and that the spectrum of Λ1 and that of Λ̃2

(or the spectrum of Λ̃1 and that of Λ2) are well separated. The question is, How

∗Received by the editors February 2, 1996; accepted for publication (in revised form) by
B. Kagstrom April 29, 1998; published electronically November 23, 1998. Part of this work was
done during the summer of 1994 while the author was at the Department of Mathematics, Univer-
sity of California at Berkeley. A preliminary version of this paper appeared as Technical Report
UBC//CSD-94-856, Computer Science Division, Department of EECS, University of California at
Berkeley. This material is based in part upon work supported by Argonne National Laboratory
under grant 20552402, the University of Tennessee through the Advanced Research Projects Agency
under contract DAAL03-91-C-0047, the National Science Foundation under grant ASC-9005933, the
National Science Infrastructure grants CDA-8722788 and CDA-9401156, a Householder Fellowship
in Scientific Computing at Oak Ridge National Laboratory, and the Applied Mathematical Sciences
Research Program, Office of Energy Research, United States Department of Energy contract DE-
AC05-96OR22464 with Lockheed Martin Energy Research Corp.

http://www.siam.org/journals/simax/20-2/29850.html
†Mathematical Science Section, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012,

Oak Ridge, TN 37831-6367. Current address: Department of Mathematics, University of Kentucky,
Lexington, KY 40506 (rcli@ms.uky.edu).

471

472 REN-CANG LI

close are the eigenspaces spanned by the columns of Ui and Ũi? This question has
been answered well by four celebrated theorems: the so-called sin θ, tan θ, sin 2θ, and
tan 2θ theorems due to Davis and Kahan [3] for arbitrary additive perturbations in
the sense that the perturbations to A can be made arbitrary. It is proved that the
changes of invariant subspaces are proportional to the reciprocals of absolute gaps
between subsets of spectra.

In the case of multiplicative perturbations when A is perturbed to Ã = D∗AD,
Eisenstat and Ipsen [7] first attacked the question by bounding the angles between a

one-dimensional eigenspace of A and Ã’s eigenspace spanned by the columns of Ũ1,
and they ultimately obtained bounds for the angle between A’s eigenspace spanned
by the columns of U1 and Ã’s eigenspace spanned by the columns of Ũ1. The study
suggests that the changes of invariant subspaces be proportional to the reciprocals of
relative gaps between subsets of spectra.

This paper will study the same question, but using a different approach. It is
explained that bounding the angle between the eigenspaces is related to bounding the
solutions to Sylvester equations ΩX −XΓ = S, where S has very special structures.
Our approach is more or less along the lines of Davis and Kahan [3] and Bhatia,
Davis, and McIntosh [2], where no special structures for S are known. There are
a number of advantages of the new approach over Eisenstat and Ipsen’s. The new
approach can deal directly with an eigenspace and its perturbed one, unlike Eisenstat
and Ipsen’s approach, and consequently gets rid of the unpleasant fact

√
k in Eisenstat

and Ipsen’s bounds; the new approach makes no distinctions in treating an eigenvector
and an eigenspace and two eigenspaces of the same or different dimensions; the new
approach is mathematically more elegant and makes it possible to extend Davis–
Kahan theorems in all unitarily invariant norms.

A similar question for singular value decompositions will be answered also.
Although special, multiplicative perturbations cover component-wise relative per-

turbations to entries of symmetric tridiagonal matrices with zero diagonal [5, 9], en-
tries of bidiagonal and biacyclic matrices [1, 4, 5], and more realistically perturbations
in graded nonnegative definite Hermitian matrices [6, 14] and in graded matrices of
singular value problems [6, 14] and more [8].

The rest of this paper is organized as follows. Section 2 serves two purposes: to
present essential preliminary definitions and lemmas, and to briefly discuss technical
similarities and differences between our extensions and the classical Davis–Kahan
theorems. Section 3 details relative perturbation theorems for A and Ã = D∗AD
and for nonnegative definite Hermitian matrices A that themselves may be very ill
conditioned but can be scaled to a well-conditioned one. Section 3 also remarks on
how to extend our approach to the perturbations of diagonalizable matrices. Section 4
develops analogous relative perturbation theorems but for the singular value problems.
The proofs for theorems in section 4 turn out to be quite long and therefore are
postponed to section 5.

2. Preliminaries. Throughout this paper, we follow notation used in the first
part of this series [12].

2.1. Relative distances. We shall use the following two kinds of relative dis-
tances to measure relative accuracies in numerical approximations: %p and χ are
defined for α, α̃ ∈ C by

%p(α, α̃) =
|α− α̃|

p
√|α|p + |α̃|p for 1 ≤ p ≤ ∞, and χ(α, α̃) =

|α− α̃|√|αα̃| ,(2.1)

RELATIVE PERTURBATION THEORY II 473

with convention 0/0 = 0 for convenience. Both have better mathematical proper-
ties than the classical measurement |δ|: the relative error in α̃ = α(1 + δ) as an
approximation to α is

δ = relative error in α̃ =
α̃− α
α

,(2.2)

which is, however, good enough and actually more convenient to use in numerical
computations. So we shall also present bounds using this classical measurement. The
use of any particular relative distance in our perturbation bounds comes naturally
with their derivations. From the numerical point of view, any one of the relative
distances is just as good as the others, but theoretically they provide bounds of very
different features. It can be proved that these relative distances are topologically
equivalent; see [12] for details.

2.2. Angles between two subspaces. Since this paper concerns the variations
of subspaces, we need some metrics to measure the differences between two subspaces.
In this, we follow Davis and Kahan [3] and Stewart and Sun [15, Chapters I and II].
Wedin [17] presented an illuminating discussion on angles between two subspaces,

too. Let X, X̃ ∈ Cn×k (n > k) have full column rank k, and define the angle matrix

Θ(X, X̃) between X and X̃ as

Θ(X, X̃)
def
= arccos((X∗X)−1/2X∗X̃(X̃∗X̃)−1X̃∗X(X∗X)−1/2)1/2.(2.3)

The canonical angles between the subspaces X = R(X) and X̃ = R(X̃) are defined

to be the singular values of the Hermitian matrix Θ(X, X̃), where R(X) denotes the
subspace spanned by X’s columns. The following lemma is well known. For a proof
of it, the reader is referred to, e.g., Li [11, Lemma 2.1].

Lemma 2.1. Suppose that
(k n−k
X̃ X̃1

) ∈ Cn×n is a nonsingular matrix, and
partition

(X̃, X̃1)−1 =

(
k Ỹ ∗

n−k Ỹ ∗1

)
.

Then for any unitarily invariant norm ||| · |||,∣∣∣∣∣∣∣∣∣sin Θ(X, X̃)
∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣(Ỹ ∗1 Ỹ1)−1/2Ỹ ∗1 X(X∗X)−1/2
∣∣∣∣∣∣∣∣∣ .

In this lemma, as well as many other places in the rest of this paper, we talk about the
“same” unitarily invariant norm ||| · ||| that applies to matrices of different dimensions
at the same time. Such applications of a unitarily invariant norm are understood
in the following sense: first there is a unitarily invariant norm ||| · ||| on CM×N for
sufficiently large integers M and N ; then, for a matrix X ∈ Cm×n (m ≤ M and
n ≤ N), |||X||| is defined by appending X with zero blocks to make it M ×N and then
taking the unitarily invariant norm of the enlarged matrix.

Taking X = U1 and X̃ = Ũ1 as in (1.1), by Lemma 2.1, one has

Θ(U1, Ũ1) = arccos(U∗1 Ũ1Ũ
∗
1U1)1/2 and

∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)
∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣Ũ∗2U1

∣∣∣∣∣∣∣∣∣ .(2.4)

474 REN-CANG LI

t t t td d d d
t

Spectrum of Λ1
d

Spectrum of Λ̃2

Fig. 2.1. The spectrum of Λ1 and that of Λ̃2 are disjoint.

(a)
−α α
r

0
δ� - � -δ

(b)
−α αr0

Spectrum of Λ1 Spectrum of Λ̃2

Fig. 2.2. The spectrum of Λ1 and that of Λ̃2 are separated by two intervals, and one of the
spectra scatters around the origin.

Occasionally, it is also of interest to measure how far a lower-dimensional subspace is
away from a higher-dimensional one. In such a situation, an angle matrix can still be
defined as in (2.3), but with X having fewer columns than X̃. If we do so, Lemma 2.1
remains valid. However, Θ(· , ·) is no longer symmetric with respect to its arguments.
In the case of eigenspace variation in which we are interested we may take U1,sub, a
submatrix consisting of a few (or just one) of U1’s columns and ask how close A’s

eigenspace R(U1,sub) is to Ã’s eigenspace R(Ũ1). Still, we have

Θ(U1,sub, Ũ1) = arccos(U∗1,subŨ1Ũ
∗
1U1,sub)1/2 and(2.4a) ∣∣∣∣∣∣∣∣∣sin Θ(U1,sub, Ũ1)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣Ũ∗2U1,sub

∣∣∣∣∣∣∣∣∣ .
2.3. Separation of spectra. In deriving bounds on the sines of the angles

between the eigenspacesR(U1) andR(Ũ1), certain disjointness between Λ1’s spectrum

and Λ̃2’s (or between Λ̃1’s and Λ2’s) is assumed. Depending on what matrix norms are
used, two different kinds of separations, one stronger than the other, are considered.
For bounds in Frobenius norm, only the disjointness is required as in Davis and
Kahan [3]; see Figure 2.1. For bounds in all unitarily invariant norms, not only is the
disjointness between the two spectra required, but they also have to be separated by
two intervals; see Figure 2.2. Such a separation requirement is similar to Davis and
Kahan’s sin θ theorems in all unitarily invariant norms, but it differs from theirs in
that here either the spectrum of Λ1 or that of Λ̃2 has to scatter around the origin.
This substantial difference exists for a reason. In the absolute perturbation theory,
shifting A and Ã by a scalar µ to A− µI and Ã− µI retains every relevant object—
eigenspaces, the residuals such as R = ÃU1 − U1Λ1 and most of all the absolute gap
δ, and thus the positions of the intervals in Davis and Kahan’s assumptions are not
intrinsically important. For our relative case, the emphasis is on issues associated with
eigenvalues of relatively (much) smaller magnitudes than the norm of the matrix, and
shifting affects fundamentally the underlying properties of the problem.

Classical Davis–Kahan theorems use the absolute gap—the minimum distance—
between λ(Λ1) and λ(Λ̃2); our relative perturbation theorems, however, will use rel-
ative gaps measured by any one of the relative “distances” (2.1) and (2.2). We shall
use notation ηp, ηχ, and ηc to denote three different kinds of relative gaps defined in

RELATIVE PERTURBATION THEORY II 475

terms of %p, χ, and the classical measurement in the case of Figure 2.1; we underline
the η’s to indicate the stronger separation by intervals as in Figure 2.2. The use of
different relative gaps comes quite naturally with different perturbation equations,
which yields various bounds on the sines of the angles. It appears that ηχ and η

χ

are natural choices for nonnegative definite Hermitian matrices, and bounds that use
them are normally sharper than bounds that use other kinds of relative gaps. ηp, ηc,
and their underlined ones are natural choices for any Hermitian matrices, and bounds
that use them are comparable as we shall see in later sections; but mathematically,
bounds with ηp are more beautiful because it is defined in terms of %p, which is a met-

ric on R [12] and thus treats Λ1 and Λ̃2 equally, while ηc is perhaps more convenient
to use in actually numerical approximations.

All our perturbation bounds in this paper use relative gaps mentioned above.
However, sometimes it is more convenient to have bounds that use relative gaps
between λ(Λ1) and λ(Λ2) rather than λ(Λ̃2). For this purpose, Li [13] presented
inequality relations between relative gaps for λ(Λ1) and λ(Λ2) and those for λ(Λ1)

and λ(Λ̃2).
Finally, we remark that if we are interested in how close A’s eigenspace (spanned

by a few (not all) columns of U1) is to Ã’s eigenspace R(Ũ1), spectrum separation
assumptions will then be required only between the subset of λ(Λ1) corresponding to

those selected columns of U1 and the spectrum of Λ̃2.

2.4. On Sylvester equations ΩX − XΓ = S with structured S. This
subsection illustrates another technical similarity and difference of our development
of relative perturbation theory to Davis and Kahan’s classical development [3], where
Ω and Γ are two self-adjoint operators, and S is an arbitrary operator in certain norm
ideals. In our case, however, S takes one of the forms

ΩE + FΓ and Ω1/2EΓ1/2.

In what follows, we shall try to exploit the situations, and by doing so, we are able to
derive better bounds on the solution X.

Lemma 2.2. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices,1 and let
E, F ∈ Cs×t. If λ(Ω)

⋂
λ(Γ) = ∅, then ΩX −XΓ = ΩE + FΓ has a unique solution

X ∈ Cs×t, and moreover,

‖X‖F ≤
√
‖E‖2F + ‖F‖2F

/
η2,

where η2
def
= minω∈λ(Ω), γ∈λ(Γ) %2(ω, γ). If, in addition, F = 0, we have a better bound

‖X‖F ≤ ‖E‖F/ηc,

where2 ηc
def
= minω∈λ(Ω), γ∈λ(Γ) |ω − γ|/|ω|.

Proof. For any s× s unitary P and t× t unitary Q, the substitutions

Ω← P ∗ΩP, Γ← Q∗ΓQ, X ← P ∗XQ, E ← P ∗EQ, and F ← P ∗FQ

1Lemmas 2.2–2.5 are actually true for normal matrices Ω and Γ.
2Notice that ηc ≥ η2. This can be seen as follows. Assume ηc = |ω − γ|/|ω| for some ω ∈ λ(Ω),

γ ∈ λ(Γ). Then ηc ≥ %2(ω, γ) ≥ η2.

476 REN-CANG LI

leave the lemma unchanged, so we may assume without loss of generality that Ω =
diag(ω1, ω2, . . . , ωs) and Γ = diag(γ1, γ2, . . . , γt).

Write X = (xij), E = (eij), and F = (fij). Entrywise, ΩX − XΓ = ΩE + FΓ
reads ωixij − xijγj = ωieij + fijγj . Thus xij exists uniquely provided ωi 6= γj , which
holds since λ(Ω)

⋂
λ(Γ) = ∅, an empty set; and moreover;

|(ωi − γj)xij |2 = |ωixij − xijγj |2 = |ωieij + fijγj |2 ≤ (|ωi|2 + |γj |2)(|eij |2 + |fij |2)

by the Cauchy–Schwarz inequality. This implies

|xij |2 ≤ |eij |
2 + |fij |2

[%2(ωi, γj)]
2 ≤

|eij |2 + |fij |2
η2

2

⇒ ‖X‖2F =
∑
i, j

|xij |2 ≤
∑
i, j |eij |2 +

∑
i, j |fij |2

η2
2

=
‖E‖2F + ‖F‖2F

η2
2

,

as was to be shown. The case F = 0 can be handled similarly.
Lemma 2.3. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let

E, F ∈ Cs×t. If there exist α ≥ 0 and δ > 0 such that

‖Ω‖2 ≤ α and ‖Γ−1‖−1
2 ≥ α+ δ(2.5)

or

‖Ω−1‖−1
2 ≥ α+ δ and ‖Γ‖2 ≤ α,(2.6)

then ΩX −XΓ = ΩE + FΓ has a unique solution X ∈ Cs×t, and moreover for any
unitarily invariant norm ||| · |||,

|||X||| ≤ q

√
|||E|||q + |||F |||q

/
η
p
,

where η
p

def
= %p(α, α+ δ). If, in addition, F = 0, we have a better bound

|||X||| ≤ |||E||| /η
c
,

where η
c

= δ/α when (2.5) holds, and η
c

= δ/(α+ δ) when (2.6) holds.
Proof. First of all, the conditions of this lemma imply λ(Ω)

⋂
λ(Γ) = ∅, thus X

exists uniquely by Lemma 2.2. In what follows, we consider the case (2.5); the other
case (2.6) is analogous. Post-multiply ΩX −XΓ = ΩE + FΓ by Γ−1 to get

ΩXΓ−1 −X = ΩEΓ−1 + F.(2.7)

Under the assumptions ‖Ω‖2 ≤ α and ‖Γ−1‖−1
2 ≥ α+ δ ⇒ ‖Γ−1‖2 ≤ 1

α+δ , we have∣∣∣∣∣∣ΩXΓ−1 −X∣∣∣∣∣∣ ≥ |||X||| − ∣∣∣∣∣∣ΩXΓ−1
∣∣∣∣∣∣ ≥ |||X||| − ‖Ω‖2 |||X||| ‖Γ−1‖2

≥ |||X||| − α |||X||| 1

α+ δ
=

(
1− α

α+ δ

)
|||X||| ,

and ∣∣∣∣∣∣ΩEΓ−1 + F
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ΩEΓ−1

∣∣∣∣∣∣+ |||F ||| ≤ ‖Ω‖2 |||E||| ‖Γ−1‖2 + |||F |||

≤ α |||E||| 1

α+ δ
+ |||F ||| ≤ p

√
1 +

αp

(α+ δ)p
q

√
|||E|||q + |||F |||q.

RELATIVE PERTURBATION THEORY II 477

By (2.7), we deduce that(
1− α

α+ δ

)
|||X||| ≤ p

√
1 +

αp

(α+ δ)p
q

√
|||E|||q + |||F |||q

from which the desired inequality follows. Also, the case F = 0 can be handled
similarly.

Lemma 2.4. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two nonnegative definite Hermitian
matrices, and let E ∈ Cs×t. If λ(Ω)

⋂
λ(Γ) = ∅, then ΩX −XΓ = Ω1/2EΓ1/2 has a

unique solution X ∈ Cs×t, and moreover,

‖X‖F ≤ ‖E‖F/ηχ,

where ηχ
def
= minω∈λ(Ω), γ∈λ(Γ) χ(ω, γ).

Proof. For any s× s unitary P and t× t unitary Q, the substitutions

Ω← P ∗ΩP, Γ← Q∗ΓQ, X ← P ∗XQ, and E ← P ∗EQ

leave the lemma unchanged, so we may assume without loss of generality that Ω =
diag(ω1, ω2, . . . , ωs) and Γ = diag(γ1, γ2, . . . , γt).

Write X = (xij), E = (eij). Entrywise, ΩX − XΓ = Ω1/2EΓ1/2 reads ωixij −
xijγj =

√
ωieij

√
γj . As long as ωi 6= γj , xij exists uniquely, and

|xij |2 = |eij |2/χ(ωi, γj) ≤ |eij |2/ηχ,
summing which over 1 ≤ i ≤ s and 1 ≤ j ≤ t leads to the desired inequality.

Lemma 2.5. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two nonnegative definite Hermitian
matrices, and let E ∈ Cs×t. If there exist α ≥ 0 and δ > 0 such that (2.5) or (2.6)
holds, then ΩX −XΓ = Ω1/2EΓ1/2 has a unique solution X ∈ Cs×t, and moreover,

|||X||| ≤ |||E||| /η
χ
,

where η
χ

def
= χ(α, α+ δ).

Proof. The existence and uniqueness of X are easy to see because the conditions
of this lemma imply λ(Ω)

⋂
λ(Γ) = ∅. In what follows, we consider the case (2.5)

only; the other case (2.6) is analogous. Post-multiply ΩX −XΓ = Ω1/2EΓ1/2 by Γ−1

to get

ΩXΓ−1 −X = Ω1/2EΓ−1/2.(2.8)

Under the assumptions ‖Ω‖2 ≤ α and ‖Γ−1‖−1
2 ≥ α+ δ ⇒ ‖Γ−1‖2 ≤ 1

α+δ , we have

∣∣∣∣∣∣ΩXΓ−1 −X∣∣∣∣∣∣ ≥ (1− α

α+ δ

)
|||X||| ,

as in the proof of Lemma 2.3, and∣∣∣∣∣∣∣∣∣Ω1/2EΓ−1/2
∣∣∣∣∣∣∣∣∣ ≤ ‖Ω1/2‖2 |||E||| ‖Γ−1/2‖2 ≤

√
α |||E||| 1√

α+ δ
.

By (2.8), we deduce that(
1− α

α+ δ

)
|||X||| ≤

√
α

α+ δ
|||E||| ,

from which the desired inequality follows.

478 REN-CANG LI

Remark 2.1. For Sylvester equation ΩX − XΓ = S, with S having no special
structures, Bhatia, Davis, and McIntosh [2] also proved bounds, independent of X’s
dimensions, on |||X||| under the conditions that Ω and Γ are normal and λ(Ω)

⋂
λ(Γ) =

∅ only. It is easy to see that (2.5) or (2.6) describes similar spectral distributions to
Figure 2.2. Thus an open question naturally arises: could Lemmas 2.3 and 2.5 be
extended to normal matrices Ω and Γ and λ(Ω)

⋂
λ(Γ) = ∅ only?

3. Relative perturbation theorems for eigenspace variations. Let A and
Ã be two Hermitian matrices whose eigendecompositions are

(1.1)

A = (U1, U2)

(
Λ1

Λ2

)(
U∗1
U∗2

)
and Ã = (Ũ1, Ũ2)

(
Λ̃1

Λ̃2

)(
Ũ∗1
Ũ∗2

)
,

where U =
(k n−k
U1 U2

)
, Ũ =

(k n−k
Ũ1 Ũ2

)
are unitary, and Λi’s and Λ̃j ’s are defined

as in (1.2) and (1.3). Define

R = ÃU1 − U1Λ1 = (Ã−A)U1.

Notice that

Ũ∗2R = Ũ∗2 ÃU1 − Ũ∗2U1Λ1 = Λ̃2Ũ
∗
2U1 − Ũ∗2U1Λ1, and

Ũ∗2R = Ũ∗2
[
D∗AD(I −D−1) + (D∗ − I)A

]
U1

= Λ̃2Ũ
∗
2 (I −D−1)U1 + Ũ∗2 (D∗ − I)U1Λ1.

Thus, we have

Λ̃2Ũ
∗
2U1 − Ũ∗2U1Λ1 = Λ̃2Ũ

∗
2 (I −D−1)U1 + Ũ∗2 (D∗ − I)U1Λ1.(3.1)

Let X
def
= Ũ∗2D

∗U1 = Ũ∗2U1 − Ũ∗2 (I −D∗)U1. Another formulation3 of (3.1) is

Λ̃2X −XΛ1 = Λ̃2Ũ
∗
2 (D∗ −D−1)U1.(3.2)

Both (3.1) and (3.2) are in the form of Sylvester equations with special structures
which are vital to the development of our following perturbation theorems. Notice by
Lemma 2.1 that∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣Ũ∗2U1

∣∣∣∣∣∣∣∣∣ ≤ |||X|||+ ∣∣∣∣∣∣∣∣∣Ũ∗2 (I −D∗)U1

∣∣∣∣∣∣∣∣∣ .(3.3)

(3.1) makes %2 a natural choice for measuring the relative gap between λ(Λ1) and

λ(Λ̃2), while (3.2) makes the classical measurement a natural choice.

Theorem 3.1. Let A and Ã = D∗AD be two n × n Hermitian matrices with
eigendecompositions (1.1)–(1.3), where D is nonsingular. If λ(Λ1)

⋂
λ(Λ̃2) = ∅, then

‖ sin Θ(U1, Ũ1)‖F ≤
√‖(I −D−1)U1‖2F + ‖(I −D∗)U1‖2F

η2
,(3.4)

‖ sin Θ(U1, Ũ1)‖F ≤ ‖(I −D∗)U1‖F +
‖(D∗ −D−1)U1‖F

ηc
,(3.5)

3Or, Λ̃2Y −Y Λ1 = Ũ∗2 (D∗−D−1)U1Λ1, where Y = Ũ∗2U1− Ũ∗2 (I−D−1)U1. Such a formulation
can be used to produce perturbation bounds different from but of the same spirit as (3.5) and (3.8)
whose derivations rely on (3.2).

RELATIVE PERTURBATION THEORY II 479

where

η2
def
= min

µ∈λ(Λ1), µ̃∈λ(Λ̃2)

%2(µ, µ̃) and ηc
def
= min

µ∈λ(Λ1), µ̃∈λ(Λ̃2)

|µ− µ̃|
|µ̃| .

Proof. Lemma 2.2 and (3.1) yield (3.4), whereas Lemma 2.2, (3.2), and (3.3)
yield (3.5).

Remark 3.1. Without assuming the multiplicative structure in perturbing A to
Ã, we shall end up with Sylvester equation Λ̃2Ũ

∗
2U1− Ũ∗2U1Λ1 = Ũ∗2R, which leads to

‖ sin Θ(U1, Ũ1)‖F ≤ ‖R‖F
/

min
µ∈λ(Λ1), µ̃∈λ(Λ̃2)

|µ− µ̃| .

This is a Davis–Kahan sin θ theorem. Our other theorems in this section relate to
Davis–Kahan sin θ theorems analogously.

Remark 3.2. Let U1,sub be a submatrix consisting of a few (or just one) of U1’s
columns, and let Λ1,sub be the corresponding eigenvalue matrix. (3.1) and (3.2) imply
that

Λ̃2Ũ
∗
2U1,sub − Ũ∗2U1,subΛ1,sub = Λ̃2Ũ

∗
2 (I −D−1)U1,sub + Ũ∗2 (D∗ − I)U1,subΛ1,sub,

Λ̃2Xsub −XsubΛ1,sub = Λ̃2Ũ
∗
2 (D∗ −D−1)U1,sub,

where Xsub
def
= Ũ∗2D

∗U1,sub = Ũ∗2U1,sub − Ũ∗2 (I − D∗)U1,sub. So our approach needs

no modifications when it comes to bound the closeness of either R(U1,sub) to R(Ũ1)

or R(U1) to R(Ũ1). It can be seen that all the theorems in this section remain valid if
U1 is replaced by U1,sub and the relative gaps are redefined as those between λ(Λ1,sub)

and λ(Λ̃2).
Eisenstat and Ipsen [7] obtained the following: Under the assumptions of Theo-

rem 3.1,

‖ sin Θ(U1, Ũ1)‖2 ≤
√
k

(
‖I −D∗‖2 +

‖I −D−∗D−1‖2
ηc

)
.(3.6)

It is a good bound for k = 1. But for k ≥ 2, it is less competitive. To compare this
inequality with (3.5), we notice that

‖ sin Θ(U1, Ũ1)‖2 ≤ ‖ sin Θ(U1, Ũ1)‖F,
‖(I −D∗)U1‖F ≤

√
k‖(I −D∗)U1‖2 ≤

√
k‖I −D∗‖2,

‖(D∗ −D−1)U1‖F ≤
√
k‖D∗ −D−1‖2 ≤

√
k‖D∗‖2‖I −D−∗D−1‖2,

‖I −D−∗D−1‖2 ≤ ‖D−∗‖2‖D∗ −D−1‖2.
Thus (3.5) and (3.6) imply that

(3.5a) ‖ sin Θ(U1, Ũ1)‖2 ≤
√
k

(
‖I −D∗‖2 +

‖D∗‖2‖I −D−∗D−1‖2
ηc

)
,

(3.6a) ‖ sin Θ(U1, Ũ1)‖F ≤ k
(
‖I −D∗‖F +

‖D−∗‖2‖D∗ −D−1‖F
ηc

)
.

Now for inequalities (3.5) and (3.6) to be of any significance at all, D must be fairly
close to the identity matrix, under which ‖D∗‖2 ≈ 1 and thus (3.5a)—a weakened

480 REN-CANG LI

(3.5)—is about as good as (3.6). Here is an example for which (3.5) improves (3.6)
by at least a factor of

√
k. Take D = I − εww∗, where ε > 0 is a small number and

w a vector with ‖w‖2 = 1. Then D−1 = I + εww∗/(1− ε). Thus,

D∗ −D−1 = −(2− ε) ε

1− εww
∗ and I −D−∗D−1 = −

(
2 +

ε

1− ε
)

ε

1− εww
∗.

Hence (3.5) yields

(3.5b) ‖ sin Θ(U1, Ũ1)‖2 ≤ ε

1− ε +
1

ηc
(2− ε) ε

1− ε ,

and (3.6) becomes

(3.6b) ‖ sin Θ(U1, Ũ1)‖2 ≤
√
k

[
ε

1− ε +
1

ηc

(
2 +

ε

1− ε
)

ε

1− ε
]
.

It is can be seen that when Θ(U1, Ũ1) is almost a multiple of identity and both I−D∗
and I−D−∗D−1 are almost of rank 1, (3.6a) is not much weaker than (3.6), and in this
case (3.5) improves (3.6a) by nearly a factor of k. But in any event the improvement
can be by a factor at most k.

Now we compare (3.4) and (3.5). Although ηc ≥ η2 always, and that ηc may be
much larger than η2, it appears (3.4) and (3.5) are comparable by a constant factor
unless D is much closer to a unitary matrix than the identity matrix4 in which case
the second term on the right-hand side of (3.5) becomes negligible and consequently
we expect (3.5) to be sharper than (3.4). On one hand, (3.5) can always produce a

bound that is only weaker than (3.4) by a factor of
√

4 + 2
√

2:

‖ sin Θ(U1, Ũ1)‖F ≤
√

2‖(I −D∗)U1‖F
η2

+
‖(D∗ − I)U1‖F + ‖(I −D−1)U1‖F

η2

≤
√

4 + 2
√

2

√‖(I −D−1)U1‖2F + ‖(I −D∗)U1‖2F
η2

,

where we have used η2 ≤
√

2 and η2 ≤ ηc. On the other hand, (3.4) cannot be much
worse than (3.5) in general, also by a constant factor, at least for the interesting cases

when E
def
= I − D is tiny. In fact, the following arguments show that when η2 and

ηc are not too much apart, (3.4) may be sharper. Assume that D differs from I not
much worse than from its closest unitary matrix. We have√

‖I −D−1‖2F + ‖I −D∗‖2F ≈
√

2‖E‖F +O(‖E‖2F),

‖D∗ −D−1‖F ≈ 2‖E‖F +O(‖E‖2F).

(3.4) and (3.5) become

(3.4c) ‖ sin Θ(U1, Ũ1)‖F ≤
√

2‖E‖F
η2

+O(‖E‖2F),

(3.5c) ‖ sin Θ(U1, Ũ1)‖F ≤ ‖E‖F +
2‖E‖F
ηc

+O(‖E‖2F).

4By this we mean that ‖I −D‖2 � ‖D∗ −D−1‖2.

RELATIVE PERTURBATION THEORY II 481

Write ηc = γη2, where 1 ≤ γ, and let ηc = |λs − λ̃t|/|λ̃t|. ηc = γη2 ≤ γ%2(λs, λ̃t)

implies |λs|/|λ̃t| ≤
√
γ2 − 1, and so ηc ≥

√
γ2 − 1 − 1. The ratio of the right-hand

side of (3.4c) over that of (3.5c) is (terms of O(‖E‖2) are ignored)
√

2/(ηc/γ)

1 + 2/ηc
=

√
2 γ

ηc + 2
.

Now for 1 ≤ γ ≤ √2, this ratio is less than 1, which means that (3.4c) is sharper; for
γ >
√

2, this ratio is bounded by
√

2 γ

ηc + 2
≤

√
2 γ√

γ2 − 1 + 1
≤
√

2

since
√

2 γ/(
√
γ2 − 1 + 1) is monotonically increasing for

√
2 ≤ γ. This means that

when I −D is tiny and that D is about as equally close to a unitary matrix as to the
identity matrix, (3.4) cannot be worse than (3.5) by a factor more than

√
2.

Theorem 3.2. Let A and Ã = D∗AD be two n × n Hermitian matrices with
eigendecompositions (1.1)–(1.3), where D is nonsingular. Assume that the spectra of

Λ1 and Λ̃2 distribute as in Figure 2.2. Then for any unitarily invariant norm ||| · |||,∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)
∣∣∣∣∣∣∣∣∣ ≤ q

√
|||(I −D−1)U1|||q + |||(I −D∗)U1|||q

η
p

,(3.7)

∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)
∣∣∣∣∣∣∣∣∣ ≤ |||(I −D∗)U1|||+

∣∣∣∣∣∣(D∗ −D−1)U1

∣∣∣∣∣∣
η

c

,(3.8)

where

η
p

def
= %p(α, α+ δ) and η

c

def
=

{
δ/(α+ δ) if Figure 2.2(a),
δ/α if Figure 2.2(b).

Proof. Lemma 2.3 and (3.1) yield (3.7), whereas Lemma 2.3, (3.2), and (3.3) yield
(3.8).

Theorems 3.1 and 3.2 deal with rather restrictive perturbations to A. In what
follows we show how similar ideas can be applied to a more realistic situation when
scaled A is much better conditioned. Consider nonnegative definite Hermitian matrix
A = S∗HS ∈ Cn×n which is perturbed to Ã = S∗H̃S, where S is a scaling matrix
and usually diagonal. But this is not necessary to the theorems below. The elements
of S can vary wildly and can even be singular. H is nonsingular and usually better

conditioned than A itself. Set ∆H
def
= H̃ −H. Notice that

A = S∗HS = (H1/2S)∗H1/2S,

Ã = S∗H1/2
(
I +H−1/2(∆H)H−1/2

)
H1/2S

=
((
I +H−1/2(∆H)H−1/2

)1/2
H1/2S

)∗ (
I +H−1/2(∆H)H−1/2

)1/2
H1/2S.

Set

B = S∗H1/2,

B̃ = S∗H1/2
(
I +H−1/2(∆H)H−1/2

)1/2
def
= BD,

482 REN-CANG LI

where D =
(
I +H−1/2(∆H)H−1/2

)1/2
. Given the eigendecompositions of A and Ã

as in (1.1)–(1.3), it can be seen that B and B̃ admit the following SVDs.

B = (U1, U2)

(
Λ

1/2
1

Λ
1/2
2

)(
V ∗1
V ∗2

)
,

B̃ = (Ũ1, Ũ2)

(
Λ̃

1/2
1

Λ̃
1/2
2

)(
Ṽ ∗1
Ṽ ∗2

)
,

where Ui, Ũi are the same as in (1.1), and
(k n−k
V1 V2

)
and

(k n−k
Ṽ1 Ṽ2

)
are unitary.

We have

Ã−A = B̃B̃∗ −BB∗ = B̃D∗B∗ − B̃D−1B∗ = B̃(D∗ −D−1)B∗.

Pre- and post-multiply the equations by Ũ∗2 and U1, respectively, to get

Λ̃2Ũ
∗
2U1 − Ũ∗2U1Λ1 = Λ̃

1/2
2 Ṽ ∗2 (D∗ −D−1)V1Λ

1/2
1 ,(3.9)

a Sylvester equation. Notice that for any unitarily invariant norm,∣∣∣∣∣∣∣∣∣Ṽ ∗2 (D∗ −D−1)V1

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣D∗ −D−1
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣(I +H−1/2(∆H)H−1/2
)1/2

−
(
I +H−1/2(∆H)H−1/2

)−1/2
∣∣∣∣∣∣∣∣∣∣∣∣

≤ ‖
(
I +H−1/2(∆H)H−1/2

)−1/2

‖2
∣∣∣∣∣∣∣∣∣H−1/2(∆H)H−1/2

∣∣∣∣∣∣∣∣∣
≤ ‖H−1‖2 |||∆H|||√

1− ‖H−1‖2‖∆H‖2
.

(3.9) makes relative distance χ a natural choice. Lemmas 2.4, 2.5, and (3.9) produce
the following two theorems.

Theorem 3.3. Let A = S∗HS and Ã = S∗H̃S be two n × n Hermitian
matrices with eigendecompositions (1.1)–(1.3). Assume H is positive definite and

‖H−1‖2‖∆H‖2 < 1. If ηχ
def
= min

µ∈λ(Λ1), µ̃∈λ(Λ̃2)
χ(µ, µ̃) > 0, then

‖ sin Θ(U1, Ũ1)‖F ≤ ‖D −D
−1‖F

ηχ
≤ ‖H−1‖2√

1− ‖H−1‖2‖∆H‖2
‖∆H‖F
ηχ

.(3.10)

where D = (I +H−1/2(∆H)H−1/2)1/2 = D∗.
Theorem 3.4. Let A = S∗HS and Ã = S∗H̃S be two n× n Hermitian matrices

with eigendecompositions (1.1)—(1.3). H is positive definite and ‖H−1‖2‖∆H‖2 < 1.

Assume that the spectra of Λ1 and Λ̃2 distribute as in Figure 2.2. Then for any
unitarily invariant norm ||| · |||,∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣D −D−1
∣∣∣∣∣∣

η
χ

≤ ‖H−1‖2√
1− ‖H−1‖2‖∆H‖2

|||∆H|||
η
χ

,(3.11)

where η
χ

def
= χ(α, α+ δ) and D = (I +H−1/2(∆H)H−1/2)1/2 = D∗.

RELATIVE PERTURBATION THEORY II 483

Remark 3.3. Our approach can be extended straightforwardly to diagonalizable
matrices. Consider A and Ã = D∗1AD2, where D1 and D2 are nonsingular. Suppose

that both A and Ã are diagonalizable and let

A(X1, X2) = (X1, X2)

(
Λ1

Λ2

)
and Ã(X̃1, X̃2) = (X̃1, X̃2)

(
Λ̃1

Λ̃2

)
,

where
(k n−k
X1 X2

)
and

(k n−k
X̃1 X̃2

)
are nonsingular, and Λi and Λ̃j are defined as

in (1.2) and (1.3) with λi’s and λ̃j ’s possibly complex. Partition

(X1, X2)−1 =

(
k Y ∗1
n−k Y ∗2

)
and (X̃1, X̃2)−1 =

(
k Ỹ ∗1
n−k Ỹ ∗2

)
.

Define R
def
= ÃX1 −X1Λ1 = (Ã−A)X1. We have

Ỹ ∗2 R = Ỹ ∗2 ÃX1 − Ỹ ∗2 X1Λ1 = Λ̃2Ỹ
∗
2 X1 − Ỹ ∗2 X1Λ1,

Ỹ ∗2 R = Ỹ ∗2
[
Ã(I −D−1

2) + (D∗1 − I)A
]
X1

= Λ̃2Ỹ
∗
2 (I −D−1

2)X1 + Ỹ ∗2 (D∗1 − I)X1Λ1.

Thus we have the following perturbation equations:

Λ̃2Ỹ
∗
2 X1 − Ỹ ∗2 X1Λ1 = Λ̃2Ỹ

∗
2 (I −D−1

2)X1 + Ỹ ∗2 (D∗1 − I)X1Λ1,(3.12)

Λ̃2Z − ZΛ1 = Λ̃2Ỹ
∗
2 (D∗1 −D−1

2)X1,(3.13)

where Z
def
= Ỹ ∗2 D

∗
1X1 = Ỹ ∗2 X1 − Ỹ ∗2 (I − D∗1)X1, from which various bounds on

sin Θ(X1, X̃1) can be derived under certain conditions. For example, let

η2
def
= min

µ∈λ(Λ1), µ̃∈λ(Λ̃2)

%2(µ, µ̃).

If η2 > 0, then by Lemma 2.2 we have

‖Ỹ ∗2 X1‖F ≤ 1

η2

√
‖Ỹ ∗2 (I −D−1

2)X1‖2F + ‖Ỹ ∗2 (D∗1 − I)X1‖2F

≤ 1

η2
‖Ỹ ∗2 ‖2‖X1‖2

√
‖I −D−1

2 ‖2F + ‖D∗1 − I‖2F.

Notice that by Lemma 2.1

‖ sin Θ(X1, X̃1)‖F = ‖(Ỹ ∗2 Ỹ2)−1/2Ỹ ∗2 X1(X∗1X1)−1/2‖F
≤ ‖(Ỹ ∗2 Ỹ2)−1/2‖2‖Ỹ ∗2 X1‖F‖(X∗1X1)−1/2‖2.

Then a bound on ‖ sin Θ(X1, X̃1)‖F is immediately available.

484 REN-CANG LI

4. Relative perturbation theorems for singular subspace variation. Let
B and B̃ be two m× n (m ≥ n) (complex) matrices with SVDs

(4.1)

B = (U1, U2)

 Σ1 0
0 Σ2

0 0

(V ∗1
V ∗2

)
and B̃ = (Ũ1, Ũ2)

 Σ̃1 0

0 Σ̃2

0 0

(Ṽ ∗1
Ṽ ∗2

)
,

where U =
(k m−k
U1 U2

)
and Ũ =

(k m−k
Ũ1 Ũ2

)
are m × m unitary, and V =(k n−k

V1 V2

)
and Ṽ =

(k n−k
Ṽ1 Ũ2

)
are n× n unitary, 1 ≤ k < n, and

Σ1 = diag(σ1, . . . , σk), Σ2 = diag(σk+1, . . . , σn),(4.2)

Σ̃1 = diag(σ̃1, . . . , σ̃k), Σ̃2 = diag(σ̃k+1, . . . , σ̃n).(4.3)

Define residuals

(4.4)

RR
def
= B̃V1 − U1Σ1 = (B̃ −B)V1 and RL

def
= B̃∗U1 − V1Σ1 = (B̃∗ −B∗)U1.

Our development for the singular value problems more or less resembles what we did
for the eigenvalue problems. Most comments and comparisons we made in section 3
apply here, too, with perhaps a little change. Nonetheless there is a little bit of
complication here, namely we shall work with two residuals, RR and RL, and end up
with bounding solutions to two coupled matrix equations. The proofs of theorems in
this section are relatively long and are postponed to the next section.

Theorem 4.1. Let B and B̃ = D∗1BD2 be two m×n (m ≥ n) (complex) matrices
with SVDs (4.1)–(4.3), where D1 and D2 are nonsingular. Let

η2
def
= min

µ∈σ(Σ1), µ̃∈σext(Σ̃2)

%2(µ, µ̃) and ηc
def
= min

µ∈σ(Σ1), µ̃∈σext(Σ̃2)

|µ− µ̃|
|µ̃| ,(4.5)

where σext(Σ̃2) ≡ σ(Σ̃2)∪{0} if m > n, and σext(Σ̃2) ≡ σ(Σ̃2) otherwise. If ηc, η2 > 0,
then

(4.6)√
‖ sin Θ(U1, Ũ1)‖2F + ‖ sin Θ(V1, Ṽ1)‖2F

≤
√
‖(I −D∗1)U1‖2F + ‖(I −D−1

1)U1‖2F + ‖(I −D∗2)V1‖2F + ‖(I −D−1
2)V1‖2F

η2
,

(4.7)√
‖ sin Θ(U1, Ũ1)‖2F + ‖ sin Θ(V1, Ṽ1)‖2F ≤

√
‖(I −D∗1)U1‖2F + ‖(I −D∗2)V1‖2F

+
1

ηc

√
‖(D∗1 −D−1

1)U1‖2F + ‖(D∗2 −D−1
2)V1‖2F.

RELATIVE PERTURBATION THEORY II 485

This theorem is an extension of a Wedin sin θ theorem [16], where no multiplicative

structure in the perturbation of B to B̃ is assumed. He proved√
‖ sin Θ(U1, Ũ1)‖2F + ‖ sin Θ(V1, Ṽ1)‖2F ≤

√‖RR‖2F + ‖RL‖2F
δ

,(4.8)

where δ
def
= min

µ∈σ(Σ1), µ̃∈σext(Σ̃2)
|µ− µ̃|. Our other theorems in this section relate to

Wedin sin θ theorems analogously.
Remark 4.1. Ghost singular values 0 are appended to σ(Σ̃2) when m > n. This is

not necessary for the sensitivity of the V -factor alone, but rather the U -factor depends
on the ghost singular values. More fine analysis can be given to illustrate this point.
To keep the theorem relatively concise, we shall not go into this matter further.

Theorem 4.2. Let B and B̃ = D∗1BD2 be two m×n (m ≥ n) (complex) matrices
with SVDs (4.1)–(4.3), where D1 and D2 are nonsingular. If there exist α ≥ 0 and
δ > 0 such that

min
1≤i≤k

σi ≥ α+ δ and max
1≤j≤n−k

σ̃k+j ≤ α,

then for any unitarily invariant norm ||| · |||
(4.9)

max
{∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)

∣∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣∣sin Θ(V1, Ṽ1)
∣∣∣∣∣∣∣∣∣}

≤ 1

η
p

max

{
q

√∣∣∣∣∣∣(I −D−1
2)V1

∣∣∣∣∣∣q + |||(D∗1 − I)U1|||q,

q

√∣∣∣∣∣∣(I −D−1
1)U1

∣∣∣∣∣∣q + |||(D∗2 − I)V1|||q
}
,

(4.10)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

sin Θ(U1, Ũ1)

sin Θ(V1, Ṽ1)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
q

√∣∣∣∣∣∣∣∣∣∣∣∣((I −D−1
1)U1

(I −D−1
2)V1

)∣∣∣∣∣∣∣∣∣∣∣∣q +

∣∣∣∣∣∣∣∣∣∣∣∣((I −D∗1)U1

(I −D∗2)V1

)∣∣∣∣∣∣∣∣∣∣∣∣q
η
p

,

where η
p

def
= %p(α, α+ δ), and

(4.11)

max
{∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)

∣∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣∣sin Θ(V1, Ṽ1)
∣∣∣∣∣∣∣∣∣} ≤ max {|||(I −D∗1)U1||| , |||(I −D∗2)V1|||}

+
1

η
c

max
{∣∣∣∣∣∣(D∗1 −D−1

1)U1

∣∣∣∣∣∣ , ∣∣∣∣∣∣(D∗2 −D−1
2)V1

∣∣∣∣∣∣} ,
(4.12)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

sin Θ(U1, Ũ1)

sin Θ(V1, Ṽ1)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣∣∣∣((I −D∗1)U1

(I −D∗2)V1

)∣∣∣∣∣∣∣∣∣∣∣∣
+

1

η
c

∣∣∣∣∣∣∣∣∣∣∣∣((D∗1 −D−1
1)U1

(D∗2 −D−1
2)V1

)∣∣∣∣∣∣∣∣∣∣∣∣ ,
where η

c

def
= δ/α.

486 REN-CANG LI

We have both (4.9) and (4.10), and both (4.11) and (4.12) for theoretical consid-
erations. In fact (4.9) differs from (4.10) in many ways from the theoretical point of
view, and the two are independent.

Remark 4.2. Intuitively, D2 should not affect R(U1) much as long as it is close
to a unitary matrix. In fact, if D2 is unitary it does not affect R(U1) at all. This
suggests that when one or bothDi’s are closer to unitary matrices5 than to the identity
matrices, better bounds may be possible. Li [13] indeed presented theorems, showing

that D1 contributes to sin Θ(V1, Ṽ1) by its departure from some unitary matrix rather

than the identity matrix and similar conclusions hold for D2 and sin Θ(U1, Ũ1). The
reader is referred to Li [13] for details.

Remark 4.3. Theorems 4.1 and 4.2, applied to a special case [13] when one of

the Di’s is the identity matrix and the other one takes the form (I X
I

), yield a

deflation criterion that is sooner and cheaper in Demmel–Kahan QR algorithm [5]
for computing the singular value system of a bidiagonal matrix; see [10].

Theorems 4.1 and 4.2 deal with rather restrictive perturbations to B. In what
follows we show how to apply them to a more realistic situation when scaled B is much
better conditioned. Consider B = GS ∈ Cn×n which is perturbed to B̃ = G̃S ∈ Cn×n,
where S is a scaling matrix and G is nonsingular. Interesting cases are when G is

much better conditioned than B. Set ∆G
def
= G̃ − G. If ‖(∆G)G−1‖2 < 1, then

G̃ = G+ ∆G = [I + (∆G)G−1]G is nonsingular also.

Theorem 4.3. Let B = GS ∈ Cn×n and B̃ = G̃S ∈ Cn×n with SVDs (4.1)–(4.3),
where G is nonsingular. Assume ‖(∆G)G−1‖2 < 1. If

η2
def
= min

µ∈σ(Σ1), µ̃∈σ(Σ̃2)

%2(µ, µ̃) > 0,

then √∥∥∥sin Θ(U1, Ũ1)
∥∥∥2

F
+
∥∥∥sin Θ(V1, Ṽ1)

∥∥∥2

F
(4.13)

≤
√‖(∆G)G−1U1‖2F + ‖[I +G−∗(∆G)∗]−1G−∗(∆G)∗U1‖2F

η2

≤ ‖G−1‖2
√

1 +
1

(1− ‖G−1‖2‖∆G‖2)2

‖∆G‖F
η2

.

Proof. Write B̃ = G̃S = [I+ (∆G)G−1]GS = D∗1BD2, where D∗1 = I+ (∆G)G−1

and D2 = I. Apply Theorem 4.1 to get (4.13).

Theorem 4.4. Let B = GS ∈ Cn×n and B̃ = G̃S ∈ Cn×n with SVDs (4.1)–
(4.3), where G is nonsingular. Assume ‖(∆G)G−1‖2 < 1. If there exist α ≥ 0 and
δ > 0 such that

min
µ∈σ(Σ1)

µ ≥ α+ δ and max
µ̃∈σ(Σ̃2)

µ̃ ≤ α

or

min
µ∈σ(Σ1)

µ ≤ α and max
µ̃∈σ(Σ̃2)

µ̃ ≥ α+ δ,

5When both D1 and D2 are unitary, B̃ = D∗1BD2 = D∗1UΣV ∗D2 is an SVD of B̃, which implies

Ũ = D∗1U and Ṽ = D∗2V . Thus perturbations to singular subspaces, in this case, are independent of

the gap between σ(Σ1) and σ(Σ̃2), as long as they are disjoint.

RELATIVE PERTURBATION THEORY II 487

then for any unitarily invariant norm ||| · |||,
max

{∣∣∣∣∣∣∣∣∣sin Θ(U1, Ũ1)
∣∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣∣sin Θ(V1, Ṽ1)

∣∣∣∣∣∣∣∣∣}(4.14)

≤ max
{∣∣∣∣∣∣(∆G)G−1U1

∣∣∣∣∣∣ , ∣∣∣∣∣∣[I +G−∗(∆G)∗]−1G−∗(∆G)∗U1

∣∣∣∣∣∣}
η∞

≤ ‖G−1‖2
1− ‖G−1‖2‖∆G‖2

|||∆G|||
η∞

,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

sin Θ(U1, Ũ1)

sin Θ(V1, Ṽ1)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(4.15)

≤
q
√
|||(∆G)G−1U1|||q + |||[I +G−∗(∆G)∗]−1G−∗(∆G)∗U1|||q

η
p

≤ ‖G−1‖2 q

√
1 +

1

(1− ‖G−1‖2‖∆G‖2)q
|||∆G|||
η
p

.

Proof. Again write B̃ = G̃S = [I + (∆G)G−1]GS = D∗1BD2, where D∗1 =
I + (∆G)G−1 and D2 = I. Apply Theorem 4.2 to get (4.14) and (4.15).

Remark 4.4. Better bounds, especially when (∆G)G−1 is nearly a skew Hermitian

matrix, can be proved for the angle Θ(V1, Ṽ1). To prevent the paper from getting too
long, we refer the reader to Li [13].

Remark 4.5. Theorems 4.3 and 4.4 can be extended to cover nonsquare matrices.
Assume B = GS and B̃ = G̃S are m× n (m ≥ n); S is a scaling matrix and both G

and G̃ are m × n; G has full column rank. Let G† = (G∗G)−1G∗ the pseudoinverse
of G. Notice that G†G = I. Then

B̃ = G̃S = (G+ ∆G)S = (I + (∆G)G†)GS = (I + (∆G)G†)B.

If ‖(∆G)G†‖2 ≤ ‖G†‖2‖∆G‖2 < 1, G̃ has full column rank, too. Now applying
Theorems 4.1 and 4.2, we find that Theorems 4.3 and 4.4 remain valid with G−1

replaced by G†, and σ(Σ̃2) by σext(Σ̃2).

5. Proofs of Theorems 4.1 and 4.2. We can always augment B and B̃ by
m× (m− n) zero blocks to their rights to make them square. The augmented B and

B̃ will have straightforward SVDs based on those of B and B̃. It turns out doing so
does not affect the U -factors, and the V -factors are affected in a trivial way such that
||| sin(V1, Ṽ1)||| stays the same; see [13]. In what follows we shall deal with the square
case only.

Let RR = B̃V1 − U1Σ1 = (B̃ − B)V1 and RL = B̃∗U1 − V1Σ1 = (B̃∗ − B∗)U1.
When m = n, the SVDs (4.1)–(4.3) read

(5.1)

B = (U1, U2)

(
Σ1

Σ2

)(
V ∗1
V ∗2

)
and B̃ = (Ũ1, Ũ2)

(
Σ̃1

Σ̃2

)(
Ṽ ∗1
Ṽ ∗2

)
.

Notice that

Ũ∗2RR = Ũ∗2 B̃V1 − Ũ∗2U1Σ1 = Σ̃2Ṽ
∗
2 V1 − Ũ∗2U1Σ1,

Ũ∗2RR = Ũ∗2
[
B̃(I −D−1

2) + (D∗1 − I)B
]
V1

= Σ̃2Ṽ
∗
2 (I −D−1

2)V1 + Ũ∗2 (D∗1 − I)U1Σ1

488 REN-CANG LI

to get

Σ̃2Ṽ
∗
2 V1 − Ũ∗2U1Σ1 = Σ̃2Ṽ

∗
2 (I −D−1

2)V1 + Ũ∗2 (D∗1 − I)U1Σ1.(5.2)

On the other hand,

Ṽ ∗2 RL = Ṽ ∗2 B̃
∗U1 − Ṽ ∗2 V1Σ1 = Σ̃2Ũ

∗
2U1 − Ṽ ∗2 V1Σ1.

Ṽ ∗2 RL = Ṽ ∗2
[
B̃∗(I −D−1

1) + (D∗2 − I)B∗
]
U1

= Σ̃2Ũ
∗
2 (I −D−1

1)U1 + Ṽ ∗2 (D∗2 − I)V1Σ1,

which produce

Σ̃2Ũ
∗
2U1 − Ṽ ∗2 V1Σ1 = Σ̃2Ũ

∗
2 (I −D−1

1)U1 + Ṽ ∗2 (D∗2 − I)V1Σ1.(5.3)

(5.2) and (5.3) take an equivalent form as a single matrix equation with dimensions
doubled.(

Σ̃2

Σ̃2

)(
Ũ∗2U1

Ṽ ∗2 V1

)
−
(
Ũ∗2U1

Ṽ ∗2 V1

)(
Σ1

Σ1

)
(5.4)

=

(
Σ̃2

Σ̃2

)(
Ũ∗2 (I −D−1

1)U1

Ṽ ∗2 (I −D−1
2)V1

)

+

(
Ũ∗2 (D∗1 − I)U1

Ṽ ∗2 (D∗2 − I)V1

)(
Σ1

Σ1

)
.

(5.2)–(5.4) can also be rearranged in such a way that sharper bounds can be proved
when Di’s are closer to unitary matrices than the identity matrix. Write

X
def
= Ṽ ∗2 D

∗
2V1 = Ṽ ∗2 V1−Ṽ ∗2 (I−D∗2)V1 and Y

def
= Ũ∗2D

∗
1U1 = Ũ∗2U1−Ũ∗2 (I−D∗1)U1.

We have, from (5.2) and (5.3),

Σ̃2X − Y Σ1 = Σ̃2Ṽ
∗
2 (D∗2 −D−1

2)V1,(5.5)

Σ̃2Y −XΣ1 = Σ̃2Ũ
∗
2 (D∗1 −D−1

1)U1,(5.6)

and, from (5.4),(
Σ̃2

Σ̃2

)(
Y

X

)
−
(
Y

X

)(
Σ1

Σ1

)
(5.7)

=

(
Σ̃2

Σ̃2

)(
Ũ∗2 (D∗1 −D−1

1)U1

Ṽ ∗2 (D∗2 −D−1
2)V1

)
.

(5.2)–(5.4) make %p a natural choice for measuring the relative gaps between σ(Σ1)

and σ(Σ̃2), while (5.5)–(5.7) make the classical measurement (2.2) a natural choice.
Remark 5.1. Just as in Remark 3.1, perturbation equations (5.2)–(5.7) can be

modified to bound the closeness of the singular subspaces spanned by a few selected
columns of U1 and V1 to R(Ũ1) and R(Ṽ1).

RELATIVE PERTURBATION THEORY II 489

Proof of Theorem 4.1. Notice that the eigenvalues of (Σ̃2

Σ̃2

) are ±σ̃k+j , that

those of (Σ1

Σ1
) are ±σi, and that

%2(σi,−σ̃k+j) ≥ %2(σi, σ̃k+j) and %2(−σi, σ̃k+j) ≥ %2(σi, σ̃k+j).

By Lemma 2.2 and (5.4), we have

‖Ũ∗2U1‖2F + ‖Ṽ ∗2 V1‖2F
≤ 1

η2
2

[
‖Ũ∗2 (I −D−1

1)U1‖2F + ‖Ũ∗2 (D∗1 − I)U1‖2F + ‖Ṽ ∗2 (I −D−1
2)V1‖2F

+‖Ṽ ∗2 (D∗2 − I)V1‖2F
]

≤ 1

η2
2

[‖(I −D−1
1)U1‖2F + ‖(D∗1 − I)U1‖2F + ‖(I −D−1

2)V1‖2F + ‖(D∗2 − I)V1‖2F
]
,

which gives (4.6). By Lemma 2.2 and (5.7), we have√
‖X‖2F + ‖Y ‖2F ≤

1

ηc

√
‖Ũ∗2 (D∗1 −D−1

1)U1‖2F + ‖Ṽ ∗2 (D∗2 −D−1
2)V1‖2F

≤ 1

ηc

√
‖(D∗1 −D−1

1)U1‖2F + ‖(D∗2 −D−1
2)V1‖2F,

which, together with√
‖Ṽ ∗2 V1‖2F + ‖Ũ∗2U1‖2F =

√
‖X + Ṽ ∗2 (I −D∗2)V1‖2F + ‖Y + Ũ∗2 (I −D∗1)U1‖2F

≤
√
‖X‖2F + ‖Y ‖2F +

√
‖Ṽ ∗2 (I −D∗2)V1‖2F + ‖Ũ∗2 (I −D∗1)U1‖2F,

imply (4.7).
Remark 5.2. Without assuming the multiplicative structure in the perturbation

of B to B̃, we shall end up with

Σ̃2Ṽ
∗
2 V1 − Ũ∗2U1Σ1 = Ũ∗2RR and Σ̃2Ũ

∗
2U1 − Ṽ ∗2 V1Σ1 = Ṽ ∗2 RL,

which lead to Wedin sin θ theorems, e.g., (4.8).
Lemma 5.1. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let

E, Ẽ, F, F̃ ,∈ Cs×t. If there exist α ≥ 0 and δ > 0 such that

‖Ω‖2 ≤ α and ‖Γ−1‖−1
2 ≥ α+ δ(5.8)

or

‖Ω−1‖−1
2 ≥ α+ δ and ‖Γ‖2 ≤ α,(5.9)

then ΩX − Y Γ = ΩE + FΓ and ΩY −XΓ = ΩẼ + F̃Γ has a unique solution X, Y ∈
Cs×t, and moreover for any unitarily invariant norm ||| · |||,

max {|||X||| , |||Y |||} ≤ 1

η
p

max

{
q

√
|||E|||q + |||F |||q, q

√∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣q +
∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣q} ,(5.10)

490 REN-CANG LI

where η
p

def
= %p(α, α+ δ). If, in addition, F = F̃ = 0, we have a better bound

max {|||X||| , |||Y |||} ≤ 1

η
c

max
{
|||E||| ,

∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣} ,
where η

c
= δ/α when (5.8) holds and η

c
= δ/(α+ δ) when (5.9) holds.

Proof. The proof of the existence and uniqueness of X, Y ∈ Cs×t is left to the
reader. We present a proof of (5.10) for the case (5.8). A proof for the other case is

analogous. Consider first the subcase |||X||| ≥ |||Y |||. Postmultiply ΩY −XΓ = ΩẼ+F̃Γ
by Γ−1 to get

ΩY Γ−1 −X = ΩẼΓ−1 + F̃ .(5.11)

Then we have, by ‖Ω‖2 ≤ α and ‖Γ−1‖−1
2 ≥ α+ δ ⇒ ‖Γ−1‖2 ≤ 1

α+δ , that∣∣∣∣∣∣ΩY Γ−1 −X∣∣∣∣∣∣ ≥ |||X||| − ∣∣∣∣∣∣ΩY Γ−1
∣∣∣∣∣∣ ≥ |||X||| − ‖Ω‖2 |||Y ||| ‖Γ−1‖2

≥ |||X||| − α |||Y ||| 1

α+ δ
≥ |||X||| − α |||X||| 1

α+ δ

=

(
1− α

α+ δ

)
|||X|||

and ∣∣∣∣∣∣∣∣∣ΩẼΓ−1 + F̃
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ΩẼΓ−1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣ ≤ ‖Ω‖2 ∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣ ‖Γ−1‖2 +

∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣
≤ α

∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣ 1

α+ δ
+
∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣ ≤ p

√
1 +

αp

(α+ δ)p
q

√∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣q +
∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣q.

By (5.11), we deduce that(
1− α

α+ δ

)
|||X||| ≤ p

√
1 +

αp

(α+ δ)p
q

√∣∣∣∣∣∣∣∣∣Ẽ∣∣∣∣∣∣∣∣∣q +
∣∣∣∣∣∣∣∣∣F̃ ∣∣∣∣∣∣∣∣∣q

which produces that if |||X||| ≥ |||Y |||, |||X||| ≤ 1
η
p

q

√
|||Ẽ|||q + |||F̃ |||q. Similarly, if |||X||| <

|||Y |||, from ΩX−Y Γ = ΩE+FΓ, we can obtain |||Y ||| ≤ 1
η
p

q
√
|||E|||q + |||F |||q. Inequality

(5.10) now follows. The case F = F̃ = 0 can be handled analogously.
Proof of Theorem 4.2. By (5.2) and (5.3) and Lemma 5.1, we have

max
{∣∣∣∣∣∣∣∣∣Ũ∗2U1

∣∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣∣Ṽ ∗2 V1

∣∣∣∣∣∣∣∣∣}
≤ 1

η
p

max

{
q

√∣∣∣∣∣∣∣∣∣Ṽ ∗2 (I −D−1
2)V1

∣∣∣∣∣∣∣∣∣q +
∣∣∣∣∣∣∣∣∣Ũ∗2 (D∗1 − I)U1

∣∣∣∣∣∣∣∣∣q,
q

√∣∣∣∣∣∣∣∣∣Ũ∗2 (I −D−1
1)U1

∣∣∣∣∣∣∣∣∣q +
∣∣∣∣∣∣∣∣∣Ṽ ∗2 (D∗2 − I)V1

∣∣∣∣∣∣∣∣∣q}

≤ 1

η
p

max

{
q

√∣∣∣∣∣∣(I −D−1
2)V1

∣∣∣∣∣∣q + |||(D∗1 − I)U1|||q,

q

√∣∣∣∣∣∣(I −D−1
1)U1

∣∣∣∣∣∣q + |||(D∗2 − I)V1|||q
}
,

RELATIVE PERTURBATION THEORY II 491

as required. Lemma 2.3 and (5.4) yield that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2U1

Ṽ ∗2 V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ 1

η
p

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2 (I −D−1

1)U1

Ṽ ∗2 (I −D−1
2)V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q

(5.12)

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2 (D∗1 − I)U1

Ṽ ∗2 (D∗2 − I)V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q)1/q

,

since the conditions of Theorem 4.2 imply∥∥∥∥∥
(

Σ̃2

Σ̃2

)∥∥∥∥∥
2

≤ α,
∥∥∥∥∥
(

Σ1

Σ1

)−1
∥∥∥∥∥

2

≤ 1

α+ δ
.

Since Ũ∗2U1 and sin Θ(U1, Ũ1) have the same nonzero singular values and so do Ṽ ∗2 V1

and sin Θ(V1, Ṽ1),∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2U1

Ṽ ∗2 V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

sin Θ(U1, Ũ1)

sin Θ(V1, Ṽ1)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ .(5.13)

Note also(
Ũ∗2 (I −D−1

1)U1

Ṽ ∗2 (I −D−1
2)V1

)
=

(
Ũ∗2

Ṽ ∗2

)(
(I −D−1

1)U1

(I −D−1
2)V1

)
,(

Ũ∗2 (D∗1 − I)U1

Ṽ ∗2 (D∗2 − I)V1

)
=

(
Ũ∗2

Ṽ ∗2

)(
(D∗1 − I)U1

(D∗2 − I)V1

)
.

Thus we arrive at

(5.14)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2 (I −D−1

1)U1

Ṽ ∗2 (I −D−1
2)V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣≤
∣∣∣∣∣∣∣∣∣∣∣∣((I −D−1

1)U1

(I −D−1
2)V1

)∣∣∣∣∣∣∣∣∣∣∣∣ ,
(5.15)∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
(
Ũ∗2 (D∗1 − I)U1

Ṽ ∗2 (D∗2 − I)V1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣≤
∣∣∣∣∣∣∣∣∣∣∣∣((D∗1 − I)U1

(D∗2 − I)V1

)∣∣∣∣∣∣∣∣∣∣∣∣ .
Inequality (4.10) is a consequence of (5.12)–(5.15). By (5.5) and (5.6) and Lemma 5.1,
we have

max {|||X||| , |||Y |||} ≤ 1

η
c

max
{∣∣∣∣∣∣∣∣∣Ṽ ∗2 (D∗2 −D−1

2)V1

∣∣∣∣∣∣∣∣∣ , ∣∣∣∣∣∣∣∣∣Ũ∗2 (D∗1 −D−1
1)U1

∣∣∣∣∣∣∣∣∣}
≤ 1

η
c

max
{∣∣∣∣∣∣(D∗2 −D−1

2)V1

∣∣∣∣∣∣ , ∣∣∣∣∣∣(D∗1 −D−1
1)U1

∣∣∣∣∣∣} .
Notice that ∣∣∣∣∣∣∣∣∣Ṽ ∗2 V1

∣∣∣∣∣∣∣∣∣ ≤ |||X|||+ ∣∣∣∣∣∣∣∣∣Ṽ ∗2 (I −D∗2)V1

∣∣∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣∣∣Ũ∗2U1

∣∣∣∣∣∣∣∣∣ ≤ |||X|||+ ∣∣∣∣∣∣∣∣∣Ũ∗2 (I −D∗1)U1

∣∣∣∣∣∣∣∣∣ .
Inequality (4.11) now follows. Similarly apply Lemma 2.3 to (5.7) to get (4.12).

492 REN-CANG LI

6. Conclusions. We have developed a relative perturbation theory for eigenspace
and singular subspace variations under multiplicative perturbations. In the theory,
extensions of Davis–Kahan sin θ theorems and Wedin sin θ theorems from the classical
perturbation theory are made. Our unifying treatment covers almost all previously
studied cases over the last six years or so and yet produces sharper bounds. Straight-
forward extensions of the underlying theory of this paper to diagonalizable matrices
are outlined.

The theory is built upon bounds on solutions to various Sylvester equations with
structured right-hand sides. This provides technical links to the classical Davis and
Kahan development for eigenvalue problems and to Wedin’s development for singular
value problems. Although these equations are used as tools in this paper to study
eigenspace and singular subspace variations, we believe they should deserve at least
as much attention as the bounds they lead to.

Acknowledgment. I thank Professor W. Kahan for his consistent encourage-
ment and support and Professor J. Demmel and Professor B. N. Parlett for helpful
discussions. The referees’ constructive comments for improving the presentation are
greatly appreciated.

REFERENCES

[1] J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.

[2] R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of
linear operator equations, Linear Algebra Appl., 52–53 (1983), pp. 45–67.

[3] C. Davis and W. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer.
Anal., 7 (1970), pp. 1–46.

[4] J. Demmel and W. Gragg, On computing accurate singular values and eigenvalues of matrices
with acyclic graphs, Linear Algebra Appl., 185 (1993), pp. 203–217.

[5] J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 873–912.

[6] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 1204–1245.

[7] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation bounds for eigenspaces and singular
vector subspaces, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra,
J. G. Lewis, ed., SIAM, Philadelphia, 1994, pp. 62–66.

[8] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation techniques for singular value prob-
lems, SIAM J. Numer. Anal., 32 (1995), pp. 1972–1988.

[9] W. Kahan, Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Technical Report CS41,
Computer Science Department, Stanford University, Stanford, CA, 1966 (revised June
1968).

[10] R.-C. Li, On Deflating Bidiagonal Matrices, manuscript, Department of Mathematics, Univer-
sity of California, Berkeley, CA, 1994.

[11] R.-C. Li, On perturbations of matrix pencils with real spectra, Math. Comp., 62 (1994), pp. 231–
265.

[12] R.-C. Li, Relative perturbation theory: (I). Eigenvalue and singular value variations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 956–982.

[13] R.-C. Li, Relative perturbation theory: (II) Eigenspace and singular subspace variations, Tech-
nical Report UCB//CSD-94-856, Computer Science Division, Department of EECS, Uni-
versity of California at Berkeley, 1994, also LAPACK Working notes # 85 (revised January
1996 and April 1996, available at http://www.netlib.org/lapack/lawns/lawn85.ps).

[14] R. Mathias, Spectral Perturbation Bounds for Positive Definite Matrices, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 959–980.

[15] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[16] P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, BIT, 12

(1972), pp. 99–111.
[17] P.-Å. Wedin, On angles between subspaces, in Matrix Pencils, B. K̊agström and A. Ruhe, eds.,

Springer–Verlag, New York, 1983, pp. 263–285.

STRUCTURED BACKWARD ERROR AND CONDITION OF
GENERALIZED EIGENVALUE PROBLEMS∗

DESMOND J. HIGHAM† AND NICHOLAS J. HIGHAM‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 493–512

Abstract. Backward errors and condition numbers are defined and evaluated for eigenvalues
and eigenvectors of generalized eigenvalue problems. Both normwise and componentwise measures
are used. Unstructured problems are considered first, and then the basic definitions are extended so
that linear structure in the coefficient matrices (for example, Hermitian, Toeplitz, Hamiltonian, or
band structure) is preserved by the perturbations.

Key words. generalized eigenvalue problem, quadratic eigenvalue problem, backward error,
condition number, structured matrices

AMS subject classifications. 65F15, 65F35

PII. S0895479896313188

1. Introduction.

1.1. Backward error and condition. Backward errors and condition numbers
play an important role in modern numerical linear algebra. Backward errors reveal
the stability of a numerical method. Condition numbers explain the sensitivity of the
solution of a problem to perturbations in the data, and, in the case where this per-
turbation is a backward error, the product of condition number times backward error
provides a first order error bound for the computed solution. The theory of backward
error and conditioning is now well developed for linear systems and least squares prob-
lems. For eigenproblems, although there is a large literature on perturbation theory
(see [30] and the references therein), a number of aspects of backward errors and con-
dition numbers have not been considered, particularly for the generalized eigenvalue
problem. Our aim here is to give a thorough development of backward error and con-
dition for the generalized eigenvalue problem, for both normwise and componentwise
measures, with particular emphasis on respecting structure in the coefficient matrices.

We consider the generalized eigenvalue problem Ax = λBx, where A,B ∈ Cn×n.
If x 6= 0 then we say that λ is an eigenvalue and x the corresponding eigenvector of the
pair (A,B). We develop backward errors for approximate eigenpairs and condition
numbers for eigenvalues and eigenvectors. We do not treat deflating subspaces (the
appropriate generalization of invariant subspaces), leaving this important topic to
future work; for existing results on deflating subspaces see Stewart and Sun [30,
Section VI.2.4] and K̊agström and Poromaa [21].

In section 2 we develop normwise backward errors and condition numbers for a
general class of normwise measures of the perturbations to A and B. In particular, we
show that, for the 2-norm, requiring the perturbations to respect Hermitian structure
in A and B has no effect on the backward error of an approximate eigenpair corre-
sponding to a real approximate eigenvalue and has no effect on the condition number

∗Received by the editors December 3, 1996; accepted for publication (in revised form) by J. Varah
February 19, 1998; published electronically November 23, 1998.

http://www.siam.org/journals/simax/20-2/31318.html
†Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland

(na.dhigham@na-net.ornl.gov, http://www.strath.ac.uk/˜aas96106/).
‡Department of Mathematics, University of Manchester, Manchester M13 9PL, England

(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham/).

493

494 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

of an eigenvalue of a definite pair. It is widely appreciated that for problems with
badly scaled or sparse data componentwise analysis can yield much stronger results
than normwise analysis [18]. In section 3 we give a treatment analogous to that of
section 2 but for componentwise measures.

Many applications lead to eigenproblems containing matrices with linear struc-
ture, and only perturbations that preserve the structure may be physically meaningful
[31]. For example, the quadratic eigenvalue problem has the form

(λ2C + λD + E)v = 0, C,D,E ∈ Cn×n.(1.1)

By writing u = λv we can express the problem as a generalized eigenvalue problem:[
D E
E 0

] [
u
v

]
= λ

[−C 0
0 E

] [
u
v

]
.(1.2)

The coefficient matrices are clearly highly structured, and arbitrary perturbations to
these matrices do not correspond to perturbations of the original quadratic eigen-
value problem—we must respect the structure in order to obtain meaningful results.
Another highly structured eigenproblem is that of a Hamiltonian matrix

H =

[
F G
H −FT

]
, F ∈ Rn×n, G = GT ∈ Rn×n, H = HT ∈ Rn×n.

It has been a long-standing open problem to develop numerical methods for the Hamil-
tonian eigenproblem that require only O(n3) operations and for which the computed
eigenvalues or invariant subspaces are the exact ones of a nearby Hamiltonian matrix;
that is, the backward error preserves the Hamiltonian structure. Benner, Mehrmann,
and Xu [4] have developed a numerical method that comes close to satisfying these
requirements, having a Hamiltonian backward error with respect to a Hamiltonian
matrix related to H. For testing this method and deriving error bounds it is there-
fore useful to have backward errors and condition numbers that respect Hamiltonian
structure.

In section 4 we define backward errors and condition numbers that respect arbi-
trary linear structure in the matrices A and B. The backward error is characterized
as the minimum norm solution to a rectangular system, while explicit formulas are
obtained for the condition numbers. We have previously carried out similar analysis
for linear systems [17]; there we used a Kronecker product-based approach, but here
we use a different technique based on “pattern matrices.”

Brief numerical experiments are reported in section 5 in order to illustrate the
analysis.

1.2. Preliminaries. For the backward error analysis we make no assumptions
on A and B, but for the definition and derivation of condition numbers we assume
that the pair (A,B) is regular, that is, that det(A− λB) is not identically zero in λ.

Significant advantages accrue from treating the generalized eigenvalue problem in
the form βAx = αBx, where an eigenvalue is now defined by a pair of scalars (α, β)
[30, p. 272]. For example, when B is singular a nonzero null vector of B is an eigen-
vector with (α, β) = (α, 0), whereas in the original formulation we have an eigenvalue
λ = ∞. The (α, β) framework thus elegantly handles infinite eigenvalues and treats
A and B symmetrically. Moreover, perturbation expansions of α and β individually
provide complete information about eigenvalue sensitivity [29], [30, p. 293], although

STRUCTURED BACKWARD ERROR AND CONDITION 495

some of this information is inevitably lost in the definition of a single condition num-
ber. We have chosen to derive and state all our results in terms of λ for three main
reasons. First, λ is the desired quantity in most practical applications of the general-
ized eigenvalue problem. Second, analysis with the (α, β) form is naturally carried out
using the chordal metric, but this metric is scale dependent (see section 2.2). Finally,
the standard eigenproblem (B = I) is an important special case and we would like
our results to be directly applicable to it.

For parts of the analysis we will consider a Hermitian pair (A,B) (that is, a pair
in which A and B are Hermitian) and assume that it is definite, that is, that

min
{ (

(x∗Ax)2 + (x∗Bx)2
)1/2

: x ∈ Cn, ‖x‖2 = 1
}

is positive, which is certainly true if A or B is positive definite. A definite pair (A,B)
has the property that there is a nonsingular matrix X such that X∗AX and X∗BX
are diagonal. For details of the theory of the generalized eigenvalue problem see [16,
Sections 7.7, 8.7], [25, Chap. 15], or [30, Chap. 6].

We require some definitions involving norms. The norm ‖ · ‖D dual to a given
vector norm ‖ · ‖ on Cn is defined by

‖x‖D = max
w 6=0

|w∗x|
‖w‖ ,

and we say that z is a vector dual to y if

z∗y = ‖z‖D‖y‖ = 1.

The mixed subordinate matrix norm ‖ · ‖α,β on Cn×n is defined by

‖A‖α,β = max
x6=0

‖Ax‖β
‖x‖α .

The generality obtained by allowing α 6= β causes no complications in the statements
and proofs of our results and permits coverage of the potentially useful norms

‖A‖1,β = max
j
‖A(: , j)‖β , ‖A‖α,∞ = max

i
‖A(i, :)∗‖Dα ,

which include the special case ‖A‖1,∞ = maxi,j |aij |. We note for later reference that

‖xy∗‖α,β = ‖x‖β‖y‖Dα .

For complex α we define

sign(α) =

α

|α| , α 6= 0,

0, α = 0.

The sign of a vector z is defined componentwise as sign(z) = (sign(zi)).

496 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

2. Normwise analysis.

2.1. Backward errors. We begin by considering backward errors for the gen-
eralized eigenvalue problem. The formulas obtained are useful for testing the stability
of practical eigensolvers [1], [8], [21].

The normwise backward error of an approximate eigenpair (x̃, λ̃) is defined by

η(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ‖∆A‖α,β ≤ ε‖E‖α,β ,
‖∆B‖α,β ≤ ε‖F‖α,β },(2.1)

where E and F are given matrices of tolerances. Note that if A and B are real and λ̃
is nonreal, the optimal perturbations in (2.1) may be nonreal. How to restrict to real
perturbations is considered at the end of section 4.

The following theorem, which is a straightforward modification of a result of Rigal
and Gaches on the normwise backward error for a linear system [26], gives an explicit

expression for η(x̃, λ̃). For the case α = β, this theorem and the following lemma are
given by Frayssé and Toumazou [14].

Theorem 2.1. The normwise backward error η(x̃, λ̃) is given by

η(x̃, λ̃) =
‖r‖β

(‖E‖α,β + |λ̃|‖F‖α,β)‖x̃‖α
,(2.2)

where r = λ̃Bx̃−Ax̃.
Proof. It is straightforward to show that the right-hand side of (2.2) is a lower

bound for η(x̃, λ̃). This lower bound is easily seen to be attained for the feasible
perturbations

∆A =
‖E‖α,β

‖E‖α,β + |λ̃|‖F‖α,β
rz∗, ∆B = − sign(λ̃)

‖F‖α,β
‖E‖α,β + |λ̃|‖F‖α,β

rz∗,(2.3)

where z is a vector dual to x̃ with respect to the α-norm.
If we are interested only in the approximate eigenvalue λ̃ and are not concerned

about x̃, then a more appropriate measure of backward error may be

η(λ̃) := min
x̃6=0

η(x̃, λ̃).

This quantity has a closed-form expression, as shown by the next result.
Lemma 2.2. If λ̃ is not an eigenvalue of the pair (A,B) then

η(λ̃) =
1

‖(λ̃B −A)−1‖β,α (‖E‖α,β + |λ̃|‖F‖α,β)
.

Proof. The result follows from Theorem 2.1 on using the equality, for nonsingular
C ∈ Cn×n, minx6=0 ‖Cx‖β/‖x‖α = ‖C−1‖−1

β,α.

Similarly, for a given x̃ we can consider minimizing the backward error over all λ̃:

η(x̃) = min
λ̃

η(x̃, λ̃) = min
λ̃

‖λ̃Bx̃−Ax̃‖β
(‖E‖α,β + |λ̃|‖F‖α,β)‖x̃‖α

.(2.4)

STRUCTURED BACKWARD ERROR AND CONDITION 497

This optimization problem appears to be analytically intractable, even for the 2-norm
(α = β = 2). However, we can obtain an upper bound for η(x̃) by choosing λ̃ to mini-

mize the numerator in (2.4) only; for the 2-norm this value of λ̃ is x̃∗B∗Ax̃/(x̃∗B∗Bx̃)
if Bx̃ 6= 0.

If A and B are Hermitian then it is desirable that the perturbations ∆A and ∆B
in the definition of backward error preserve this property. Therefore the following
backward error is of interest:

ηH(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ∆A = ∆A∗, ∆B = ∆B∗,
‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β }.(2.5)

Clearly, ηH(x̃, λ̃) ≥ η(x̃, λ̃), and the optimal perturbations for η(x̃, λ̃) in (2.3) are not

Hermitian in general. We wish to determine by how much ηH(x̃, λ̃) can exceed η(x̃, λ̃).
The following result, which is an adaptation of a result of Bunch, Demmel, and Van
Loan [5] for linear systems, shows that requiring the backward error perturbations to

be Hermitian has no effect on the backward error in the 2-norm, provided that λ̃ is
real. The same result has also been obtained by Smoktunowicz [28], where it is stated
only for definite pairs.

Theorem 2.3. If A and B are Hermitian and λ̃ is real, then, for the 2-norm
(α = β = 2), we have ηH2 (x̃, λ̃) = η2(x̃, λ̃).

Proof. Let r = λ̃Bx̃−Ax̃. We first find a Hermitian H that satisfies the constraint
Hx̃ := (∆A− λ̃∆B)x̃ = r in (2.5). We take H := (‖r‖2/‖x̃‖2)P , where P is a suitably

chosen Householder matrix—such a P exists since λ̃ real implies x̃∗r real (if r = x̃,

we have to take H = I instead). To satisfy H = ∆A− λ̃∆B with Hermitian ∆A and
∆B, we define

∆A =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
H, ∆B = − sign(λ̃)

‖F‖2
‖E‖2 + |λ̃|‖F‖2

H.(2.6)

Now

‖H‖2 = ‖r‖2/‖x̃‖2 = η2(x̃, λ̃)(‖E‖2 + |λ̃|‖F‖2),

using (2.2). From (2.6) it follows that ηH2 (x̃, λ̃) ≤ η2(x̃, λ̃). But ηH2 (x̃, λ̃) ≥ η2(x̃, λ̃)
by definition, so equality must hold.

Note that if B is Hermitian positive definite, the perturbation ∆B that achieves
ηH2 (x̃, λ̃) in (2.5) does not necessarily keep B+∆B positive definite. However, B+∆B
certainly will be positive definite if

ηH2 (x̃, λ̃)‖F‖2 = ‖∆B‖2 < λmin(B),(2.7)

where λmin denotes the smallest eigenvalue.

It is worth pausing to discuss the significance of Theorem 2.3. One way to solve
the generalized eigenvalue problem is by the QZ algorithm, which computes the gen-
eralized Schur decomposition and is normwise backward stable. If the QZ algorithm
is applied to a Hermitian pair (A,B) then it does not preserve Hermitian structure.
Theorem 2.3 implies that, nevertheless, each computed eigenpair containing a real
eigenvalue is exact for a Hermitian pair that is a slight perturbation of (A,B), with
the perturbation being different, in general, for each eigenpair.

498 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

Definitions and results analogous to those above hold for the backward error
corresponding to an approximate eigenvalue λ̃ and corresponding left eigenvector ỹ
(ỹ∗A ≈ λ̃ỹ∗B).

Also of interest is the normwise backward error of a triple (x̃, ỹ, λ̃), where ỹ is an
approximate left eigenvector. For the 2-norm, this backward error is defined by

η(x̃, ỹ, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, ỹ∗(A+∆A) = λ̃ỹ∗(B +∆B),

‖∆A‖2 ≤ ε‖E‖2, ‖∆B‖2 ≤ ε‖F‖2 }.
This backward error is evaluated explicitly in the following result.

Theorem 2.4. For the 2-norm (α = β = 2), we have

η2(x̃, ỹ, λ̃) =
1

‖E‖2 + |λ̃|‖F‖2
max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
,

where r = λ̃Bx̃−Ax̃ and s∗ = λ̃ỹ∗B − ỹ∗A.
Proof. By taking 2-norms in the equations r = ∆Ax̃− λ̃∆Bx̃ and s∗ = ỹ∗∆A−

λ̃ỹ∗∆B, we find that the claimed expression for η2(x̃, ỹ, λ̃) is certainly a lower bound
for it. We must show that this lower bound is attained.

Let G = ∆A− λ̃∆B. Then G satisfies the constraints

Gx̃ = r, ỹ∗G = s∗, and ỹ∗r = s∗x̃.(2.8)

A result of Kahan, Parlett and Jiang [22, Thm. 2′] (see also Saad [27, Thm. 3.10])
shows that the minimum value of ‖G‖2 subject to G satisfying the constraints (2.8)
is

max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
.

Let Gopt be a matrix that achieves this minimum, and define

∆A =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
Gopt, ∆B = − sign(λ̃)

‖F‖2
‖E‖2 + |λ̃|‖F‖2

Gopt.

Then ∆A− λ̃∆B = G,

‖∆A‖2 =
‖E‖2

‖E‖2 + |λ̃|‖F‖2
max

{ ‖r‖2
‖x̃‖2 ,

‖s‖2
‖ỹ‖2

}
,

and ‖∆B‖2 satisfies the analogous equality. We have therefore shown that the lower

bound for η2(x̃, ỹ, λ̃) is attained.

We remark that the formula for η2(x̃, ỹ, λ̃) in Theorem 2.4 is the maximum of

η2(x̃, λ̃) and the analogous backward error for (ỹ, λ̃).

2.2. Condition numbers. Let λ be a simple, finite, nonzero eigenvalue of the
pair (A,B), with corresponding right eigenvector x and left eigenvector y, so that
Ax = λBx and y∗A = λy∗B. A normwise condition number of λ can be defined as
follows:

κ(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β
}
.(2.9)

STRUCTURED BACKWARD ERROR AND CONDITION 499

This definition is a little loose, because if λ′ is an eigenvalue distinct from λ with
corresponding eigenvector x′, then we can take ∆A = ∆B = 0, x + ∆x ≡ x′, and
λ + ∆λ ≡ λ′ to obtain κ(λ) = ∞. The definition therefore needs to be augmented
with the requirement that ∆x → 0 as ε → 0. For simplicity of presentation we omit
this requirement from the definitions of condition numbers.

From the definition of κ(λ) we have, for the perturbed system in (2.9),

|∆λ|
|λ| ≤ κ(λ)ε+O(ε2).(2.10)

Expanding the constraint in (2.9) and premultiplying by y∗ lead to

∆λ =
y∗∆Ax− λy∗∆Bx+ y∗∆A∆x− λy∗∆B∆x

y∗Bx+ y∗B∆x+ y∗∆Bx+ y∗∆B∆x

=
y∗∆Ax− λy∗∆Bx

y∗Bx
+O(ε2).(2.11)

To evaluate κ(λ) we need to obtain a sharp bound for the first order term in this
expansion. The following result is given in [14] for the case α = β.

Theorem 2.5. The normwise condition number κ(λ) is given by

κ(λ) =
‖y‖Dβ ‖x‖α(‖E‖α,β + |λ|‖F‖α,β)

|λ||y∗Bx| .

Proof. The given expression is clearly an upper bound for κ(λ). We now show that
the bound is attained. Let G = ‖x‖αuv∗, where u is of unit β-norm and satisfies u∗y =
‖y‖Dβ and v is dual to x with respect to the α-norm. Then y∗Gx = ‖x‖α‖y‖Dβ and
‖G‖α,β = 1. Let ∆A = ε‖E‖α,βG and ∆B = − sign(λ)ε‖F‖α,βG. Then ‖∆A‖α,β ≤
ε‖E‖α,β and ‖∆B‖α,β ≤ ε‖F‖α,β and the modulus of the first order term in (2.11) is

ε‖y‖Dβ ‖x‖α(‖E‖α,β + |λ|‖F‖α,β)/|y∗Bx|; dividing (2.11) by ε|λ| and taking the limit
as ε→ 0 then gives the desired equality.

If λ is infinite then κ(λ) is not defined, but one can consider the problem λ−1Ax =
Bx, which has a corresponding zero eigenvalue. For zero eigenvalues κ(λ) is also
undefined, and the absolute condition number (defined as in (2.9) but with |∆λ|/ε as
the quantity to be maximized) is then the appropriate one to consider.

As for the backward error, if A and B are Hermitian it is natural to restrict the
perturbations ∆A and ∆B in (2.9) to be Hermitian. The next lemma shows that for
a definite pair this has no effect on the condition number in the 2-norm.

Lemma 2.6. Let the Hermitian pair (A,B) be definite. Let κH(λ) denote the
condition number defined as in (2.9) but with the additional requirement that ∆A and
∆B are Hermitian. Then, for the 2-norm (α = β = 2), κH2 (λ) = κ2(λ).

Proof. Since (A,B) is a definite pair, we can take y = x. For the 2-norm, the
matrix G constructed in the proof of Theorem 2.5 is therefore G = ‖x‖−2

2 xx∗, which
is Hermitian. The result is immediate.

It is instructive to compare the condition number κ(λ) with one of Stewart and
Sun [30, pp. 293–294] (cf. [14]). In our notation, they derive the approximate bound
(correct to first order)

χ(λ, λ̃) :=
|λ− λ̃|√|λ|2 + 1

√
|λ̃|2 + 1

<∼
‖x‖2‖y‖2√|y∗Ax|2 + |y∗Bx|2 ‖ [∆A ∆B] ‖2,(2.12)

500 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

where λ̃ = λ+∆λ, and they regard the first factor in the upper bound as a condition
number. The function χ is the chordal metric and has the property that χ(λ, µ) =
χ(λ−1, µ−1), which is appropriate for the generalized eigenvalue problem since Ax =
λBx and λ−1Ax = Bx are equally valid representations. Note also that the bound
(2.12) is symmetric in A and B. Unfortunately, the chordal metric is scale dependent:

χ(αλ, αµ) 6= χ(λ, µ) in general. Hence χ(λ, λ̃) tends to differ greatly from the relative

error when |λ| and |λ̃| are both large or both small.
A normwise condition number for the eigenvector x corresponding to the simple

eigenvalue λ can be defined by

κ(x) := lim
ε→0

sup

{
‖∆x‖α
ε‖x‖α : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1,

‖∆A‖α,β ≤ ε‖E‖α,β , ‖∆B‖α,β ≤ ε‖F‖α,β
}
.(2.13)

Because an eigenvector corresponding to a simple eigenvalue is unique only up to
scalar multiples, it is important to normalize the eigenvectors for the perturbation
theory. We use a linear normalization in (2.13) based on a constant vector g, which
could, for example, be x or the left eigenvector y. The matrix B is included in the
normalization equation because it simplifies the subsequent analysis; if B is nonsin-
gular then we can set g∗ := g∗B−1 in order to remove B. See Chaitin-Chatelin and
Frayssé [6, Section 4.4.2] and Stewart and Sun [30, pp. 240–241] for discussions of the
normalization issue.

The next result gives an expression for the condition number; it generalizes a result
in [6, Section 4.4.2], [7, Section 4.2.1] that applies to the standard eigenproblem.

Theorem 2.7. The normwise condition number κ(x) is given by

κ(x) = ‖V (W ∗(A− λB)V)−1W ∗‖β,α
(‖E‖α,β + |λ|‖F‖α,β

)
,(2.14)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.

Proof. From Theorem A.1 in the appendix we see that we have to find a sharp
bound for ‖V (W ∗(A−λB)V)−1W ∗(∆A−λ∆B)x‖α/(ε‖x‖α). This quantity is clearly
bounded by the claimed expression for κ(x). Writing Z = V (W ∗AV − λI)−1W ∗,
equality is attained for

∆A = ε‖E‖α,β‖x‖αph∗, ∆B = − sign(λ)ε‖F‖α,β‖x‖αph∗,

where p satisfies ‖p‖β = 1 and ‖Zp‖α = ‖Z‖β,α, and h is dual to x with respect to
the α-norm.

Note that the expression for κ(x) in (2.14) is finite and does not depend on the
particular choice of V and W , as shown in the appendix.

As a comparison, we recall that Golub and Van Loan [16, p. 346] and Wilkinson
[32, pp. 68–70] give perturbation expansions for the eigenvector corresponding to a
simple eigenvalue, in the case B = I. These expansions do not readily lead to the
identification of a condition number. Indeed, as Wilkinson notes [32, pp. 70, 85],
examination of individual terms can give a misleading impression of the sensitivity
because of the possibility of cancellation in the overall sum.

STRUCTURED BACKWARD ERROR AND CONDITION 501

We show how Theorem 2.7 leads to an informative bound for κ(x) when A is
Hermitian, B is Hermitian positive definite, and we take g = x. In this case there is
a nonsingular X so that

X∗BX = I, X∗AX = D = diag(λ1, λ2, . . . , λn).

It is easy to verify that we can set X =: [x V] and W = V . Putting E = A and
F = B and using the 2-norm, we have

κ2(x) = ‖V (V ∗X−∗(D − λI)X−1V)−1V ∗‖2(‖A‖2 + |λ|‖B‖2)

= ‖V diag(λ2 − λ, . . . , λn − λ)−1V ∗‖2(‖A‖2 + |λ|‖B‖2)

≤ ‖V ‖22
minλi 6=λ |λ− λi|

(‖A‖2 + |λ|‖B‖2).

In the case of the standard eigenvalue problem, where B = I, we can take ‖V ‖2 = 1
(and we would take F = 0, so that there would be no |λ|‖B‖2 term).

3. Componentwise analysis.

3.1. Backward errors. The componentwise backward error of an approximate
eigenpair (x̃, λ̃) is defined by

ω(x̃, λ̃) := min{ ε : (A+∆A)x̃ = λ̃(B +∆B)x̃, |∆A| ≤ εE, |∆B| ≤ εF },(3.1)

where E and F are now assumed to have nonnegative entries and inequalities hold
componentwise.

The Oettli–Prager theorem [24] gives an explicit expression for the componentwise
backward error of an approximate solution to a linear system. The next result is an
analogue of that result for the eigenvalue problem and is given for the special case
B = I, F = 0 in [10].

Theorem 3.1. The componentwise backward error is given by

ω(x̃, λ̃) = max
i

|ri|(
(E + |λ̃|F)|x̃|)

i

,(3.2)

where r = λ̃Bx̃−Ax̃, and ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise.
Proof. It is easy to show that the right-hand side of (3.2) is a lower bound for

ω(x̃, λ̃) and that this bound is attained for the feasible perturbations

∆A = D1ED2, ∆B = − sign(λ̃)D1FD2,(3.3)

where D1 = diag
(
ri/((E + |λ̃|F)|x̃|)i

)
and D2 = diag

(
sign(x̃)

)
.

As for the normwise backward error, it is also of interest to consider the minima
of ω(x̃, λ̃) over all x̃ and over all λ̃:

ω(λ̃) = min
x̃6=0

ω(x̃, λ̃), ω(x̃) = min
λ̃6=0

ω(x̃, λ̃).

We have been unable to derive any useful bounds for ω(λ̃) and ω(x̃).
Drmac̆ [11] derives an algorithm for solving the generalized eigenvalue problem

when A ∈ Rn×n and B ∈ Rn×n are both symmetric positive definite. He shows that
the computed eigenvalues are the exact ones of a pair (A+∆A,B +∆B) satisfying

|∆aij | ≤ f(n)u
√
aiiajj , |∆bij | ≤ f(n)u

√
biibjj ,

502 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

where u is the unit roundoff. To test an implementation of this method it is therefore
appropriate, for each computed eigenpair (x̂, λ̂), to compare ω(x̂, λ̂) with a suitable
multiple of u, taking eij =

√
aiiajj , fij =

√
biibjj .

3.2. Condition numbers. A componentwise condition number for a simple
eigenvalue λ analogous to the normwise condition number (2.9) is defined by

cond(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

|∆A| ≤ εE, |∆B| ≤ εF
}
.(3.4)

From this definition it follows that, for the perturbed system in (3.4),

|∆λ|
|λ| ≤ cond(λ)ε+O(ε2).(3.5)

A special case of the following result with B = I, E = |A|, and F = 0 is given by
Geurts [15].

Theorem 3.2. The componentwise condition number cond(λ) is given by

cond(λ) =
|y∗|E|x|+ |λ||y∗|F |x|

|λ||y∗Bx| .

Proof. The proof is analogous to the proof of Theorem 2.5. The perturba-
tions that are used to show that the expression for cond(λ) is attained are ∆A =
εD1ED2 and ∆B = − sign(λ)εD1FD2, where D1 = diag(sign(y∗)) and D2 =
diag(sign(x)).

We consider briefly the special case where A ≥ 0 is irreducible and B is diagonal
with positive diagonal entries. Here, the generalized eigenvalue problem is equivalent
to the standard eigenvalue problem for B−1A. Since B−1A is nonnegative and irre-
ducible, the Perron–Frobenius theory can be applied [20, Thm. 8.4.4] to show that the
spectral radius ρ(B−1A) is a positive eigenvalue with corresponding positive left and
right eigenvectors. The following special result holds for λ = ρ(B−1A); it generalizes
a result of Elsner et al. [13, Thm. 1] for the standard eigenproblem.

Theorem 3.3. Suppose A ≥ 0 is irreducible and B = diag(bii), with bii > 0 for
all i. Let λ > 0 be the Perron root of B−1A, assumed to be simple, and let E = A
and F = B. Then cond(λ) = 2. Moreover, if λ + ∆λ is the Perron root of the pair
(A+∆A,B +∆B) defined in (3.4) then, for 0 ≤ ε < 1,

|∆λ|
|λ| ≤

2ε

1− ε(3.6)

(which improves on (3.5) by quantifying the second order term).

Proof. That cond(λ) = 2 is trivial to verify. For the second part, note that since
|∆B| ≤ εB, with B diagonal, and |∆A| ≤ εA,(

1− ε
1 + ε

)
B−1A ≤ (B +∆B)−1(A+∆A) ≤

(
1 + ε

1− ε
)
B−1A.

STRUCTURED BACKWARD ERROR AND CONDITION 503

Since ρ(·) is monotone on the nonnegative matrices [20, Cor. 8.1.19],(
1− ε
1 + ε

)
ρ(B−1A) ≤ ρ((B +∆B)−1(A+∆A)

) ≤ (1 + ε

1− ε
)
ρ(B−1A),

which rearranges to give (3.6).
As in the normwise case, forcing the backward error perturbations to respect

Hermitian structure has no effect on the condition number for a definite pair.
Lemma 3.4. Let the Hermitian pair (A,B) be definite. Let condH(λ) denote

the condition number defined as in (3.4) but with the additional requirement that ∆A
and ∆B are Hermitian, and assume that E and F are Hermitian. Then condH(λ) =
cond(λ).

Proof. Since (A,B) is a definite pair, we can take y = x, so the perturbations
∆A and ∆B constructed in the proof of Theorem 3.2 are Hermitian. The result is
immediate.

We define a componentwise condition number for the eigenvector x corresponding
to the simple eigenvalue λ by

cond(x) := lim
ε→0

sup

{
‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1, |∆A| ≤ εE, |∆B| ≤ εF
}
.(3.7)

Theorem 3.5. The componentwise condition number cond(x) is given by

cond(x) =
‖ |V (W ∗(A− λB)V)−1W ∗|(E + |λ|F)|x| ‖∞

‖x‖∞ ,(3.8)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.

Proof. The proof is similar to the proof of Theorem 2.7. The perturbations that
give equality are

∆A = εD1ED2, ∆B = − sign(λ)εD1FD2,

where D1 = diag(ξj), ξj = sign((V (W ∗(A − λB)V)−1W ∗)kj), D2 = diag(sign(x)),
where the kth component of the vector in the numerator of (3.8) has the largest
absolute value.

In the special case B = I, F = 0, Theorem 3.5 reduces to a result in [6, Sec-
tion 4.4.2].

4. Structured backward error and condition number. In sections 2 and
3 we considered a normwise backward error and normwise and componentwise condi-
tion numbers that respect Hermitian structure in the generalized eigenvalue problem.
There are other structures of interest, such as Toeplitz [3], circulant and Hankel
structure (the first of which can be general, symmetric, or Hermitian and all of which
can be defined in the point or the block sense), augmented system structure [12],
Hamiltonian structure [4], and general banded and sparse patterns. We begin with a
simple illustration of the effect of taking account of structure. We consider a standard
eigenproblem Ax = λx with a circulant A:

A =

[
a b
b a

]
.

504 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

We take a = b = 1 and

x̃ =

[
1 + ε
−1

]
, λ̃ = ε (0 ≤ ε ≤ 1),

which form an exact eigenpair for ε = 0. We have

r = λ̃x̃−Ax̃ =

[
ε2

−2ε

]
.

The normwise backward error for the ∞-norm, with E = A, B = I, F = 0, is
η(x̃, λ̃) = ε/(1 + ε). However, since A is a circulant, we may wish to preserve the
circulant structure when we perturb A in the definition of the backward error; indeed,
only circulant perturbations may be physically meaningful. Then we seek ∆a, ∆b such
that [

1 +∆a 1 +∆b
1 +∆b 1 +∆a

] [
1 + ε
−1

]
= ε

[
1 + ε
−1

]
.

These two equations in two unknowns have a unique solution, for which ∆a = −1 +
O(ε), ∆b = −1. Hence, if ε is small, then while (x̃, λ̃) is an exact eigenpair for a (non-
circulant) matrix close to A, the nearest circulant of which it is an exact eigenpair is
relatively far from A. Thus the permitted structure of backward perturbations can
greatly affect the backward error.

In this section we assume that A ∈ Cn×n and B ∈ Cn×n can be parametrized1

A =
t∑
i=1

aiUi, B =
t∑
i=1

aiVi,(4.1)

where Ui ∈ Cn×n and Vi ∈ Cn×n are matrices of constants, typically 0s and 1s, and
the complex numbers ai are independent parameters. Thus we are assuming that A
and B are linear functions of a vector of parameters a = (ai). This formulation allows
A and B to share parameters, as is necessary for the quadratic eigenvalue problem
application (1.2). If B, for example, does not depend on aj , then we set Vj = 0. The
case of no structure corresponds to

t = 2n2, {Ui}n2

i=1 = {Vi}2n2

i=n2+1 = {eieTj }ni,j=1,

{
Ui = 0, i > n2,
Vi = 0, i ≤ n2,

(4.2)

where ei is the ith unit vector.
Nonlinear structure is also of interest, such as Cauchy and Vandermonde struc-

ture. Condition numbers can be derived by linearizing and applying the techniques
given here, but evaluating backward errors is a nonlinear optimization problem in
general. See Bartels and Higham [2] for results for Vandermonde-like linear systems.

We consider perturbations ∆A =
∑t
i=1∆aiUi and ∆B =

∑t
i=1∆aiVi and mea-

sure them by

ψp(∆a) = ‖D−1∆a‖p, D = diag(g),

1In fact, it is only the perturbations ∆A and ∆B that need to have such structure in our
development, but it is natural to assume that A and B are structured too.

STRUCTURED BACKWARD ERROR AND CONDITION 505

where g is a vector of nonnegative tolerances and ‖ · ‖p is the Hölder p-norm on Cn:

‖x‖p =

(n∑
i=1

|xi|p
)1/p

, p ≥ 1.

Note that p =∞ corresponds to the componentwise measure used in (3.1), albeit now
applied to the vector of parameters rather than the matrices as a whole.

We define the structured componentwise backward error of an approximate eigen-
pair (x̃, λ̃) by

ωp(x̃, λ̃) := min

{
ψp(∆a) : (A+∆A)x̃ = λ̃(B +∆B)x̃,

∆A =

t∑
i=1

∆aiUi, ∆B =

t∑
i=1

∆aiVi

}
.(4.3)

Using the residual r = λ̃Bx̃−Ax̃, the constraint in (4.3) can be rewritten

r = ∆Ax̃− λ̃∆Bx̃

=

(
t∑
i=1

∆aiUi

)
x̃− λ̃

(
t∑
i=1

∆aiVi

)
x̃

=

t∑
i=1

∆ai(Ui − λ̃Vi)x̃

= C̃∆a,

where

C̃ =
[
(U1 − λ̃V1)x̃, . . . , (Ut − λ̃Vt)x̃

]
∈ Cn×t.

Hence, defining

∆̃a = D−1∆a,

we have

r = C̃∆a = C̃D∆̃a =: M∆̃a, M ∈ Cn×t.
The linear system

M∆̃a = r(4.4)

can be under- or overdetermined, depending on the value of t. The backward error
ωp(x̃, λ̃) is the norm of a solution of minimal p-norm to (4.4). If n > t or M is rank-
deficient there may be no solution to (4.4), in which case we regard the structured

componentwise backward error ωp(x̃, λ̃) as infinite. Assuming that the system is

consistent, for the 2-norm we have ω2(x̃, λ̃) = ‖M+r‖2, where M+ is the pseudo-
inverse of M .

The structure of the matrix M depends on that of A and B in (4.1), and it may be
possible to exploit this structure when solving (4.4). For the unstructured case with

506 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

p = ∞, we recover the expression (3.2) on using (4.2) and identifying D with E and
F in (3.1), because (4.4) then reduces to n independent minimal ∞-norm problems
that can be solved explicitly.

A structured componentwise condition number for the simple eigenvalue λ can be
defined by

condp(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

∆A =

t∑
i=1

∆aiUi, ∆B =
t∑
i=1

∆aiVi, ψp(∆a) ≤ ε
}
.(4.5)

Theorem 4.1. The structured componentwise condition number of λ is given by

condp(λ) =
‖y∗CD‖q
|λ||y∗Bx| ,

where p−1 + q−1 = 1 and

C = [(U1 − λV1)x, . . . , (Ut − λVt)x] ∈ Cn×t.(4.6)

Proof. The expansion (2.11) shows that we have to find a sharp bound for
y∗∆Ax− λy∗∆Bx. For the perturbations ∆A and ∆B in (4.5) we have

|y∗∆Ax− λy∗∆Bx| =
∣∣∣∣∣y∗
(

t∑
i=1

∆aiUi

)
x− λy∗

(
t∑
i=1

∆aiVi

)
x

∣∣∣∣∣
= |y∗C∆a|
= |y∗CD ·D−1∆a|
≤ ‖y∗CD‖qψp(∆a).

Equality is obtained for suitable ∆a because equality is always possible in the Hölder
inequality.

It is not hard to see that for p =∞ we recover the formula for the unstructured
condition number cond(λ) in Theorem 3.2 when we use (4.2) and identify D with E
and F .

A structured componentwise condition number for the eigenvector x correspond-
ing to the simple eigenvalue λ can be defined by

condp(x) := lim
ε→0

sup

{
‖Σ−1∆x‖p

ε
: (A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x),

g∗Bx = g∗B(x+∆x) ≡ 1,

∆A =

t∑
i=1

∆aiUi, ∆B =
t∑
i=1

∆aiVi, ψp(∆a) ≤ ε
}
,(4.7)

where Σ = diag(σi), with the σi positive tolerances. In the particular case σi ≡ ‖x‖p,
we are measuring ∆x in the usual normwise relative fashion.

Theorem 4.2. Assume that B is nonsingular. The structured componentwise
condition number of x is given by

condp(x) =
∥∥Σ−1V (W ∗(A− λB)V)−1W ∗CD

∥∥
p
,

STRUCTURED BACKWARD ERROR AND CONDITION 507

where C is defined in (4.6) and the full rank matrices V,W ∈ Cn×(n−1) are chosen so
that g∗V = 0 and W ∗x = 0.

Proof. From Theorem A.1 we see that we must find a sharp bound for ‖Z(∆A−
λ∆B)x‖p/ε, where Z = Σ−1V (W ∗(A−λB)V)−1W ∗. As in the proof of Theorem 4.1,
we have

‖Z(∆A− λ∆B)x‖p = ‖ZCD ·D−1∆a‖p ≤ ‖ZCD‖pψp∆a,

and the latter inequality is attained for suitable ∆a.
In the above analysis, the parameter vector ∆a is complex in general, although

it can be taken to be real when all the data are real. In certain circumstances it is
appropriate to restrict ∆a to be real, even though the data are complex. For example,
a 2× 2 Hermitian perturbation ∆A can be parametrized

∆A =

[
∆a1 ∆a2 −∆a3i

∆a2 +∆a3i ∆a4

]
, ∆ak ∈ R, k = 1: 4.

The backward error derivation must then be modified by taking real and imaginary
parts in (4.4) to obtain a real system, of which a minimal norm solution is required.
The quantities derived in Theorems 4.1 and 4.2 are now upper bounds for the condition
numbers; the bounds are attained for p = 1 and therefore are within a factor t of being
attained for other values of p.

5. Numerical experiments. To illustrate our results we present some numeri-
cal examples. All computations were carried out in Matlab, which has unit roundoff
u = 2−53 ≈ 1.1 × 10−16. In each example we used the QZ algorithm [23] to com-
pute the eigensystem. Since Matlab’s implementation of the QZ algorithm does
not provide left eigenvectors, we computed left eigenvectors using inverse iteration.
Condition numbers were evaluated using the computed eigenvalues and eigenvectors
in place of the exact ones.

The first example is the problem with

A =

[
0.1 0.2
0.3 0.4

]
, B =

[
0.1 0.1
0
√
u

]
,

which is attributed to Wilkinson by Moler and Stewart [23]. One eigenvalue is close to
−2 and the other is of order 107. The eigenpair corresponding to the small eigenvalue
is found to be well conditioned. For the large eigenvalue and its eigenvector we find
that, with E = A and F = B and using the 2-norm,

κ(λ) = 1.9× 107, cond(λ) = 1.0× 101,

for g = x: κ(x) = 8.5× 1013, cond(x) = 6.0× 1013,

for g = y: κ(x) = 1.0× 101, cond(x) = 8.0× 100.

This example shows that an eigenvalue may have different sensitivity with respect to
normwise and componentwise perturbations and that the sensitivity of an eigenvector
can depend strongly on how it is normalized.

The second example concerns symmetric structure in A and B. The matrix A is
the ipjfact matrix (aij = (i + j)!) from The Test Matrix Toolbox [19] but with its
rows and columns in reverse order, and B is the Pascal matrix from the same source;
both matrices are positive definite.

508 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

Table 5.1
Results for symmetric 8× 8 A and B.

Backward Condition
error λ x

Unstructured normwise (η, κ) 2.1e-17 4.2e15 3.5e15

Structured normwise (ω, cond) 2.1e-17 5.2e15 4.2e15
Unstructured componentwise (ω, cond) 1.5e-8 1.6e6 2.6e6

Structured componentwise (ω, cond) 3.8e-8 4.4e5 7.7e5

Table 5.2
Results for Toeplitz 16× 16 A and B.

Backward Condition
error λ x

Unstructured normwise (η, κ) 2.5e-17 5.2e5 4.6e6

Structured normwise (ω, cond) 8.3e-17 3.7e5 5.7e6
Unstructured componentwise (ω, cond) 5.4e-14 6.6e1 4.3e2

Structured componentwise (ω, cond) 4.5e-12 5.6e0 7.0e1

In the third example we have Toeplitz A and B. A Toeplitz matrix T ∈ Cn×n
can be defined by the sequence tn1, tn−1,1, . . . , t11, t12, . . . , t1n. With this notation, A
is defined by 1, 22, . . . , (2n− 1)2, and B is defined by 10−8(1, α, α2, . . . , α2n−1), where
α = 108/(2n−1), except that the diagonal of B is multiplied by −1.

In both examples we computed the eigenvalue with smallest real part (which
happens to be real in both cases) and the corresponding left and right eigenvectors.
The choice of the various parameters is summarized as follows:

• Normalization for eigenvector condition numbers: g = y (left eigenvector).
• Normwise backward error η and condition numbers κ: 2-norm with E = A

and F = B.
• Componentwise backward error ω and condition numbers cond: E = |A| and
F = |B|.
• Structured backward error ω and condition number cond: g = ‖a‖2, giving

“normwise” measure, and g = |a|, giving “componentwise” measure, using
Σ = diag(‖x‖p) and p = 2.

The results are shown in Tables 5.1 and 5.2. Several features are worth not-
ing. For the symmetric problem we see that the componentwise backward error is
much larger than the unit roundoff and that requiring symmetry of the backward
perturbations has little effect on this backward error (we know the same is true of the
normwise backward error by Theorem 2.3). On the other hand, the eigenvalue and
eigenvector are much less sensitive to componentwise perturbations than to normwise
ones, and again a restriction to symmetric perturbations makes little difference. For
the Toeplitz problem, requiring Toeplitz perturbations increases the componentwise
backward error by two orders of magnitude and reduces the componentwise condition
numbers by an order of magnitude.

In the examples above, the matrix M in (4.4) was always of full rank. In similar
experiments with A and B both having symmetric Toeplitz structure we found that M
was usually numerically rank-deficient and that the system (4.4) did not always have
a solution (more precisely, the minimal-norm least-squares solution did not always
have a small residual, so that the structured backward error was sometimes infinite).
This behavior appears to be due to symmetries in the eigenvectors. It is known that
any eigenvector x of a symmetric Toeplitz matrix with distinct eigenvalues satisfies

STRUCTURED BACKWARD ERROR AND CONDITION 509

Table 5.3
Condition numbers for quadratic eigenvalue problem with data (5.1).

Unstructured Structured
Normwise 2.0e12 1.0e8

Componentwise 4.0e0 1.0e0

either Jx = x or Jx = −x, where J is the identity matrix with its columns in
reverse order [9]. It is easy to verify that, for such an x, the matrix [U1x, . . . , Unx]
has some repeated rows (up to sign) and so is rank-deficient, where U1, . . . , Un are
the pattern matrices corresponding to symmetric Toeplitz structure in an n× n real
matrix. Similar symmetries appear to hold for the generalized eigenvalue problem,
causing numerical rank-deficiency of M for “good” approximate eigenvectors x̃.

Finally, we consider the generalized eigenvalue problem (1.2) corresponding to
the quadratic eigenvalue problem (1.1), with

C =

[
1 0
0 1

]
, D =

[
1 1
0 1

]
, E =

[
10−4 1

0 10−8

]
.(5.1)

We report in Table 5.3 condition numbers for the eigenvalue λ = −1.0001× 10−4 (to
five significant figures). The parameter vector is a = [vec(C)T vec(D)T vec(E)T]T ,
where vec stacks the columns of a matrix into one long vector. For the normwise
condition number we take g = [‖C‖2eT , ‖D‖2eT , ‖E‖2eT]T , where e ∈ R2 is the
vector of 1s, and, for the componentwise condition number, g = |a| and p = 1. We
see that the normwise condition number for the quadratic eigenvalue problem is four
orders of magnitude smaller than the condition number we obtain by ignoring the
structure in the corresponding generalized eigenvalue problem. The componentwise
condition numbers are much smaller than the normwise ones, and the structured
condition number reveals perfect conditioning.

There are many interesting open problems in the areas of establishing the exis-
tence of finite structured backward errors and bounding the difference between struc-
tured and unstructured backward errors and condition numbers.

Appendix. The following result generalizes analysis of Geurts [15], Chaitin-
Chatelin and Frayssé [6, Section 4.4.2], and Chatelin [7, Section 4.2.1] for the standard
eigenproblem.

Theorem A.1. Let A,B ∈ Cn×n. Let λ be a simple eigenvalue and x the
corresponding eigenvector of the pair (A,B) and let

(A+∆A)(x+∆x) = (λ+∆λ)(B +∆B)(x+∆x).

Normalize x and x+∆x by

g∗Bx = g∗B(x+∆x) = 1,(A.1)

where g is a given vector (it is assumed that g∗Bx 6= 0). For sufficiently small ∆A
and ∆B there is a unique ∆x which can be expressed, to first order, as

∆x = −V (W ∗(A− λB)V)−1W ∗(∆A− λ∆B)x,(A.2)

where the full rank matrices V,W ∈ Cn×(n−1) are chosen so that g∗BV = 0 and
W ∗Bx = 0.

510 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

Proof. For sufficiently small ∆A and ∆B, λ + ∆λ is a simple eigenvalue of the
pair (A+∆A,B +∆B) [30, Thm. VI.2.1], making ∆x unique when normalized as in
(A.1).

We have

∆Ax+A∆x = λ∆Bx+ λB∆x+∆λBx,(A.3)

where this and all subsequent equations include first order terms only. Premultiplying
by W ∗ gives

W ∗(A− λB)∆x = −W ∗(∆A− λ∆B)x.(A.4)

Define the matrices M = [x V], N = [g W]. We show that M is nonsingular.
Note first that

g∗BM = [g∗Bx g∗BV] = [1 0] = eT1 .(A.5)

Hence if Mt = 0 then 0 = g∗BMt = t1, and then 0 = Mt = V t(2:n), which implies
t(2:n) = 0. A similar proof shows that N is nonsingular.

Write ∆x = Mz. Then

W ∗(A− λB)∆x = W ∗(A− λB) [x V] z

= W ∗ [0 (A− λB)V]

[
z1

z2

]
= W ∗(A− λB)V z2.(A.6)

Now we show that the matrix W ∗(A− λB)V ∈ C(n−1)×(n−1) is nonsingular.

We have

N∗(A− µB)M =

[
g∗

W ∗

]
[(λ− µ)Bx (A− µB)V]

=

[
λ− µ g∗(A− µB)V

0 W ∗(A− µB)V

]
.

Hence det(N∗) det(A−µB) det(M) = (λ−µ) det(W ∗(A−µB)V). Since N and M are
nonsingular and λ is a simple eigenvalue of (A,B) it follows that det(W ∗(A−µB)V)
is nonzero for µ = λ, as required.

From (A.6) and (A.4) we obtain z2 = −(W ∗(A − λB)V)−1W ∗(∆A − λ∆B)x.
To determine the scalar z1 we note that, from the normalization condition (A.1) and
(A.5),

0 = g∗B∆x = g∗BMz = eT1 z = z1.

Hence ∆x = V z2, as required.

The matrices V and W appearing in (A.2) can be explicitly constructed as follows.
Let QTv B

∗g = Rv = ±‖B∗g‖2e1 and QTwBx = Rw = ±‖Bx‖2e1 be QR factorizations.
Then we can take V = Qv(:, 2:n) and W = Qw(:, 2:n).

Note that the matrix V (W ∗(A − λB)V)−1W ∗ is independent of the particular
choice of V and W , since ∆x in (A.2) is unique for sufficiently small ∆A and ∆B.

STRUCTURED BACKWARD ERROR AND CONDITION 511

REFERENCES

[1] M. F. Anjos, S. J. Hammarling, and C. C. Paige, Solving the Generalized Symmetric Eigen-
value Problem, manuscript, 1992.

[2] S. G. Bartels and D. J. Higham, The structured sensitivity of Vandermonde-like systems,
Numer. Math., 62 (1992), pp. 17–33.

[3] R. M. Beam and R. F. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz
matrices, SIAM J. Sci. Comput., 14 (1993), pp. 971–1006.

[4] P. Benner, V. Mehrmann, and H. Xu, A New Method for Computing the Stable Invari-
ant Subspace of a Real Hamiltonian Matrix, Preprint SFB393/97-01, Fak. f. Mathematik,
Technische Universität Chemnitz-Zwickau, Chemnitz, FRG, 1997; J. Comp. Math. Appl.,
to appear.

[5] J. R. Bunch, J. W. Demmel, and C. F. Van Loan, The strong stability of algorithms for
solving symmetric linear systems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 494–499.

[6] F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations, SIAM,
Philadelphia, PA, 1996.

[7] F. Chatelin, Eigenvalues of Matrices, Wiley, Chichester, UK, 1993.
[8] J. K. Cullum and R. A. Willoughby, A QL procedure for computing the eigenvalues of

complex symmetric tridiagonal matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 83–
109.

[9] G. Cybenko, On the eigenstructure of Toeplitz matrices, IEEE Trans. Acoust., Speech, Signal
Processing, ASSP-32 (1984), pp. 918–921.

[10] A. S. Deif, Realistic a priori and a posteriori error bounds for computed eigenvalues, IMA J.
Numer. Anal., 9 (1990), pp. 323–329.

[11] Z. Drmac̆, A tangent algorithm for computing the generalized singular value decomposition,
SIAM J. Numer. Anal., 35 (1998), pp. 1804–1832.

[12] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-
Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.

[13] L. Elsner, I. Koltracht, M. Neumann, and D. Xiao, On accurate computations of the
Perron root, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 456–467.

[14] V. Frayssé and V. Toumazou, A note on the normwise perturbation theory for the regular
generalized eigenproblem Ax = λBx, Numer. Linear Algebra Appl., 5 (1998), pp. 1–10.

[15] A. J. Geurts, A contribution to the theory of condition, Numer. Math., 39 (1982), pp. 85–96.
[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University

Press, Baltimore, MD, 1989.
[17] D. J. Higham and N. J. Higham, Backward error and condition of structured linear systems,

SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162–175.
[18] N. J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in

Mathematics of Computation 1943–1993: A Half Century of Computational Mathematics,
W. Gautschi, ed., Proc. Sympos. Appl. Math. 48, AMS, Providence, RI, 1994, pp. 49–77.

[19] N. J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report
No. 276, Manchester Centre for Computational Mathematics, Manchester, England, 1995.

[20] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
[21] B. Kågström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular

matrix pair (A,B) and condition estimation: Theory, algorithms and software, Numer.
Algorithms, 12 (1996), pp. 369–407.

[22] W. Kahan, B. N. Parlett, and E. Jiang, Residual bounds on approximate eigensystems of
nonnormal matrices, SIAM J. Numer. Anal., 19 (1982), pp. 470–484.

[23] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

[24] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–
409.

[25] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980. Reprinted by SIAM, Philadelphia, PA, 1998.

[26] J. L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear
system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548.

[27] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press,
Manchester, and Halsted Press, New York, 1992.

[28] A. Smoktunowicz, The Strong Stability of Algorithms for Solving the Symmetric Eigenprob-
lem, manuscript, 1995.

512 DESMOND J. HIGHAM AND NICHOLAS J. HIGHAM

[29] G. W. Stewart, Perturbation theory for the generalized eigenvalue problem, in Recent Ad-
vances in Numerical Analysis, C. de Boor and G. H. Golub, eds., Academic Press, New
York, 1978, pp. 193–206.

[30] G. W. Stewart and Ji-guang Sun, Matrix Perturbation Theory, Academic Press, London,
1990.

[31] P. M. Van Dooren, Structured linear algebra problems in digital signal processing, in Numer-
ical Linear Algebra, Digital Signal Processing and Parallel Algorithms, G. H. Golub and
P. M. Van Dooren, eds., NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci. 70, Springer-
Verlag, Berlin, 1991, pp. 361–384.

[32] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

ACCURATE SYMMETRIC INDEFINITE
LINEAR EQUATION SOLVERS∗

CLEVE ASHCRAFT† , ROGER G. GRIMES† , AND JOHN G. LEWIS†

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 513–561

Abstract. The Bunch–Kaufman factorization is widely accepted as the algorithm of choice for
the direct solution of symmetric indefinite linear equations; it is the algorithm employed in both
LINPACK and LAPACK. It has also been adapted to sparse symmetric indefinite linear systems.

While the Bunch–Kaufman factorization is normwise backward stable, its factors can have un-
usual scaling, with entries bounded by terms depending both on ‖A‖ and on κ(A). This scaling,
combined with the block nature of the algorithm, may degrade the accuracy of computed solutions
unnecessarily. Overlooking the lack of a triangular factor bound leads to a further complication in
LAPACK such that the LAPACK Bunch–Kaufman factorization can be unstable.

We present two alternative algorithms, close cousins of the Bunch–Kaufman factorization, for
solving dense symmetric indefinite systems. Both share the positive attributes of the Bunch–Kaufman
algorithm but provide better accuracy by bounding the triangular factors. The price of higher
accuracy can be kept low by choosing between our two algorithms. One is appropriate as the
replacement for the blocked LAPACK Bunch–Kaufman factorization; the other would replace the
LINPACK-like unblocked factorization in LAPACK.

Solving sparse symmetric indefinite systems is more problematic. We conclude that the Bunch–
Kaufman algorithm cannot be rescued effectively in the sparse case. Imposing the constraint of
bounding the triangular factors leads naturally to one particular version of the Duff–Reid algorithm,
which we show gives better accuracy than Liu’s sparse variant of the Bunch–Kaufman algorithm.
We extend the work of Duff and Reid in two respects that often provide higher efficiency: a more
effective procedure for finding pivot blocks and a stable extension to pivot blocks of size larger than
two.

Key words. dense and sparse matrices, symmetric indefinite matrices, diagonal pivoting, block
pivoting, matrix inertia

AMS subject classifications. 65F05, 65F50, 15A06, 15A12

PII. S0895479896296921

1. Introduction. Our goal is to solve linear systems Ax = b efficiently and
accurately when A is a symmetric indefinite matrix. There are three well-known al-
gorithms for solving this problem when A is a dense matrix: the Bunch–Kaufman
algorithm [8], the Bunch–Parlett algorithm [9], and Aasen’s algorithm [1]. The most
recent of these, the Bunch–Kaufman algorithm, is the most commonly used; it has
been chosen for both LINPACK and LAPACK. For this reason we primarily address
the Bunch–Kaufman algorithm, although we will have observations on the other al-
gorithms.

The Bunch–Kaufman algorithm factors A as PAPT = LDLT , where L is a
unit lower triangular matrix1 and D is block diagonal, composed solely of 1× 1 and
2× 2 blocks. The work required is only slightly more than for the Cholesky decom-
position of a positive definite symmetric matrix.

∗Received by the editors January 3, 1996; accepted for publication (in revised form) by J. W. H.
Liu May 17, 1997; published electronically December 11, 1998.

http://www.siam.org/journals/simax/20-2/29692.html
†Applied Research and Technology, The Boeing Company, Seattle, WA 98124-2207 (cleve@

redwood.rt.cs.boeing.com, roger.g.grimes@boeing.com, john.g.lewis@boeing.com).
1Bunch and Kaufman describe an MDMT factorization where M can be chosen to be either

lower or upper triangular. For convenience we use the lower triangular variant exclusively in this
paper.

513

514 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

Accuracy of triangular factorization solvers is commonly addressed by Wilkinson’s
backward error analysis [32]. First, one shows that the computed LDLT factorization
is the exact factorization of a perturbed matrix; that is,

LDLT = A+ ∆A,

where the matrix ∆A accounts for the rounding errors that occurred during the fac-
torization. A second step is needed to show that the computed solution x exactly
solves

b = (L+ ∆L)(D + ∆D)(LT + ∆LT)x.

The matrices ∆L,∆D, and ∆LT reflect the usually smaller accumulation of errors
that occur during each of the three solution steps. Normally we expect each to be a
small relative perturbation. For example, Wilkinson’s analysis of triangular systems
shows that |∆L| ≤ nε|L|. Assuming that ∆L,∆D, and ∆LT are O(ε) terms and
that O(ε2) terms can be ignored, the separate analyses can be combined into a single
backward error equation

b =
(
A+ ∆A+ ∆L ·D · LT + L ·∆D · LT + L ·D ·∆LT)x.

Usually the most difficult aspect of analyzing factorization algorithms is bounding
∆A. Bunch and Kaufman [8] followed Wilkinson’s elegant approach. The kth step of
the Bunch–Kaufman factorization, applied to the reduced matrix A(k−1), results in a
new reduced matrix of lower order. The selection of pivots in the Bunch–Kaufman
factorization was exquisitely crafted to bound the entries in the new reduced matrix
beneath a quantity that depends primarily on the magnitude of the largest entries in
A itself. The care with which the pivot selection algorithm was developed is evident
from the details needed for the proof.

Bunch and Kaufman, like all of their contemporaries, addressed only the reduced
matrix. Unfortunately a bound on the reduced matrix is not sufficient to show that
either the backward perturbation matrix ∆A is small or the solution perturbation
terms are small. The issue is that the Bunch–Kaufman algorithm is a block algorithm.
That bounding the reduced matrix of a blocked algorithm does not bound ∆A is a
recent observation by Demmel, Higham, and Schreiber [10, 11, 24]. The proof of
stability in [8] is therefore incomplete.

The difficulty caused by blocking can be illustrated by considering a sequence of
operations that arise in proving that ∆A and solution error terms are small. Anal-
ysis of a 1× 1 elimination step uses the fact that w = aij/dk, . . . , z = w × dk
results in z being a small relative perturbation of aij . In contrast an elimination
step with a 2× 2 block Dk:k+1 results in a corresponding sequence of operations
W =

[
ai1 ai2

]
D−1
k:k+1, . . . , Z = WDk:k+1. We cannot assert without further anal-

ysis that we have better than κ(Dk:k+1)ε relative error in Z.
There is a simple way to prove stability for most symmetric indefinite factor-

ization algorithms, in particular for the Bunch–Parlett algorithm. An extension of
the arguments in [11] requires only that ‖L‖‖D‖‖LT ‖ ≤ c1‖A‖ for some constant c1
and that 2× 2 systems of equations be solved in a normwise backward stable man-
ner. It follows from these two conditions, for example, that ‖Z − [ai1 ai2

] ‖ ≤
c1c2ε ‖

[
ai1 ai2

]‖, where c2ε is the small constant from the stability analysis of
2× 2 linear equations. An alternative norm condition is ‖L‖ ≤ c3; a proof of backward

ACCURATE SYMMETRIC INDEFINITE SOLVERS 515

stability with this condition is given in Appendix B. The Bunch–Parlett algorithm
satisfies this norm condition.

Solving 2× 2 systems of equations in a normwise backward stable manner can
be addressed simply by using Gaussian elimination with partial or complete pivoting.
More traditionally, explicit inversion of Dk:k+1 or Cramer’s rule has been used, which
satisfies the backward stability property only if additional conditions, such as constant
bounded condition number, are available. The more important issue is obtaining a
bound ‖L‖‖D‖‖LT ‖ ≤ c1‖A‖; finding algorithms that produce such bounds is the
major theme of this paper.

When the product of norms condition holds, as in LU , QR, or Cholesky factoriza-
tions, proofs that the perturbation terms in the backward error analysis are O(‖A‖)ε
are simple. This condition does not hold for the Bunch–Kaufman factorization. The
entries in the diagonal blocks of the Bunch–Kaufman factorization are entries in re-
duced matrices, which by the bound on reduced matrix growth are less than a small
multiple of ‖A‖. An O(‖A‖) bound for the product of norms of the factors requires
that the Bunch–Kaufman algorithm impose a bound near unity on ‖L‖; unfortunately
it does not. We will demonstrate in section 2.2 that at best we get a weak bound of
κ(A) on ‖L‖.

Bounding the factors is not essential, but stability without a bound near unity
on ‖L‖ requires that large entries in L always be scaled by small entries in D. The
unusual aspects of the Bunch–Kaufman algorithm ensure precisely this. However,
the proof in [8] is incomplete. Higham [24] has recently given a complete analy-
sis of the Bunch–Kaufman algorithm that shows that all of the perturbation terms
∆A,∆L · D · LT , L · ∆D · LT , and L · D · ∆LT are appropriately small, even in
floating point arithmetic. A crucial part of his analysis requires that the solution of
2× 2 systems using 2× 2 blocks of D be componentwise backward stable. This is
true for the 2× 2 blocks from the Bunch–Kaufman factorization when the solution
algorithm is the scaled Cramer’s rule scheme used in LINPACK and LAPACK or Gaus-
sian elimination with partial pivoting. The Bunch–Kaufman algorithm is backward
stable when 2× 2 systems are solved with one of these algorithms.

Nonetheless, the solutions obtained without a bound on ‖L‖ can be less accurate
than they should be. This has not been observed in the past, perhaps because of two
historical biases. We may neglect error in triangular solves because Wilkinson [32]
observed that triangular solves often behave much better than the error bounds. We
may also neglect the triangular solves because the backward error equation attributes
an n‖A‖ε relative backward error to the factorization error term ∆A. In most cases
the factorization error is the dominant term.

But more is known about Wilkinson’s observation. A special case of an analysis
by Higham [22, 25] is that there is a satisfactory forward error analysis, independent of
the condition number of L, for unit triangular matrices where all off-diagonal entries
are bounded by one. Solves with such triangular matrices should behave better than
the standard error bound. Similar conditions apply to triangular matrices produced
by several standard decompositions. The triangular matrices produced by the Bunch–
Kaufman algorithm can be arbitrarily far from satisfying Higham’s condition. They
do not have to behave well.

The problem with the Bunch–Kaufman algorithm is that large entries in L can
create situations in which the desired results are computed as the difference of much
larger quantities. Consider the 5× 5 matrix A = LDLT , where

516 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

L =

1
1 1
1 0 1

1 − 20
13 − 8

17 1

1 6
13 × 106 − 1

17 0 1

 ,

D =

1

1
3 × 10−19 6

7 × 10−7

6
7 × 10−7 − 3

13 × 10−6

− 4
17 × 10−5 2

7
2
7

1
300

 .

All entries of the product LDLT = A satisfy .998 < aij < 1.27, but by construction
L has large entries. We take b as Ax̂, where x̂ =

[
1 1/3 1/7 2/3 4/13

]
. The

second entry of the exact solution is 1/3, but part of the computation of this entry of
the floating point solution is

(
1.42011 . . .× 105

)− (6

13
× 106

)
× 0.307692

Cancelation yields only eight correct digits in IEEE double precision.
Is this important? This example is clearly contrived. The computed result is

within the uncertainty suggested by κ(A) ≈ 4.5 × 108. Would the large entries in L
make a difference in real applications, and why should we expect to be able to do
better?

We first encountered difficulties in solving symmetric indefinite systems accurately
in a sparse nonlinear optimization algorithm, in which the indefinite matrices are
the so-called KKT matrices. The solutions to poorly conditioned systems led to
convergence difficulties in the optimization code. Simple, incomplete fixes to the
factorization scheme that forced a tight bound on ‖L‖ solved the convergence problem.
These matrices were large and sparse, generated by a black box code, resulting in
stranger scalings than one might expect. Section 2.7.1 contains simple prescriptions
for creating small dense problems for which a Bunch–Kaufman linear equation solver
gives significantly lower accuracy than our alternatives.

The Bunch–Kaufman mixture of large and small quantities has subtle dangers
beyond somewhat inaccurate solutions. A seemingly minor change to the factor-
ization procedure for the LAPACK implementation2 makes the entire factorization
potentially unstable in cases where ‖L‖ is large (see Appendix A). The problem here
again is that small results are computed as the difference of much larger terms, yet
the change is really a substitution of a spectral or singular value decomposition for
solving 2× 2 systems instead of Cramer’s rule. One would have expected this to be
more stable, but it does not provide the needed componentwise backward stability
condition. Neither does Gaussian elimination with complete pivoting, which in this
context costs only one more comparison than partial pivoting. Implementations using
complete pivoting are unstable, while partial pivoting is provably stable. (Apparently
using QR or LQ factorizations for the 2× 2 systems is satisfactory.) Similar problems

2The comments on LAPACK apply only to versions 2.0 and earlier.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 517

afflict the LAPACK matrix inversion routine. The Bunch–Kaufman algorithm is on
the edge of instability, but we can easily avoid its dangers by bounding the norms of
the factors.

The main theme of this paper is simple: bound ‖L‖. We present general solutions,
which we obtain without a large penalty in efficiency. Our solutions address the dense
problem and the sparse problem separately. The solutions are quite different because
the constraints of sparsity prevent us from applying the dense solution to the sparse
problem. The reader who is interested in only one of these problems will find that
the two solutions are largely independent of one another. However, the analysis of
the dense problem is important in motivating why we reject the Bunch–Kaufman
algorithm for sparse problems.

The dense problem is presented in section 2. In section 2.1 we review the Bunch–
Kaufman algorithm. Section 2.2 provides a restatement of the reduced matrix bound
from [8], which we augment with analyses showing that L is not bounded in the
usual ways. We introduce the bounded Bunch–Kaufman algorithm, a refinement of
the Bunch–Kaufman algorithm that bounds the size of entries in L, in section 2.4.
The refinement has a cost in efficiency, but the additional time usually is quite small
compared with the total CPU time of the LINPACK or the unblocked LAPACK algo-
rithm. An examination of the faster blocked algorithm in LAPACK leads to a second
new algorithm, a refinement of the Bunch–Parlett algorithm. The fast Bunch–Parlett
algorithm is presented in section 2.5. This algorithm often requires less work than the
current LAPACK implementation and has comparable speed yet avoids the inaccuracy
problems of LAPACK. The performance of both of the new algorithms depends in part
on the numerical entries of the matrices being factored. We provide a set of examples
that produce the worst cases for these algorithms in section 2.6. These bad cases are
followed by a demonstration of the effectiveness, both accuracy and speed, of the new
algorithms on other matrices; this is the subject of section 2.7. Finally, we discuss the
alternative LTLT factorization of Aasen in section 2.8 and give summary conclusions
for the dense problem in section 2.9.

We consider sparse algorithms in section 3. Our discussion, like our experience,
begins with Liu’s sparse variant of the Bunch–Kaufman algorithm [29]. Liu’s algo-
rithm is presented in section 3.1, where we also give an elementary discussion of the
constraints imposed by the goal of preserving sparsity. In section 3.2 we show that
Liu’s algorithm shares the defect of not bounding ‖L‖. In fact, compromises made for
sparsity exacerbate the problem considerably. We show that sparsity also prevents
us from applying the pivoting strategy that solved the dense problem. In section 3.3
we turn to a different approach, an explicit block factorization. Where the Bunch–
Kaufman algorithms achieve stability bounds in an implicit manner, by placing simple
constraints on the relative sizes of the entries in allowable pivot blocks, we turn in-
stead to inexpensive, but explicit, tests. We compare our explicit tests to the similar
tests used in the sparse algorithm by Duff and Reid [14, 16, 17, 18] in section 3.4. Our
tests match the later versions of the Duff–Reid algorithm, although our motivation
differs from Duff and Reid. Our new framework provides new arguments for use of
the revised Duff–Reid algorithm and completes a proof of stability. In section 3.5
we present a new strategy for determining which potential pivots to test, a strategy
that emphasizes 2 × 2 pivots and that reduces the extra fill caused by pivoting for
stability. We follow this with a discussion of some strategies to identify larger pivot
blocks, from which we hope to gain additional speed from use of block operations.
The algorithm in section 3.6 is a much simpler block algorithm than those developed

518 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

from Bunch–Kaufman-like algorithms. We take a short detour to discuss the difficulty
of developing a sparse LTLT factorization in section 3.7. In section 3.8 we present
numerical results on sparse examples. Finally, we close with a brief discussion on the
difficulties of developing a sparse variant of Aasen’s algorithm, which we have not
pursued.

2. Implicitly stable algorithms for dense matrices. Aasen’s algorithm, the
Bunch–Kaufman algorithm, and the Bunch–Parlett algorithm all provide stable fac-
torizations of symmetric indefinite matrices. The Bunch–Kaufman algorithm and
the Bunch–Parlett algorithm both factor A as PAPT = LDLT , where L is trian-
gular and D is block diagonal, composed solely of 1× 1 and 2× 2 blocks. Aasen’s
algorithm computes an LTLT factorization, where T is symmetric tridiagonal. The
Bunch–Kaufman algorithm has advantages over the other two algorithms in that

• it requires O(n2) comparisons, whereas the Bunch–Parlett algorithm requires
O(n3);
• it usually requires fewer interchanges of columns than the Bunch–Parlett

algorithm;
• it is noticeably easier to compute the matrix inertia and solve linear equations

with its block diagonal factor than the tridiagonal factor of Aasen’s algorithm;
• its outer-product form fits sparse data structures better than the inner-

product form of Aasen’s algorithm does.

Unfortunately the Bunch–Kaufman algorithm has worse accuracy than its two com-
petitors. Our goal, which we achieve in two different ways, is an algorithm that retains
most of the advantages of the Bunch–Kaufman algorithm and has superior accuracy.
We begin with a review of the Bunch–Kaufman algorithm.

2.1. The Bunch–Kaufman pivoting strategy. The Bunch–Kaufman algo-
rithm factors A as PAPT = LDLT , where L is triangular and D is a matrix of
1× 1 and 2× 2 diagonal blocks. The schematic matrix in Figure 2.1 is used to illus-
trate the reduction step. Here ar1 is the off-diagonal entry of largest magnitude in
the first column of the current reduced matrix A(k−1), with γ1 = |ar1|; γr ≥ γ1 is the
magnitude of the largest off-diagonal entry in the rth column (or row). The Bunch–
Kaufman pivoting strategy (technically, Algorithm A of [8]) is given in Figure 2.2.

a11 · · ar1 · ·
· · · · · ·
· · · · · ·
ar1 · · arr · ·
· · · · · ·
· · · · · ·

γ1

γr

γ1 γr

Fig. 2.1. Bunch–Kaufman pivot entries.

The if then else structure should be interpreted in the normal programming lan-
guage sense; the tests should proceed in the order given in order to obtain the required
stability bound. (Case 3 is independent of cases 1 and 2, but the specified order has
the advantage of reducing the number of interchanges.) The parameter α is usually

ACCURATE SYMMETRIC INDEFINITE SOLVERS 519

if γ1 = 0 then
{0}: nothing necessary for column k

else if |a11| ≥ αγ1 then
{1}: use a11 as a 1× 1 pivot

else if |a11|γr ≥ αγ2
1 then

{2}: use a11 as a 1× 1 pivot
else if |arr| ≥ αγr then

{3}: use arr as a 1× 1 pivot (interchange columns)
else

{4}: use

[
a11 ar1
ar1 arr

]
as a 2× 2 pivot (interchanging columns)

end if

Fig. 2.2. Bunch–Kaufman pivot selection.

chosen as α = (1 +
√

17)/8. This choice makes the bound on reduced matrix growth
for a 2× 2 pivot equal the bound on maximum reduced matrix growth for two con-
secutive 1× 1 pivots and thereby minimizes the worst case growth for an arbitrary
selection of 1× 1 and 2× 2 pivots.

2.2. Bounds for the Bunch–Kaufman pivoting strategy. The seminal
Bunch–Kaufman paper [8] presents a classical backward analysis for the Bunch–
Kaufman algorithm, deriving an upper bound on the growth of elements in the reduced
matrices A(k). We replicate this analysis to show how carefully the Bunch–Kaufman
algorithm controls the interaction of the magnitudes of different components of the
factorization. We extend the analysis to show that the Bunch–Kaufman algorithm
does not bound the size of entries in the factor L below any constant multiple of ‖A‖.

In a typical step of the factorization, after eliminating k − 1 columns, we pro-
ceed from the reduced matrix A(k−1) to A(k) with a 1× 1 pivot or to A(k+1) with a
2× 2 pivot. Consider first a 1× 1 pivot with the first column of A(k−1). (For nota-
tional simplicity we include the superscript on the reduced matrix only for the entries
of the new reduced matrix.) Let the entries of the triangular factor L of A(k−1) be
denoted by lij . Then

a
(k)
ij = aij − ai1a1j

a11
, i > 1, j > 1,

li1 =
ai1
a11

, i > 1.

A 1× 1 pivot with column r of A(k−1) is similar. A 2× 2 pivot with columns 1 and
r of A(k−1) results in

a
(k+1)
ij = aij −

[
ai1 air

] [a11 ar1
ar1 arr

]−1 [
a1j

arj

]
= aij − 1

(a11arr − a2
r1)

[
ai1 air

] [arr −ar1
−ar1 a11

] [
a1j

arj

]
= aij − a11airarj − ar1(ai1arj + aira1j) + arrai1a1j

a11arr − a2
r1

, i 6= 1, r, j 6= 1, r,

520 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

and [
li1 lir

]
=
[
ai1 air

] [a11 a1r

a1r arr

]−1

.

Componentwise, the new entries of L are

li1 =
ai1arr − ar1air
a11arr − a2

r1

, i 6= 1, r,

lir =
a11air − ar1ai1
a11arr − a2

r1

, i 6= 1, r.

(We assume that exchanges involving rows and columns 1 and r of A take place after
the reduction step.)

Let µ be the magnitude of the largest entry in A(k−1) and µ′ the maximum
magnitude of any entry in the new reduced matrix. The Bunch–Kaufman algorithm
guarantees that µ′ increases only slightly above µ. We also want to monitor the size
of entries allowed in L and the conditioning of individual blocks. We examine the
computation for each of the four pivot choices.

• Case 1. a11 is a 1× 1 pivot, with |a11| ≥ αγ1. It follows that

a
(k)
ij = aij − ai1a1j

a11
,

|a(k)
ij | ≤ |aij |+

|ai1a1j |
|a11| ≤ |aij |+ γ1

|ai1|
|a11| ,

µ′ ≤ µ+ γ1
γ1

|a11| ≤ µ
(

1 +
1

α

)
,

and

li1 =
ai1
a11

⇒ |li1| ≤ 1

α
.

We obtain a relative growth bound for A(k) and an absolute bound for L.
• Case 2. a11 is a 1× 1 pivot, with |a11|γr ≥ αγ2

1 , from which follows γ1

|a11| ≤(
γr
γ1

) (
1
α

)
. Then

a
(k)
ij = aij − ai1a1j

a11
,

|a(k)
ij | ≤ µ+

γ2
1

|a11| ,

µ′ ≤ µ+
γr
α
≤ µ

(
1 +

1

α

)
,

and

li1 =
ai1
a11

⇒ |li1| ≤ γ1

|a11| ≤
(
γr
γ1

)(
1

α

)
.

Here is the problem. Although growth in the reduced matrix is bounded exactly
as in case 1, there is no upper bound on γr/γ1, and so there is no bound on
the size of entries in L. We will show in section 2.7.1 how to create examples
where elements of L become arbitrarily large.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 521

• Case 3. arr is a 1× 1 pivot, with |arr| ≥ αγr. As in case 1,

a
(k)
ij = aij − airarj

arr
, i, j 6= r,

|a(k)
ij | ≤ µ+ γr

γr
|arr| ,

µ′ ≤ µ
(

1 +
1

α

)
,

and, for i 6= r,

lir =
air
arr

⇒ |lir| ≤ 1

α
.

Again, we obtain satisfactory bounds for A(k) and L.
• Case 4. [a11

ar1

ar1
arr

] is a 2× 2 pivot. Then

a
(k+1)
ij = aij− a11airarj − ar1(ai1arj + aira1j) + arrai1a1j

a11arr − a2
r1

, i 6= 1, r, j 6= 1, r.

By case 2, |a11γr| < αγ2
1 . By case 3, |arr| < αγr. Together these imply that

|a11arr| < α2γ2
1 . In turn, |a11arr−γ2

1 | ≥ γ2
1−|a11arr| > γ2

1(1−α2). Therefore

|a(k+1)
ij | ≤ |aij |+

∣∣∣∣a11airarj − ar1(ai1arj + aira1j) + arrai1a1j

a11arr − γ2
1

∣∣∣∣
< µ+

|a11|γ2
r + γ1(γ1γr + γrγ1) + |arr|γ2

1

γ2
1(1− α2)

.

The conditions |arr| < αγr and |a11|γr < αγ2
1 from the failure of cases 2 and

3 come into play again to simplify the bound on |aij | as

|a(k+1)
ij | < µ+

γ2
1(αγr + 2γr + αγr)

γ2
1(1− α2)

,

µ′ ≤ µ
(

1 +
2(1 + α)

1− α2

)
= µ

(
1 +

2

1− α
)
.

Now consider the entries li1 and lir of the two new columns of L, with i 6= 1, r:

li1 =
ai1arr − ar1air
a11arr − a2

r1

,

|li1| < γ1(αγr) + γ1γr
γ2

1(1− α2)
=
γ1γr(1 + α)

γ2
1(1− α2)

=

(
γr
γ1

)(
1

1− α
)
,

lir =
a11air − ar1ai1
a11arr − a2

r1

,

|lir| < |a11|γr + γ2
1

γ2
1(1− α2)

<
γ2

1(1 + α)

γ2
1(1− α2)

=
1

1− α .

Here is the same problem—the ratio γr/γ1 appears in the bound for the first of
the two new columns of L, with the 2× 2 pivot giving a slightly larger bound
on the size of elements of L than case 2.
The 2× 2 block of D resulting from case 4 can also be arbitrarily badly con-
ditioned; see section 2.7.1 for examples. As with the other aberrant bounds,
this cannot occur if γr/γ1 is near unity, as we will see in the following section.

522 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

In summary, the Bunch–Kaufman algorithm ensures that the entries in the re-
duced matrix are bounded. However, the bounds on the entries in L are a function
of γr/γ1, which is not controlled. The conditions that cause large entries in L in
cases 2 and 4 do not cause growth in the reduced matrices because of the intricate
relationships of the values of a11, ar1, and arr. Indeed, the somewhat odd case 2 is
simply the last condition that is needed to avoid growth in the reduced matrix in case
4. Otherwise, case 2 does not appear to be a good thing to do.

Bounding the reduced matrix controls only one aspect of the process. We will
show that a simple change to the algorithm allows us to bound the entries in L by a
small constant independent of A and to give a similar bound on the conditioning of
any 2× 2 pivot block.

2.3. The Bunch–Parlett algorithm. The Bunch–Kaufman algorithm is the
successor to the Bunch–Parlett algorithm, which uses the pivot selection shown in
Figure 2.3. The Bunch–Parlett algorithm requires O(n2) comparisons at each step.
A complete factorization requires O(n3) comparisons, the same complexity as the
arithmetic to compute the factorization. In contrast, the Bunch–Kaufman algorithm
requires only n or 2n comparisons at each step, O(n2) overall. This much more
reasonable overhead is the primary reason that the Bunch–Kaufman algorithm is
preferred over the Bunch–Parlett algorithm.

Find the diagonal entry ass of largest magnitude
Find an off-diagonal entry ari of maximum magnitude in A(k−1)

if max{|ass|, |ari|} > 0 then
if |ass| ≥ α|ari| then

use ass as a 1× 1 pivot
else

use

[
aii ari
ari arr

]
as a 2× 2 pivot (interchanging columns)

endif
endif

Fig. 2.3. Bunch–Parlett pivot selection.

However, there are no questions regarding the stability of the Bunch–Parlett al-
gorithm. A complete analysis of the factorization and solution phases is given in [7].
Alternatively, it is easy to modify the analysis of the previous section to demonstrate
that the Bunch–Parlett algorithm bounds the entries of L near unity. The key ob-
servations are that in a 2× 2 step |ari| = γi = γr and |ari| ≥ max{|aii|, |arr|}/α. It
follows that |lij | ≤ 1/α in a 1× 1 pivot column and |lij | ≤ 1/(1− α) in a 2× 2 pivot
column. We will also show in the next section that the diagonal blocks correspond-
ing to 2× 2 pivots have a condition number no larger than (1 + α)/(1− α). Solving
2× 2 systems with almost any algorithm, in particular either Cramer’s rule or Gaus-
sian elimination with partial pivoting, is normwise backward stable, and so is the
entire factorization.

2.4. A bounded Bunch–Kaufman algorithm. The ratio of the two magni-
tudes γ1 and γr controls the size of entries of L computed by the Bunch–Kaufman
algorithm. We cannot control this ratio as long as we insist that the first column of
the reduced matrix be involved in the pivot selection. By a more suitable choice of

ACCURATE SYMMETRIC INDEFINITE SOLVERS 523

columns we can develop an algorithm that combines the stability properties of Bunch–
Parlett with search costs little more than Bunch–Kaufman. The idea is simple: allow
the aberrant cases only when the ratio γr/γi is unity.

Our simplest variant of the Bunch–Kaufman algorithm we denote as the bounded
Bunch–Kaufman algorithm, which uses the pivot selection strategy presented in Fig-
ure 2.4. The condition γr/γi = 1 removes the possibility of case 2. Because 2× 2 pivots
are used only when γr/γi = 1, the analysis of section 2.2 shows that the entries of L
are bounded above by max{1/(1− α), 1/α}.

γ1 ← maximum magnitude of any off-diagonal entry in column 1
if γ1 = 0 then

nothing necessary for this column
else if |a11| ≥ αγ1 then

use a11 as a 1× 1 pivot
else

i← 1; γi = γ1

repeat
r ← row index of first entry of maximum magnitude in column i
γr ← maximum magnitude of any off-diagonal entry in column r
if |arr| ≥ αγr then

use arr as a 1× 1 pivot
else if γi = γr then

use

[
aii ari
ari arr

]
as a 2× 2 pivot (interchanging columns)

else
i← r; γi ← γr

endif
until

a pivot is chosen
endif

Fig. 2.4. Bounded Bunch–Kaufman pivot selection.

By bounding ‖L‖, this algorithm bounds growth in the reduced matrix. Suppose
that columns k and k + 1 of the factorization represent a 2× 2 step. Let Dk:k+1 be
the 2× 2 diagonal block, with off-diagonal entry of magnitude γr and diagonal entries
bounded by αγr. Let L∗,k:k+1 denote the (n−k−1)×2 matrix holding the interesting
entries from the corresponding pair of columns of L. The triangle inequality shows
that any entry in L∗,k:k+1Dk:k+1L

T
∗,k:k+1 is bounded by 2γr(1 + α)/(1 − α)2. The

resulting bound on growth in the reduced matrix is somewhat larger than the explicit
bound from section 2.2, but it is trivial to derive. (Obviously this particular scheme
satisfies the same bound on growth as the Bunch–Kaufman algorithm.)

Further, the diagonal blocks are all well conditioned. Note that a 2× 2 block
Dk:k+1 occurs only when |ari| = γr = γi and max{|aii|, |arr|} ≤ αγr. A Gersch-
gorin circle bound demonstrates that |λmax(Dk:k+1)| ≤ |ari|(1 + α). It follows from
|det(Dk:k+1)| > |ari|2(1−α2) that |λmin| > |ari|(1−α) and κ(Dk:k+1) < (1+α)/(1−
α). So 2× 2 systems can be solved using explicit inversion of Dk:k+1 or by Gaussian
elimination with row interchanges that use the off-diagonal entry as the first pivot
entry. (Note that this is complete pivoting in this special case.)

524 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

The condition that L is bounded near unity is key to showing backward stability.
The choice of columns is crucial. The heart of this algorithm is the search for an
off-diagonal entry ari that is simultaneously largest in the rth row and in the ith
column. This search must terminate after no more than n steps because the size of
the off-diagonal pivot entry increases at each step.

The cost of this search is an issue. Our algorithm lies between the Bunch–
Kaufman and the Bunch–Parlett algorithms in numbers of comparisons. It is easy to
create cases in which the cost of a single factorization step is the same as either of
these algorithms. In the worst case it is no better than the Bunch–Parlett algorithm;
in the best case it costs no more than the Bunch–Kaufman algorithm. In general it
should not cost as much as the Bunch–Parlett algorithm because the condition we
need is less stringent than the maximum off-diagonal element. We need only an ele-
ment that is the largest entry in both the row and column of A in which it appears,
a “local maximum” off-diagonal entry.

In practice we have found that the process of finding a local maximum off-diagonal
entry usually requires far less than O(n2) comparisons. We do not consider random
matrices to be adequate reflections of real applications, but in this case they are
useful indications of why we see what we find. (Trefethen and Schreiber [31] pro-
vide arguments that random matrices adequately represent the limiting behavior of
the factorization scheme.) Our empirical results, given in sections 2.7.2 and 2.7.4,
show that, on average, fewer than 2.5n comparisons suffice to find a suitable pair
of columns. In Appendix C we present a probabilistic analysis that shows that the
expected number of comparisons needed to find a local maximum off-diagonal entry
is bounded above by en ≈ 2.718n for any matrix with all entries drawn independently
from the same random distribution. We expect a smaller cost for the bounded Bunch–
Kaufman algorithm because acceptable 1× 1 pivots shortcut the process. A related
analysis for the probability of taking 1× 1 pivots is discussed in section 2.5.

2.5. A fast Bunch–Parlett algorithm. Both the Bunch–Kaufman and the
bounded Bunch–Kaufman algorithms can be described as variants of the Bunch–
Parlett algorithm, in which the conditions for both a 1× 1 and a 2× 2 pivot are
weakened in order to reduce the cost of the pivot search. The 2× 2 condition in the
Bunch–Kaufman algorithm is too weak to bound L. The bounded Bunch–Kaufman
algorithm requires a local maximum off-diagonal entry, which does bound L.

The same approach can be used to modify the Bunch–Parlett algorithm directly.
Allowing a 1× 1 pivot when the largest diagonal entry is a large enough fraction of
the largest entry in its column and a 2× 2 pivot only when the off-diagonal entry in
the pivot block is locally maximum leads to the fast Bunch–Parlett pivot selection
scheme shown in Figure 2.5.

At first glance this algorithm is simply the bounded Bunch–Kaufman algorithm
with the extra condition that the initial pivot candidate is the column holding the
largest diagonal value; that condition removes the need for 1× 1 pivot tests in the
inner loop.3 The fast Bunch–Parlett algorithm has the same stability properties as
the bounded Bunch–Kaufman and Bunch–Parlett algorithms. It always requires more
comparisons than the Bunch–Kaufman algorithm because of the search to find the
largest diagonal entry. We would expect the fast Bunch–Parlett algorithm to be

3Modifying the Bunch–Kaufman algorithm by choosing the largest diagonal entry was suggested
in [8], where it was argued that finding the largest diagonal improved the numerical results. An
explanation of that improvement in accuracy is that such an algorithm usually bounds L because
the initial test at each step almost always finds a satisfactory 1× 1 pivot.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 525

ass ← the diagonal entry of largest magnitude in A(k−1)

γs ← magnitude of largest off-diagonal entry in column s
if γs = 0 then

nothing necessary for the sth column
else if |ass| ≥ αγs then

use ass as a 1× 1 pivot
else

i← s; γi = γs
repeat

r ← row index of first entry of maximum magnitude in column i
γr ← maximum magnitude of any off-diagonal entry in column r
if γi = γr then

use

[
aii ari
ari arr

]
as a 2× 2 pivot (interchanging columns)

else
i← r; γi ← γr

endif
until

a pivot is chosen
endif

Fig. 2.5. Fast Bunch–Parlett pivot selection.

slightly slower than the bounded Bunch–Kaufman algorithm because of this extra
work and because it requires more column interchanges. This is indeed what we find
in a conventional, unblocked factorization, as shown in section 2.7.2.

However, the fast Bunch–Parlett algorithm has dramatic advantages when we
consider a partitioned or blocked factorization, as in LAPACK. The blocked version of
the fast Bunch–Parlett algorithm, discussed in section 2.7.3, can require less overall
work than blocked versions of either the Bunch–Kaufman or the bounded Bunch–
Kaufman algorithm. Our experience, described in section 2.7.4, is that the blocked
fast Bunch–Parlett algorithm is faster than the blocked bounded Bunch–Kaufman
algorithm and is very competitive with the block Bunch–Kaufman algorithm.

The difference is that the largest diagonal entry is a much better candidate for a
1× 1 pivot than the first (or any arbitrary) diagonal entry, at least in a probabilistic
sense. Work is discarded in a blocked implementation when a column is tested as a
pivot but not used (see section 2.7.3). The blocked algorithm is most efficient when
the initial test for a 1× 1 pivot is satisfied. The choice of the maximum diagonal
value makes this occur frequently, at least on random matrices. A formal argument
is given in Appendix D. Table 2.1 gives these probabilities numerically for matrices
whose entries are all N (0, 1), as a function of n.

Informally, the difference between these algorithms is the difference between an
arbitrary entry and an entry that is the maximum of n entries. The initial pivot test
compares one of these with α times the maximum of n−1 other entries. As n increases,
the likelihood of an arbitrary entry satisfying the test decreases, but the likelihood of
the maximum diagonal satisfying the test increases. Our concern is with the entire

526 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

Table 2.1
Likelihood of satisfying initial 1× 1 pivot test.

Matrix order
Starting entry 10 20 30 50 100 150 200
Arbitrary diagonal .26 .19 .15 .12 .09 .07 .06
Maximum diagonal .88 .93 .95 .97 .99 .99 .99

(Ratio) 3.3 5.0 6.2 8.0 11.2 13.5 15.5

Table 2.2
Summary of pivoting for 20, 000 N (0, 1) random matrices.

Bounded Fast
Bunch– Bunch– Bunch–
Kaufman Kaufman Parlett

1× 1 with first column 14% 14% 97%
Columns in 1× 1 pivots 38% 44% 97%
Columns in 2× 2 pivots 62% 56% 3%

factorization, not just a single column. We present in Table 2.2 the percentage of cases
where the initial 1× 1 test is satisfied throughout the course of the factorizations of
20,000 400× 400 matrices generated by LAPACK’s pseudo-N (0, 1) generator.

We are not the first to observe the rapid convergence of the search for a local
maximum off-diagonal entry. Fletcher, in a nearly forgotten paper [19], introduced
what we have called the bounded Bunch–Kaufman algorithm as part of a scheme for
reducing the search cost of the Bunch–Parlett algorithm. However, he considered this
algorithm to be only a stepping stone to another algorithm that converged yet more
rapidly, at the cost of looser bounds on growth in the reduced matrix. This algorithm
is very close to the bounded Bunch–Kaufman algorithm with smaller values of α.
He considered the latter aspect to be the major contribution of his method. The
crucial property of the local maximum off-diagonal entry for Fletcher was only that
it allowed a 2× 2 pivot that bounded growth in the reduced matrix. We rediscovered
this algorithm from our desire to use the stronger property of the local maximum
off-diagonal entry, that it provides a 2× 2 pivot that bounds L.

Fletcher’s algorithm was supplanted by the Bunch–Kaufman algorithm, which
appeared to have all the required properties and lower cost. His idea of choosing
looser bounds was derived from early ideas for sparse linear systems and is seen in the
dense matrix literature as being more appropriate to sparse systems [20]. However,
the underpinnings of the search are applicable only to dense problems, as shown in
section 3.2. From the sparse perspective [17], this is a dense matrix algorithm. In
fact the paper contains ideas that are still relevant to both types of problems.

2.6. Worst cases for the bounded Bunch–Kaufman and fast Bunch–
Parlett algorithms. It is easy to generate examples in which the current step of
either the bounded Bunch–Kaufman or the fast Bunch–Parlett algorithm requires
O(n2) comparisons. The following examples, suggested to us by Stan Eisenstat, pro-
voke this behavior at every step. For the bounded Bunch–Kaufman algorithm, choose
a matrix from the family

ACCURATE SYMMETRIC INDEFINITE SOLVERS 527

0 2

4 4
4 0 3

2 3 0

 ,

0 2
6 6
6 0 5

5 0 4
4 0 3

2 3 0

 ,

0 2
8 8
8 0 7

7 0 6
6 0 5

5 0 4
4 0 3

2 3 0

,

These require a search of the entire matrix at each step. Further, each step terminates
with a 1× 1 pivot, achieving the obvious maximum in terms of comparisons.

Similarly, for the fast Bunch–Parlett algorithm, choose a matrix from the family

1
4 2

0 4
4 0 3

2 3 0

 ,

1
6 2

0 6
6 0 5

5 0 4
4 0 3

2 3 0

 ,

1
8 2

0 8
8 0 7

7 0 6
6 0 5

5 0 4
4 0 3

2 3 0

,

The fast Bunch–Parlett algorithm will make a complete search at each step. Because
the fast Bunch–Parlett algorithm terminates in a 2× 2 pivot whenever the search
is nontrivial, its worst case has half as many comparisons as the bounded Bunch–
Kaufman or Bunch–Parlett algorithms.

2.7. Empirical studies of a LAPACK-like implementation. Do the bounded
Bunch–Kaufman and fast Bunch–Parlett algorithms really attain accuracy superior
to the Bunch–Kaufman algorithm, and at what cost?

We consider LAPACK [2] to represent the current state of the art, so we used
the double precision DSYTxx suite of Bunch–Kaufman subprograms from LAPACK
version 2.0 as the basis for a Fortran 77 implementation of both of the new algo-
rithms. We made one small but significant modification to the unblocked LAPACK
Bunch–Kaufman factorization to avoid a true instability induced by our test cases,
as discussed in Appendix A; otherwise our Bunch–Kaufman codes are standard LA-
PACK. We also used the LAPACK certification programs to evaluate the results of our
modifications. Our goals were to demonstrate the effect of large entries in L on the
solution of the linear system and to verify empirically our claim of O(n) comparisons
to find a local maximum off-diagonal entry, showing thereby the efficiency of this
scheme for choosing a pivot that bounds L.

2.7.1. Accuracy. The conditions that result in large backward error bounds
for the Bunch–Kaufman factorization require that the entire leading column of the
reduced matrix be much smaller than the entries in the rth column. The LAPACK
tests are unlikely to produce such matrices. To test the effects of large entries in L, we
generate matrices that allow large entries in L in the very first pivot step. Each matrix
has entries that are random N (0, ·), where the variance for the distribution is chosen
as a function of the location of the entries. Figure 2.6 illustrates how the variances
are assigned. We use the LAPACK pseudorandom number generator to generate all
at once a matrix of N (0, 1) entries; the variances ψ1, ψ2, and ψ3 are then applied as
scale factors as indicated in Figure 2.6.

528 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

ψ1

ψ2 ψ1

ψ2 ψ2 ψ1

...
...

...
. . .

ψ2 ψ2 ψ2 . . . ψ1

ψ2 ψ2 ψ2 . . . ψ2 ψ3

ψ2 ψ2 ψ2 . . . ψ2 1 ψ3

ψ2 ψ2 ψ2 . . . ψ2 1 1 ψ3

...
...

...
...

...
...

...
...

. . .

ψ2 ψ2 ψ2 . . . ψ2 1 1 1 . . . ψ3

m

Fig. 2.6. Variance for each entry of test matrix.

We likely induce a first column much smaller than any of the last n−m columns
by taking ψ1 and ψ2 both to be small. Further, we choose the variances, or scale
factors, so that the initial pivot selection by the ordinary Bunch–Kaufman algorithm
is either case 2 or case 4. Typically we take ψ1 ≤ ψ2/10 and ψ3 ≤ 1/10 to make case
1 and case 3 unlikely. We expect instead to take a pivot that creates large entries in
L, either a 1× 1 pivot using the first column or a 2× 2 pivot, where the magnitudes
of the entries in the diagonal block satisfy[|a11| |ar1|

|ar1| |arr|
]
∼
[
ψ1 ψ2

ψ2 ψ3

]
.

We expect to induce a 1× 1 case 2 pivot when ψ1 and ψ2 are small and close in size,
so αψ2

2 < ψ1 (< αψ2); taking ψ1 very small, so that ψ1 < αψ2
2 , usually results in

a 2× 2 pivot. In either case the entries in L are bounded by O(1/ψ2). The relative
sizes of ψ2 and ψ3 control the conditioning of the 2× 2 block.

Ill conditioning is a necessary precursor to large ‖L‖. Generating large entries
in L requires that the first column of the current reduced matrix be much smaller
than at least one other column. The small Rayleigh quotient residual for the vector

e1 implies that the reduced matrix has an eigenvalue near a11. Yet ‖A(k−1)
∗j ‖2 �

|a11|, j = m + 1, . . . , n, implies that the largest singular value of A(k−1) is much
greater than |a11|. Thus, large entries in L imply that at least one reduced matrix is
ill conditioned. We can also show that the smallest singular value of a reduced matrix
is no smaller than the smallest singular value of the larger matrix from which it was

derived; that is, the sequence σ
(0)
1 , σ

(1)
1 , σ

(2)
1 , . . . is monotone increasing. The largest

singular value can also grow from step to step but at a rate bounded by growth in the
reduced matrix. Thus, if the (k − 1)th reduced matrix has condition κ, the original
matrix had condition at least as large as κ/

(
n(1 + 1/α)k−1

)
.

When m, the number of leading columns with tiny entries, is greater than one,
a poor initial pivot will cause obvious damage to the first reduced matrix.4 Our test
matrices were a series of 10 randomly generated matrices, each subjected to each of

4For some distributions of values, a 2× 2 pivot will be taken involving two of the first m columns.
This allows the Bunch–Kaufman algorithm to escape the trap we have set for it.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 529

the scalings in Table 2.3 for various values of m. The results reported here are for
matrices of order 50, with m = 3. The results presented here are for unblocked codes.
As noted above, the Bunch–Kaufman code incorporates the modification discussed
in Appendix A; otherwise its factorization is irretrievably damaged on our extreme
cases.

Table 2.3
Parameterization of scaled test matrices.

Initial pivot ψ1 ψ2 ψ3 t1 t2

1× 1 pivot 10−t1 10−t2 1/10 t2 + 1, . . . , 2t2 1, . . . , 6
2× 2 block

Well-conditioned 10−t1 10−t2 10−t2 2t2 + 1, . . . , 3t2 2, . . . , 6
General 10−t1 10−t2 1/10 2t2 + 1, . . . , 3t2 1, . . . , 6

We used four measures5 from the LAPACK certification program (Table 2.4) to
evaluate our implementation of the bounded Bunch–Kaufman and fast Bunch–Parlett
algorithms. Here x∗ is the known solution to the linear system, from which the right-
hand side is generated; x is the solution computed using the LDLT factorization;
x(r) is the result of fixed precision iterative refinement on x; ε is the usual machine
precision; κ1(A) = ‖A‖1‖A−1‖1. All of these measures are normalized by worst case
perturbation bounds, so that only results much larger than one are suspect. Many
of our test matrices are poorly conditioned; the bounds allow substantial errors. We
used n random right-hand sides with each matrix, where n is the order of the matrix.

Table 2.4
Accuracy measures.

Decomposition error ‖LDLT −A‖1 / (n‖A‖1 ε)
Error in inverse ‖I −AA−1‖1 / (nκ1(A)ε)

Solution error ‖x− x∗‖1 / (‖x∗‖1 κ1(A)ε)

Refined solution error ‖x(r) − x∗‖1 / (‖x∗‖1 κ1(A)ε).

The major conclusion from these experiments is that the solutions from the
Bunch–Kaufman algorithm were noticeably less accurate than the solutions from ei-
ther the bounded Bunch–Kaufman or fast Bunch–Parlett algorithms; however, the
Bunch–Kaufman solutions still passed the certification. As expected, all algorithms
create backward stable factorizations. The results for bounded Bunch–Kaufman and
fast Bunch–Parlett are almost identical.

The primary measure of interest is refined solution error. From [2] we expect
that the Bunch–Kaufman algorithm together with fixed precision iterative refinement
(FPIR) to be at least componentwise relatively forward stable. In fact, Higham’s
stability analysis of the Bunch–Kaufman algorithm suffices also to show component-
wise relative backward stability of the Bunch–Kaufman algorithm followed by FPIR
[23, 24]. We expect, therefore, to achieve higher accuracy by applying iterative refine-
ment. Our experiments, generating random matrices at each of several sizes, show
that

• FPIR is often very effective at reducing the Bunch–Kaufman solution error,
giving considerably smaller refined solution errors in some cases. For our

5The particular measure used for accuracy of the inverse is what is used in the LAPACK certifi-
cation.

530 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

certification suite the solution error without iterative refinement was as much
as 4 × 105 larger than the refined solution error for matrices of order 50.
In general, the degradation in accuracy reflected the size of ‖L‖—a quick
estimate of the reduced accuracy is ‖L‖1/n.

• The bounded Bunch–Kaufman and fast Bunch–Parlett algorithms appear
empirically to achieve the same accuracy without iterative refinement as the
Bunch–Kaufman algorithm achieves with iterative refinement. In the cases we
observed, the refined solution error was never smaller than 1/5 of the solution
error. For ill-conditioned problems, more than half the digits presumed lost
in the worst case error bound are in fact good.

These results are consistent with the experience in applications that brought this is-
sue to our attention in the first place. Used without iterative refinement, the Bunch–
Kaufman algorithm may not give sufficient accuracy to ill-conditioned problems. It-
erative refinement requires more computation and also mandates saving the original
matrix A, thereby doubling storage.

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

 log10 (||L|| / N)

 l
o

g
1

0
 (

 |
|e

rr
o

r(
B

K
)|

|
/

||
e

rr
o

r(
B

B
K

)|
|
)

 special 50 by 50 matrices

Fig. 2.7. Comparison of relative solution error on scaled N (0, 1) random matrices.

Figure 2.7 presents a comparison of the solution error from a Bunch–Kaufman
implementation and a bounded Bunch–Kaufman implementation using matrices of
order 50, generated according to the prescription in Table 2.3 with m = 3. The figure
is a log-log scatter plot of the Bunch–Kaufman solution error scaled by the bounded
Bunch–Kaufman solution error. The upward trend demonstrates the dependence of
the Bunch–Kaufman solution error on ‖L‖. These results are typical for m ≥ 2; the
tests with m = 1 do not produce large relative errors despite having large entries in L.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 531

In contrast, comparisons of the Bunch–Kaufman solution error after iterative
refinement, the bounded Bunch–Kaufman solution error before and after iterative re-
finement, or the fast Bunch–Parlett solution error before and after iterative refinement
are quite uninteresting. The range of variation for these algorithms on the problems
shown in Figure 2.7 is given in Table 2.5.

Table 2.5
Comparison of relative solution error on scaled N (0, 1) matrices.

Error Relative to Bounded Bunch–Kaufman Error

min. median average max.
Bunch–Kaufman with refinement 0.25 0.60 0.50 1.5
Bounded Bunch–Kaufman with refinement 0.25 0.59 0.50 1.5
Fast Bunch–Parlett 0.33 1.00 0.99 3.0
Fast Bunch–Parlett with refinement 0.25 0.61 0.50 1.5

2.7.2. Efficiency of unblocked factorizations. What is the cost of better
accuracy? We used random symmetric matrices, with each entry drawn from N (0, 1).
Table 2.6 summarizes the total search requirements for each procedure to factor 20,000
random matrices of order 400. The results confirm our probabilistic analysis and show
that the search for a local maximum converges very quickly. The results for all three
algorithms reflect the fact that the pivot searches terminate immediately when a
satisfactory 1× 1 pivot is found.

Table 2.6
Pivoting cost for 20, 000 random N (0, 1) matrices.

Bounded Fast
Bunch– Bunch– Bunch–
Kaufman Kaufman Parlett

Average: column searches per pivot step 1.80 2.44 1.02
total comparison operations† 0.46 0.67 0.75‡
column interchanges /n 0.45 0.75 0.98

Worst case: column searches for a single pivot 2 10 7
total comparison operations† 0.51 0.76 0.75‡

†As percent of estimated total operations n3

3
+ n2

2
+ 19n

6
.

‡Includes comparisons to find largest diagonal entry.

Each column search in A(k−1) requires n − k comparisons. The total number of
comparisons is presented as a percentage of the estimated number of floating point op-
erations needed to compute the factorization. In the worst case, for bounded Bunch–
Kaufman pivoting added only 0.76% work and for fast Bunch–Parlett pivoting added
only 0.75%. On average, the price of better accuracy for bounded Bunch–Kaufman
is 0.21% more floating point work and for fast Bunch–Parlett 0.29%.

The results on these matrices confirms our expected decreasing order of complex-
ity for pivot searches and interchanges, Bunch–Parlett, fast Bunch–Parlett, bounded
Bunch–Kaufman, and Bunch–Kaufman. (Fast Bunch–Parlett requires the equivalent
of an additional column search to find the largest diagonal entry and interchanges
cost more than searches.) The real issue is performance. Our implementations are a
simple modification of the LAPACK algorithm. How do they compare to the LAPACK
Bunch–Kaufman algorithm in speed?

532 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

We compared the three unblocked, full storage mode implementations on a Sun
SPARCstation 20, using the standard Fortran 77 distribution of LAPACK version 2.0.
The LAPACK codes make heavy use of BLAS2 and BLAS3 kernels. We used a highly
efficient Fortran 77 version of dgemm and dgemv for RISC computers obtained from
Michel Dayde at CERFACS, to which we added the needed BLAS2-like kernels follow-
ing the same programming style. (See [6] for an alternative source of high performance
kernels.) The figures in Table 2.7 are “effective megaflops per second,” that is, time
required in seconds divided by millions of operations required to computed an unpiv-
oted LDLT factorization, averaged over 600 symmetric random N (0, 1) matrices of
each order.

Table 2.7
Performance (megaflops/sec) on Sun SPARCstation 20—symmetric random N (0, 1) matrices.

Blocking Matrix order
10 20 40 80 160 320 400 500

None BK 3.7 9.0 15.3 19.4 20.4 19.3 17.4 15.9
BBK 3.6 8.3 13.7 18.0 19.4 19.4 16.8 15.1
FBP 3.1 6.7 11.7 14.8 13.8 13.8 11.8 10.7

8 BK 2.0 5.0 9.8 14.7 17.7 19.2 19.1 18.9
BBK 1.9 4.7 8.9 13.4 17.0 18.7 18.5 18.3
FBP 1.5 4.0 7.8 12.6 16.0 18.1 18.0 18.2

24 BK 12.9 18.4 23.8 27.9 28.7 29.2
BBK 11.0 15.7 21.4 25.7 26.4 26.9
FBP 10.6 15.9 21.7 25.6 26.5 27.2

32 BK 12.1 18.2 22.9 26.4 27.8 23.9
BBK 10.2 15.3 20.2 24.0 25.2 20.5
FBP 10.0 15.8 19.0 23.6 25.2 23.0

64 BK 14.6 16.7 14.4 14.5 14.4
BBK 11.2 13.7 11.9 12.1 12.2
FBP 12.7 16.2 14.5 14.7 14.7

The first three rows of figures in Table 2.7 show that an unblocked implementation
of the bounded Bunch–Kaufman algorithm compares quite well to an unblocked im-
plementation of the Bunch–Kaufman algorithm. The cost of higher accuracy is small.
The fast Bunch–Parlett algorithm begins with 2n−1 comparisons, already more com-
parisons than the Bunch–Kaufman algorithm. This scheme will be effective only if
the n comparisons to find the largest diagonal reduce work elsewhere. In unblocked
algorithms there is no wasted work, so we expect and observe the fast Bunch–Parlett
algorithm to be slower than the Bunch–Kaufman and bounded Bunch–Kaufman al-
gorithms. The fast Bunch–Parlett algorithm uses far fewer 2× 2 pivots, which also
reduces speed in the unblocked case.

2.7.3. Blocking in LAPACK. The LAPACK codes attain high performance on
sophisticated architectures through use of blocked factorization schemes.6 These allow
the use of BLAS2 and BLAS3 kernels, which amortize memory accesses over n2 or n3

operations.
The LAPACK implementation of the Bunch–Kaufman algorithm computes the

reduced matrix A(k−1) as an explicit Schur complement. The partial factorization

6Technically the LAPACK algorithms are partitioned algorithms, but the term “blocked” has
become accepted in this context. Block thereby has two different meanings in this paper, which
may be clarified by noting that blocking in the LAPACK Bunch–Kaufman algorithm represents large
partitions containing 1× 1 and 2× 2 blocks.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 533

after k − 1 steps can be written as[
A11 AT21

A21 A22

]
=

[
L11 0
L21 I

] [
D11 0

0 A(k−1)

] [
LT11 LT21

0 I

]
,

where A11 is square, of order k − 1, A11 = L11D11L
T
11, and A21 = L21D11L

T
11. It

follows that

A(k−1) = A22 − (L21D11)LT21,

which is the basis for the blocked LAPACK Bunch–Kaufman algorithm. The matrix
W21 = L21D11 is an intermediate result in the computation of L21; it is stored in tem-
porary storage, which allows A(k−1) to be computed by a matrix-matrix multiplication
and addition.

Pivoting complicates the use of this block structure. At the kth step pivoting
can require access to any column of A(k−1). The blocked version of this algorithm
is therefore not as effective as blocked versions of other algorithms. A somewhat
incomplete description of the difficulties is given in [12]. Kaufman [27] discusses
inefficiencies that arise because the BLAS3 kernels do not include a matrix-matrix
product where the product is known to be symmetric. As a result, all of the blocked
codes discussed here avoid duplicating work or storage by making only restricted use
of general matrix-matrix products.

The LAPACK implementation uses the blocked equation for the reduced matrix
in two ways. The matrix-matrix operation A(k−1) = A22 − W21L

T
21 is used every

b steps to generate an explicit reduced matrix. Here b is a blocking parameter set
as a function of machine characteristics and available temporary storage; typically b
ranges between 8 and 64. Matrix-matrix operations are not used otherwise (as, say,
to generate L21 = A21L

−T
11 D

−1
11) because of the pivoting constraints.

At intermediate steps matrix-vector multiplications are used to generate the
columns of A(k−1) that are needed for pivoting. The first column of the reduced
matrix is always required in the Bunch–Kaufman algorithm; the rth column is com-
puted only if the first column fails as a 1× 1 pivot in case 1. We expect this to happen
frequently. When it does, two of the three remaining cases result in 1× 1 pivots. In
both of these cases, the work required to compute the column not used in the pivot is
simply discarded. Only in cases 1 and 4 of the Bunch–Kaufman algorithm are up to
2b(n−k) operations not discarded. There is a conflict between discarded work, which
increases with the blocking parameter and thereby suggests use of small blocks, and
performance of the BLAS3 kernels, which improves with large blocks.

This conflict can be exacerbated in the bounded Bunch–Kaufman and fast Bunch–
Parlett algorithms, where additional searches to find an appropriate pivot will create
more work that must be discarded. That is a serious issue for the bounded Bunch–
Kaufman algorithm. But it is here that the fast Bunch–Parlett algorithm performs
well because its search usually terminates in a single step, wasting no work.7

7The implicit representation of the reduced matrix has other effects on the bounded Bunch–
Kaufman and fast Bunch–Parlett algorithms. The entry air is computed by a different computation
than ari, causing the search termination test to fail because of differences in rounding errors. We
replace the test γi = γr by γi ≥ γr/(1 +

√
ε). Even this tolerance can result in one unnecessary

matrix-vector product in a case where the remaining columns represent the (near) nullspace of a
rank-deficient matrix. In addition the fast Bunch–Parlett algorithm needs access to the diagonal
entries from the reduced matrix. Since these values are not otherwise cheaply available, they are
maintained separately and explicitly updated at each step, requiring O(n2) extra work.

534 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

Table 2.8
Factorization performance on CRI computers.

Megaflops/sec for n = 400

YMP C-90

b BK BBK FBP BK BBK FBP
1 168 168 165 312 300 334

32 167 152 156 269 261 257
48 194 168 182 352 320 331
64 202 173 193 382 333 355
80 207 175 202 413 341 372

2.7.4. Efficiency of blocked factorizations. Table 2.7 shows the performance
of all three algorithms for various blocking sizes on a Sun SPARCstation 20. As
expected, discarded work increases the overhead of the blocked bounded Bunch–
Kaufman algorithm. The relative performance of the fast Bunch–Parlett algorithm
improves because less work is discarded. The computer architecture of this pipelined
scalar RISC machine with two levels of cache storage results in slowdowns when the
storage requirements exceed the cache sizes. This occurs in the unblocked case when
the matrix itself is too large for the secondary cache, which particularly penalizes
1× 1 pivots. The blocked algorithms slow when the blocksize becomes so large that
b× b blocks no longer fit in the primary cache.

Table 2.8 gives effective megaflops/sec for the three algorithms on Cray Y-MP
and C-90 computers for symmetric random N (0, 1) matrices of size 400. The results
from CRI supercomputers are similar to the results on the Sun SPARCstation 20
but without cache effects. The anomalous performance of the unblocked fast Bunch–
Parlett algorithm on the C-90 is due to a fast assembly language kernel for a rank
1 modification, which the fast Bunch–Parlett algorithm favors. Normally we expect
rank 2 modifications, and hence the unblocked bounded Bunch–Kaufman algorithm,
to be faster, but here the rank 2 kernel is in Fortran 77 and is slower than the rank 1
kernel in assembly language.

By choosing appropriately between the bounded Bunch–Kaufman or fast Bunch–
Parlett algorithms, the incremental cost of attaining better accuracy in solving dense
symmetric indefinite linear systems is clearly small. (As an ironic example, the un-
blocked routine used by the blocked fast Bunch–Parlett algorithm to process the final
block reduced matrix should be the unblocked bounded Bunch–Kaufman algorithm,
not the unblocked fast Bunch–Parlett algorithm. The timings here reflect the lat-
ter.) Our experiments showed no appreciable difference in accuracy between the fast
Bunch–Parlett and bounded Bunch–Kaufman algorithms. The choice between them
should be made on the basis of speed in a particular setting.

2.8. LTLT factorizations. The Parlett–Reid algorithm [30] is an alternative
to LDLT factorizations. It factors a symmetric matrix A as

A = LTLT ,

where L is unit lower triangular, with no entries of magnitude larger than one, and T is
symmetric tridiagonal. Stability of this algorithm follows immediately if the requisite
solves with T are based on a stable factorization, such as a pivoted LU factorization
or an orthogonal QR factorization.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 535

The algorithm is straightforward. Assume that the first q steps reduce A to the
form [

Tq βqeqe
T
1

βqe1e
T
q A(q)

]
,

where Tq is tridiagonal of order q. Then factorization step q + 1 consists of

• symmetrically interchanging rows and columns q + 2 and m, where A
(q)
m,q+1

has the maximum magnitude among A
(q)
q+2,q+1, A

(q)
q+3,q+1, . . . , A

(q)
n,q+1, the off-

diagonal entries in column q + 1.
• Choose the elementary elimination matrix Eq+1 = In − weTq+2 to eliminate

rows q + 3 to n of column q + 1. Then A(q+1) = Eq+1Pq+1A
(q)PTq+1E

T
q+1 is a

matrix with the tridiagonal form extended by one row and column.
This algorithm requires only a search of a single column of the reduced matrix at

each elimination step, less searching than any of the LDLT factorizations. Nonethe-
less, it is not currently the algorithm of choice in either the dense or sparse cases.

The first obstacle to its use is that computing Eq+1Pq+1A
(q)PTq+1E

T
q+1 directly

costs twice as much as the equivalent step of a Cholesky factorization or the LDLT

factorizations. This operation can be written as a rank 2 modification M − uwT −
wuT , but not as a symmetric rank 1 modification. An outer product (right-looking)
implementation requires more operations than the worst pivoting cases of our stable
LDLT factorizations.

Aasen [1] overcame this obstacle with a left-looking (inner product) algorithm,
for which the high-order term in the operations count is identical to the Cholesky al-
gorithm. Aasen’s observation is that at each elimination step only the leading column
of the reduced matrix is needed to determine the pivoting sequence and the elemen-
tary transformation. Aasen computes this leading column through the unsymmetric
factorization

A = LTLT = (L)(TLT) = LH,

where H = TLT is upper Hessenberg. The matrix H is not stored. At the jth
elimination step, the jth column of H is computed, using the first j columns of L
and T , which are stored and have already been computed. The leading column of the
reduced matrix, the jth column of A(j−1) is computed as the product LH∗,j , after
which H∗,j is discarded. Only the first j columns of L are required because of the
Hessenberg structure of H.

Aasen’s algorithm stands alone as the only stable algorithm which has n3/6 com-
plexity in operations, a guarantee of no more than n2/2 work in searches, and well-
behaved bounds on the entries of its factors. Should it not be the algorithm of choice?

The issue is speed. Barwell and George [5] compared unblocked versions of Aasen’s
algorithm and the Bunch–Kaufman algorithm, among others, and concluded that
there was negligible difference in performance between these fastest two candidates
in their study. A more recent LAPACK project report [3] compared unblocked and
blocked versions of these two algorithms. They concluded that Aasen’s algorithm was
faster asymptotically in the unblocked case and slower in the blocked case. Unfortu-
nately this study is somewhat incomplete in that no details of the blocked algorithms
were given and only factorization times were considered. The test codes used are
apparently lost. Further, the range of machines is limited and obsolete.

Nonetheless, it is easy to predict the trends of these conclusions for modern im-
plementations. The difference in the unblocked case is attributable to the difference in

536 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

speed between a matrix-vector product (Aasen) and a low rank modification (Bunch–
Kaufman). This advantage is probably diminished when symmetric (packed) storage
is used. It is lost more in the blocked case when both algorithms are based on matrix-
matrix multiplications. With the playing field more level, three disadvantages of
Aasen’s algorithm become more apparent. The cost of a second search in Bunch–
Kaufman is more than offset by the cost of computing the intermediate result H∗,j in
Aasen’s algorithm. The factorization of T and solves with those factors also represent
entirely scalar bottlenecks within Aasen’s scheme, which become more prominent as
the scalar bottlenecks of the other algorithms are addressed.

2.9. Summarizing the current state of the dense problem. Is one of these
algorithms the universal algorithm of choice? It appears not. Rather it appears that
the fastest algorithm for a given application will depend on the architecture of the
target platform and perhaps on numerical properties of the application. Here are
some of the issues:

• The Bunch–Kaufman algorithm should not be used as a general black-box
solver, except in conjunction with FPIR. Iterative refinement requires storing
a copy of the original matrix.
• Where code simplicity is important, or where unblocked algorithms are oth-

erwise desirable, the leading candidates are Aasen’s algorithm, the bounded
Bunch–Kaufman algorithm, and perhaps the Bunch–Kaufman algorithm with
FPIR. More study is needed to determine the relative performance of imple-
mentations with symmetric packed storage.
• Where high performance is the goal, the leading candidate is the blocked fast

Bunch–Parlett algorithm. Aasen’s algorithm and perhaps Bunch–Kaufman
with FPIR are also possible. More study is needed of blocked implementations
of Aasen’s algorithm and of the effect of symmetric packed storage.
• The relative performance of the solution phases, which differ for LDLT and
LTLT factorizations, should be considered.
• Application-specific characteristics may render the fast Bunch–Parlett or

bounded Bunch–Kaufman algorithms ineffective or may enable the Bunch–
Kaufman algorithm to be used safely.

Unfortunately we have added to the complexity of the decision of finding the best
algorithm for the symmetric indefinite linear system problem. The user seeking best
performance must participate in the decision.

3. Explicitly stable pivoting algorithms for sparse matrices. We return
to our original goal, accurate solutions of sparse symmetric indefinite systems. There
are two keys to solving the sparse indefinite problem accurately. The pivoting scheme
must ensure stability and accuracy while minimizing the impact of pivoting on spar-
sity. The data structures of the factorization must gracefully permit pivoting with
minimum overhead. Duff and Reid’s multifrontal algorithm [17] provides both. In
particular, the multifrontal data structures seem especially appropriate for the indef-
inite case. We used the multifrontal algorithm as the basis for our sparse indefinite
factorization code [4], which appears in a number of industrial application codes.

However, the popularity of the dense Bunch–Kaufman algorithm and the superior
sparsity results reported by Liu [29] led us to implement Liu’s sparse variant of the
Bunch–Kaufman algorithm in place of the Duff–Reid pivot selection scheme. It was
the failure of Liu’s algorithm that led us to reconsider the Bunch–Kaufman algorithm
in general. In the remainder of this section we provide an analysis of accuracy and
stability for a series of pivot selection algorithms for sparse indefinite systems.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 537

We begin (section 3.1) by reviewing Liu’s threshold algorithm. In section 3.2 we
show that, like the dense Bunch–Kaufman algorithm, it does not provide a satisfactory
bound on ‖L‖. However, the tools that fixed the dense Bunch–Kaufman algorithm
are unavailable in the sparse case and we are unable to prescribe a simple set of
simple rules, comparing only the magnitudes of entries of A, that has the byproduct
of providing implicitly a bound on ‖L‖. Instead we developed a block pivot selection
algorithm based explicitly on bounding ‖L‖, from which stability and accuracy follow.
The analysis of our explicit bounds on ‖L‖ for 2× 2 pivots is given in section 3.3. We
compare our strategy to the algorithm of Duff et al. [14, 16, 17, 18] in section 3.4.
Our pivot acceptance test is the same as the later version of their algorithm, but
our motivation, bounding ‖L‖, is different. The perspective espoused in section 3.3
thereby provides a proof of stability for the Duff–Reid algorithm.

Our view of symmetric indefinite pivoting as a block pivoting problem leads be-
yond theoretical results. Within the standard tradition of 2× 2 and 1× 1 pivots it
leads to a more effective strategy for choosing sparse pivots, presented in section 3.5. It
also opens the possibility of block pivots of order larger than two, which may increase
the speed of the algorithm. We present this generalization in section 3.6. Following a
digression in section 3.7 to explain why we do not pursue a sparse version of Aasen’s
algorithm, we conclude with a series of experiments (section 3.8) that demonstrate
the performance of our approaches.

3.1. Sparse threshold Bunch–Kaufman pivoting. In the sparse symmetric
indefinite multifrontal algorithm [17], the task at a given step is to compute the
partial factorization of a dense symmetric indefinite (frontal) matrix. That is, given
the partitioned matrix

A =

[
A11 AT21

A21 A22

]
,

the goal is to compute an LDLT factorization of the n1 × n1 matrix A11 so that this
factorization is stable, the overall LDLT factorization of A is stable, and knowledge
of the entries of A22 is not required. (In fact, A22 is not available in the multifrontal
algorithm.)

Liu’s sparse threshold Bunch–Kaufman strategy [29] is given in Figure 3.1. It ap-
pears to represent only a slight change from the standard Bunch–Kaufman algorithm.
Figure 3.2 shows the location of key entries in the partitioned strategy. Here ar1 is
the entry of largest magnitude on the off-diagonal of the first column, with γ1 = |ar1|.
To respect the partitioning of A, aq1 is chosen to be the largest off-diagonal entry in
the first column of A11. The largest off-diagonal entry in column q has magnitude γq.
Note that ar1, arr, and γr are shown only for contrast with the standard algorithm;
they do not enter into the threshold scheme. The role of the variables α̂ and τ is
described below.

There are two essential characteristics of the sparse scheme. The potential second
pivot column must be taken from the first block column (the “fully assembled” part of
the frontal matrix) because the entries in A22 are unavailable. The parameters α̂ and
τ permit weaker stability conditions that allow an elimination step to take place when
the usual Bunch–Kaufman conditions cannot be satisfied in the fully assembled part
of the frontal matrix. Liu intends the user to set the parameter α̂ to strike a balance
between degradation of accuracy and loss of sparsity. Often α̂ will be significantly
smaller than the Bunch–Kaufman α. Following [9], the parameter τ is introduced so
that the bound on growth of entries in two consecutive 1× 1 pivots is the same as the

538 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

if γ1 = 0 then
{0}: nothing necessary for the first column

else if |a11| ≥ α̂γ1 then
{1}: use a11 as a 1× 1 pivot

else if |a11|γq ≥ α̂γ2
1 then

{2}: use a11 as a 1× 1 pivot
else if |aqq| ≥ α̂γq then

{3}: use aqq as a 1× 1 pivot
else if |aq1| ≥ τγ1 then

{4}: use

[
a11 aq1
aq1 aqq

]
as a 2× 2 pivot

else
no pivot found; repeat search using next column

end if

Fig. 3.1. Liu’s threshold Bunch–Kaufman pivot strategy.

a11 · aq1 · · ar1 · ·
· · · · · · · ·
aq1 · aqq · · · · ·
· · · · · · · ·
· · · · · · · ·
ar1 · · · · arr · ·
· · · · · · · ·
· · · · · · · ·

γ1

γq

γr

γ1 γq γr

Fig. 3.2. Threshold Bunch–Kaufman pivot selection in A(k−1).

bound for a single 2× 2 pivot. (In [29] this condition is shown to be satisfied when τ
is a root of 4α̂3 +3α̂2−2τ2α̂−τ2, restricted to the interval (α̂, 1].) Consequently, it is
easier to take either 1× 1 or 2× 2 pivots from A11. The threshold τ is smaller than
one, which permits 2× 2 pivots when the off-diagonal entry is other than the largest
in the first column. This is clearly important when the largest entry is found in A21

and is unavailable as a pivot entry. However, the cost of α̂ < α and τ < 1 is a larger
bound on the growth of entries in the reduced matrix.

Even with weaker conditions we may be unable to find any pivots for A11, in
which case we adjust the partitioning of A to account for this failure. That is, we
redefine the partitioning so that A11 represents the submatrix in the “fully assembled”
part of the frontal matrix that we were able to factor stably. Columns removed from
the first block column are not eliminated until later frontal steps. The order of A22

increases, which generally increases both the storage and the number of operations
required for the factorization of the larger sparse matrix. The data structures of the
multifrontal algorithm permit these rearrangements more easily than other sparse
factorization schemes. Nonetheless, preservation of sparsity requires that as many
pivots as possible be chosen from A11.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 539

3.2. Analysis of sparse threshold Bunch–Kaufman pivoting. In sec-
tion 2.2 we showed that the Bunch–Kaufman algorithm does not bound the size of
entries in the factor L by any constant multiple of ‖A‖. Here we provide the analogous
analysis for Liu’s threshold algorithm. The bound for the reduced matrix is from Liu
[29].

Cases 1, 2, and 3 of Liu’s algorithm are essentially the same as standard Bunch–
Kaufman. If µ′ is the magnitude of the largest entry in the new reduced matrix, the
analyses in section 2.2 carry over directly to show that

case 1: µ′ ≤ µ
(

1 +
1

α̂

)
, |li1| ≤ 1

α̂
,

case 2: µ′ ≤ µ
(

1 +
1

α̂

)
, |li1| ≤

(
γq
γ1

)(
1

α̂

)
,

case 3: µ′ ≤ µ
(

1 +
1

α̂

)
, |li1| ≤ 1

α̂
.

The bound of concern is the bound for |li1| in the second case. As before, γq/γ1 can
be arbitrarily large. The trade-off between sparsity and stability will usually result in
α̂ strictly less than α, so these bounds are worse than the bounds for the dense case.

The analysis of case 4 is nearly the same as in section 2.2. Here we use[
a11 aq1
aq1 aqq

]
as a 2× 2 pivot. Then

a
(k+1)
ij = aij − a11aiqaqj − aq1(ai1aqj + aiqa1j) + aqqai1a1j

a11aqq − a2
q1

, i 6= 1, q, j 6= 1, q.

The failure to take either case 2 or case 3 means that |a11γq| < α̂γ2
1 and |aqq| < α̂γq.

These together imply that |a11||aqq| < α̂2γ2
1 . The third ingredient is a2

q1 ≥ τ2γ2
1 by

the sparsity threshold condition. The definition of τ requires α̂ < τ , so |a11aqq−a2
q1| >

γ2
1(τ2 − α̂2). It follows that

|a(k+1)
ij | ≤ |aij |+

∣∣∣∣∣a11aiqaqj − aq1(ai1aqj + aiqa1j) + aqqai1a1j

a11aqq − a2
q1

∣∣∣∣∣ ,
µ′ < µ+

|a11|γ2
q + 2γ1γq|aq1|+ |aqq|γ2

1

γ2
1(τ2 − α̂2)

.

Again |a11γq| < α̂γ2
1 and |aqq| < α̂γq suffice to show that

µ′ < µ+
γ2

1(α̂γq + 2γq + α̂γq)

γ2
1(τ2 − α̂2)

≤ µ
(

1 +
2(1 + α̂)

(τ2 − α̂2)

)
.

Our real interest is with L(k), the kth elementary transformation, whose first two
columns are given by

[
li1 liq

]
=
[
ai1 aiq

] [a11 a1q

a1q aqq

]−1

.

540 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

The entries li1 and liq of the two new columns of L, with i 6= 1, q, satisfy

li1 =
ai1aqq − aq1aiq
a11aqq − a2

q1

,

|li1| ≤ γ1(α̂γq) + min{γ1, γq}γq
γ2

1(τ2 − α̂2)
≤
(
γq
γ1

)(
α̂+ 1

τ2 − α̂2

)
,

liq =
a11aiq − aq1ai1
a11aqq − a2

q1

,

|liq| ≤ α̂γ2
1 + min{γ1, γq}γ1

γ2
1(τ2 − α̂2)

≤
(

α̂+ 1

τ2 − α̂2

)
.

Again γq/γ1 reflects the fact that one of the two columns of ‖L‖ can be arbitrarily
large. Liu’s algorithm suffers the same weakness in the bounds on L as the Bunch–
Kaufman algorithm.

The condition of equal bounds on reduced matrix growth does not produce equal
bounds on ‖L‖ for 1× 1 and 2× 2 pivots. From the definition of τ one can derive

τ2 − α̂2 = α̂2

(
2α̂+ 2

2α̂+ 1

)
.

Thus, the 2× 2 pivot bound includes a 1/α̂2 term in addition to the γq/γ1 term. It
is typical in sparse applications to take α̂ small to preserve sparsity; α̂ = 0.25, 0.1, or
even 0.001 have all been advocated in the literature. Unfortunately this means that
entries in L from 2× 2 pivots can be noticeably larger than those from 1× 1 pivots.

3.3. Pivoting to bound L. The bounded Bunch–Kaufman and fast Bunch–
Parlett algorithms bound L by taking a local maximum off-diagonal entry of A as
the off-diagonal entry in a 2× 2 pivot. These solutions are not available to us in the
partitioned matrix because this special entry need not be in A11. Using an entry that
is a local maximum off-diagonal entry of A11, but not a local maximum off-diagonal
entry of A, puts no bounds on the entries in L. We need another mechanism to bound
L.

One could envision computing, and possibly discarding, the entries of L, but
the extra work is considerable for 2× 2 pivots. Instead, we adopt a pivot selection
strategy based on a computable bound for the entries of L that will result from a
given 2× 2 pivot, a bound that does not depend on the failure of 1× 1 cases. From
the equation

[
li1 liq

]
=
[
ai1 aiq

] [a11 a1q

a1q aqq

]−1

,

it follows that

|li1| = |ai1aqq − aq1aiq||a11aqq − a2
q1|

≤ |aqq|γ1 + |aq1|γq
|a11aqq − a2

q1|
,

|liq| = |a11aiq − aq1ai1|
|a11aqq − a2

q1|
≤ |a11|γq + |aq1|γ1

|a11aqq − a2
q1|

.

These inequalities hold with no assumptions on the relative sizes of the entries in A.
We use these inequalities directly to obtain tests that guarantee the same bounds

on the reduced matrix and ‖L‖ that we would obtain in the best cases of our previous

ACCURATE SYMMETRIC INDEFINITE SOLVERS 541

algorithms. Whether the bounding quantities are sufficiently small can be computed
directly with relatively small expense as long as we know a11, aq1, aqq, γ1, and γq.

Satisfying these bounds on L will also bound growth in the reduced matrix. As-
sume that |lij | is bounded by 1/α̂ for all i and j. Then

|a(k+1)
ij | ≤ |aij |+

[|li1| |liq|] [|a1j |
|aqj |

]
≤ |aij |+ 2

α̂
max
u,v
|auv| ≤

(
1 +

2

α̂

)
max
u,v
|auv|.

Thus, growth in the reduced matrix and the bound on ‖L‖ will be acceptable if we
take

Dk,k+1 =

[
a11 a1q

a1q aqq

]
as a pivot when

max

{
|aqq|γ1 + |aq1|γq
|a11aqq − a2

q1|
,
|a11|γq + |aq1|γ1

|a11aqq − a2
q1|

}
≤ 1

α̂
.

By placing the same bound on L from a 2× 2 step as a 1× 1 step, we achieve both
a satisfactory bound on L and a sharper bound on the growth in the reduced matrix
than given by a Bunch–Kaufman-like algorithm. A simple explicit bounding strategy
is given in Figure 3.3.

if γ1 = 0 then
nothing necessary for the first column

else if |a11| ≥ α̂γ1 then
use a11 as a 1× 1 pivot

else if |aqq| ≥ α̂γq then
use aqq as a 1× 1 pivot

else if max {|aqq|γ1 + |aq1|γq, |a11|γq + |aq1|γ1} ≤
|a11aqq − a2

q1|
α̂

then

use

[
a11 aq1
aq1 aqq

]
as a 2× 2 pivot

else
no pivot found; repeat search using next column

end if

Fig. 3.3. An explicit bounding sparse pivot strategy.

This strategy does not bound the condition number of a 2× 2 pivot block. Con-
sequently, backward stability requires that we use some normwise backward stable
scheme for the solution of all 2× 2 linear systems, not Cramer’s rule. Our codes use
Gaussian elimination with complete pivoting. Our choice of 2× 2 pivot block does not
assure that the diagonal blocks of D associated with 2× 2 pivots have eigenvalues of
opposite signs, so there is a minor increase in the complexity of computing the inertia
of A. Note also that the 2× 2 pivot bounds can be sharpened somewhat when |aq1|
is equal to γ1 or γq if the second largest off-diagonal entry in each of the two columns
is known. A related idea appears in [19].

542 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

3.4. Comparison with the Duff–Reid algorithms. The original multifrontal
factorization of Duff and Reid [17] included capabilities for symmetric indefinite sys-
tems. Here and in later papers Duff and Reid [14, 18] present an approach of essentially
the same structure as the code in Figure 3.3 but based on bounding growth in the
reduced matrix.

The Duff–Reid condition for 2× 2 pivots bounds the modification to the i, jth
entry of the reduced matrix,

a
(k+1)
ij = aij − δij = aij −

[
ai1 aiq

]
D−1
k,k+1

[
a1j

aqj

]
= aij −

[
li1 liq

] [a1j

aqj

]
.

The key requirement in [14, 16, 17, 18] is that |δij | ≤ maxu,v |auv|/α̂, bounding growth
in the reduced matrix. There are several tests that guarantee this condition without
testing or even computing all components of columns of L. For example, the inequality

|δij | ≤
∥∥ ai1 aiq

∥∥
1

(∥∥∥∥∥
[
a11 aq1
aq1 aqq

]−1
∥∥∥∥∥
∞

∥∥∥∥ a1j

aqj

∥∥∥∥
∞

)

means that the reduced matrix growth condition is satisfied whenever∥∥∥∥∥
[
a11 aq1
aq1 aqq

]−1
∥∥∥∥∥
∞

max{γ1, γq} ≤ 1

α̂
.

Duff and Reid used this normwise bound as a test in [17]. Note that it is equivalent
to the bound ‖L1,q‖∞ ≤ ‖D−1

k,k+1‖∞‖A1,q‖∞ ≤ 1/α̂, so this approach bounds both
growth in the reduced matrix and the size of L.

In practice this test proved unnecessarily severe. In their later papers [14, 18]
Duff and Reid changed to a matrix magnitude test using |D−1

k,k+1|. That is, from the
inequality

|δij | ≤
[|ai1| |aiq|](∣∣∣D−1

k,k+1

∣∣∣ [|a1j |
|aqj |

])
one can obtain the sufficient condition for bounding reduced matrix growth

|D−1
k,k+1|

[
γ1

γq

]
≤
[

1/α̂
1/α̂

]
.

This is a sharper estimate of growth in the reduced matrix, which allows some blocks
to be used as pivots that would be rejected by the earlier test. Again, this condition
also bounds L through the inequality

[|li1| |liq|] ≤ |D−1
k,k+1|

[|ai1| |aiq|] ≤[
1/α̂ 1/α̂

]
. Indeed, this second test is identical to the test we obtain from the

goal of explicitly bounding L.
For Duff and Reid, bounding the entries in L was a means to the end of bounding

growth in the reduced matrix. For us, bounding L is the goal, because that bound,
coupled with a backward stable scheme for solving 2× 2 linear systems, suffices to
show backward stability for the entire process.

It is interesting to note three pitfalls into which focusing only on bounding |δij |
can lead. Using explicit inversion or Cramer’s rule for solving the 2× 2 systems is

ACCURATE SYMMETRIC INDEFINITE SOLVERS 543

one. A more dangerous trap is to take one step further in refining the test than do
Duff and Reid, to a componentwise magnitude bound. The inequality

|δij | ≤
[|ai1| |aiq|] ∣∣∣D−1

k,k+1

∣∣∣ [|a1j |
|aqj |

]
leads to an explicit test to accept Dk,k+1 whenever

|a11|γ2
q + 2|aq1|γ1γq + |aqq|γ2

1

|a11aqq − a2
q1|

≤ max{γ1, γq}
α̂

.

However, this is nothing more than an explicit version of the Bunch–Kaufman test.
It provides no useful bound on L, as can be shown by the same counterexamples that
afflict the Bunch–Kaufman algorithm. It bounds growth in the reduced matrix, but
it does not suffice to show backward stability of the factorization, and it is likely to
lead to other difficulties.

A third trap has been advocated in the literature. The tradition begun by Bunch
and Parlett is to take the bound on reduced matrix growth from a 2× 2 pivot to be
the same as the square of the bound on a 1× 1 pivot. In other words, the worst
growth allowed in a double step is the same as the bound from two consecutive worst-
case single steps. This has the aesthetic appeal of giving the same worst-case bounds
for growth in the reduced matrix for all pivot sequences. In the form of the tests used
by Duff and Reid this could be achieved by imposing the weaker condition

|δij | ≤
(

1

α̂2
+

2

α̂

)
max
u,v
|auv|.

It can be satisfied by factors where the entries of L from double steps are bounded
above by 1/(2α̂2). The difference between this bound and the bound we advocate,
1/α̂, is not important when 0.5 ≤ α̂ ≤ α ≈ .6404 . . ., the usual range for dense
algorithms. Sparsity changes the picture because noticeably smaller values of α̂ are
often used. For example, Duff and Reid [18] use 0.001 as a default value for α̂. We
contend that entries in L as large as 1/(2α̂2) ≈ 106 are dangerous. While Duff and
Reid bound L in a double step by 1/α̂, the alternative two parameter version of the
Duff–Reid algorithm by Liu [28] has only the weaker 1/(2α̂2) bound on L. This latter
scheme we consider in hindsight to be a mistake.

3.5. An exhaustive pivoting strategy for sparse symmetric indefinite
matrices. Our analysis of the sparse problem has thus far revolved solely around
the issue of testing when a given (block) pivot is acceptable. The performance differ-
ences between the dense bounded Bunch–Kaufman and fast Bunch–Parlett algorithms
demonstrate the effect of the order in which we test potential pivots. This ordering
issue is of far greater importance in the sparse case. We propose here a new ordering
of potential pivots that addresses two paramount issues: sparsity preservation and
computational speed.

Our standard ordering is a slightly refined version of the search procedure in Duff
and Reid’s MA27 code [16]. Each multifrontal elimination step is a block elimination
step, in which columns i1 < i2 < · · · < iu are candidates for elimination due solely to
their sparsity structure. A second set of columns, with indices iu+1 < iu+2 < · · · < iv,
are also candidates for elimination because their numerical entries prevented their
being eliminated at earlier factorization steps. Arrange these v columns in a queue,

544 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

initialize queue to i1 < i2 < · · · < iu; iu+1 < iu+2 < · · · < iv
repeat

pivot found = false
repeat

j = index at front of queue
qj = index of an off-diagonal entry aqjj of largest

magnitude γj in column j of A11

remove j from queue
if γj = 0 then

nothing necessary for the jth column
else if |ajj | ≥ α̂γj then

pivot found = true
use ajj as a 1× 1 pivot

else

if Dj,qj =

[
ajj aqjj
aqjj aqjqj

]
is acceptable as 2× 2 pivot then

pivot found = true
remove qj from middle of queue
use Dj,qj as a 2× 2 pivot

else
add j to rear of queue

end if
until

pivot found or
all columns in queue tested since last successful pivot step

until queue empty or not pivot found

Fig. 3.4. Standard pivot ordering.

in the order i1, i2, . . . , iv. An outline of the standard search procedure is given in
Figure 3.4.

A major complication in the sparse case is that an acceptable pivot need not
exist. This standard procedure searches two possible pivots in any given column, the
1× 1 diagonal pivot and the 2× 2 pivot that uses the largest off-diagonal entry in the
first block row of the column, to which either of the Duff–Reid tests or Liu’s condition
can be applied. All m columns are postponed if no pivot is found from these 2m− 1
candidates, where A11 has m columns.

Failing to eliminate a column in the partial factorization creates more fill in L.
The standard strategy evaluates only m− 1 of the m(m− 1)/2 possible 2× 2 pivots.
Each test requires knowledge of the largest entry in at least one column of A. Often
the length of each column is significantly greater than m. In any case in which no
pivot is found, all m column maximums will have been found at least once and used
on average twice.8 We propose a different approach, to reuse the maximums. As
we will see, we can check all possible 2× 2 pivots with only m(m − 1)/2 additional
scalar operations. While we cannot prove that the work saved in later steps is of

8The Duff–Reid MA27 code avoids some double searches by first evaluating the 2 × 2 test with
γqj = 0 and only truly evaluating γqj if this partial test is successful.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 545

larger complexity, we have found it generally worthwhile to search exhaustively for
2× 2 pivots.

Reusing the work in the column searches saves work and allows us to emphasize
faster inner loops in the factorization. Block operations with large block size, as used
by LAPACK, are generally not feasible in the sparse case. Our sights are much lower—
2× 2 pivots execute more operations faster than 1× 1 pivots. Because our acceptance
test for 2× 2 pivots is independent of all 1× 1 conditions, we can choose a pivot
test order that favors 2× 2 pivots. The heuristic procedure that works best in our
experiments is not entirely straightforward. Figure 3.5 is a schematic representation
in which the entries denote the order in which the tests are made. Diagonal entries
correspond to a 1× 1 pivot test with the corresponding diagonal entry in A11. Off-
diagonal entries represent a 2× 2 pivot test with the corresponding off-diagonal entry
in A11 and the appropriate diagonal entries.

11
1 12
2 3 13
4 5 6 14
7 8 9 10 15

16 17 18 19 20 21
22 23 24 25 26 27 28

. .
. . .

Fig. 3.5. Schematic of exhaustive pivot search order (m2×2 = 5).

The pattern in Figure 3.5 reuses each γi as often and as soon as possible. It is
biased toward 2× 2 pivots in two different ways. As we compute each new column
maximum γj we immediately check all possible 2× 2 pivots with entries aij for which
we have already available the other column maximum γi needed for the test. We
also refuse to check or accept any 1× 1 pivot until we have examined (and failed)
on all 2× 2 pivots drawn pairwise from the leading m2×2 columns, where m2×2 is a
heuristic parameter. We recommend m2×2 = 5.

The algorithmic details of our revised pivoting strategy are presented in Fig-
ure 3.6. Our preference for 2× 2 pivots is primarily to emphasize speed of the numeric
kernels. Although our strategy may also find acceptable pivots where the standard
ordering finds none, we shall see in section 3.8 that the differences in fill between the
two approaches is small. That the exhaustive pivot strategy usually leads to faster
factorizations and solves is due to its greater use of 2× 2 pivots. In contrast, Duff and
Reid [14, 18] stress choosing special 2× 2 pivots to take good advantage of the un-
usual sparsity structure in symmetric matrices with large zero diagonal blocks. Their
scheme can be quite effective in reducing fill for such problems.

The pivot selection scheme in Figure 3.6 resulted from extensive experimenta-
tion. A number of other possible orderings for pivot selection, in particular including
ordering the columns by size of diagonal entry, proved less effective because of large
overhead. In addition to the bias toward 2× 2 pivots, the one other important feature
in Figure 3.6 is the initial skip over columns that were previously postponed. This is
included in our standard ordering, where it is also effective.

546 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

initialize queue to i1 < i2 < · · · < iu; iu+1 < iu+2 < · · · < iv
repeat

let j1, j2, . . . , jk denote the ordering of the
columns now present in the queue

t = 1; pivot found = false
repeat

i = jt; compute γi; remove jt from queue
if γi = 0 then

nothing necessary for column jt; pivot found = true
else

p = 1
while p < i and not pivot found do

if max { |aii|γjp + |aijp |γi,
|ajpjp |γi + |aijp |γjp

} ≤ |ajpjpaii − a2
ijp
|

α̂
then

use

[
ajpjp aijp
aijp aii

]
as a 2× 2 pivot

remove jp from queue; pivot found = true
else

p = p+ 1
end if

end while

if not pivot found and t = m2×2 then
p = 1
while p < t and not pivot found do

if |ajpjp | ≥ α̂γjp then
use ajpjp as a 1× 1 pivot
remove jp from queue; pivot found = true

end if
end while

end if

if not pivot found and t ≥ m2×2 and |aii| ≥ α̂γi then
use aii as a 1× 1 pivot

else
add i to rear of queue; t = t+ 1

end if

end if

until
pivot found or
all columns in queue tested since last successful pivot step

until queue is empty or not pivot found

Fig. 3.6. Exhaustive search explicit bounding sparse pivot algorithm.

3.6. Larger pivot blocks. The success of the algorithm in the previous section
in increasing speed by emphasizing 2× 2 pivots leads naturally to the idea of using
other, larger block operations to gain speed. However, most of the dense partial

ACCURATE SYMMETRIC INDEFINITE SOLVERS 547

factorizations in the sparse factorization are too small to make use of the left-looking
blocking strategy used in LAPACK, which requires blocks of large order. In this section
we generalize this scheme to use block pivots of rather small order, say, s ≤ 5, in an
explicit right-looking factorization.

We partition the permuted reduced matrix A(k−1) as

A(k−1) =

Dk BTk

Bk Ck

and compute the Schur complement Ck−BkD−1

k BTk as a block operation. We imple-
ment this symmetric rank s modification directly, using “unroll and jam” techniques
as in [13]. This requires separate code for each value of s allowed, but it allows much
of the data reuse of BLAS3 operations, with less overhead. On dense matrices our
block codes run only slightly slower on RISC computers than LAPACK when we take
s to be three or four.

The tests we developed in section 3.3 ensure that the entries of L resulting from
a 2× 2 pivot are bounded by 1/α̂. It is straightforward to generalize these tests
to block pivots of larger order. From the permuted reduced matrix A(k−1) take the
leading principal minor of order s for use as an s × s block pivot Dk. If D−1

k is
computed by some stable algorithm, the computable bound

∣∣D−1
k

∣∣

γ1

γ2

...
γs

 ≤

1/α̂
1/α̂

...
1/α̂

ensures that |lij | ≤ 1/α̂. We require that Dk satisfy this condition. Then by the
inequality

|a(k+s−1)
ij | ≤ |aij |+

[|li1| |li2| · · · |lis|]

|a1j |
|a2j |

...
|asj |

≤ |aij |+ s

α̂
max
u,v
|auv| ≤

(
1 +

s

α̂

)
max
u,v
|auv|,

we obtain a bound of (1 + (s/α̂)) on growth in the reduced matrix. As in the
2× 2 case, s× s linear systems must be solved using some normwise backward stable
algorithm. Our code uses a QR factorization of Dk. Together with the bound on L,
this suffices to show backward stability of the factorization for symmetric block pivots
of any size.

Our blocks are much smaller than those in LAPACK for several reasons. Code for
the explicitly unrolled operations is complex. Most importantly, the cost of finding
numerically acceptable block pivots is considerable. It is unlikely that the leading s×s
principal minor will be acceptable as a block pivot; we must expect to test several
candidates. The fully assembled block A11 has order n1, so it contains

(
n1

s

)
possible

symmetric block pivots of order s. The exhaustive search strategy we used to find
2× 2 pivots in section 3.5 is impractical for s much greater than two.

548 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

To keep the cost manageable, we restrict ourselves to small blocksizes and use
heuristics to order the tests of possible pivots. We investigated several different strate-
gies, which we will document more fully in a separate paper. Here we present only
one strategy, one in the same spirit as the algorithm in Figure 3.6. We select M , the
s× s principal minor of A11 that contains the s largest diagonal entries. We look for
block pivots drawn from this submatrix, beginning with M itself as a s×s block pivot.
If it is unacceptable, we systematically test each of the s possible (s − 1) × (s − 1)
principal minors of M , terminating if we find an acceptable block pivot. The search
continues when necessary by testing smaller and smaller principal minors of M . If we
fail to find even an acceptable 1× 1 pivot from M , we resort to the exhaustive search
of section 3.5, noting that all possible symmetric pivots from M have already been
rejected.

In section 3.8 we describe our preliminary numerical experience with this block
algorithm. In closing, we note that Jones and Patrick [26] also developed a less general
block pivot algorithm using a extension of Liu’s Bunch–Kaufman algorithm to bound
growth in the reduced matrix. They reported unsatisfactory results when they allowed
s to grow. The explanation is simple—they allowed entries in L as large as (1/α̂)

s

and growth in |δij | as large as (1 + (1/α̂))
s
. Our algorithm bounds L more tightly

and solves the problem in a general way.

3.7. Another option—a sparse LTLT factorization. The Aasen/Parlett–
Reid LTLT factorization is a potential alternative to the sparse LDLT factorization,
yet the difficulties of creating a sparse Aasen-like algorithm are daunting. Here we
briefly explore some of the issues one would face in developing a sparse variant of
Aasen’s algorithm.

Sparse LDLT factorizations try to preserve the desirable properties of sparse
Cholesky factorizations, in particular the efficient static data structures. The multi-
frontal approach is the basis for all currently successful codes. Here the key ingredient
is that pivoting is allowed only within the diagonal blocks defined by (supernodes of)
the frontal assembly tree, the A11 blocks in the preceding sections. Pivoting requires
dynamic data structures, but this restriction on the choice of pivots makes the changes
in data structures much more manageable than would be required for completely gen-
eral pivot schemes.

The requirements for data structures for a sparse LTLT factorization are similar
to those of a sparse LDLT factorization. We assume therefore that an efficient sparse
LTLT factorization would be done using a block structure very similar to that of
a multifrontal factorization. We see three major obstacles to a successful sparse
multifrontal-like LTLT factorization: computing the product (TLT) efficiently when L
is sparse, understanding and storing the different fill-in that results from the different
form of elimination used, and modifying the basic algorithm to meet the restriction
on pivoting.

The first issue can be dealt with by using the block structure in an outer product
manner. Consider applying q elimination steps simultaneously with a block version
of the Parlett–Reid algorithm. The scalar Parlett–Reid algorithm requires a rank 2
modification at each elimination step, only after some analysis of what appears to
be a rank 3 modification. Aasen succeeded in reducing the cost to that of a rank
1 modification. We can show that, after computing q steps of the factorization, the
reduced matrix can be updated explicitly by a rank q + 2 modification. We have
not tried, by analogy with the point case, to reduce this to a rank q + 1 or rank q
modification. We would expect this block version to be more efficient than applying

ACCURATE SYMMETRIC INDEFINITE SOLVERS 549

q steps of Aasen’s algorithm in sequence, and might also prove useful in a dense
partitioned LTLT factorization. Compared to an LDLT factorization, the additional
rank 1 or rank 2 work is a penalty but not an insurmountable obstacle.

Fill can be analyzed through a simple variant of the standard elimination pro-
cess for sparse Cholesky. A straightforward implementation of such a sparse Aasen–
Parlett–Reid scheme has a best case for fill that is generally worse than the best case
for an LDLT factorization. Let η(Lc∗j) denote the number of columns in the jth

column of the Cholesky factor Lc. Then the best case for the LDLT factorization is
the same structure, which has

∑
j η(Lc∗j) nonzeros. A lower bound for the best case

for a simple sparse LTLT factorization is
∑
j η(Lc∗p(j)), where p(j) is the index of the

parent of node j in the elimination tree of the Cholesky factor. There appear to be
ways to reduce the difference marginally but at a considerable cost in code complex-
ity. Table 3.1 gives the results of a more careful computation of the increase in best
case storage requirements for the LTLT factorization, compared with the best case
LDLT factors, for the test problems used in this paper. Additional fill usually creates
noticeably larger increases in work than in storage. Table 3.1 thus suggests that an
LTLT factorization will be slower than an LDLT factorization.

Table 3.1
Storage increase, best case LTLT relative to best case LDLT .

Matrix Order # of frontal Storage
matrices increase

bcsstk08 1074 756 50.6%
traj06b 1665 618 33.1%
bcsstk24 3562 407 6.2%
bcsstk38 8032 1557 7.6%
bcsstk35 30237 3903 6.0%

We would expect to use Aasen’s algorithm within a frontal elimination step.
Our compromise between sparsity and data structures is to allow a pivot only from
within the A11 block. This may prevent a column from being eliminated; Aasen’s
algorithm must be modified for use as a partial factorization. The work done in
Aasen’s algorithm to compute the leading column of the reduced matrix may have to
be discarded. This is the same issue we faced in the fast Bunch–Parlett and bounded
Bunch–Kaufman algorithms. Here, again, sparsity prevents us from using a simple
tool to eliminate this cost. A practical sparse code appears more likely to require that
we avoid discarding this work as much as possible, which can be done by tracking
for each column in the active matrix where it was last explicitly updated. But this
represents additional complexity in coding and a likely degradation in performance.

These issues all make it likely that a multifrontal sparse LTLT algorithm will
perform less efficiently than good multifrontal LDLT factorizations. However, the
bottom line is likely to come from the differences in the actual pivots dictated by
the numerical entries. The differences in pivoting choice are hard to predict, but the
simple differences are not advantageous to the LTLT scheme. The most obvious cases
in which the LTLT factorization can accept a column rejected as a 1× 1 pivot in the
LDLT factorization would still be taken as 2× 2 LDLT pivots, whereas there are
obvious cases in which the LTLT scheme rejects perfectly good 1× 1 pivots in the
LDLT case. For these reasons we did not implement a sparse LTLT factorization and
cannot directly answer how it would fare in comparison to our LDLT factorizations.

550 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

3.8. Numerical experiments. We have argued for a sparse factorization that
comes with strong guarantees for accuracy. We have described schemes which we
believe reduce the costs of getting such factorizations. In this section we give what
we believe is a general view of the numerical experience one can expect with such
factorizations.

3.8.1. Codes. Our numerical experiments used two different computer codes in
our experiments. We began with our workhorse Fortran 77 code from the BCSLIB-
EXT software library [4]. This widely used commercial code is based on Liu’s thresh-
old Bunch–Kaufman algorithm. We developed a variant of this code that implements
the algorithm of section 3.5, which we refer to as the exhaustive explicit pivoting code
(EP). Larger block pivots were tested in a new code being developed in C. This code is
efficient, but the results from these experiments should be considered as preliminary.
We describe this as the explicit block pivoting code (EBP) in our tables.

Both codes allow two modes of factorization. In the indefinite mode the Fortran
77 code implements the EP algorithm, which favors the use of 2× 2 pivots. For either
1× 1 or 2× 2 cases the low rank modification to the reduced matrix is made immedi-
ately. The inner loop applies the modification to each of two columns simultaneously,
reducing the number of memory loads. The C code implements the EBP algorithm
of section 3.6, which favors larger block pivots. This code uses an inner loop that
performs a rank s modification to each of four columns of the reduced matrix simul-
taneously. The larger values of s and the simultaneous modifications of four columns
reduce memory traffic even further than does our EP implementation.

Each of the codes also allows a mode for definite matrices, in which case pivoting
is not required. Each column is treated as a 1× 1 pivot, which are grouped together
to form larger block pivots. In the Fortran 77 code each successive triple of columns
is grouped as a block, and the resulting rank three modification is applied in an inner
loop to two columns simultaneously. The C code takes the leading s × s principal
minor as a block pivot and thereafter uses the same code as the indefinite case.

The user must determine the choice of mode in advance. Both codes can factor an
indefinite matrix with the definite mode, producing an unpivoted LDLT factorization
withD diagonal. There are no stability guarantees for such a factorization. We include
the definite mode primarily to avoid the cost of pivoting when the matrix is known
to be definite or has special properties that guarantee stability of the factorization.
We never advocate its use on general indefinite matrices, and we include it in this
discussion only to be able to address the penalty associated with using the general
codes instead of the definite codes on a matrix that happens to be definite.

We provide data to compare our EP and EBP algorithms, Liu’s sparse threshold
Bunch–Kaufman (LBK) algorithm, and the Duff and Reid strategy using the matrix
magnitude test (DR). The latter two schemes are both implemented using the stan-
dard pivot search order (Figure 3.4). Of these, all but Liu’s algorithm bound L. The
major issues we address include the additional cost of and accuracy from obtaining a
bounded L, described by comparisons of Liu’s algorithm with the Duff–Reid algorithm
and with our EP algorithm; the effect of choosing smaller values of α̂ on efficiency
and accuracy, for all algorithms; and the effect of choosing larger block sizes in our
EBP algorithm.

The codes were run on a SPARC 20 under the Solaris operating system. The
implementations of the EP, Duff–Reid, and LBK algorithms use the same Fortran 77
framework and were compiled by the f77 compiler with -O3 optimization. The block
pivot code was compiled under the gcc complier with the -04 optimization.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 551

Table 3.2
Test matrices.

traj06b A symmetric indefinite KKT matrix from a numerical op-
timization code. Liu’s algorithm for the particular value
α̂ = .056 (corresponding to τ = 0.1) suffers substantial loss
in accuracy on this matrix, which led to our investigation of
pivoting strategies. This matrix is typical of KKT matrices
in having large numbers of eigenvalues of both signs, which

is due to its form A =
[
H GT

G 0

]
. This matrix represents

the type of matrix for which the approach in Duff–Reid
[14, 18] may be particularly appropriate.

bcsstk35 A symmetric indefinite structural engineering matrix which
is presumed in its origin to be positive (semi)-definite; nu-
merically semi-definiteness translates into very small, but
negative, eigenvalues.

bcsstk24 A symmetric positive definite structural engineering matrix

{bcsstk08, bcsstm08},
{bcsstk24, bcsstm24},
{bcsstk38, bcsstm38}

Matrix pairs (mass and stiffness matrices) representing gen-
eralized eigenproblems from structural engineering vibra-
tion analysis

3.8.2. Test problems and statistics. We tested our algorithms on a number
of matrices drawn from the Harwell–Boeing sparse matrix collection [15] or soon to
be added to it. The matrices described here are intended to demonstrate a wide
spectrum of problems. We present detailed data on the first three test matrices in
Table 3.2.

We present statistics for each of these matrices in Tables 3.3–3.5. Each table
includes four separate subtables: symbolic factorization statistics for a Cholesky fac-
torization; numerical results for a nonpivoted LDLT factorization; numerical results
for the 2× 2 pivoting codes (Liu, Duff–Reid, and EP); and numerical results for
the block pivoting code (EBP). In the numerical subtables we give a common set
of statistics: the CPU time required, the maximum relative error in solving several
linear systems whose solution vectors are drawn from a uniform distribution on [0, 1],
the magnitude of the largest entry in the computed lower triangular factor, and the
total number of pivot steps. The last of these demonstrates whether the bias toward
block pivots is realized. (The second subtable is missing from traj06b, which has
zero diagonal entries and cannot be factored without pivoting.)

We do not recommend using the last two subtables to compare the relative speeds
of the Fortran 77 and C codes. The implementation differences in data reuse and the
use of several compilers make it impossible to do more than weakly account for the
algorithmic differences.

We also present summary CPU times for three families of matrices drawn from
symmetric generalized eigenproblems KΦ = MΦΛ. In each family each matrix is
of the form K − σM , where the values used for σ represent different shifts as could
be obtained from an eigenvalue code using the spectral transformation [21]. The
three families of matrices all represent structural engineering eigenproblems, using the
pairs of matrices {bcsstk08, bcsstm08}, {bcsstk24, bcsstm24}, and {bcsstk38,
bcsstm38}.

3.8.3. Results. The fundamental question is, What is the cost of obtaining a
factorization with L bounded tightly?

The first problem, traj06b, illustrates why we have to pay this cost. Exactly

552 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

zero entries on the diagonal of this matrix defeat a factorization without numerical
pivoting. Pivoting without a good bound on L gives inferior accuracy. The second
example, bcsstk35, presents the other side of the coin—pivoting cannot overcome ill
conditioning. This matrix is numerically singular, and all of the algorithms provide
similar and poor accuracy for this problem.

The remaining problems demonstrate a common theme in this area: very often
less stable algorithms appear to perform numerically just as well as more reliable
algorithms. Counterexamples are uncommon. The structural engineering eigenprob-
lem matrices in Tables 3.6–3.8, and corresponding shifted versions of the pencil bc-
sst{k,m}35, produced no large entries in L, even when we used unpivoted factoriza-
tions.9

The simplest cost comparison of any of the pivoted factorizations with the unpiv-
oted factorizations shows a considerable increase in time and storage for computing
a factorization with stability guarantees. The third example, bcsstk24, illustrates
why. The Cholesky factorization is stable but gives only a

√‖A‖ bound on ‖lij‖. The
Duff–Reid, EP, and EBP algorithms must pivot to maintain the required bounds on
L even in this positive definite case.

Comparing the pivoted factorizations, we see in general a noticeable drop in cost
between α̂ = 0.1 and α̂ = 0.01. For such values of α̂, the Duff–Reid and EP algorithms
can be faster than Liu’s algorithm. Still smaller values of α̂ yielded only marginal
improvements in speed. As a general rule, the EP algorithm has the advantage over the
Duff–Reid algorithm. This seems to be due primarily to greater use of 2× 2 pivots.
The exceptional case is traj06b, on which EP is unable to choose 2× 2 pivots as
regularly. Exhaustive search does not perform well on this problem because of unusual
row scaling.

We argue against speed at the cost of accuracy. Our problems fell into two cate-
gories. Accuracy for the structural engineering eigenproblems seemed quite insensitive
to the choice of α̂. In contrast traj06b shows a general degradation in accuracy for
smaller values of α̂. We recommend taking α̂ = 0.01 as an effective compromise
between speed and stability.

Our preliminary results on block pivots agree with the results on the standard
codes: that choosing 2× 2 pivots in preference to 1× 1 pivots provides a speedup.
We see a further, but smaller, gain in going to 3× 3 pivots. In general, 4 × 4 pivots
did not give more speed. There are several reasons that limit the effectiveness of larger
pivot blocks. The sparsity of the matrices is a limiting factor in that the small sizes
of many of the frontal matrices prevent choosing many large pivots and usually leave
a small pivot block as the only possible choice at the last elimination step. Small
frontal matrices also have greater overhead, relative to numeric work, than larger
frontal matrices. The computer architecture and compilers are also limiting. The
effectiveness of these “unroll and jam” techniques depends heavily on the availability
of substantial numbers of registers and of effective optimizing compilers. We have
observed substantially better results on machines like the CRI C-90 computer than
we obtained on the Sun SPARCstation 20.

Tables 3.6–3.8 address how the cost of the indefinite factorization varies with the
distribution of eigenvalues of the factored matrix. Two of the three families of shifted
matrices show an increase in cost as the number of negative eigenvalues increases,
but then show a marked decrease in difficulty when the distribution of negative and
positive eigenvalues is more balanced. However, the third family of shifted matrices
shows very little variation throughout.

9Details for the three eigensystem families can be obtained from the authors.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 553

Table 3.3
traj06b: Trajectory optimization, inertia = 〈794, 0, 871〉.

Symbolic factorization
Matrix order 1665

of frontal matrices 618
Nonzeros in L 25,950

Factor operations 0.57M

2× 2 pivoting sparse codes

α̂ = 0.1 α̂ = 0.01
LBK DR EP LBK DR EP

CPU 0.32 0.47 0.81 0.29 0.18 0.20
‖e‖∞/‖x‖∞ 2e-6 2e-10 2e-10 1e-10 3e-11 2e-11
maxi,j |Lij | 4.6e7 10 10 6.5e3 100 99
Rel. nz(L) 1.83 2.24 2.24 1.51 1.52 1.52
Rel. ops 3.37 6.42 6.47 2.12 2.17 2.25

Block pivot code (EBP)

α̂ = 0.1 α̂ = 0.01
s = 2 s = 3 s = 4 s = 2 s = 3 s = 4

CPU 0.80 0.81 0.89 0.39 0.40 0.47
‖e‖∞/‖x‖∞ 8e-13 2e-12 1e-12 2e-11 1e-11 6e-12
maxi,j |Lij | 10 10 10 98 100 98
Rel. nz(L) 2.17 2.17 2.17 1.50 1.50 1.50
Rel. ops 6.89 6.89 6.89 2.15 2.14 2.14

Table 3.4
bcsstk35: Automobile seat frame and body attachment, inertia = 〈3, 0, 30234〉.

Symbolic factorization
Matrix order 30237

of frontal matrices 3903
Nonzeros in L 2.66M

Factor operations 381.1M

LDLT factorization, no pivoting
BCSLIB-EXT Block pivot code
D diagonal s = 1 s = 2 s = 3 s = 4

CPU 23.4 31.8 24.0 22.7 23.5
‖e‖∞/‖x‖∞ 2e-5 3e-6 7e-5 7e-5 2e-4
maxi,j |Lij | 338 338 338 474 338

2× 2 pivoting sparse codes

α̂ = 0.1 α̂ = 0.01
LBK DR EP LBK DR EP

CPU 40.8 43.8 31.6 40.1 41.3 28.9
‖e‖∞/‖x‖∞ 2e-5 2e-5 3e-5 2e-5 2e-5 2e-5
maxi,j |Lij | 338 10 10 338 99 99
Rel. nz(L) 1.00 1.02 1.02 1.00 1.00 1.00
Rel. ops 1.01 1.04 1.07 1.00 1.01 1.03

Block pivot code (EBP)

α̂ = 0.1 α̂ = 0.01
s = 2 s = 3 s = 4 s = 2 s = 3 s = 4

CPU 26.5 25.7 26.3 25.0 24.1 24.6
‖e‖∞/‖x‖∞ 1e-5 2e-6 5e-6 2e-6 7e-6 5e-6
maxi,j |Lij | 10 10 10 99 99 99
Rel. nz(L) 1.03 1.03 1.03 1.00 1.00 1.00
Rel. ops 1.07 1.07 1.07 1.00 1.00 1.00

554 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

Table 3.5
bcsstk24: Winter sports arena, inertia = 〈0, 0, 3562〉.

Symbolic factorization
Matrix order 3562

of frontal matrices 407
Nonzeros in L 284,334

Factor operations 36.7M

LDLT factorization, no pivoting
BCSLIB-EXT Block pivot code
D diagonal s = 1 s = 2 s = 3 s = 4

CPU 2.3 2.9 2.3 2.1 2.2
‖e‖∞/‖x‖∞ 2e-8 8e-9 1e-8 3e-8 3e-8
maxi,j |Lij | 367 367 376 489 383

2× 2 pivoting sparse codes

α̂ = 0.1 α̂ = 0.01
LBK DR EP LBK DR EP

CPU 4.4 8.9 7.0 3.8 4.5 3.3
‖e‖∞/‖x‖∞ 2e-8 2e-8 1e-8 2e-8 2e-8 1e-8
maxi,j |Lij | 453 10 10 367 99 98
Rel. nz(L) 1.05 1.48 1.50 1.00 1.04 1.05
Rel. ops 1.11 2.28 2.32 1.00 1.12 1.16

Block pivot code (EBP)

α̂ = 0.1 α̂ = 0.01
s = 2 s = 3 s = 4 s = 2 s = 3 s = 4

CPU 7.2 6.9 6.9 2.7 2.6 2.6
‖e‖∞/‖x‖∞ 6e-9 1e-8 8e-9 2e-8 4e-9 2e-8
maxi,j |Lij | 10 10 10 100 99 99
Rel. nz(L) 1.44 1.44 1.44 1.05 1.05 1.05
Rel. ops 2.09 2.10 2.09 1.14 1.13 1.13

Table 3.6
bcsst{k,m}08: TV studio, K − σM .

Symbolic factorization
Matrix order 1074

of frontal matrices 756
Nonzeros in L 29,973

Factor operations 1.94M

2× 2 pivoting sparse codes

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. LBK DR EP LBK DR EP
0 0 0.31 0.41 0.34 0.25 0.26 0.22

140 18 0.47 0.82 0.65 0.25 0.26 0.23
196 74 0.67 1.28 0.97 0.25 0.28 0.24
220 100 0.69 1.32 1.00 0.25 0.29 0.25

10000 618 0.32 0.35 0.29 0.25 0.26 0.23

Block pivot code (EBP)

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. s = 2 s = 3 s = 4 s = 2 s = 3 s = 4
0 0 0.81 0.79 0.83 0.44 0.43 0.44

140 18 1.76 1.85 1.84 0.45 0.45 0.45
196 74 2.54 2.59 2.64 0.47 0.48 0.47
220 100 2.54 2.60 2.62 0.51 0.49 0.50

10000 618 0.62 0.64 0.65 0.46 0.50 0.46

ACCURATE SYMMETRIC INDEFINITE SOLVERS 555

Table 3.7
bcsst{k,m}24: Winter sports arena: K - σ M.

Symbolic factorization
Matrix order 3,562

of frontal matrices 407
Nonzeros in L 284,334

Factor operations 36.7M

2× 2 pivoting sparse codes

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. LBK DR EP LBK DR EP

4.0 0 4.5 9.0 7.0 3.8 4.4 3.3
60.0 20 4.6 9.5 7.4 4.0 4.5 3.4

200.0 63 4.5 10.8 8.3 3.8 5.1 3.9
350.0 98 4.3 11.1 8.6 3.8 5.5 4.1

100000.0 1782 5.7 5.8 4.4 4.1 4.5 3.4

Block pivot code (EBP)

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. s = 2 s = 3 s = 4 s = 2 s = 3 s = 4

4.0 0 7.3 9.1 7.0 2.8 2.6 2.7
60.0 20 7.6 7.2 10.0 2.9 2.7 2.8

200.0 63 8.4 7.9 8.0 3.3 3.2 3.3
350.0 98 8.8 8.6 8.6 3.3 3.4 3.3

100000.0 1782 4.4 4.3 4.3 3.0 3.0 2.9

Table 3.8
bcsst{k,m}38: Airplane engine component, K − σM .

Symbolic factorization
Matrix order 8,032

of frontal matrices 1,557
Nonzeros in L 708,593

Factor operations 111.4M

2× 2 pivoting sparse codes

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. LBK DR EP LBK DR EP
0 0 12.0 14.5 10.6 11.8 12.6 9.3

1.6e6 46 11.9 15.6 11.3 11.8 13.3 9.6
3.0e6 78 12.0 15.4 11.0 11.8 13.3 9.7
4.0e6 101 12.0 15.4 11.0 11.8 13.4 9.7

1.0e10 2262 11.6 16.8 12.3 11.8 13.3 9.7

Block pivot code (EBP)

of neg. α̂ = 0.1 α̂ = 0.01
σ eigenvals. s = 2 s = 3 s = 4 s = 2 s = 3 s = 4
0 0 9.5 9.3 9.3 7.7 7.5 7.7

1.6e6 46 10.2 9.9 9.7 8.0 7.6 7.8
3.0e6 78 10.2 10.4 9.8 7.7 7.7 7.9
4.0e6 101 10.2 10.2 9.8 7.8 7.6 7.8

1.0e10 2262 10.5 10.3 10.1 8.0 7.7 7.9

4. Summary remarks. We have presented algorithms that provide more accu-
rate solutions to symmetric indefinite linear systems by bounding the entries in the
factor L. For dense matrices, the cost of bounding L and, thereby, of higher accuracy
is minimal. For sparse matrices, our strategies to find 2× 2 and larger block pivots
results in codes that are faster and more accurate than their predecessors.

Appendix A. The hidden dangers of scaling—Instability in LAPACK.
LAPACK uses BLAS2 and BLAS3 kernels wherever possible. Kaufman [27] observes

556 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

that this may not always be appropriate for reasons of efficiency. We uncovered a
special case where the use of BLAS2 kernels produced instability.

The LAPACK codes include a conventional unblocked Bunch–Kaufman code, which
is used to process the final block in a blocked factorization, for problems of order
smaller than b and for any problem where the user has not provided the temporary
storage needed for blocking. The LAPACK unblocked implementation in release 2.0
and earlier used a clever trick with rank 2 modifications to circumvent the lack of an
appropriate rank 2 kernel in BLAS2. This rearrangement is an issue because the price
is instability when entries in L are large.

The reduction step for a 2× 2 pivot is

A(k+1) = A(k−1) −Ak,k+1D
−1
k,k+1A

T
k,k+1 = A(k−1) −Ak,k+1L

T
k,k+1,

where Ak,k+1 is an (n−k−1)×2 matrix from columns k and k+1 of A andDk,k+1 is the
2× 2 pivot block. This is a symmetric rank 2 modification, but only the latter form
is present in BLAS2, which does not recognize the implicit symmetry. The LAPACK
implementation retains use of BLAS2 by replacing the symmetric rank 2 modification
with a sum of two symmetric rank 1 matrices, using the eigendecomposition QΛQT

of Dk,k+1. The matrix Z = Ak,k+1Q is formed explicitly by Givens rotations, after
which

A(k+1) = A(k−1) − (Ak,k+1Q)Λ−1(QTATk,k+1) = A(k−1) − ZΛ−1ZT

is computed as two independent rank 1 modifications. Finally, Lk,k+1 is computed as
Lk,k+1 =

(
ZΛ−1

)
QT . The hope is that sufficiently higher performance on the O(n2)

work of the symmetric rank 1 modifications will more than offset the extra O(n) work
of the rotations.

This leads to disaster in the factorization. The worst results for our first test
suite, the scaled matrices of order 50 from section 2.7.1, are given in Table A.1, using
the measures from section 2.7.1.

Table A.1
Instability of the unblocked LAPACK Bunch–Kaufman algorithm.

Decomposition error 7.3× 104

Error in inverse 3.0× 105

Residual 4.6× 105

Solution error 5.7× 101

The failure comes from allowing very large entries in L. Consider one of our
scaled random matrices, with m = 1, σ1 = 10−2t2−1, σ2 = σ3 = 10−t2 , with the
extra conditions that a11 = 10−2t2−1, a21 = a22 = 10−t2 . The first reduction step
is a 2× 2 pivot with the leading 2× 2 block. The eigenvalues of the diagonal block
D are approximately 10−t2

(
1±√5

)
/2. As t2 increases, the eigenvector matrix Q

approaches [
0.8507 0.5257
−0.5257 0.8507

]
.

The new reduced matrix is calculated as

aij = aij − zi1zj1
λ1

− zi2zj2
λ2

.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 557

The largest entries in the original matrix, in Z and in the reduced matrix, are all O(1).
But the reduced matrix is computed as O(1) −O(10t2) −O(10t2). The two O(10t2)
terms must cancel massively to achieve an O(1) result. The result is inaccurate
entries in the reduced matrix. The original Bunch–Kaufman algorithm stands in sharp
contrast—the analysis of section 2.2 shows that each term in the rank 2 modification
is bounded by µ(= O(1)) through the careful choice of conditions imposed by the
failures of cases 1, 3, and especially 2. Were the new reduced matrix to be calculated
as

A(k+1) = A(k−1) − (Lk,k+1Q)Λ(QTLTk,k+1),

a similar cancelation would occur because entries of Lk,k+1Q will be O(10t2). The
instability in the LAPACK code is fixed easily, by performing the rank 2 modification
as in LINPACK, as A(k−1) −Ak,k+1L

T
k,k+1.

The LAPACK scheme is equivalent to solving the 2× 2 systems with the singular
value decomposition. We would generally expect this to be a very stable approach,
but here it is a mistake, as is substituting Gaussian elimination with complete pivoting
for Cramer’s rule. Again a very stable method causes similar instability of the Bunch–
Kaufman factorization.

Except in this section, our comparisons of numerical accuracy and timing con-
sistently use rank 2 modifications A − Ak,k+1L

T
k,k+1 for both the slightly rewritten

LAPACK code and our new algorithms. Our rank 2 modifications are done in a sepa-
rate BLAS-like subroutine to facilitate tuning the code for higher performance while
requiring no extra vector storage. As Kaufman [27] argues, this “generalized” sym-
metric rank 2 modification should be part of the BLAS2 specifications; we agree. Its
vendor-supported performance should exceed that of the rank 1 kernel, which would
remove the argument for misusing the rank 1 kernel. The bounded Bunch–Kaufman
and the fast Bunch–Parlett algorithms are not sensitive to the LAPACK rearrange-
ment of the rank 2 modification, inasmuch as both L and κ(Dk,k+1) are bounded near
unity. Nonetheless, the rank 2 kernel missing from BLAS2 really is the appropriate
form for these algorithms as well.

We also encountered a similar problem with the LAPACK matrix inversion routine
for symmetric indefinite problems. The LAPACK Bunch–Kaufman factorization com-
putes very poor explicit inverses for many of our tests when entries in L are large. The
LAPACK explicit inversion routine uses a recursive algorithm, not an explicit block
solution of AX = I. The factorization from the bounded Bunch–Kaufman algorithm
provides accuracy similar to the results of an explicit solution. We would expect the
LAPACK Bunch–Kaufman factorization to give poorer results on ill-conditioned prob-
lems because iterative refinement is not used in this context. The recursive results are
much worse than that. The worst results from the LAPACK Bunch–Kaufman factor-
ization are 105 times larger than the theoretical bound; on such problems the results
from the bounded Bunch–Kaufman algorithm are as much as 11 orders of magnitude
better than those from the LAPACK Bunch–Kaufman factorization. We did not ana-
lyze this problem further because it was not of direct interest to our applications. We
would expect to find that these poor results in LAPACK’s inversion routine are due
to cancelation caused by large entries in L.

Appendix B. Backward stability of LDLT factorizations with bounded
L. Let the symmetric indefinite matrix A be factored as LDLT , where D is comprised
of 1× 1 and 2× 2 blocks and L is unit lower triangular. Suppose that maxi,j |lij | ≤
cl for a constant cl. Assume that 2× 2 systems in the factorization and solution

558 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

phases are solved by a normwise backward method. Then the factorization and linear
equation solution are normwise backward stable. Specifically,

A = LDLT + E, ‖E‖ ≤ d(n)ε‖A‖+O(ε2),
(A+ F)x̂ = b, ‖F‖ ≤ d′(n)ε‖A‖+O(ε2).

The proof is in the style and form of Demmel and Higham [11]. Details of constants
and slowly growing functions of n are not given.

The first elimination step, whether a 1× 1 or a 2× 2 step, produces the partial
factorization

A =

[
I 0

L̂11 I

][
D̂11 0

0 Ŝ

] [
I L̂T11

0 I

]
.

The computed Schur complement Ŝ satisfies Ŝ = A22 − L̂11A12 −∆S. It follows that
‖∆S‖ ≤ crε(‖A22‖+ ‖L̂11‖ ‖A12‖+O(ε2), where cr is a small constant that depends
on the number of operations in a rank 1 or a rank 2 modification. A componentwise
view gives a bound ‖Ŝ‖ ≤ (1 + f12cl +O(ε))‖A‖ on growth in the reduced matrix due
to a single step; the factor f12 is one for a 1× 1 case and two for a 2× 2 case. By
induction the remaining elimination steps compute the factorization Ŝ = L̂SD̂SL̂

T
S ,

which satisfies

L̂SD̂SL̂
T
S = Ŝ + ES , ‖ES‖ ≤ d(ñ)ε(‖Ŝ‖) +O(ε2) ≤ d(ñ)(1 + f12cl)ε(‖A‖) +O(ε2),

where ñ is n− 1 or n− 2.
Substituting the recursive result into the output of the first elimination step yields

A− L̂D̂L̂T = A−
[

I 0

L̂11 L̂S

][
D̂11 0

0 D̂S

][
I L̂T11

0 L̂TS

]
=

[
0 ET21

E21 ∆S + ES

]
.

The term E21 represents the backward error in solving the linear system D11L21 =
A21. Our hypothesis is that we can solve this system with small normwise backward
error. That is,

(D11 + ∆D11)L21 = A21, with ‖∆D11‖ ≤ cdε‖D11‖,
and so

‖E21‖ ≤ ‖∆D11‖ ‖L‖ ≤ cL(n)cdε‖D11| = cL(n)cdε‖A11|,
where cL(n) is a slowly growing function that bounds ‖L‖. Combining all terms, it
follows that

‖A− L̂D̂L̂T ‖ ≤ ε {cL(n)cd‖A11‖+ ‖∆S‖+ ‖ES‖}+O(ε2)

≤ cL(n) {cd + (cr + d(ñ))(1 + f12cl)} ε‖A‖+O(ε2).

The bound on F is obtained from the equation

b =
(
A+ ∆A+ ∆L ·D · LT + L ·∆D · LT + L ·D ·∆LT)x.

Again substituting bounds for ‖L‖ and ‖D‖ yields an expression only involving ‖A‖
and a small function of n.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 559

Appendix C. Expected length of search for a local maximum off-diagonal
entry. Let A be an n× n symmetric matrix, with entries drawn independently from
a probability distribution. We want to estimate the work to find a local maximum
off-diagonal entry, that is, an entry aij such that |aij | ≥ |aik| for k 6= i and |aij | ≥ |akj |
for k 6= j, using the search procedure described in section 2.4. How much work do
we expect to perform in the search? Let the number of columns we search, s, be the
measure of work.

The expected number of columns to be searched is

E (s) =

n−1∑
k=1

kP (s = k) =
n−2∑
k=0

P (s > k) .

The search stops as soon as a local maximum is found, so

P (s > k) = P (s > 0)

k∏
i=1

P (s > i|s > i− 1) .

The procedure begins by searching two columns, so P (s > 0) = 1 and P (s > 1) = 1.
For i > 1 the conditional probability P (s > i|s > i− 1) is the probability that we find
a new maximum in the ith row/column searched. That is, the maximum of the n− i
previously unchecked off-diagonal entries in this ith row/column is also the maximum

of the
∑i
k=1(n− k) = in− i(i+ 1)/2 distinct entries in all of the first i rows/columns

searched. That is, P (s > i|s > i− 1) is the probability that one of n− i entries is the
maximum of in− i(i− 1)/2 entries, so

P (s > i|s > i− 1) =
n− i

in− i(i+ 1)/2
=

(
1

i

)(
n− i

n− (i+ 1)/2

)
<

1

i
.

It follows that

E (s) <

n−2∑
k=0

k∏
i=1

1

i
≤
∞∑
k=0

1

k!
= e.

Appendix D. Probability of selecting initial pivot column immediately.
The choice of which column is used as an initial pivot candidate is the obvious dif-
ference between the bounded Bunch–Kaufman and fast Bunch–Parlett algorithms.
The fast Bunch–Parlett algorithm chooses maxi |aii|; the bounded Bunch–Kaufman
algorithm uses whatever value is held by a11. Intuitively the former, as the maximum
of n values, is more likely to satisfy the initial 1× 1 pivot test. In this appendix we
quantify this intuition in a formal manner for matrices whose entries are all drawn
from the same random distribution. We are able to quantify the results numerically
for matrices whose entries are N (0, 1).

Suppose that A is symmetric indefinite, with all entries aij drawn randomly from
a variable x with density function f symmetric around the origin and with cumulative
distribution F . The cumulative distribution of |x| is 2F (|x|)− 1. Then

P
(|a11|

α
≥ max{|a21|, |a31|, . . . , |an1|}

)
=

∫ ∞
0

(
2F
(y
α

)
− 1
)n−1

f(y)dy.

In contrast, let ass be the diagonal entry of A of largest magnitude. Then |ass| ∼ G,
where

G(|y|) = P (max{|a11|, |a22|, . . . , |ann|} ≤ |y|) = (2F (|y|)− 1)
n
,

560 CLEVE ASHCRAFT, ROGER GRIMES, AND JOHN LEWIS

from which it follows that

P
(|ass|

α
≥ max

i 6=s
{|ais|}

)
=

∫ ∞
0

(
2F
(y
α

)
− 1
)n−1

dG(y)

= 2n

∫ ∞
0

(
2F
(y
α

)
− 1
)n−1

(2F (y)− 1)
n−1

f(y)dy.

We can evaluate these integrals for specific distributions for which f and F are
given. When the entries of A are drawn randomly from N (0, 1),

f(y) =
1√
2π
e−

y2

2 and F (y) =

∫ y

−∞
f(x)dx .

Table 2.1 in section 2.5 gives the probabilities for this case for matrices of various
moderate orders.

Acknowledgments. We have built on the work of many others. We have been
directly assisted by Michel Daydé, with his portable BLAS3 package, and by Linda
Kaufman, who provided encouragement and copies of her technical report and codes.
Our colleague Fritz Scholz provided insight into the complexity of the local maximum
off-diagonal search. Stan Eisenstat, Nick Higham, Alex Pothen, John Reid, and
the anonymous referees were all careful and supportive readers, and each suggested
changes that improved the presentation and the algorithms. We particularly thank
Beresford Parlett for his enthusiastic support and his infectious desire to get the
solutions right, on this and on many other projects.

REFERENCES

[1] J.O. Aasen, On the reduction of a symmetric matrix to tridiagonal form, BIT, 11 (1971),
pp. 233–242.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, Release 2.0, 2nd ed., SIAM, Philadelphia, 1995.

[3] E. Anderson and J. Dongarra, Evaluating block algorithm variants in LAPACK, in Proc. 5th
SIAM Conference on Parallel Processing for Scientific Computing, J. Dongarra, P. Messina,
D. Sorensen, and R. Voigt, eds., SIAM, Philadelphia, 1990, pp. 1–8.

[4] The Boeing Extended Mathematical Subprogram Library, Boeing Computer Services, P.O. Box
24346, Seattle, WA 98124-0346, 1989.

[5] V. Barwell and A. George, A comparison of algorithms for solving symmetric indefinite
systems of linear equations, ACM Trans. Math. Software, 2 (1976), pp. 242–251.

[6] J. Bilmes, K. Asanović, J. Demmel, D. Lam, and C.-W. Chin, Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology, Tech. report
LAPACK Working Note 111, University of Tennessee at Knoxville, Knoxville, TN, 1996.

[7] J.R. Bunch, Analysis of the diagonal pivot method, SIAM J. Numer. Anal., 8 (1971), pp. 656–
680.

[8] J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving sym-
metric linear systems, Math. Comp., 31 (1977), pp. 163–179.

[9] J.R. Bunch and B.N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

[10] J.W. Demmel and N.J. Higham, Stability of block algorithms with fast level-3 BLAS, ACM
Trans. Math. Software, 18 (1992), pp. 274–292.

[11] J.W. Demmel, N.J. Higham, and R.S. Schreiber, Stability of block LU factorization, Nu-
mer. Linear Algebra Appl., 2 (1995), pp. 173–190.

[12] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H. van der Vorst, Solving Linear Systems
on Vector and Shared Memory Computers, SIAM, Philadelphia, 1991.

[13] J.J. Dongarra and S.C. Eisenstat, Squeezing the most out of an algorithm in Cray Fortran,
ACM Trans. Math. Software, 10 (1984), pp. 219–230.

ACCURATE SYMMETRIC INDEFINITE SOLVERS 561

[14] I.S. Duff, N.I.M. Gould, J.K. Reid, J.A. Scott, and K. Turner, The factorization of
sparse symmetric indefinite matrices, J. Inst. Maths. Appl., 11 (1991), pp. 181–204.

[15] I.S. Duff, R.G. Grimes, and J.G. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[16] I.S. Duff and J.K. Reid, MA27: A Set of Fortran Subroutines for Solving Sparse Symmetric
Sets of Linear Equations, Tech. report AERE R 10533, AERE Harwell, Didcot, Oxon,
UK, 1982.

[17] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[18] I.S. Duff and J.K. Reid, MA47, a Fortran Code for Direct Solution of Indefinite Sparse
Symmetric Linear Systems, Tech. report RAL-95-001, Central Computing Department,
Rutherford Appleton Laboratory, Didcot, Oxon, UK, 1995.

[19] R. Fletcher, Factorizing symmetric indefinite matrices, Linear Algebra Appl., 14 (1976),
pp. 257–272.

[20] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins Press, Baltimore,
MD, 1989.

[21] R.G. Grimes, J.G. Lewis, and H.D. Simon, A shifted block Lanczos algorithm for solving
sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 228–272.

[22] N.J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer. Anal., 26
(1989), pp. 1252–1265.

[23] N.J. Higham, Iterative refinement for linear systems and LAPACK, IMA J. Numer. Anal., 17
(1997), pp. 495–509.

[24] N.J. Higham, Stability of the Diagonal Pivoting Method with Partial Pivoting, Numerical
Analysis Report No. 265, Manchester Centre for Computational Mathematics, Manchester,
England, 1995; SIAM J. Matrix Anal. Appl., 18 (1997), pp. 52–65.

[25] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[26] M.T. Jones and M.L. Patrick, Factoring symmetric indefinite matrices on high-performance

architectures, SIAM J. Sci. Comput., 15 (1994), pp. 273–283.
[27] L. Kaufman, Computing the MDMT factorization, ACM Trans. Math. Software, 21 (1995),

pp. 476–489.
[28] J.W.-H. Liu, On threshold pivoting in the multifrontal method for sparse indefinite systems,

ACM Trans. Math. Software, 13 (1987), pp. 250–261.
[29] J.W.-H. Liu, A partial pivoting strategy for sparse symmetric matrix decomposition, ACM

Trans. Math. Software, 13 (1987), pp. 173–182.
[30] B.N. Parlett and J.K. Reid, On the solution of a system of linear equations whose matrix

is symmetric but not definite, BIT, 10 (1970), pp. 386–397.
[31] L.N. Trefethen and R. Schreiber, Average case stability of Gaussian elimination, SIAM

J. Matrix Anal. Appl., 11 (1990), pp. 335–360.
[32] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice–Hall, Englewood Cliffs,

NJ, 1963.

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS∗

S. ELHAY† , G. M. L. GLADWELL‡ , G. H. GOLUB§ , AND Y. M. RAM¶

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 563–574

Abstract. This paper generalizes the well-known identity which relates the last components
of the eigenvectors of a symmetric matrix A to the eigenvalues of A and of the matrix An−1,
obtained by deleting the last row and column of A. The generalizations relate to matrices and to
Sturm–Liouville equations.

Key words. eigenvalue, eigenvector, matrix, Sturm–Liouville equation, Green’s function

AMS subject classifications. 15A18, 15A24, 34B25, 34B27

PII. S089547989631072X

1. Introduction. We use the term Jacobi matrix to denote a real symmetric
tridiagonal matrix with positive off-diagonal terms. It is well known that a Jacobi
matrix A may be uniquely constructed from the eigenvalues {λi}n1 and {µi}n−1

1 of
A and of its leading principal minor An−1, respectively. The first step in the recon-
struction procedure is to use the given eigenvalues, which must interlace so that

λ1 < µ1 < λ2 < · · · < µn−1 < λn(1.1)

to yield the last elements, x
(i)
n , of the normalized eigenvectors x(i) of A. We use the

fact that {µj}n−1
1 are the zeros of

n∑
i=1

[x
(k)
n]2

λi − λ = 0,(1.2)

so that

n∑
k=1

[x
(k)
n]2

λk − λ = c

∏n−1
j=1 (µj − λ)∏n
j=1(λj − λ)

.(1.3)

The identity
∑n
k=1[x

(k)
n]2 = 1 implies c = 1, and thus

[x(k)
n]2 =

∏n−1
j=1 (µj − λk)∏n

j=1,j 6=k(λj − λk)
.(1.4)

This relation, which has been known for many years (see, say, [7]), is an example of
what we term an eigenvector-eigenvalue relation.

∗Received by the editors October 16, 1996; accepted for publication (in revised form) by J. Varah
February 19, 1998; published electronically January 13, 1999.

http://www.siam.org/journals/simax/20-3/31072.html
†Department of Computer Science, University of Adelaide, Adelaide SA 5005, Australia (elhay@

cs.adelaide.edu.au).
‡Solid Mechanics Division, Faculty of Engineering,University of Waterloo, Waterloo, ON N2L 3G1

(ggladwel@uwaterloo.ca).
§Computer Science Department, Stanford University, Stanford, CA, 94305 (golub@sccm.stanford.

edu). The work of this author was supported in part by National Science Foundation grant DMS-
9403899.
¶Department of Mechanical Engineering, University of Adelaide, Adelaide SA 5005, Australia

(yram@aelmg.adelaide.edu.au).

563

564 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

Many other such relations are known; all involve the eigenvalues of A and of
some modification of A. As another example, if {λ∗i }n1 are the eigenvalues of the
Jacobi matrix A∗, obtained by replacing the last diagonal element an by a∗n, then [6]

1 + (a∗n − an)
n∑
k=1

[x
(k)
n]2

λk − λ =
n∏
j=1

(
λ∗j − λ
λj − λ

)
,(1.5)

from which we deduce

(a∗n − an)[x(k)
n]2 =

∏n
j=1(λ∗j − λk)∏n

j=1,j 6=k(λj − λk)
.(1.6)

By comparing the traces of A and A∗ we obtain

(a∗n − an) =

n∑
k=1

(λ∗k − λk).(1.7)

Equations (1.6), (1.7) provide an eigenvector-eigenvalue relation; it is a particular
case of a relation referring to the eigenvalues to A and some rank-one modification of
A; see [10].

Equations (1.4), (1.5), and (1.6) relate to a Jacobi matrix; there are analogous
results for continuous systems governed by Sturm–Liouville equations. We give an
example, the analogue of (1.5), not the most general result.

Let {λi}∞0 , {λ∗i }∞0 be the eigenvalues of the nonuniform string equation

y′′(x) + λρ(x)y(x) = 0,(1.8)

subject to two sets of end conditions

y′(0)− hy(0) = 0 = y′(l) +Hy(l),(1.9)

y′(0)− hy(0) = 0 = y′(l) +H∗y(l),(1.10)

differing only at the right end, and let ρ(x) be continuous; then the end values ym(l)
of the normalized eigenfunctions of (1.8), subject to the condition (1.9), satisfy the
equation

1 + (H∗ −H)
∞∑
m=0

[ym(l)]2

λm − λ = c

∏∞
m=0(1− λ

λ∗m
)∏∞

m=0(1− λ
λm

)
.(1.11)

Since λm, λ∗m = O(m2) for large m, both infinite products converge. Again we find

(H∗ −H)[yn(l)]2 = cλn

∞∏
m=0

(
1− λn

λ∗m

)/ ∞∏
m=0

′
(

1− λn
λm

)
,(1.12)

where c
∏∞
m=0(λmλ∗m

) = 1, and the prime means m 6= n. This example appears in [8]

and is rederived in [6, p. 180].
The purpose of this paper is to explore some generalizations of the relations we

have described. They will refer to discrete and continuous systems. They will involve
squares of eigenvector/eigenfunction values at interior points and products of such
values at two different points.

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS 565

2. The generalized eigenvalue problem. Let A, B be symmetric matrices
of order n, with B positive definite, and let {λi}n1 , {x(i)}n1 be the eigenpairs of

(A− λB)x = 0;(2.1)

then A, B may be simultaneously diagonalized so that

XTAX = ∧, XTBX = I,(2.2)

where ∧ = diag(λ1, λ2, . . . , λn), X = [x(1),x(2), . . . ,x(n)], and

A− λB = X−T (∧ − λI)X−1.(2.3)

Provided that λ 6= λi, i = 1, 2, . . . , n, we may invert this to give

(A− λB)−1 = X(∧ − λI)−1XT .(2.4)

This gives the following lemma.
Lemma 2.1. Provided the eigenvalue λk is simple, then

x
(k)
i x

(k)
j = lim

λ→λk
(λk − λ)eT

i (A− λB)−1ej(2.5)

where ei denotes the ith column of I.
Proof. Let αij(λ) be the i, j element of (A− λB)−1, so that

αij(λ) = eTi (A− λB)−1ej .(2.6)

Then (2.4) gives

αij(λ) =
n∑
k=1

x
(k)
i x

(k)
j

λk − λ(2.7)

so that, provided the eigenvalue λk is simple,

x
(k)
i x

(k)
j = limλ→λk(λk − λ)αij(λ).(2.8)

We now apply this result with some special choices of A and B. We introduce some
notation. Let Ak(AR

k), 1 ≤ k ≤ n, denote the leading (trailing) principal submatrix
of order k of the square matrix A. We let Pk(λ),Qk(λ) denote, respectively, the kth
order leading and trailing principal minors of A− λB, and (µi)

n−1
1 denote the zeros

of Pn−1(λ).
Theorem 2.1.

[x(k)
n]2 =

|Bn−1|
∏n−1
j=1 (µj − λk)

|Bn|
∏n′
j=1(λj − λk)

,(2.9)

where ′ denotes j 6= k.
Proof. Consider the equation

(A− λB)y = en.(2.10)

If λ 6= λi (i = 1, 2, . . . , n), then

yn = eTn (A− λB)−1en = αnn(λ).(2.11)

566 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

But Cramer’s rule applied to (2.10) gives

yn =
|An−1 − λBn−1|
|An − λBn| =

Pn−1(λ)

Pn(λ)
.(2.12)

But {µi}n−1
1 are the zeros of Pn−1(λ) and (λi)

n
1 are the zeros of Pn(λ), so that

αnn(λ) = yn =
|Bn−1|

∏n−1
j=1 (µj − λ)

|Bn|
∏n
j=1(λj − λ)

,(2.13)

and Lemma 2.1, with i = j = n, gives

[x(k)
n]2 =

|Bn−1|
∏n−1
j=1 (µj − λk)

|Bn|
∏n′
j=1(λj − λk)

.(2.14)

Theorem 2.1 generalizes (1.4). It holds provided that λk is simple. We recall that
the eigenvalues of a Jacobi matrix (to which (1.4) applies) are always simple, and the
eigenvalues λi, µi appearing in (1.4) always strictly interlace according to (1.1), so

that (1.4) never breaks down and [x
(k)
n]2 is always positive; x

(k)
n is never zero. For

the generalized eigenvalue problem (2.1), the eigenvalues need not be simple, and the
eigenvalues λi, µi satisfy only

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.(2.15)

If λk is simple, so that λk−1 < λk < λk+1, then (2.9) holds for that value of k; x
(k)
n

will be zero if µk−1 = λk or µk+1 = λk. If λk is not simple, then we have the following
corollary.

Corollary 2.1. Suppose λk has multiplicity s, so that

λk−1 < λk = µk = λk+1 = · · · = µk+s−2 = λk+s−1 ≤ µk+s−1 < λk+s.

Then

[x(k)
n]2 =

|Bn−1|
∏n−1
j=1 ′(µj − λk)

|Bn|
∏n
j=1 ′′(λj − λk)

,(2.16)

where ′ means j = 1, 2, . . . , k− 1, k+ s− 1, . . . , n− 1 and ′′ means j = 1, 2, . . . , k− 1,
k + s, . . . , n.

Proof. The numerator and denominator of (2.14) will have a common factor
(λk − λ)s−1 which can be cancelled.

The results in Theorem 2.1 and its corollary are obtained from Lemma 2.1 for

i = j = n. There are analogous expressions for [x
(k)
1]2, but there are, in general, no

simple extensions to [x
(k)
m]2 where 1 < m < n. To obtain simple extensions we must

restrict the forms of A and B and suppose that they are both tridiagonal.
We obtain the following lemma.
Lemma 2.2. Suppose A and B are tridiagonal matrices with codiagonals (b1, b2,

. . ., bn−1) and (d1, d2, . . . , dn−1), respectively, and suppose 1 ≤ i ≤ j ≤ n and λ 6= λk,
k = 1, 2, . . . , n. Then

αij(λ) = (−1)i+j
Pi−1(λ)

∏j−1
k=i(bk − λdk)Qn−j(λ)

Pn(λ)
.(2.17)

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS 567

Proof. Consider the equation

(A− λB)y = ej .(2.18)

If λ 6= λk, k = 1, 2, . . . , n, then

yi = eTi (A− λB)−1ej = αij(λ).(2.19)

But Cramer’s rule applied to (2.18) shows that

αij(λ) = yi =
p̂ij(λ)

pn(λ)
,(2.20)

where p̂ij(λ) is the determinant of the matrix obtained by replacing the ith column
of A− λB by ej . Thus

i

p̂ij(λ) =

∣∣∣∣∣∣∣∣∣∣
a1 − λc1 b1 − λd1 0
b1 − λd1 a2 − λc2 · · · 0
· · · · · · · · · 1

· · · 0 · · · an−1 − λcn−1 bn−1 − λdn−1

0 · · · bn−1 − λdn−1 an − λcn

∣∣∣∣∣∣∣∣∣∣
j.

(2.21)

Assuming that i ≤ j, and expanding p̂ij(λ) along its ith column, we obtain the stated
result.

Note that the numerator involves a leading minor, a product, and a trailing minor.
Let us consider the interpretation of (2.18). The original equation may be in-

terpreted as the equation governing the free vibration of a mechanical system with
stiffness and inertia matrices A, B, respectively. The eigenvalues λi are the squares,
ω2
i , of the natural frequencies; and the xi, the eigenvectors, are the mode shapes.

The term αij(λ) is the influence function linking coordinates i and j: it gives the
solution yi for a unit in the jth place on the right-hand side of (2.14). We can think
of this as the displacement at i due to a unit load at j; thus αij(λ) is the receptance
[3] between points i and j. Equation (2.18) thus states that αij(λ) is zero when
Pi−1(λ) = 0, Qn−j(λ) = 0, or the product is zero. But the zeros of Pi−1(λ) are
simply the eigenvalues (λLk)i−1

1 of the equation

(Ai−1 − λBi−1)x = 0,(2.22)

while the zeros of Qn−j(λ) are the eigenvalues (λRk)n−j1 of the equation

(AR
n−j − λBR

n−j)x = 0.(2.23)

(Remember that Ak(ARk) is the leading (trailing) principal submatrix of order k.) In
the important physical case in which bk < 0 and dk ≥ 0, the product in (2.18) has no
positive zero; we examine this application in section 5.

We now have the following theorem.
Theorem 2.2. Suppose B is diagonal, 1 ≤ i ≤ j ≤ n, and 1 ≤ k ≤ n. Then

x
(k)
i x

(k)
j

αij(0)
=
λk
∏i−1
m=1(1− λk

λLm
)
∏n−j
m=1(1− λk

λRm
)∏n

m=1 ′(1− λk
λm

)
.(2.24)

568 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

Proof. When B is diagonal, dr = 0, so that (2.17) reduces to

αij = c
Pi−1(λ)Qn−j(λ)

Pn(λ)
, c = (−1)i+j

j−1∏
r=i

br.(2.25)

On normalizing αij by its value for λ = 0, and by factorizing the various terms, we
find

Φij(λ) ≡ αij(λ)

αij(0)
=

∏i−1
m=1(1− λ

λLm
)
∏n−j
m=1(1− λ

λRm
)∏n

m=1(1− λ
λm

)
.(2.26)

Using this in (2.6), we find the required result.
We note that, when B is diagonal, the (λm)n1 are distinct, so that the denominator

in (2.24) cannot be zero. The numerator can be zero, since one of each of the sets
(λLm)i−1

1 and (λRm)n−j1 can be equal to λk. Theorem 2.1, Corollary 2.1, and Theorem
2.2 provide generalization of the known result (1.4).

We now explore some continuous analogues of these results.

3. Sturm–Liouville systems. Let L denote the Sturm–Liouville operator given
by

Ly(x) = −(p(x)y′(x))′ + q(x)y(x),(3.1)

and consider the system

Ly(x) = λρ(x)y(x),(3.2)

subject to the end conditions

p(0)y′(0)− hy(0) = 0 = p(l)y′(l) +Hy(l).(3.3)

Such a system can model the free vibration of a rod or string fastened at its ends by
springs of stiffness h, H, respectively; h or H is zero at a free end, infinite at a fixed
end.

We are not concerned here with the most general regularity conditions satisfied
by p, q, and ρ. We assume that p(x), p′(x), q(x), and ρ(x) are continuous in (0, l).
References to the general theory may be found in [9], [1], and [2].

The Green’s function G(x, s, λ) for the system satisfies, as a function of x
(a) the equation (3.2), except at s,
(b) the end conditions (3.3),
(c) the jump condition

[p(x)y′(x)]x=s+
x=s− = −1.(3.4)

It is well known [4, Chapter 5] that if λ is not an eigenvalue of (3.2), (3.3), then
G(x, s, λ) may be constructed as follows. Let φ(x), ψ(x) be solutions of (3.2) satisfying

p(0)φ′(0)− hφ(0) = 0 = p(l)ψ′(l) +Hψ(l),(3.5)

respectively; then

p(x){φ(x)ψ′(x)− φ′(x)ψ(x)} = constant.(3.6)

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS 569

Fig. 1.

This constant is zero if λ is an eigenvalue of (3.2), (3.3) and nonzero otherwise; in the
latter case we can choose the constant to be −1, and then

G(x, s, λ) =

{
φ(x)ψ(s), 0 ≤ x ≤ s,
φ(s)ψ(x), s ≤ x ≤ l.(3.7)

The functions φ, ψ are functions of x and λ; if λ = 0 is not an eigenvalue of (3.2),
(3.3), i.e., if h, H are not both zero, then

G(x, s, 0) =

{
φ0(x)ψ0(s), 0 ≤ x ≤ s,
φ0(s)ψ0(x), s ≤ x ≤ l,(3.8)

where φ0(x), ψ0(x) denote φ(x), ψ(x), respectively, for λ = 0.
The Green’s function G(x, s, λ) is the analogue of the receptance αij(λ) for matrix

systems; like αij(λ), it has poles and zeros. In section 2 we explicitly showed αij(λ) as
a product of two polynomials Pi−1(λ), Qn−j(λ) divided by Pn(λ). The polynomials
Pi−1(λ), Qn−j(λ) related to the parts of the system, respectively, to the left of i and to
the right of j, and their zeros were the eigenvalues of these parts, as shown in (2.22),
(2.23). We will now show how the Green’s function G(a, b, λ), with a ≤ b, may be
expressed in an analogous way as a product of two quantities referring, respectively,
to the parts of the system to the left of a, and to the right of b, divided by a third
quantity relating to the whole interval (0,l).

Suppose a ≤ b, and define the normalized Green’s function

Φ(a, b, λ) =
G(a, b, λ)

G(a, b, 0)
=

φ(a)ψ(b)

φ0(a)ψ0(b)
.(3.9)

Let {λLn}∞1 , {λRn }∞1 be the eigenvalues of the subsystems S1, S2 governed by (3.2)
with the end conditions

1. p(0)y′(0)− hy(0) = 0, y(a) = 0,(3.10)

2. y(b) = 0, p(l)y′(l) +Hy(l) = 0,(3.11)

and let {λn}∞1 be the eigenvalues of (3.1)–(3.3). We prove the following theorem.
Theorem 3.1.

Φ(a, b, λ) =

∏∞
n=1(1− λ

λLn
)
∏∞
n=1(1− λ

λRn
)∏∞

n=1(1− λ
λn

)
.(3.12)

Proof. Fig. 1 shows the system divided into three parts.
To find the Green’s function of system 1, we need function φ1(x), ψ1(x) satisfying,

respectively, the left and right end conditions of system 1 and the jump condition; we
may take

φ1(x) = φ(x), ψ1(x) = ψ(x)− ψ(a)

φ(a)
φ(x).(3.13)

570 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

We now introduce the function

H1(λ) = lim
ε→0

G1(ε, a− ε, 0)

G1(ε, a− ε, λ)
(3.14)

= lim
ε→0

φ1,0(ε)

φ1(ε)
· ψ1,0(a− ε)
ψ1(a− ε) ,(3.15)

where φ1,0(x), ψ1,0(x) denote, respectively, the values of φ1(x), ψ1(x) for λ = 0. Since
ψ1(a) = 0 = ψ1,0(a), we have

lim
ε→0

ψ1,0(a− ε)
ψ1(a− ε) =

ψ′1,0(a)

ψ′1(a)
=

φ(a)

φ0(a)
(3.16)

because of (3.6). The limit of the first quotient in (3.14) is

lim
ε→0

φ1,0(ε)

φ1(ε)
= lim
ε→0

φ0(ε)

φ1(ε)
=
φ0(0)

φ(0)
(3.17)

if h is finite, and φ′0(0)/φ′(0) if h is infinite. Thus

H1(λ) =

{
φ0(0)
φ(0) · φ(a)

φ0(a) if h is finite,
φ′0(0)
φ′(0) · φ(a)

φ0(a) if h is infinite.
(3.18)

We may now consider system 2 similarly. We take

φ2(x) = φ(x)− φ(b)

ψ(b)
ψ(x), ψ2(x) = ψ(x),(3.19)

define

H2(λ) = lim
ε→0

G2(b+ ε, l − ε, 0)

G2(b+ ε, l − ε, λ)
,(3.20)

and find

H2(λ) =

{
ψ(b)
ψ0(b) · ψ0(l)

ψ(l) if H is finite,
ψ(b)
ψ0(b) · ψ

′
0(l)
ψ′(l) if H is infinite.

(3.21)

Finally we take the whole system, with end conditions (3.3), and define

H(λ) = lim
ε→0

G(ε, l − ε, 0)

G(ε, l − ε, λ)
(3.22)

and find that this has one of the values

φ0(0)ψ0(l)

φ(0)ψ(l)
,

φ′0(0)ψ0(l)

φ′(0)ψ(l)
,

φ0(0)ψ′0(l)

φ(0)ψ′(l)
,

φ′0(0)ψ′0(l)

φ′(0)ψ′(l)
(3.23)

according to whether both, one, the other, or neither of h, H are finite.
Combining (3.18), (3.21), (3.22) we find the fundamental relation for Φ(a, b, λ)

defined in (3.9):

Φ(a, b, λ) =
H1(λ)H2(λ)

H(λ)
.(3.24)

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS 571

We now show that H1(λ), H2(λ), and H(λ) may, like Pi−1(λ), Qn−j(λ) and Pn(λ)
in (2.21), be expressed as product of factors relating to the subsystems 1, 2, and the
whole.

First consider the case when h is finite. It is known (see, for example, [11]) that,
treated as a function of λ, the quantity φ(a)/φ(0) is an entire function of λ, of order
1/2. By Hadamard’s factorization theorem it may therefore be expressed as a product
of its factors; i.e.,

φ(a)

φ(0)
= c

∞∏
n=1

(
1− λ

an

)
.(3.25)

But the zeros of φ(a) are precisely the eigenvalues of system 1 (i.e., λLn) so that
an = λLn . It is known [11] that λLn = O(n2) for large n, so that the product (3.24)
converges. The constant c is φ0(a)/φ0(0). Thus

H1(λ) =
φ(a)

φ(0)
· φ0(0)

φ0(a)
=
∞∏
n=1

(
1− λ

λLn

)
.(3.26)

If h is infinite, H1(λ) is defined by the second line of (3.18), but the final result
for H1(λ) still holds.

We may deduce, in a similar way, that

H2(λ) =
∞∏
n=1

(
1− λ

λRn

)
.(3.27)

To investigate H(λ), we note that the jump condition (3.6) and second of the end
conditions (3.5) give

ψ(l){p(l)φ′(l) +Hφ(l)} = 1 = ψ0(l){p(l)φ′0(l) +Hφ0(l)}(3.28)

so that when h, H are finite, and not both zero,

H(λ) =
p(l)φ′(l) +Hφ(l)

φ(0)
· φ0(0)

p(l)φ′0(l) +Hφ0(l)
.(3.29)

Again, H(λ) is an entire function of order 1/2, whose zeros are those λ for which there
is a solution φ(x) satisfying both end conditions (3.3), i.e., λ = λn. Thus

H(λ) =
∞∏
n=1

(
1− λ

λn

)
.(3.30)

This result still holds when one or both of h, H are infinite.
Equations (3.24), (3.26), (3.27), (3.29) now yield the stated result (3.12).
Corollary 3.1. Let {ur(x)} be the eigenfunctions of (3.1)–(3.3); then

ur(a)ur(b)∑∞
r=1

ur(a)ur(b)
λr

=
λr
∏∞
n=1(1− λr

λLn
)
∏∞
n=1(1− λr

λRn
)∏∞

n=1 ′(1− λr
λn

)
.(3.31)

Proof. The usual modal expansion of G(a, b, λ), namely,

G(a, b, λ) =

∞∑
r=1

ur(a)ur(b)

λr − λ ,(3.32)

572 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

when substituted in (3.9), gives

Φ(a, b, λ) =

∑∞
r=1

ur(a)ur(b)
λr−λ∑∞

r=1
ur(a)ur(b)

λr

,(3.33)

which, when combined with Theorem 3.1, yields the required result.
We note that

∞∑
r=1

ur(a)ur(b)

λr
= φ0(a)ψ0(b),(3.34)

and φ0(a), ψ0(b) may be expressed explicitly in terms of p(x), q(x), h, H.

4. Conclusion. Corollary 3.1 provides the desired continuous analogue of Theo-
rem 2.2. The analysis shows that the continuous analogues of the leading and trailing
minors are the functions H1(λ), H2(λ), defined in (3.14), (3.20). We note that H1(λ),
H2(λ) are not just reciprocals of the Green’s functions, as one might expect at first
thought, but limiting values of the normalized reciprocals of the Green’s functions
between the points near the ends of the intervals (0, a) and (b, l).

Various other eigenvector-eigenvalue relations may be obtained from Theorem 2.2
by taking i = j, i = 1, or j = n or in Corollary 3.1 by taking a = b, a = 0, or b = l.

5. An application. Consider the mass spring system shown in Fig. 2. This is
the customary model of an in-line axially vibrating system; by replacing the masses
and axial springs by polar inertias and torsional springs, respectively, we obtain the
analogous torsionally vibrating system. We show that the analysis may be used
to find those frequencies of oscillation at which a particular displacement vanishes.
These frequencies are the vibration absorber frequencies which play an important
role in vibration isolation. We may tune, for example, the working frequencies of an
unbalanced motor, mounted on a shaft, to eliminate the steady state vibrations at
a certain position where sensitive mechanical or electrical equipment is located, such
as isolation from vibration and noise-induced vibration usually required in aircraft
structures. (For other applications, see [5, Sections 3.2, 3.3, 4.2].)

...

...

k

k

m

m

u

uu

u

1

1

1

1

-1

i

1

i

k i k j 1

m i- 1

m i ... m j ... m n

1. sin ω t

k n

un

k j +1

m j +1 ...
k n

uj +1

m n

un

k i

(a)

(b) (c)

1

m i -1 m j +

Fig. 2. A spring-mass system (a) has left and right end parts shown in (b) and (c), respectively.

ON SOME EIGENVECTOR-EIGENVALUE RELATIONS 573

x=b

x=l

x κ(

(a)

x x), κ(x), ρ(x)

x=a

x=a

(b)

κ(ρ(x)

x=b

x=l

(c)

1. sin ω t

u(a)

x), ρ(x)

Fig. 3. The rod (a) has left and right end parts (b) and (c).

The receptance αij in (2.6) gives the response at mass i due to a unit load with
frequency ω (ω2 = λ) at mass j. Without loss of generality we can consider just the
case i ≤ j. The expression (2.22) for αij shows that ui will be zero if λ = λLm for some
m = 1, 2, . . . , i − 1 or λ = λLm for some m = 1, 2, . . . , n − j. Moreover, by applying
superposition, we see that if loads are applied at masses i + 1, . . . , n with the same
frequency ω (ω2 = λ), then ui will be zero if λ = λLm for some m = 1, 2, . . . , i− 1.

The continuous analogue of the discrete system of Fig. 2 is the axially vibrating
rod shown in Fig. 3a. Now we apply Theorem 3.1. If a load with frequency ω (ω2 = λ)
is applied at x = b, then the displacement at x = a will be zero if λ = λLn or λ = λRn
for some n. By superposition, we see that if loads are applied to the part a < x ≤ l
with the same frequency ω, then u(a) will be zero if λ = λLn for some n.

REFERENCES

[1] L. E. Andersson, Inverse eigenvalue problems with discontinuous coefficients, Inverse Prob-
lems, 4 (1988), pp. 353–397.

[2] L. E. Andersson, Inverse eigenvalue problems for a Sturm-Liouville equation in impedance
form, Inverse Problems, 4 (1988) pp. 929–971.

[3] R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration, Cambridge University
Press, London, 1960.

[4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New
York, 1953.

574 S. ELHAY, G. GLADWELL, G. GOLUB, AND Y. RAM

[5] J. P. Den Hartog, Mechanical Vibrations, McGraw-Hill, New York, 1956.
[6] G. M. L. Gladwell, Inverse Problems in Vibration, Martinus Nijhoff Publishers, Dordrecht,

the Netherlands, 1986.
[7] G. H. Golub, Some uses of the Lanczos algorithm in numerical linear algebra, in Topics in

Numerical Analysis, J. H. H. Miller, ed., Springer-Verlag, Heidelberg, New York, 1973,
pp. 23–31.

[8] B. M. Levitan, On the determination of a Sturm-Liouville equation by spectra, Izv. Akad.
Nauk SSSR Ser. Mat., 28 (1964), pp. 63–68 (in Russian); Amer. Math. Soc. Transl., 68
(1964), pp. 1–20.

[9] J. R. McLaughlin, Analyticaly methods for recovering coefficients in differential equations
from spectral data, SIAM Rev., 28 (1986), pp. 53–72.

[10] Y. M. Ram, Inverse eigenvalue problems for a modified vibrating system, SIAM J. Appl. Math,
53 (1993), pp. 1762–1775.

[11] E. C. Titchmarsh, Eigenfunction Expansions, Part I. Oxford University Press, Oxford, 1962.

NONLINEAR EIGENPROBLEMS∗

PHILIPPE GUILLAUME†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 575–595

Abstract. Let A(λ) be a holomorphic matrix-valued function defined on a domain Ω ⊂ C. The
nonlinear eigenproblem of finding generalized eigenpairs λ, v such that A(λ)v = 0 is considered.
The method which is exposed for solving this problem is based on the derivatives of the function
x(λ) = A(λ)−1b, where b is a given vector. Theoretical convergence results are established, and an
algorithm is proposed for computing a few eigenvalues close to a given complex number together
with some corresponding eigenvectors.

Key words. nonlinear eigenproblem, polynomial eigenproblem, quadratic eigenproblem, gener-
alized eigenproblem, Galerkin approximation, higher order derivatives

AMS subject classifications. 65F15, 65H17, 65N25, 15A18, 15A90

PII. S0895479897324172

1. Introduction. Since automatic differentiation tools have appeared [12], [8],
[7], new methods involving the derivatives of a given problem with respect to a
parameter-like shape or frequency have been developed [3], [5], [2], [6]. They are
based on the computation of the power series expansion of the solution to a linear
system

A(λ)x(λ) = b

with respect to the parameter λ. It follows from the Leibniz formula that each deriva-
tive x′(λ), x′′(λ), . . . , x(k)(λ) is the solution to a linear system involving the same
matrix A(λ) :

A(λ)x(k)(λ) = −
k∑
j=1

(kj)A(j)(λ)x(k−j)(λ),

where (kj) = k!/(j!(k− j)!). In this paper we study some properties of the derivatives

x(k)(λ) and we use them for solving the nonlinear eigenproblem

A(λ)v = 0.

If the matrix A(λ) is a polynomial, it is possible to transform this problem into
a linear eigenproblem by increasing the order of the system. For example, quadratic
eigenproblems are frequently solved by adding the unknown w = λv [4], [14], [16],
and the size of the resulting eigenvalue problem becomes twice the size of the original
eigenproblem. Similarly, if A(λ) is a polynomial of degree m, the size of the resulting
eigenvalue problem is multiplied by m. Combined with a projection method, this
technique allows the simultaneous computation of several eigenpairs. Another method
which avoids increasing the order of the system has been proposed in [10] and is closely
related to Newton’s method for solving the problem A(λ)v = 0, ||v||2 = 1. It allows

∗Received by the editors July 9, 1997; accepted for publication (in revised form) by G. Golub
April 22, 1998; published electronically January 27, 1999.

http://www.siam.org/journals/simax/20-3/32417.html
†UMR 5640, CNRS-INSA-Université Paul Sabatier, Avenue de Rangueil, 31077 Toulouse cedex,

France (guillaum@gmm.insa-tlse.fr).

575

576 PHILIPPE GUILLAUME

the computation of one eigenvector associated with an eigenvalue close to a given
complex number. More recently, another approach has been described in [19], [20],
which use a Jacobi–Davidson technique. At each iteration a correction equation of
the same size as the original eigenproblem is solved, and if it is solved accurately, then
quadratic convergence is obtained for the linear eigenvalue problem (A − λB)v = 0.
In fact this equation is solved only approximately, and the convergence is somewhere
between linear and quadratic. A particularity of this technique is that the matrix of
the correction equation changes at each iteration.

The method introduced in this paper is a generalization of the inverse iteration
described in [10]. The convergence is only linear, although it should be possible to
improve it by incorporating some ideas developed in [19]. However, the convergence
is established in the general case where A(λ) is holomorphic. Of particular interest is
the fact that the same matrix is used all along the iteration process (10). This matrix
has the same size as the original eigenproblem; thus, if the latter does not have a huge
size, a single factorization can be computed once for all and used at each step.

We follow standard notational conventions in the field of matrix computations.
Specifically, matrices are denoted by upper case italic letters, vectors by lower case
italic letters, and scalars by lower case Greek letters or lower case italic if there is
no confusion. Scalar- or vector-valued polynomials are denoted by lower case italic
letters, and Cn[λ] denotes the space of polynomials with coefficients in Cn. The
2-norm of a vector or a matrix is denoted || . ||2.

This paper is organized as follows. Section 2 discusses the convergence of the
derivatives to a generalized eigenvector. In section 3, the convergence is extended to
a block variant where several approximate eigenpairs are computed simultaneously.
Section 4 describes a partial orthogonalization algorithm for generating a low dimen-
sional nonlinear eigenproblem which can be solved by the standard methods mentioned
above. This algorithm is probably not optimal, and hopefully improvements will be
brought in the next future. Finally, in section 5 we report a few numerical experi-
ments illustrating the convergence properties and the performances of the different
methods.

2. Convergence of a single approximate eigenpair. In this section, first
we expose the relationship between the generalized eigenpairs of A(λ) and the partial
fraction decompositions of the resolvent R(λ) = A(λ)−1 and the generating function
x(λ) = R(λ)b, where b is a given vector. In the case A(λ) = A − λI, it reduces to
classical relations from the spectral theory of linear operators [1], [9]. Next we prove
that the derivatives of x(λ) converge to a generalized eigenvector of A(λ), and we
extend this result to some other sequences constructed from the derivatives of x(λ).

2.1. General framework. Let A(λ) be a holomorphic n × n matrix-valued
function defined on a domain Ω ⊂ C, such that detA(λ) is not identically zero. For a
given α ∈ Ω such that A(α) is invertible, we seek the nearest values λ for which the
matrix A(λ) is not invertible, and corresponding nontrivial vectors v such that

A(λ)v = 0.(1)

Such a complex number λ is called a generalized eigenvalue, and the vector v is called
a generalized eigenvector [16], [20].

By possibly using a similarity transformation of the complex plane, without any
loss of generality, we can assume that α = 0 and that A(λ) is holomorphic on a
neighborhood of the closed unit disk D(0, 1). Hence there are finitely many generalized

NONLINEAR EIGENPROBLEMS 577

eigenvalues within the open disk D(0, 1), which can be increasingly ordered

0 < |λ0| ≤ |λ1| ≤ · · · ≤ |λs| < 1.

For λ ∈ D(0, 1)\ {λ0, λ1, . . . , λs} , we define the resolvent

R(λ) = A(λ)−1,

which is meromorphic on the disk D(0, 1) and can be decomposed into partial fractions

R(λ) =

s∑
i=0

j(i)∑
j=1

Si,j
(λ− λi)j +H(λ), Si,j ∈ Cn×n,(2)

where the matrices Si,j(i) are nonzero and the n × n matrix-valued function H(λ)
is holomorphic on D(0, 1). As usual, the eigenvalue λi is said to be simple if the
corresponding null space of A(λi) has dimension 1 and j(i) = 1, semisimple if this
dimension is greater than 1 and j(i) = 1, and defective if j(i) > 1. The resolvent
also reads R(λ) = adjA(λ)/detA(λ), where adjA(λ) is the adjugate matrix of A(λ)
(i.e., the transposed cofactors matrix), and adjA(λ) = 0 iff rankA(λ) ≤ n−2. Hence,
j(i) ≤ val (λi), which denotes the valuation of detA(λ) at λi, and j(i) = val (λi) iff
rankA(λi) = n − 1. Particularly, λi is a simple eigenvalue of A(λ) iff λi is a simple
zero of detA(λ). In the case of an ordinary eigenvalue problem A(λ) = A − λI, the
number j(i) is the size of the largest Jordan block associated with the eigenvalue λi
[9].

The decomposition (2) is related to the generalized eigenvectors of (1) in the
following way.

Proposition 2.1. Let b ∈ Cn and 0 ≤ i ≤ s. Assume that {j; Si,jb 6= 0} is
nonempty and let j′(i) = max {j; Si,jb 6= 0} . Then Si,j′(i)b is a generalized eigenvec-
tor associated with λi :

A(λi)Si,j′(i) b = 0.(3)

Proof. The coefficient of 1/(λ − λi)j′(i) in the partial fraction decomposition of
b = A(λ)R(λ)b is 0.

Remark. The projections properties associated with the resolvent R(λ) through
the Dunford–Taylor integral [9], [16] are lost when A(λ) does not have the form
A − λI. Unlike the case of an ordinary eigenvalue problem, when the eigenvalue λi
is not simple, there may exist some v ∈ Cn with A(λi)v = 0, although there is no
b ∈ Cn such that v = Si,j′(i)b. This is illustrated by the following example:

A(λ) =

(
λ− λ0 0

0 (λ− λ0)2

)
, v =

(
1
1

)
.

Hence such vectors v cannot be retrieved from the partial fraction decomposition of
the functions R(λ)b, b ∈ Cn, and we will fail to find them in this way. The other
vectors Si,jb for j < j′(i) are not necessarily eigenvectors; however, it can be shown
that they satisfy the relations

A(m)(λi)

m!
Si,j′(i)b+

A(m−1)(λi)

(m− 1)!
Si,j′(i)−1b+· · ·+A(λi)Si,j′(i)−mb = 0, 0 ≤ m ≤ j′(i)−1.

In the case of an ordinary eigenvalue problem A(λ) = A− λI, these relations read

(A− λiI)mSi,j′(i)−m+1b = 0, 1 ≤ m ≤ j′(i),
where the Jordan decomposition can be recognized.

578 PHILIPPE GUILLAUME

2.2. The generating function. Let b ∈ Cn be a nontrivial vector. The re-
lationship (3) between the generalized eigenpairs of A(λ) and the partial fraction
decomposition of the resolvent (2) leads to introducing the generating function x(λ)
as the meromorphic vector-valued function defined by

A(λ)x(λ) = b, λ ∈ D(0, 1)\ {λ0, λ1, . . . , λs} .(4)

If we multiply (2) on the right side by b, we obtain the partial fraction decomposition
of x(λ) :

x(λ) =

s∑
i=0

j(i)∑
j=1

vi,j
(λ− λi)j + h(λ), vi,j ∈ Cn,(5)

where vi,j = Si,jb, and h(λ) = H(λ)b is holomorphic on D(0, 1). Obviously, λi is a
pole of x(λ) iff at least one of the Si,jb is nonzero. The following proposition gives
another characterization for λi being a pole of x(λ).

Proposition 2.2. Let b ∈ Cn and 0 ≤ i ≤ s. The generalized eigenvalue λi is a
pole of x(λ) = R(λ)b iff the linear system

A(λ)p(λ)− b = O(λ− λi)j(i)(6)

has no solution p ∈ Cn[λ]. In this case, for j′(i) = max {j; Si,jb 6= 0} , the vector
vi,j′(i) is a generalized eigenvector of A(λ) associated with λi :

A(λi)vi,j′(i) = 0.(7)

Proof. If (6) has a solution p(λ), then multiplying both sides by R(λ) yields
near λi

p(λ)− x(λ) = O(1);

thus λi is not a pole of x(λ). Conversely, if λi is not a pole of x(λ), then the Taylor

polynomial p(λ) =
∑j(i)−1
k=0 x(k)(λi)(λ−λi)k/k! is a solution to (6). Equation (7) was

derived in Proposition 2.1.
The practical interest of this proposition is the following.
Corollary 2.3. If b does not belong to the range of A(λi), then λi is a pole of

x(λ).
Proof. If b does not belong to the range of A(λi), then (6) has no solution; thus

λi is a pole of x(λ).

2.3. Computation of the derivatives. The power series expansions of the
functions A(λ) and x(λ) are denoted by

A(λ) =
∑
k≥0

Akλ
k, Ak ∈ Cn×n,(8)

x(λ) =
∑
k≥0

xkλ
k, xk ∈ Cn.(9)

The generalized eigenvectors of A(λ) will be approximated by linear combinations of
the vectors xk, which is the reason why we call x(λ) the generating function. As
the kth order derivative at zero of x(λ) reads x(k)(0) = k!xk, and as we are more
interested in its direction than its length, we also use the term “derivative” for xk.

NONLINEAR EIGENPROBLEMS 579

We assume that the matrices Ak are known. This happens in many finite-element
implementations where they are assembled separately. They can also be obtained
from the automatic differentiation of the function which computes the matrix A(λ).

The coefficient of λk in the power series expansion of A(λ)x(λ) is
∑k
j=0Ajxk−j and

A(λ)x(λ) = b; thus A0x0 = b and
∑k
j=0Ajxk−j = 0 for k ≥ 1. Hence the computation

of the vectors xk can be achieved in the following way.
Algorithm 1. Generalized inverse iteration.
1. Start:

• choose an initial nontrivial vector b.
• compute x0 solution to A0x0 = b.

2. Iterate: for k = 1, 2, . . . , compute xk solution to

A0xk = −
k∑
j=1

Ajxk−j .(10)

All these systems have the same matrix A0; thus a single factorization is needed
for computing the wanted derivatives. In the case of a polynomial eigenvalue problem,
(10) reduces to the inverse iteration method described by Peters and Wilkinson in [10],
except for the normalization of the vectors xk. Observe that unlike the linear case,
some xk may be zero; thus an appropriate change of variable λ = ρλ′ is preferable to
normalization. In this case, (10) becomes A0x

′
k = −∑k

j=1A
′
jx
′
k−j with A′j = ρjAj

and x′k = ρkxk.

2.4. Convergence of the derivatives. The next theorem states the fundamen-
tal property of the vectors xk, that is, the derivatives of x(λ) converge to a generalized
eigenvector of the matrix A(λ). For convenience here we suppose that b is chosen in
such a way that vi,j(i) = Si,j(i)b 6= 0 for 0 ≤ i ≤ s. This assumption is not very
restrictive in the sense that the matrices Si,j(i) are nonzero and the complementary
set of ∪si=0 kerSi,j(i) is open and dense in Cn. We suppose also s ≥ 1.

Theorem 2.4. Assume that |λ0| < |λ1|. There exists an integer k0 such that
xk 6= 0 for k ≥ k0. Let

zk =
xk
||xk||2 , k ≥ k0.

The sequence (|λ0|/λ0)kzk converges to the generalized eigenvector γ0v0,j(0) of problem
(1), where γ0 is a nonzero complex number. If v0,j = 0 for all j < j(0), then(|λ0|

λ0

)k
zk − γ0v0,j(0) = O

(
kτ−j(0)

∣∣∣∣λ0

λ1

∣∣∣∣k
)
,

where τ = max {j(i); |λi| = |λ1|} is the largest order of the next poles with equal
moduli. Otherwise (|λ0|

λ0

)k
zk − γ0v0,j(0) = O

(
1

kj(0)−τ ′

)
,

where τ ′ = max {j; v0,j 6= 0, j < j(0)} . If j(0) = 1, then for all indices l such that
the lth coordinate (v0,j(0))l of the vector v0,j(0) is nonzero, one has

(xk)l
(xk+1)l

− λ0 = O

(
kτ−1

∣∣∣∣λ0

λ1

∣∣∣∣k
)
,

580 PHILIPPE GUILLAUME

otherwise

(xk)l
(xk+1)l

− λ0 = O

(
1

k

)
.

Proof. The function h(λ) in (5) is holomorphic on D(0, 1) and |λ1| < 1, thus there
exists a positive number c such that the coefficients hk in h(λ) =

∑
k≥0 hkλ

k satisfy

|hk| ≤ c

|λ1|k for all k ≥ 0.

Taking the derivative of order k in (5), we obtain

xk =
s∑
i=0

j(i)∑
j=1

(j + k − 1)(j + k − 2) · · · (k + 1)

(j − 1)!(−1)jλij+k
vi,j + hk,(11)

with the convention (j + k − 1)(j + k − 2) · · · (k + 1) = 1 if j = 1. If v0,j = 0 for all
j < j(0), using |hk| ≤ c/|λ1|k, we get

xk =
(j(0) + k − 1) · · · (k + 1)

(j(0)− 1)!(−1)j(0)λ0
j(0)+k

v0,j(0) +O

(
kτ−1

|λ1|k
)
.(12)

For k sufficiently large, xk is nonzero and

zk =
(−1)j(0)|λ0|j(0)+k

λ0
j(0)+k ||v0,j(0)||2

v0,j(0) +O

(
kτ−j(0)

∣∣∣∣λ0

λ1

∣∣∣∣k
)
,

which gives the result with γ0 = (−1)j(0)|λ0|j(0)/(λ0
j(0) ||v0,j(0)||2). If there is a

v0,τ ′ 6= 0 with τ ′ < j(0) and v0,j = 0 for τ ′ < j < j(0), then we deduce from (11) that

xk =
(j(0) + k − 1) · · · (k + 1)

(j(0)− 1)!(−1)j(0)λ0
j(0)+k

v0,j(0) +O

(
(τ ′ + k − 1) · · · (k + 1)

(τ ′ − 1)! |λ0|τ ′+k
)
,

and

zk =
(−1)j(0)|λ0|j(0)+k

λ0
j(0)+k ||v0,j(0)||2

v0,j(0) +O

(
1

kj(0)−τ ′

)
.

The convergence of the eigenvalues is obtained from (12) in a similar way.

2.5. Generalization. The previous result can be generalized to other eigenpairs
by using an elimination technique. Although the sequences of vectors which are con-
sidered here are not computable (unless the eigenvalues are known), their properties
will be useful for proving the simultaneous convergence of several eigenpairs in the
next section.

For given m and d, 0 ≤ m < d ≤ s, let p(λ) =
∑σ
k=0 pkλ

k be the Hermite
interpolation of degree σ = j(0) + · · ·+ j(m− 1) + j(m+ 1) + · · ·+ j(d− 1) satisfying

p(λm) = 1,(13)

p(k)(λi) = 0, 0 ≤ k ≤ j(i)− 1, 0 ≤ i ≤ m− 1, m+ 1 ≤ i ≤ d− 1.(14)

NONLINEAR EIGENPROBLEMS 581

Instead of the sequence xk, we now consider the vectors yk associated with the power
series expansion of the function

y(λ) = p(λ)x(λ) =
∑
k≥0

ykλ
k.

Notice that each vector yk is a linear combination of the vectors xk−σ, xk−σ+1, . . . , xk :

yk =

min(k,σ)∑
i=0

pi xk−i.(15)

More generally, we have the following elementary lemma, which will be used several
times.

Lemma 2.5. Let q ∈ C[λ] be a polynomial such that q(0) 6= 0, and consider the
function u(λ) defined by

u(λ) = q(λ)x(λ) =
∑
k≥0

ukλ
k.

Then for all k ≥ 0, one has

span {x0, x1, . . . , xk} = span {u0, u1, . . . , uk} ,
and the vectors {u0, u1, . . . , uk} are linearly independent iff the vectors {x0, x1, . . . , xk}
are linearly independent.

The extension of Theorem 2.4 is the following.
Proposition 2.6. Assume that |λm| < |λd|. There exists an integer k0 such that

yk 6= 0 for k ≥ k0. Let

zk =
yk
||yk||2 , k ≥ k0.

The sequence (|λm|/λm)kzk converges to the generalized eigenvector γmvm,j(m) of

problem (1), with γm = |λm|j(m)(−1)j(m)

λmj(m) ||vm,j(m)||2 . If vm,j = 0 for all j < j(m), then

(|λm|
λm

)k
zk − γmvm,j(m) = O

(
kτ−j(m)

∣∣∣∣λmλd
∣∣∣∣k
)
,

where τ = max {j(i); |λi| = |λd|} . Otherwise(|λm|
λm

)k
zk − γmvm,j(m) = O

(
1

kj(m)−τ ′

)
,

where τ ′ = max {j; vm,j 6= 0, j < j(m)} . If j(m) = 1, then for all indices l such that
the lth coordinate (vm,j(m))l of the vector vm,j(m) is nonzero, one has

(yk)l
(yk+1)l

− λm = O

(
kτ−1

∣∣∣∣λmλd
∣∣∣∣k
)

;

otherwise

(yk)l
(yk+1)l

− λm = O

(
1

k

)
.

582 PHILIPPE GUILLAUME

Proof. At each point λi, the polynomial p(λ) can be written

p(λ) =

σ∑
k=0

pk(λi)(λ− λi)k,

where pk(λi) = p(k)(λi)/k!; thus the partial fraction decomposition of y(λ) is related
to the decomposition (5) of x(λ) by

y(λ) =

s∑
i=0

j(i)∑
j=1

σ∑
k=0

pk(λi)

(λ− λi)j−k vi,j + h(λ)

=

s∑
i=0

j(i)∑
l=1

j(i)∑
j=l

pj−l(λi)vi,j

 1

(λ− λi)l + g(λ),

where the function g(λ) is holomorphic on D(0, 1) and involves h(λ) and some other
contributions of the form (λ − λi)lu, l ≥ 0, u ∈ Cn. Due to the definition (13), (14)
of p(λ), we obtain

y(λ) =

j(m)∑
l=1

wm,l
(λ− λm)l

+
s∑
i=d

j(i)∑
l=1

wi,l
(λ− λi)l + g(λ),

wi,l =

j(i)∑
j=l

pj−l(λi)vi,j , wi,m,j(m) = vm,j(m),

and the rest of the proof runs as in Theorem 2.4.

3. Convergence of several approximate eigenpairs. In this section we gen-
eralize the previous results into a block variant, which allows several eigenpairs to
be computed simultaneously. Although the resulting algorithm is in practice less
effective than the one presented in section 4, its convergence properties provide in-
sight into the projection process for a nonlinear eigenproblem. First we describe a
sequence of approximate eigenproblems and the associated algorithm. Next, in order
to prepare the convergence study, we introduce a reduced eigenproblem which is not
computable but will appear as the limit of the approximate eigenproblems. Finally
we prove the simultaneous convergence of the approximate eigenpairs by comparing
the approximate eigenproblems with the reduced eigenproblem.

For the sake of clarity, we simplify the problem by supposing from now on that all
the generalized eigenvalues of problem (1) within the disk D(0, 1) are simple. The case
of semisimple or defective eigenvalues can be treated in a similar way, but the notation
becomes more complicated. Such an assumption is usual in the case of an ordinary
eigenproblem because the set of matrices having only simple eigenvalues is dense and
open in Cn×n [1]. This holds also for polynomial eigenproblems of degree m ≥ 1,
because the discriminant of detA(λ) is not identically zero on C(m+1)×n×n, and the
set where detA(λ) ∈ C[λ] has only simple roots is dense and open in C(m+1)×n×n. In
the general case it remains true in the following way. On the one hand, if the matrix
A(λ) has semisimple or defective eigenvalues in D(0, 1), it can be approximated by
truncating the series (8), which brings us back to the polynomial case. Hence for all
ε > 0, there exists a polynomial matrix P (λ) having only simple eigenvalues in D(0, 1)
such that supλ∈D(0,1) ||A(λ)−P (λ)||2 < ε. On the other hand, if the zeros of detA(λ)

NONLINEAR EIGENPROBLEMS 583

in D(0, 1) are simple, then for E(λ) holomorphic on Ω and supλ∈D(0,1) ||E(λ)||2 suf-

ficiently small, the zeros of det(A+ E)(λ) in D(0, 1) remain simple.
We suppose also that b /∈ ranA(λi) for 0 ≤ i ≤ s. It follows from Corollary 2.3

that the function x(λ) reads

x(λ) =

s∑
i=0

vi
λ− λi + h(λ),(16)

with vi = Si,1b 6= 0, and thanks to Proposition 2.2, we have

A(λi)vi = 0,

where the null space of A(λi) has dimension 1.

3.1. The approximate eigenproblems. For a given d, 0 < d ≤ s, let

Tk(x) = span {xk−d+1, . . . , xk} , Xk = [xk−d+1| . . . | xk], k ≥ d− 1.

The approximate eigenproblems are defined as follows: find the generalized eigenpairs
λ, ṽ solution to

X∗kA(λ)Xkṽ = 0.(17)

We will see that some of the eigenpairs of the original eigenproblem (1) can be retrieved
from these eigenpairs by letting k tend to infinity. As problem (17) is supposed to
be low dimensional, we assume that we can effectively solve it by transforming a
polynomial problem into a linear problem [4], [14], [16] if A(λ) is polynomial or by
using Newton-based methods [10], [20], [19] in the general case. The algorithm is the
following.

Algorithm 2. Block variant.
1. Start:

• choose an initial nontrivial vector b, the search space dimension d, and
the number of iterations k.
• compute x0 solution to A0x0 = b.

2. Loop: for i = 1, 2, . . . , k, compute xi solution to

A0 xi = −
i∑

j=1

Aj xi−j ,(18)

3. Projection: solve the problem

X∗kA(λ)Xkṽ = 0,(19)

where Xk = [xk−d+1| . . . |xk].
4. Check: let λ, ṽ be a solution to (19). Define

v = Xkṽ.

If ||A(λ)v||2/||v||2 is small, then λ, v is an approximate eigenpair of problem
(1).

The reason why it must be checked whether ||A(λ)v||2/||v||2 is small comes from
the fact that the reduced eigenproblem (22) may have other eigenvalues than the
original eigenproblem (cf. next section) and will be discussed after Theorem 3.2.

584 PHILIPPE GUILLAUME

3.2. The reduced eigenproblem. Let

B(λ) = V ∗A(λ)V, V = [v0| . . . | vd−1].(20)

We suppose that detB(λ) is not identically 0, and we define the reduced generating
function ỹ(λ) by

B(λ)ỹ(λ) = V ∗b.(21)

The following elementary proposition states that under some reasonable assumptions,
the eigenpairs we are seeking can be associated with some of the eigenpairs of the
reduced eigenproblem

B(λ)w̃ = 0.(22)

Recall that b /∈ ranA(λi) and λi is a simple eigenvalue of A(λ) for 0 ≤ i ≤ s.
Proposition 3.1. Let 0 ≤ i ≤ d− 1. Assume that detB(λ) is not identically 0.

If V ∗b does not belong to the range of B(λi), then λi is a pole of the function ỹ(λ)
and a generalized eigenvalue of B(λ). If this eigenvalue is simple for B(λ), then the
coefficient w̃i of 1/(λ− λi) in the partial fraction decomposition of ỹ(λ) is related to
the eigenvector vi of A(λ) by

vi = βi V w̃i, βi ∈ C.(23)

Proof. The first part follows from Proposition 2.2. Define ei ∈ Cd by V ei = vi. If
the eigenvalue λi is simple for B(λ), then w̃i is an eigenvector of B(λi) (Proposition
2.2). We have both

B(λi)w̃i = 0,

B(λi)ei = V ∗A(λi)vi = 0;

thus there exists βi ∈ C such that ei = βiw̃i, which implies vi = V ei = βiV w̃i.
Notice that when the matrix A(λi) is self-adjoint, the condition V ∗b /∈ ranB(λi) is

automatically fulfilled if the previous assumptions b /∈ ranA(λi) and kerA(λi) ⊂ ranV
are satisfied, and it follows directly from the property ranA(λi) = (kerA(λi))

⊥.
Remark. The matrix B(λ) may have a semisimple eigenvalue, although A(λ) has

only simple eigenvalues. Consider, for instance, the matrices

A(λ) =

 λ− 1 0 0
0 (λ− 1)(λ− 2) 1
0 λ− 2 0

 , V =

 1 0
0 1
0 0

 .

Similarly, B(λ) may have other eigenvalues than A(λ) (and even smaller ones). Con-
sider for instance the matrices

A(λ) =

 (λ− 1)(λ− 2) λ− 3 0
0 λ− 3 1

λ− 2 0 0

 , V =

 1 0
0 1
0 0

 .

3.3. Convergence of the approximate eigenpairs. The following theorem
states the convergence of d eigenpairs of the approximate eigenproblems (17) to the
eigenpairs λi, vi, 0 ≤ i ≤ d− 1 of the original eigenproblem (1).

NONLINEAR EIGENPROBLEMS 585

The approximate generating function x̃k(λ) is defined (if it exists) by

X∗kA(λ)Xkx̃k(λ) = X∗kb.(24)

Theorem 3.2. Assume that detB(λ) is not identically 0, that V ∗b does not
belong to the range of B(λi) for 0 ≤ i ≤ d − 1 and that λi is a simple generalized
eigenvalue both for the original eigenproblem (1) and the reduced eigenproblem (22)
for 0 ≤ i ≤ d−1. Then there exist an integer k0 and positive numbers ρi, 0 ≤ i ≤ d−1,
such that for 0 ≤ i ≤ d− 1 and k ≥ k0, the approximate generating function x̃k(λ) is
well defined, it has exactly one simple pole in each disk D(λi, ρi), and it reads

x̃k(λ) =
d−1∑
i=0

ṽki
λ− λki + h̃k(λ),

where h̃k(λ) is meromorphic on D(0, 1). For 0 ≤ i ≤ d − 1 and k ≥ k0, the pole λki
is the unique generalized eigenvalue of the approximate eigenproblem (17) in the disk
D(λi, ρi). This eigenvalue is simple, and ṽki is a generalized eigenvector associated
with this eigenvalue. For 0 ≤ i ≤ d − 1, the approximate eigenpairs λki, βiXkṽki
converge linearly to the generalized eigenpair λi, vi of problem (1):

βiXkṽki = vi +O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,

βiλkiXkṽki = λivi +O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,

where βi was defined in Proposition 3.1.
Proof. First we need to define another family of vectors spanning Tk(x), which

combined with Proposition 2.6 leads to the uniform convergence on compact subsets
of the approximate generating functions (expressed in the new basis) to the reduced
generating function. Next we prove the convergence of the approximate eigenpairs
via the Cauchy formula and Rouché’s theorem [15].

For 0 ≤ i ≤ d− 1, let pi(λ) =
∑d−1
k=0 pi,kλ

k be the Lagrange polynomial of degree
d− 1 such that

pi(λj) = δij , j = 0, . . . , d− 1,

where δij is the Kronecker symbol. Let

yi(λ) = pi(λ)x(λ).

The power series expansion of yi(λ) is denoted by

yi(λ) =
∑
k≥0

yi,k λ
k, yi,k =

min(d−1,k)∑
j=0

pi,j xk−j .(25)

For k ≥ 0, define (zi,k)0≤i≤d−1 by

zi,k =

(|λi|
λi

)k
yi,k

γi||yi,k||2 ,

586 PHILIPPE GUILLAUME

where γi was defined in Proposition 2.6. Let Vk = [z0,k| . . . |zd−1,k]. We have

Vk = XkQk,(26)

where Qk ∈ Cd×d. We know from Proposition 2.6 that zi,k − vi = O(|λi/λd|k) for
0 ≤ i ≤ d− 1, thus

Vk − V = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
.(27)

Define the functions ỹk(λ) by

V ∗k A(λ)Vkỹk(λ) = V ∗k b.(28)

As detV ∗A(λ)V = detB(λ) is not identically 0 and Vk converges to V, there exists
an integer k1 such that the meromorphic function ỹk(λ) is well defined and the rank
of Vk is exactly d for k ≥ k1. This implies that Qk is invertible for k ≥ k1, and using
(24) and (26), we obtain the following relations between x̃k(λ) and ỹk(λ) :

x̃k(λ) = Qkỹk(λ), Xkx̃k(λ) = Vkỹk(λ), k ≥ k1.(29)

Due to the assumptions of the theorem, the generating function ỹ(λ) defined in (21)
reads

ỹ(λ) =

d−1∑
i=0

w̃i
λ− λi + g̃(λ),(30)

where the function g̃(λ) is meromorphic on D(0, 1) and has a finite number of poles
which are inD(0, 1)\{λ0, . . . , λd−1}. LetO be an open neighborhood of {λ0, . . . , λd−1}
where g̃(λ) is holomorphic, and Ȯ = O \ {λ0, . . . , λd−1}. It follows from (20), (21)
(27), and (28) that ỹk(λ) converges uniformly to ỹ(λ) on all compact subsets of Ȯ.
More precisely, given a compact subset K ⊂ Ȯ, we have

sup
λ∈K
||ỹk(λ)− ỹ(λ)||2 = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
.(31)

Select a radius ρi such that D(λi, ρi) ⊂ O and D(λi, ρi) contains no other 0 of detB(λ)
than λi. When applying the Cauchy formula to (30), we have

w̃i =
1

2iπ

∫
Γ+
i

ỹ(λ)dλ,

λiw̃i =
1

2iπ

∫
Γ+
i

λỹ(λ)dλ,

where Γ+
i is the oriented boundary of D(λi, ρi). Using (31), we obtain

w̃i − 1

2iπ

∫
Γ+
i

ỹk(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,(32)

λiw̃i − 1

2iπ

∫
Γ+
i

λỹk(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
.(33)

NONLINEAR EIGENPROBLEMS 587

Multiplying (32) and (33) on the left by Vk and using (29), we get

Vkw̃i − 1

2iπ

∫
Γ+
i

Xkx̃k(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,

λiVkw̃i − 1

2iπ

∫
Γ+
i

λXkx̃k(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,

and finally with (23) and (27), we obtain

vi − βi
2iπ

∫
Γ+
i

Xkx̃k(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,(34)

λivi − βi
2iπ

∫
Γ+
i

λXkx̃k(λ)dλ = O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
.(35)

On the one hand, as w̃i 6= 0 in (32), there exists k2 ≥ k1 such that the func-
tion ỹk(λ) has at least one pole in each disk D(λi, ρi) for k ≥ k2. On the other
hand, detV ∗k A(λ)Vk converges uniformly to detB(λ) on the disk D(0, 1), the function
detB(λ) has a unique and simple 0 in the disk D(λi, ρi), and detB(λ) 6= 0 for all
λ ∈ Γi. It follows from Rouché’s theorem that there exists k0 ≥ k2 such that for all
k ≥ k0, the function detV ∗k A(λ)Vk has a unique and simple zero in each disk D(λi, ρi);
i.e., problem (17) has a unique and simple eigenvalue λki in each disk D(λi, ρi). Hence
the function ỹk(λ) has one simple pole at most in each disk D(λi, ρi). We conclude
that the function ỹk(λ) has a unique and simple pole λki in each disk D(λi, ρi) for all
k ≥ k0, and using (29) we obtain the same conclusion for the function x̃k(λ), which
reads

x̃k(λ) =
d−1∑
i=0

ṽki
λ− λki + h̃k(λ),

where h̃k(λ) is meromorphic on D(0, 1) and holomorphic on each D(λi, ρi). It follows
that (34) and (35) become the following for k ≥ k0 :

βiXkṽki = vi +O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
,

βiλkiXkṽki = λivi +O

(∣∣∣∣λd−1

λd

∣∣∣∣k
)
.

Remark. This result is weaker than in the case of a linear eigenvalue problem,
where the error estimate on the eigenvalue λi is O(|λi/λd|k) instead of O(|λd−1/λd|k),
and it is obtained from the classical error estimates of the Rayleigh–Ritz analysis [11]
which cannot be used in the nonlinear case. However, numerical experiments seem
to indicate that the latter stronger result remains true in the nonlinear case (see
Figure 2).

As mentioned in section 3.2, the reduced problem (22) may have other eigenvalues
in the disk D(0, 1) than λi, 0 ≤ i ≤ d− 1, say, λ′i, 1 ≤ i ≤ s′. These extra eigenvalues
can belong to the set {λd, λd+1, . . . , λs} or not. Suppose that these eigenvalues are

588 PHILIPPE GUILLAUME

also simple, and associated with eigenvectors w̃′i satisfying

ỹ(λ) =

d−1∑
i=0

w̃i
λ− λi +

s′∑
i=1

w̃′i
λ− λ′i

+ f̃(λ),

where f̃(λ) is holomorphic on D(0, 1). Select a radius ρ < 1 such that the open disk
D(0, ρ) contains the eigenvalues {λ0, λ1, . . . , λd−1} and {λ′1, λ′2, . . . , λ′s′}. With the
same arguments as in the proof of Theorem 3.2, it can be shown that for k sufficiently
large the approximate eigenproblem (17) will have exactly s′ other eigenvalues λ′ki,
1 ≤ i ≤ s′ in D(0, ρ) converging to λ′i and associated with eigenvectors ṽ′ki, satisfying

x̃k(λ) =
d−1∑
i=0

ṽki
λ− λki +

s′∑
i=1

ṽ′ki
λ− λ′ki

+ f̃k(λ),

where f̃k(λ) is holomorphic on D(0, 1). It follows from Xkx̃k(λ) = Vkỹk(λ) (cf. (29))
that the vectors Xkṽ

′
ki, 1 ≤ i ≤ s′ converge to the vectors v′i := V w̃′i with V ∗A(λ′i)v

′
i =

0. Hence one can decide whether λ′ki, 1 ≤ i ≤ s′ is an approximate eigenvalue of the
original problem by watching if A(λ′ki)Xkṽ

′
ki vanishes. An example of such an extra

eigenvalue can be seen in Figure 2, where six eigenvalues are found within a search
space of dimension 5. Curiously, the chosen vector b has “seen” two eigenvalues quite
far away from the origin.

4. A partial orthogonalization algorithm. Increasing space methods like
Arnoldi’s or Lanczos methods are often preferred to subspace iterations with a fixed
dimension. A simple reason is that a Galerkin approximation is expected to be more
accurate on spaces which contain the iterated subspaces. Besides, a subspace iteration
must somehow be initialized by an increasing space technique. Here we proceed in a
similar way. Instead of the spaces Tk(x) = span {xk−d+1, . . . , xk} , we work with the
spaces

Ak(x) = span {x0, x1, . . . , xk} .
Now it is well known that one has to care about the way the spaces are expanded, or
else the dimension fails to increase after a few steps. This comes from the convergence
of the vectors xk and the round-off errors of the computer. The usual way to overcome
this difficulty is to orthogonalize the vectors, as in Arnoldi’s method. The algorithm
exposed in this section does not perform a complete orthogonalization. At each space
expansion, the incoming vector is made orthogonal to the previous ones, but these
have to be modified in order to compute the next vector. This comes from the fact
that the computation of xk (10) involves all the other vectors xi, 0 ≤ i ≤ k−1, unlike
an ordinary eigenvalue problem, where xk depends only on xk−1. Nevertheless the aim
of allowing the dimension to increase seems to be achieved through this procedure.
First we describe the basic scheme of the search space expansion, from which the
algorithm will be next derived.

Let q(λ) =
∑m
i=0 qiλ

i be a polynomial with q(0) 6= 0 and let y(λ) = q(λ)x(λ).
As mentioned earlier in Lemma 2.5, we have Ak(x) = Ak(y). The current basis of
Ak(x) is supposed to be {y0, y1, . . . , yk} , and we aim to compute a basis of Ak+1(x).
This could be done by using the relation A(λ)y(λ) = q(λ)b, that is, computing yk+1

solution to

A0yk+1 = −
k+1∑
j=1

Aj yk+1−j + qk+1b,

NONLINEAR EIGENPROBLEMS 589

but we are faced with the difficulty that even if the vectors {y0, y1, . . . , yk+1} are
linearly independent if computed with exact arithmetic, they may be numerically de-
pendent and the expansion fails. For this reason we define the vectors {z0, z1, . . . , zk}
and expand them in the following way.

Let Y = [y0|y1| . . . | yk−1]. A vector zk is chosen in Ak(x), orthogonal to the
vectors {y0, y1, . . . , yk−1}:

a = − (Y ∗Y)
−1
Y ∗ yk,

zk = yk + Y a.(36)

Thus we have, with the numbering a = (α0, α1, . . . , αk−1)T ,

zk = yk + αk−1yk−1 + · · ·+ α1y1 + α0y0.

Define next for j = k − 1, k − 2, . . . , 0

zj = yj + αk−1yj−1 + · · ·+ αk−jy0,(37)

and expand Ak(x) by adding the vector zk+1 obtained by solving the equation

A0 zk+1 = −
k+1∑
j=1

Aj zk+1−j ,(38)

which is the same as the one defining xk+1 in (10) from the other xj , j < k + 1.
Lemma 4.1. Assume that the vectors {x0, x1, . . . , xk+1} are linearly indepen-

dent. Then the vectors {z0, z1, . . . , zk+1} constructed above are also linearly inde-
pendent and they satisfy

span {z0, z1, . . . , zk+1} = Ak+1(x).

Proof. Consider the polynomial p(λ) =
∑k+1
i=0 piλ

i with

p0 = 1,

pi = αk−i, 1 ≤ i ≤ k,

pk+1 =
−1

q0

k∑
i=0

piqk+1−i.

Define the function z(λ) by

z(λ) = p(λ)y(λ) = p(λ)q(λ)x(λ).

By construction, the power series coefficients of the function z(λ) up to the order k+1
are exactly the zj defined by (36), (37), and (38). Moreover, we have p(0)q(0) 6= 0;
thus the result follows from Lemma 2.5.

We are now in a position to describe the partial orthogonalization algorithm for
constructing the basis of Ak(x) which is used for the projecting process.

590 PHILIPPE GUILLAUME

Algorithm 3. Partial orthogonalization.
1. Start:

• choose an initial nontrivial vector b, and the search space dimension
k + 1.
• compute x0 solution to A0x0 = b, and define y0

0 = x0.
2. Loop: for i = 0, 1, . . . , k − 1, do:

• expand the search space by solving

A0 y
i
i+1 = −

i+1∑
j=1

Aj y
i
i+1−j ,(39)

• choose yi+1
i+1 in Ai+1(x), orthogonal to the vectors

{
yi0, y

i
1, . . . , y

i
i

}
by

computing

a = − (Y ∗i Yi)
−1
Y ∗i y

i
i+1,

yi+1
i+1 = yii+1 + Yi a,

where Yi = [yi0|yi1| . . . |yii],
• modify the other vectors: for j = i, i− 1, . . . , 0, compute

yi+1
j = yij + αiy

i
j−1 + · · ·+ αi+1−jyi0,(40)

with a = (α0, α1, . . . , αi)
T .

3. Projection: solve the problem

Y ∗k A(λ)Ykw̃ = 0.(41)

4. Check: let λ, w̃ be a solution to (41). Define

v = Ykw̃.(42)

If ||A(λ)v||2/||v||2 is small, then λ, v is an approximate eigenpair of problem
(1).

In the case of a linear eigenvalue problem A(λ) = A− λB, the modification (40)
is unnecessary because the vectors yi+1

j , 0 ≤ j ≤ i, are not used at the next step, and

the algorithm reduces to the classical Arnoldi’s method applied to A−1B, except for
the normalization of the vectors.

Remark. At the end of the ith step, only the vectors yi+1
j , 0 ≤ j ≤ i + 1, need

to be stored (notice that the vectors yi0 do not change; they are all equal to x0).
However, if storage is not a problem, an alternative to this algorithm consists in using
the orthogonal matrix Zk := [y0

0/||y0
0 ||2 | y1

1/||y1
1 ||2 | . . . | ykk/||ykk ||2] in (41) and (42)

instead of the matrix Yk. It is also possible to compute the vectors yi+1
i+1 directly from

the previous vectors yjj , 0 ≤ j ≤ i (that is, without storing the vectors yij , 0 ≤ j < i),
which leads to a complete orthogonalization. The advantage of this strategy deserves
to be investigated.

Proposition 4.2. Assume that the vectors {x0, x1, . . . , xk} are linearly in-
dependent. Then the vectors

{
yk0 , y

k
1 , . . . , y

k
k

}
constructed above are also linearly

independent and

span
{
yk0 , y

k
1 , . . . , y

k
k

}
= Ak(x).

Proof. The result can be obtained by applying Lemma 4.1 at each step of the
algorithm.

NONLINEAR EIGENPROBLEMS 591

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 1. Generalized spectrum of A(λ).

5. A numerical example. In order to build confidence in Algorithms 2 and 3,
we have experimented with them on a polynomial example which should be seen only
as an illustration of the new approach. This example has been coded in MATLAB
and executed on a DEC ALPHA workstation in about 15-decimal working precision.
First we illustrate the convergence of the block variant (Algorithm 2). As one could
expect, this method is not very stable. Next we compare the results of Algorithm 3
with the results obtained by using directly the original basis {x0, x1, . . . , xk} , that
is, without applying any orthogonalization. Finally we compare Algorithm 3 with
Arnoldi’s algorithm applied to the augmented linear eigenproblem (45).

We have searched the smallest eigenvalues of the cubic eigenproblem

A(λ)v = 0,(43)

A(λ) = Q∗U(λ)Q,(44)

where Q is a randomly chosen orthogonal 80 × 80 matrix, and U(λ) = U0 + U1λ +
U2λ

2 +U3λ
3 is an 80× 80 upper triangular matrix with (i, j) entries uij(λ) satisfying

uij(λ) = 0 if j ≥ i + 2. The roots of the polynomials uii(λ) have been randomly
chosen in the complex plane by using a centered normal distribution. The coefficients
of the polynomials ui i+1(λ) have been randomly chosen on the real axis by also using
a centered normal distribution. The generalized spectrum of A(λ) is represented in
Figure 1. As an initial vector b we took the vector with all coordinates equal to 1.

The approximate eigenproblems have been solved by using the QZ algorithm [13]
in the following way. Let W be a matrix whose columns form a basis of the search
space. The matrix B(λ) = W ∗A(λ)W reads

B(λ) = B0 +B1λ+B2λ
2 +B3λ

3,

with Bj = W ∗AjW, Aj = Q∗UjQ. The determinant of B(λ) is zero iff the determinant
of the matrix K + λL is zero, where

K =

 B0 0 0
0 −I 0
0 0 −I

 , L =

 B1 B2 B3

I 0 0
0 I 0

 ,

592 PHILIPPE GUILLAUME

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
exact
 approximate

5 10 1 5 2 0 2 5 3 0
number of computed derivatives

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r
Fig. 2. Convergence of the approximate eigenvalues with Algorithm 2.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
 exact
 without ortho.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
 exact
 with partial ortho.

Fig. 3. Approximate eigenvalues for k = 39 with Algorithm 3.

and the QZ routine implemented in MATLAB is used for solving det(K + λL) = 0.

5.1. Results of Algorithm 2. The subspaces Tk(x) involved in the block vari-
ant have been chosen to be of dimension five. The results are given in Figure 2.
On the left side, the approximate eigenvalues computed on T29(x) are represented by
circles, and the exact eigenvalues are represented by plus signs. On the right side
is represented the relative error between the four smallest exact eigenvalues and the
four approximate eigenvalues which are the closest to them. The instability of this
method appears after 25 computations of derivatives.

5.2. Results of Algorithm 3. The performance of Algorithm 3 is shown in
Figures 3 and 4. Figure 3 shows the approximate eigenvalues computed on the sub-
spaces A39(x). The circles correspond to the eigenvalues computed by directly using
the basis {x0, x1, . . . , x39}, and the diamonds correspond to the eigenvalues com-
puted by using Algorithm 3. The exact eigenvalues are still represented by plus signs.
One can observe that Algorithm 3 allows more than 40 eigenvalues to be computed
quite accurately within a search space of dimension 40.

Figure 4 shows the relative error between the seven smallest exact eigenvalues
and the seven approximate eigenvalues which are the closest to them. The latter
are computed by directly using the basis {x0, x1, . . . , xk} , 4 ≤ k ≤ 39, or by using

NONLINEAR EIGENPROBLEMS 593

5 10 15 20 25 30 35 40
16

14

12

10

8

6

4

2

0

number of computed derivatives

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r

without ortho.

with partial ortho.

Fig. 4. Relative errors on the seven smallest eigenvalues with Algorithm 3.

Algorithm 3. One can observe the improving of stability brought by changing the
basis of Ak(x).

5.3. Comparison with a classical method. If the matrices A0 and A3 have
full rank, then the cubic eigenproblem (43) is equivalent to the augmented linear
eigenproblem

M−1N v = µv, µ =
1

λ
,(45)

with

M =

 A0 0 0
0 −I 0
0 0 −I

 , N = −
 A1 A2 A3

I 0 0
0 I 0

 .

We have compared Algorithm 3 with Arnoldi’s algorithm applied to (45), which uses
the same LU factorization of the matrix A0 as Algorithm 3 (39). Figure 5 shows
the relative error on the 28 smallest eigenvalues. The comparison is made versus the
number of computed derivatives, because if n is large, then in both methods most of
the computational time is spent in solving a system of the form A0x = y. Observe that
in the case of our cubic eigenproblem, k− 1 steps of Algorithm 3 provide 3k potential
eigenvalues associated with an n×k search space, whereas Arnoldi’s algorithm applied
to (45) provides k potential eigenvalues associated with a 3n × k search space. This
may increase the number of accurate approximate eigenvalues computed by Algorithm
3 in the case where the eigenvectors associated with the smallest eigenvalues do not
have full rank.

6. Final comments. The derivatives of the generating function can be consid-
ered very efficient tools for solving large nonlinear eigenproblems when a few eigenpairs
are required. A thorough investigation of the error estimates remains to be performed,
particularly in Algorithm 3. The difficulty comes from the fact that the projection

594 PHILIPPE GUILLAUME

10 15 20 25 30 35 40
16

14

12

10

8

6

4

2

0

number of computed derivatives

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r

augmented linear

algorithm 3

15 20 25 30 35 40
16

14

12

10

8

6

4

2

0

number of computed derivatives

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r

augmented linear

algorithm 3

22 24 26 28 30 32 34 36 38 40
16

14

12

10

8

6

4

2

0

number of computed derivatives

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r

augmented linear

algorithm 3

28 30 32 34 36 38 40
16

14

12

10

8

6

4

2

0

number of computed derivatives

lo
g1

0
of

 th
e

re
la

tiv
e

er
ro

r

augmented linear

algorithm 3

Fig. 5. Comparison of Algorithm 3 with Arnoldi on the augmented linear problem.

methods used in the linear case cannot be simply transposed to the nonlinear case.
Finally, it would be interesting to incorporate some ideas of the Jacobi–Davidson
method in the previous algorithm.

Acknowledgments. I thank the referees for their criticism and their useful sug-
gestions, and I am very grateful to Prof. M. Masmoudi for the numerous and helpful
discussions in the matter.

REFERENCES

[1] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Birkhäuser-Verlag,
Basel, Boston, MA, 1985.

[2] J. D. Beley, C. Broudiscou, Ph. Guillaume, M. Masmoudi, and F. Thevenon, Application
de la méthode des dérivées d’ordre elevé à l’optimisation des structures, Revue Européenne
Éléments Finis, (1996), pp. 537–567.

[3] C. Bischof and A. Griewank, Computational differentiation and multidisciplinary design,
in Inverse Problems and Optimal Design in Industry, Philadelphia, PA, 1993, Teubner,
Stuttgart, 1994, pp. 187–211.

[4] M. Borri and P. Mantegazza, Efficient solution of quadratic eigenproblems arising in dy-
namic analysis of structures, Comput. Methods Appl. Mech. Engrg., 12 (1977), pp. 19–31.

[5] Ph. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape
design, Numer. Math., 67 (1994), pp. 231–250.

[6] Ph. Guillaume and M. Masmoudi, Solution to the time-harmonic Maxwell’s equations in
a waveguide; use of higher-order derivatives for solving the discrete problem, SIAM J.
Numer. Anal., 34 (1997), pp. 1306–1330.

NONLINEAR EIGENPROBLEMS 595

[7] J. C. Gilbert, G. Le Vey, and J. Masse, La differentiation automatique de fonctions
représentées par des programmes, INRIA, Rapports de recherche 1557, Le Chesnay, France,
1991.

[8] A. Griewank, On Automatic Differentiation, in Mathematical Programming: Recent De-
velopments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers,
Dordrecht, 1989, pp. 83–108.

[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
[10] G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s

methods, SIAM Rev., 21 (1979), pp. 339–360.
[11] P. Lascaux and R. Théodor, Analyse numérique matricielle appliquée à l’art de l’ingénieur,

Masson, Paris, Milan, Barcelone, 1994.
[12] J. Morgenstern, How to compute fast a function and all its derivatives, a variation on the

theorem of Baur-Strassen, SIGACT News, 1985.
[13] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalues problems,

SIAM J. Numer. Anal., 10 (1973), pp. 241–256.
[14] B. N. Parlett and H. C. Chen, Use of an indefinite inner product for computing damped

natural modes, Technical report PAM-435, Center for Pure and Applied Mathematics,
University of California at Berkeley, Berkeley, CA, 1988.

[15] W. Rudin, Analyse réelle et complexe, Masson, Paris, Milan, Barcelone, Bonn, 1992.
[16] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Algorithms Achit. Adv. Sci.

Comput., Manchester University Press, Manchester, 1992.
[17] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York,

1990.
[18] A. Jennings, Matrix Computations for Engineers and Scientists, Wiley, New York, 1977.
[19] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear

eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
[20] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, Jacobi–

Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT,
36 (1996), pp. 595–633.

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES∗

PACHARA CHAISURIYA† AND SING-CHEONG ONG‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 596–605

Abstract. Let p, q, r be real numbers such that p, q, r ≥ 1, and let B be a Banach algebra. Let
B(`p, `q) denote the set of all matrices which define bounded linear transformations from `p into `q .
The set

Sr(B) =

{
A =

[
ajk
]

: ajk ∈ B and A[r] =
[∥∥ajk∥∥r] ∈ B(`p, `q)

}
of infinite matrices over B, is shown to be a Banach algebra under the Schur product operation, and
the norm |||A|||p,q,r = ‖A[r]‖1/r. For r ≥ 2 and B = C, the complex field, Sp = Sp(C) contains the

set B(`p, `q). For r = 2, S2 contains the bounded matrices B(`p, `q) as an ideal.

Key words. Schur product, Hadamard product, Schur multiplier norm

AMS subject classifications. Primary, 15A18; Secondary, 47A10

PII. S0895479897330005

1. Introduction and notation. The Schur product (also known as Hadamard
product or just entrywise product) of two matrices A = [ajk] and B = [bjk] of the
same size, finite square or rectangular, or infinite bounded or unbounded (as linear
transformation between `p spaces of pth power summable sequences with the standard
basis), is defined by A • B = [ajkbjk] ; i.e., A • B is the matrix whose (j, k)-entry is
the product of the (j, k)-entry of A and the (j, k)-entry of B. Areas such as matrix
theory, complex analysis, operator theory, and operator algebras have made good use
of results from the study of the Schur product and injected new problems in return.
See [3, 1, 2, 4, 10, 11, 6, 5] for further reference to related literature. It is proved
by Schur in [9] that the Schur product of two nonnegative (resp., positive) definite
matrices is nonnegative (resp., positive) definite and that the `2-operator norm of the
Schur product of two matrices is at most the product of their norms; i.e., the Schur
product is submultiplicative with respect to operator norm on B(`2), and hence the
bounded matrices form a commutative Banach algebra under the usual sum, the Schur
product, and the operator norm. Q. Stout studied the maximal ideal space structure
of this algebra in his thesis [10]. L. Livshits [5] studied generalized Schur products
of operator matrices. The product on the entries is the usual operator composition.
G. Bennett [1] proved that all B(`p, `q), for 1 ≤ p, q < ∞, are also Banach algebras
under the Schur product and operator norm on B(`p, `q).

From the results of Schur mentioned above, we see that the Schur product has
some very desirable and pleasant properties which the usual product lacks. In this
note we will unveil another pleasant aspect of this simple operation.

For a given matrix A = [ajk] (finite square or rectangular or infinite bounded or
unbounded), and a positive real number r, we define the absolute Schur rth power

∗Received by the editors September 8, 1997; accepted for publication (in revised form) by R.
Brualdi March 20, 1998; published electronically March 2, 1999. This research was supported by a
grant from the Ministry of University Affairs of Thailand.

http://www.siam.org/journals/simax/20-3/33000.html
†Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240,

Thailand (pachara@ram1.ru.ac.th).
‡Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859. The

research of this author was also supported by a Central Michigan University sabbatical leave and
was done while visiting Ramkhamhaeng University (sing-cheong.ong@cmich.edu).

596

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES 597

of A to be the matrix A[r] = [|ajk|r], for obvious reasons. Then we show that, for
1 ≤ r <∞, the set Sr of all matrices A such that A[r] ∈ B(`p, `q) is a Banach algebra

under the usual sum, the Schur product, and the norm |||A|||p,q,r = ‖A[r]‖1/rp,q . For the

case of r = 2, S2 contains the bounded matrices B(`p, `q) as an ideal. For r ≥ 2, all
Sr contain B(`p, `q) as a proper subset. We will work on the more general setting of
matrices with entries from a fixed Banach algebra with identity. Since p and q will
be fixed throughout, we will often suppress the subscripts and rely on the context to
determine which one is intended.

It appears to us that the unbounded operators don’t have much of the familiar and
desirable structures. They are mostly dealt with individually. The pleasant structures
of the Sp algebras and the multiplier algebra [1] may provide us with a reasonable
way of studying the unbounded operators collectively as Schur algebras instead of
individually.

This grew out of the simple Cauchy–Schwarz-type inequality proved in [7] and
extended in [3, p. 340]. It has been observed by C.-K. Fong that the corresponding
Hölder-type inequality can be proved by obvious modifications. We are grateful to
Fong for this observation and for raising related questions.

2. Hölder and Minkowski-type inequalities. For a scalar matrix A = [ajk],
A denotes the matrix whose entries are the conjugates of the corresponding entries of
A, i.e., A = [ajk]. We state the following version of the Cauchy–Schwarz inequality
[7, 3] before getting into the more general situation.

Theorem 2.1. For finite matrices A and B,

‖A •B‖2,2 ≤
∥∥A •A∥∥1/2

2,2

∥∥B •B∥∥1/2

2,2
,

where the norm ‖·‖2,2 is the operator norm induced by the Euclidean norm on the
underlying space.

We note here that the finiteness of the size, and even boundedness, requirements
on both A and B can be dropped, as we will see below. We will fix a Banach algebra
B with identity e.

Definition 2.2. For a given matrix A = [ajk] (finite or infinite) with entries
from the Banach algebra B, and for any positive real number r, the absolute Schur
rth power of A is the scalar matrix A[r] = [‖ajk‖r] with nonnegative entries. Denote
by M(B) the set of all (infinite) matrices with entries from the Banach algebra B.

The following kind of generalized Schur product is first considered in [5] with
bounded linear operators on a Hilbert space as entries.

Definition 2.3. For two matrices A = [ajk] , B = [bjk] ∈ M(B), the Schur
product of A and B is the matrix A • B = [ajkbjk], where the multiplication of the
entries is the multiplication of elements in B.

We will make frequent use of the following well-known fact. The norm ‖A‖ of a
numerical matrix A will be the norm ‖A‖p,q of A as a linear transformation from `p

to `q if it is well defined and finite, and it is ∞ otherwise. We will sometimes include
the subscripts p, q for clarity.

Lemma 2.4. Let A = [ajk] , B = [bjk] be scalar matrices with nonnegative entries.
If ajk ≤ bjk for all j and k, then ‖A‖ ≤ ‖B‖.

To interpret the right-hand side of the following Hölder-type inequality, we will
use the conventions 0 · ∞ = ∞ · 0 = 0 and ∞ · ∞ = α · ∞ = ∞ · α = ∞ for all
positive α. The norm ‖A‖ of a scalar matrix A is the operator norm of the linear

598 PACHARA CHAISURIYA AND SING-CHEONG ONG

transformation from `p to `q defined by the matrix A. Thus if A ∈ M(B), A[r] is a
scalar matrix, and ‖A[r]‖ is well defined (could be ∞).

Theorem 2.5. Let A,B ∈M(B). Then∥∥∥(A •B)[1]
∥∥∥ ≤ ∥∥∥A[1] •B[1]

∥∥∥ ≤ ∥∥∥A[r]
∥∥∥1/r ∥∥∥B[r∗]

∥∥∥1/r∗

for 1 < r <∞ and 1
r + 1

r∗ = 1.
Proof. This is essentially the same proof that is given in [7]. For completeness we

give a proof with the necessary modifications. With the above conventions, if either
‖A[r]‖ or ‖B[r∗]‖ is 0, then the matrix A or B is the zero matrix, and hence A•B = 0.
Thus the inequality clearly is satisfied. If either ‖A[r]‖ or ‖B[r∗]‖ is ∞, and the other
is nonzero, then the right-hand side of the inequality is ∞, and hence the inequality
holds. For the remaining case of both of these quantities being finite, we reason as
follows. Let A = [ajk] and B = [bjk]. For arbitrarily fixed positive integers J and K,
and arbitrarily fixed unit vector x = {ξk}∞k=1 ∈ `p,

J∑
j=1

[
K∑
k=1

‖ajkbjk‖ |ξk|
]q
≤

J∑
j=1

[
K∑
k=1

‖ajk‖ |ξk|1/r ‖bjk‖ |ξk|1/r
∗
]q

≤
J∑
j=1

[
K∑
k=1

‖ajk‖r |ξk|
]q/r [K∑

k=1

‖bjk‖r
∗ |ξk|

]q/r∗

≤

J∑
j=1

[
K∑
k=1

‖ajk‖r |ξk|
]q

1/r
J∑
j=1

[
K∑
k=1

‖bjk‖r
∗ |ξk|

]q
1/r∗

≤
∥∥∥(A[r]

)
(|x|)

∥∥∥q/r
q

∥∥∥(B[r∗]
)

(|x|)
∥∥∥q/r∗
q

≤
∥∥∥A[r]

∥∥∥q/r
p,q
‖x‖q/rp

∥∥∥B[r∗]
∥∥∥q/r∗
p,q
‖x‖q/r∗p

=
∥∥∥A[r]

∥∥∥q/r
p,q

∥∥∥B[r∗]
∥∥∥q/r∗
p,q

,

where |x| = {|ξk|}∞k=1, which has the same `p-norm as x. Since J and K are arbitrary

and the quantity ‖A[r]‖q/rp,q ‖B[r∗]‖q/r∗p,q is independent of J and K, by taking the limits
as K →∞ and then J →∞ we see that

∞∑
j=1

[∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖ ξk
∣∣∣∣∣
]q
≤
∞∑
j=1

[∞∑
k=1

‖ajkbjk‖ |ξk|
]q
≤
∞∑
j=1

[∞∑
k=1

‖ajk‖ ‖bjk‖ |ξk|
]q

≤
∥∥∥A[r]

∥∥∥q/r
p,q

∥∥∥B[r∗]
∥∥∥q/r∗
p,q

.

Therefore∥∥∥(A •B)
[1]
x
∥∥∥q
q

=
∞∑
j=1

∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖ ξk
∣∣∣∣∣
q

≤
∞∑
j=1

[∞∑
k=1

‖ajkbjk‖ |ξk|
]q

≤
∥∥∥A[r]

∥∥∥q/r
p,q

∥∥∥B[r∗]
∥∥∥q/r∗
p,q

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES 599

and ∥∥∥(A[1] •B[1]
)
x
∥∥∥q
q

=
∞∑
j=1

∣∣∣∣∣
∞∑
k=1

‖ajk‖ ‖bjk‖ ξk
∣∣∣∣∣
q

≤
∞∑
j=1

[∞∑
k=1

‖ajk‖ ‖bjk‖ |ξk|
]q

≤
∥∥∥A[r]

∥∥∥q/r
p,q

∥∥∥B[r∗]
∥∥∥q/r∗
p,q

.

Since this is true for every unit vector x, we have∥∥∥(A •B)[1]
∥∥∥
p,q
≤
∥∥∥A[r]

∥∥∥1/r

p,q

∥∥∥B[r∗]
∥∥∥1/r∗

p,q

and ∥∥∥A[1] •B[1]
∥∥∥
p,q
≤
∥∥∥A[r]

∥∥∥1/r

p,q

∥∥∥B[r∗]
∥∥∥1/r∗

p,q

as asserted. The inequality ‖(A •B)[1]‖p,q ≤ ‖A[1] •B[1]‖p,q follows directly from the
submultiplicativity of the norm on B and Lemma 2.4.

The case of p = q = r = 2 is an important special case. We actually started
with that case. As expected, there is a corresponding Minkowski’s inequality. Before
stating the result, we introduce the necessary notation.

Definition 2.6. Let r be a real number such that 1 ≤ r <∞, and let A ∈M(B)
be a matrix such that

∥∥A[r]
∥∥ <∞. We define the absolute Schur r-norm of A to be

|||A|||p,q,r =
∥∥∥A[r]

∥∥∥1/r

:=
∥∥∥A[r]

∥∥∥1/r

p,q
.

For any matrix A = [ajk] ∈ M(B) with bounded entries (i.e., there exists a constant
B such that ‖ajk‖ ≤ B), the absolute Schur ∞-norm of A is defined to be

‖A‖∞ = sup{‖ajk‖ : j, k = 1, 2, 3, . . .}.
For each r with 1 ≤ r <∞,

Sr(B) =

{
A ∈M(B) : |||A|||p,q,r =

∥∥∥A[r]
∥∥∥1/r

<∞
}
.

We don’t know if the ∞-norm defined here is a good choice for this setup. It is
just one that makes the following Minkowski-type inequality more complete. Another
possible choice is the multiplier norm for the Schur multipliers. With this notation,
the inequality in Theorem 2.5 can be restated as the following.

Corollary 2.7. For any two matrices A and B in M(B),∥∥∥(A •B)[1]
∥∥∥ ≤ ∥∥∥A[1] •B[1]

∥∥∥ ≤ |||A|||p,q,r |||B|||p,q,r∗
for 1 ≤ r ≤ ∞ and 1

r + 1
r∗ = 1. Moreover, if A ∈ Sr(B), B ∈ Sr∗(B), then

A •B ∈ S1(B).
Proof. Only the cases of r = 1 and r = ∞ need to be considered. Suppose that

A = [ajk] ∈ S1(B) and B = [bjk] ∈ S∞(B). Then∥∥∥(A •B)[1]
∥∥∥ = ‖[‖ajkbjk‖]‖
≤ ‖[‖ajk‖ ‖bjk‖]‖ (by Lemma 2.4)

≤ ‖[‖ajk‖ ‖B‖∞]‖ (by Lemma 2.4 again)

= ‖[‖ajk‖]‖ ‖B‖∞
= ‖A‖1 ‖B‖∞

600 PACHARA CHAISURIYA AND SING-CHEONG ONG

as asserted.
Now we are ready for the Minkowski’s inequality.
Theorem 2.8. For given matrices A and B in M(B) and for 1 ≤ r ≤ ∞,

|||A+B|||p,q,r ≤ |||A|||p,q,r + |||B|||p,q,r .
Proof. This is just a straightforward adaptation of the proof for the `p or Lp

(Lebesgue spaces, see p. 64 in [8]) cases. If either of the two terms on the right-hand
side of the inequality is ∞, then the inequality clearly holds. So we may assume that
both of the quantities on the right are finite. For 1 < r <∞,∥∥∥(A+B)[r]

∥∥∥ ≤ ∥∥∥(A+B)[1] • (A+B)[r−1]
∥∥∥ ≤ ∥∥∥(A[1] +B[1]

)
• (A+B)[r−1]

∥∥∥
≤
∥∥∥A[1] • (A+B)[r−1]

∥∥∥+
∥∥∥B[1] • (A+B)[r−1]

∥∥∥
≤
∥∥∥∥(A[1]

)[r]
∥∥∥∥1/r ∥∥∥∥((A+B)[r−1]

)[r∗]
∥∥∥∥1/r∗

+

∥∥∥∥(B[1]
)[r]
∥∥∥∥1/r ∥∥∥∥((A+B)[r−1]

)[r∗]
∥∥∥∥1/r∗

=
∥∥∥A[r]

∥∥∥1/r ∥∥∥(A+B)[(r−1)r∗]
∥∥∥1/r∗

+
∥∥∥B[r]

∥∥∥1/r ∥∥∥(A+B)[(r−1)r∗]
∥∥∥1/r∗

=

(∥∥∥A[r]
∥∥∥1/r

+
∥∥∥B[r]

∥∥∥1/r
)∥∥∥(A+B)[r]

∥∥∥1/r∗

.

For r = 1, this is just an immediate consequence of the triangle inequality for operator

norm on B. Each entry ‖ajk + bjk‖ of (A+B)
[1]

is not more than the corresponding
entry ‖ajk‖+ ‖ajk‖ of A[1] +B[1]. Therefore∥∥∥(A+B)

[1]
∥∥∥ ≤ ∥∥∥A[1] +B[1]

∥∥∥ ≤ ∥∥∥A[1]
∥∥∥+

∥∥∥B[1]
∥∥∥

by Lemma 2.4. The case of r = ∞ is even simpler than that of r = 1, and we omit
the details. This completes the proof.

Proposition 2.9. For every bounded scalar matrix A ∈ B(`p, `q),

‖SA‖ ≤ |||A|||p,q,2 ≤ ‖A‖ ,
where ‖SA‖ is the Schur multiplier norm of A and is defined by

‖SA‖ := {‖A •B‖ : ‖B‖ ≤ 1}.
Proof. Note that for each C ∈ B(`p, `q),

|||C|||p,q,2 =
∥∥C • C∥∥1/2 ≤ {‖C‖∥∥C∥∥}1/2

= ‖C‖ ,

as C and C have the same norm. The second inequality follows. For each B ∈ B(`p, `q)
with ‖B‖ ≤ 1, we have ‖A •B‖ ≤ |||A|||p,q,2 |||B|||p,q,2 ≤ |||A|||p,q,2 ‖B‖ ≤ |||A|||p,q,2 . Thus
‖SA‖ ≤ |||A|||p,q,2.

Remark 2.10. We record here the following observations.
(i) It is proved in [7] that the equality holds in the second inequality in the proposi-

tion iff the operator norm and Schur multiplier norm of the matrix are equal.
What are necessary and sufficient conditions for equality to hold in the first
inequality?

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES 601

(ii) From the analogy of p-norm and 2-norm, one is lead to conclude that the
norm |||·|||2,2,2 is an inner product norm. It is not hard to find examples to
show that the parallelogram law does not hold for |||·|||2,2,2, and hence it is not
an inner product norm. (This has been observed by Leo Livshits.)

3. The absolute Schur algebras over a Banach algebra. With the notation
A[r] = [‖ajk‖r] for a given matrix A = [ajk] ∈M(B), let

Sr(B) =

{
A ∈M(B) : |||A|||p,q,r =

∥∥∥A[r]
∥∥∥1/r

<∞
}

;

i.e., Sr(B) is the set of all matrices A = [ajk] with a finite operator norm for the
matrix A[r] as an element of B(`p, `q). Since we assume that B is a Banach algebra
with an identity, the set B(`p, `q) of scalar matrices can be regarded as a subset of
M(B). Moreover, the set S2(B) includes the set B(`p, `q) by the Schur–Bennett
theorem. We will see that the inclusion is proper and that Sr(B) is a Banach algebra
under the usual sum, the Schur product, and the norm |||·|||p,q,r defined above. For the
special case of B = C, we use Sr to denote Sr(B).

Proposition 3.1. For 1 ≤ r < r′ ≤ ∞, Sr(B) $ Sr′(B).
Proof. Let A ∈ Sr(B). Then the entries of A are bounded by some positive

number. Multiply a suitable scalar α > 0 to A, so that all entries αajk in αA are

norm bounded by 1, α ‖ajk‖ ≤ 1. Thus every entry αr
′ ‖ajk‖r

′
of (αA)[r′] is not more

than the corresponding entry αr ‖ajk‖r of (αA)[r]. Thus

αr
′
∥∥∥A[r′]

∥∥∥ =
∥∥∥(αA)[r′]

∥∥∥ ≤ ∥∥∥(αA)[r]
∥∥∥ = αr

∥∥∥A[r]
∥∥∥ <∞.

Thus ‖A[r′]‖ ≤ αr−r
′‖A[r]‖ < ∞, and hence A ∈ Sr′ . This shows that Sr(B) ⊆

Sr′(B). To see that the inclusion is proper, just take a sequence {αk} of nonnegative
numbers which is in `r

′
but not in `r (more explicitly, take αk = [1

k]1/r). Then the
matrix A with the first column the sequence {(√αk)e} (e the identity of B), and all

other columns 0, is in Sr(B) but not in Sr′(B).
Now we have the Riesz–Fischer-type theorem.
Theorem 3.2. For 1 ≤ r ≤ ∞, the set Sr(B) is a Banach algebra under the usual

addition and scalar multiplication of matrices, the Schur product as the multiplication,
and the norm |||A|||p,q,r = ‖A[r]‖1/r.

Proof. We consider only the cases of 1 < r < ∞ and leave the others for the
reader. First we show that Sr(B) is an algebra. Let A, B ∈ Sr(B). Then∥∥∥(A •B)

[r]
∥∥∥ ≤ ∥∥∥A[r] •B[r]

∥∥∥ (by Lemma 2.4)

≤
∥∥∥A[r]

∥∥∥∥∥∥B[r]
∥∥∥ (by the Schur–Bennett theorem [1])

<∞.
Thus A • B ∈ Sr(B) whenever A, B ∈ Sr(B), hence Sr(B) is an algebra. That the
norm is submultiplicative also follows from these inequalities:

|||A •B|||p,q,r =
∥∥∥(A •B)[r]

∥∥∥1/r

≤
(∥∥∥A[r]

∥∥∥∥∥∥B[r]
∥∥∥)1/r

= |||A|||p,q,r |||B|||p,q,r .

The Minkowski-type inequality, Theorem 2.8, gives us the triangle inequality for
the norm |||·|||p,q,r and also the closure of the sum operation. All other conditions for
a norm are easily verified.

602 PACHARA CHAISURIYA AND SING-CHEONG ONG

The most important step here is the proof of completeness of Sr(B). To this end,

let An = [a
(n)
jk], n = 1, 2, . . . , be a sequence of matrices in Sr(B) that form a Cauchy

sequence in the norm |||·|||p,q,r. Then for each fixed j and k, we have∥∥∥a(n)
jk − a(m)

jk

∥∥∥r ≤ ∥∥∥(An −Am)
[r]
∥∥∥

= |||An −Am|||rp,q,r → 0, as n, m→∞.

We see that the sequence of (j, k)-entries {a(n)
jk }∞n=1 is a Cauchy sequence of elements

in B. Since B is complete, there is an element ajk ∈ B to which the sequence
converges. Let A = [ajk] (∈ M(B)). We will show that A ∈ Sr(B) and that the
sequence {An} converges to A in the norm |||·|||p,q,r.

To see that A ∈ Sr(B), let x = {ξk} ∈ `p be an arbitrary unit vector. Since {An}
is a Cauchy sequence under the norm |||·|||p,q,r, the sequence is bounded in the norm.
Let

M = sup
{
|||An|||p,q,r : n = 1, 2, 3, . . .

}
.

Let J and K be arbitrary positive integers. For brevity of the notation, let Ã and

Ãn denote the numerical matrices which agree with A[r] and A
[r]
n on the upper left

J ×K block and are 0 on all other entries. Let x̃ denote the vector with the first K
coordinates the same as that of x and all other entries 0. The entrywise convergence
of An to A allows us to choose an N such that ‖Ãn − Ã‖p,q < 1 for all n ≥ N . Then

J∑
j=1

[
K∑
k=1

|‖ajk‖r ξk|
]q
≤
∥∥∥Ã∥∥∥q

p,q
≤
(∥∥∥ÃN∥∥∥

p,q
+ 1

)q
≤
(∥∥∥A[r]

N

∥∥∥
p,q

+ 1

)q
≤
[
|||AN |||rp,q,r + 1

]q
≤ (Mr + 1)

q
.

Since this is true for every choice of J and K and the quantity (Mr+1)q is independent
of J and K, by taking the limits as K →∞ and then as J →∞, we see that

∞∑
j=1

[∞∑
k=1

|(‖ajk‖r ξk)|
]q
≤ (Mr + 1)q.

Thus ∥∥∥A[r]x
∥∥∥q =

∞∑
j=1

∣∣∣∣∣
∞∑
k=1

‖ajk‖r ξk
∣∣∣∣∣
q

≤
∞∑
j=1

[∞∑
k=1

|(‖ajk‖r ξk)|
]q
≤ (Mr + 1)q.

That is, A[r]x ∈ `q and ‖A[r]x‖ ≤Mr+1. Since this is true for all unit vectors x ∈ `p,
we have that A[r] = [‖ajk‖r] defines a bounded linear transformation from `p to `q

with operator norm ≤Mr + 1. Thus A ∈ Sr(B).
Now for the convergence, we reason as follows. Let ε > 0 be given. Let

M = sup
{
|||An|||p,q,r : n = 1, 2, 3, . . .

}
,

as in the preceding argument. Then, since the sequence {An} is a Cauchy sequence
under the norm |||·|||p,q,r, there exists an N such that

|||An −Am|||p,q,r <
ε

6

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES 603

for all n,m ≥ N . Let n ≥ N . We will show that∥∥∥[(A−An)
[r]
]
x
∥∥∥
q
< εr for all x ∈ `p with ‖x‖p ≤ 1.

To that end, let x = {ξk} ∈ `p be a vector of norm

‖x‖p =

(∞∑
k=1

|ξk|p
)1/p

≤ 1.

Then there exists, by the convergence of the series, a positive integer K (depending
on x, of course) such that

∥∥P⊥Kx∥∥p =

(∞∑
k=K+1

|ξk|p
)1/p

<
εr

6
(
M + |||A|||p,q,r + 1

)r ,
where, for each positive integer ι, Pι denotes the coordinate projection of `p onto the
first ι coordinates; i.e.,

Pι [(α1, α2, . . .)] = (α1, . . . , αι, 0, 0, . . .) ,

and for a coordinate projection Q, Q⊥ = I − Q (I denotes the identity operator on
`p). The matrix representation of Pι with respect to the standard basis has the first ι
diagonal entries 1’s and all other entries (on or off diagonal) 0’s. We will use the same
notation for coordinate projections for both `p and `q and let the context determine
which of the spaces is intended. Since A ∈ Sr(B) from the preceding paragraph, and
since A−An ∈ Sr(B) for all n by Minkowski’s inequality, we have[

(A−An)
[r]
]
PKx ∈ `q.

Thus there exists a J such that∥∥∥P⊥J [(A−An)
[r]
]
PKx

∥∥∥
q
<
εr

6r
.

By the construction of A, we may choose a ν ≥ N (depending on J and K and hence
on x) such that ∥∥∥PJ (A−Aν)

[r]
PK

∥∥∥
p,q

<
εr

6r
,

because J and K are finite and PJ (A−Aν)
[r]
PK has all entries 0 except the J ×K

rectangular block on the upper left corner. Now

∥∥∥[(A−An)
[r]
]
x
∥∥∥
q

=
∥∥∥(PJ + P⊥J

) [
(A−An)

[r]
] (
PK + P⊥K

)
x
∥∥∥
q

≤
∥∥∥PJ [(A−An)

[r]
]
PKx

∥∥∥
q

+
∥∥∥P⊥J [(A−An)

[r]
]
PKx

∥∥∥
q

+
∥∥∥PJ [(A−An)

[r]
]
P⊥Kx

∥∥∥
q

+
∥∥∥P⊥J [(A−An)

[r]
]
P⊥Kx

∥∥∥
q

604 PACHARA CHAISURIYA AND SING-CHEONG ONG

≤
∥∥∥PJ [((A−Aν) + (Aν −An))

[r]
]
PKx

∥∥∥
q

+
εr

6

+
∥∥∥(A−An)

[r]
∥∥∥
p,q

∥∥P⊥Kx∥∥p +
∥∥∥(A−An)

[r]
∥∥∥
p,q

∥∥P⊥Kx∥∥p
≤
∥∥∥PJ {[(A−Aν) + (Aν −An)]

[r]
}
PK

∥∥∥
p,q
‖PKx‖p +

εr

6

+ 2 |||A−An|||rp,q,r
∥∥P⊥Kx∥∥p

≤ |||PJ (A−Aν)PK + PJ (Aν −An)PK |||rp,q,r +
εr

6

+ 2
(
|||A|||p,q,r + |||An|||p,q,r

)r ∥∥P⊥Kx∥∥p
≤
[
|||PJ (A−Aν)PK |||p,q,r + |||PJ (Aν −An)PK |||p,q,r

]r
+
εr

6

+ 2
(
|||A|||p,q,r +M

)r ∥∥P⊥Kx∥∥p
≤
[ε

31/r · 2
+ |||Aν −An|||p,q,r

]r
+
εr

6
+

2
(
|||A|||p,q,r +M

)r
εr

6
(
|||A|||p,q,r +M + 1

)r
≤
[ε

2 · 31/r
+

ε

2 · 31/r

]r
+

3εr

6
<

5εr

6
.

Since x is arbitrary with ‖x‖ ≤ 1, we see that∥∥∥(A−An)
[r]
∥∥∥ ≤ 5εr

6
.

Since n ≥ N is arbitrary, we have

|||A−An|||rp,q,r ≤
5εr

6
< εr for all n ≥ N,

which is equivalent to |||A−An|||p,q,r < ε for all n ≥ N . This proves that Sr(B) is
complete and finishes the proof of the theorem for 1 < r <∞.

4. Scalar absolute Schur algebras. The following result gives us a graded
family of commutative Banach algebras (containing unbounded matrices) which con-
tain all the bounded matrices. Recall that when B is the complex field C, Sr(B) is
denoted by Sr or Srp,q. Note that for the unital Banach algebra B, each Sr can be
considered as a subalgebra of Sr(B).

Proposition 4.1. Let r ≥ 2. Then B(`p, `q) $ Sr ⊆ Sr(B).
Proof. Let A ∈ B(`p, `q). Then A ∈ B(`p, `q) and∥∥∥A[2]

∥∥∥ =
∥∥A •A∥∥ ≤ ‖A‖∥∥A∥∥ = ‖A‖2 <∞

by the Schur–Bennett theorem [9, 1]. Thus B(`p, `q) ⊆ S2. For 2 ≤ r < ∞, we have
S2 ⊆ Sr by Proposition 3.1. Therefore B(`p, `q) ⊆ Sr. To see that the containment is
proper, we note that the matrix A with the first column the sequence { 1

k1/q }, and all

other columns 0, is in S2 (A[2] is a rank-1 matrix with the sum of the absolute values
of the entries finite), but not in B(`p, `q) (Ae1 6∈ `q, where e1 is the first standard
basis vector). Therefore B(`p, `q) $ S2

p,q. For r > 2, we already have Sr % S2. Thus
B(`p, `q) $ Sr for r ≥ 2.

ABSOLUTE SCHUR ALGEBRAS AND UNBOUNDED MATRICES 605

For the case of p = 2, S2 contains the bounded matrices as an ideal. We do not
know if this is true for other values of p > 2.

Proposition 4.2. The space, B(`p, `q), of bounded matrices is an ideal in S2.
Proof. That B(`p, `q) is closed under the Schur product operation follows from the

Schur–Bennett theorem [9, 1]. Let A ∈ B(`p, `q) and B ∈ S2
p,q. By Proposition 4.1,

A ∈ S2
p,q. Thus ‖A[2]‖, ‖B[2]‖ <∞. Therefore

‖(A •B)‖p,q ≤
∥∥∥A[2]

∥∥∥1/2

p,q

∥∥∥B[2]
∥∥∥1/2

p,q
<∞,

by Theorem 2.5, and, consequently, A •B ∈ B(`p, `q).
It is easy to give examples of matrices that are in Sr2,2 for 1 < r < 2 but not

in B(`2). Just as in the case of p = 2, let A be the matrix whose first column is
the sequence {1/√k}∞k=1 while all other columns are zero. Then the matrix A is not
bounded as the `2-norm of the first column is√√√√ ∞∑

k=1

1

k
=∞,

whereas

∥∥∥A[p]
∥∥∥ =

√√√√ ∞∑
k=1

1

kp
<∞

as p > 1. The inclusion S1 $ B(`2) is well known; S1 is the set of absolutely bounded
matrices (or operators). The arguments used to prove the proper inclusion here can be
modified to give examples of matrices which are bounded (i.e., in B(`2)) but not in Sp
for 1 < p < 2. Therefore the algebras Sp, 1 < p < 2, and B(`2) are not comparable.

Acknowledgment. The second author thanks the Mathematics Department of
Ramkhamhaeng University and the first author for their hospitality during his visit.

REFERENCES

[1] G. Bennett, Schur multipliers, Duke Math. J., 44 (1977), pp. 603–639.
[2] C.-K. Fong, H. Radjavi, and P. Rosenthal, Norms of matrices and operators, J. Operator

Theory, 18 (1987), pp. 99–113.
[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1991.
[4] W. Huang, C.-K. Li, and H. Schneider, Norms and inequalities related to Schur products of

rectangular matrices, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 334–347.
[5] L. Livshits, Generalized Schur Product for Matrices with Operator Entries, Ph.D. thesis,

University of Toronto, Toronto, ON, 1991.
[6] R. Mathias and K. Okubo, The induced norm of the Schur multiplication operator with

respect to the operator radius, Linear and Multilinear Algebra, 37 (1994), pp. 111–124.
[7] S.-C. Ong, On the Schur multiplier norm of matrices, Linear Algebra Appl., 56 (1984), pp.

45–55.
[8] W. Rudin, Real and Complex Analysis, 3rd. ed., McGraw–Hill, New York, 1987.
[9] J. Schur, Bemerkungen Theorie der beschränken Bilinearformen mit unendlich vielen

Veränder lichen, J. Reine Angew. Math., 140 (1911), pp. 1–28.
[10] Q. Stout, Schur Multiplication on B(H), Ph.D. thesis, Indiana University, Bloomington, IN,

1977.
[11] Q. Stout, Schur multiplication on B(`p, `q), J. Operator Theory, 5 (1981), pp. 231–243.

MODIFYING A SPARSE CHOLESKY FACTORIZATION∗

TIMOTHY A. DAVIS† AND WILLIAM W. HAGER‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 606–627

Abstract. Given a sparse symmetric positive definite matrix AAT and an associated sparse
Cholesky factorization LDLT or LLT, we develop sparse techniques for obtaining the new factoriza-
tion associated with either adding a column to A or deleting a column from A. Our techniques are
based on an analysis and manipulation of the underlying graph structure and on ideas of Gill et al.
[Math. Comp., 28 (1974), pp. 505–535] for modifying a dense Cholesky factorization. We show that
our methods extend to the general case where an arbitrary sparse symmetric positive definite matrix
is modified. Our methods are optimal in the sense that they take time proportional to the number
of nonzero entries in L and D that change.

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices,
mathematical software, matrix updates

AMS subject classifications. 65F05, 65F50, 65-04

PII. S0895479897321076

1. Introduction. This paper presents a method for updating and downdating
the sparse Cholesky factorization LDLT or LLT of the matrix AAT, where A is
m-by-n. More precisely, we evaluate the Cholesky factorization of AAT + σwwT,
where either σ is +1 (corresponding to an update) and w is arbitrary or σ is −1
(corresponding to a downdate) and w is a column of A. Both AAT and AAT +
σwwT must be symmetric and positive definite. From this it follows that m ≤ n.
The techniques we develop for the matrix AAT can be extended to determine the
effects on the Cholesky factors of a general symmetric positive definite matrix M of
any symmetric change of the form M + σwwT that preserves positive definiteness.
The AAT case is simpler than the general case, which is why we discuss it first.
Moreover, the techniques we develop for updating and downdating AAT are used in
the algorithm for updating the general matrix M. Our methods take into account
the change in the sparsity pattern of A and L and are optimal in the sense that they
take time proportional to the number of nonzero entries in L and D that change.

The importance of this problem has long been recognized [36], but prior sparse
methods either are nonoptimal or do not consider changes to the sparsity pattern
of A or L. Both Law’s sparse update method [27, 28] and the method of Chan and
Brandwajn [6] are based on Bennett’s method [3], which needs to be used with caution
[20]. Law’s symbolic update has nonoptimal asymptotic run time and can take more
time than doing the symbolic factorization from scratch. The method of Row, Powell,
and Mondkar [32] is for envelope-style factorization only and is also nonoptimal in both
its numerical and its symbolic work. Neither of these approaches consider symbolic or
numerical downdate. Chan and Brandwajn [6] consider the sparse numerical update
and downdate, but with a fixed sparsity pattern.

∗Received by the editors May 5, 1997; accepted for publication (in revised form) by S. Vavasis
April 28, 1998; published electronically March 2, 1999.

http://www.siam.org/journals/simax/20-3/32107.html
†Department of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611-6120 (davis@cise.ufl.edu, http://www.cise.ufl.edu/∼davis). The work of this
author was supported by National Science Foundation grant DMS-9504974.
‡Department of Mathematics, University of Florida, Gainesville, FL 32611-6120 (hager@

math.ufl.edu, http://www.math.ufl.edu/∼hager). The work of this author was supported by National
Science Foundation grant DMS-9404431.

606

MODIFYING A SPARSE CHOLESKY FACTORIZATION 607

There are many applications of the techniques presented in this paper. In the
linear program dual active set algorithm (LP DASA) [26], the A matrix corresponds
to the basic variables in the current basis of the linear program, and in successive
iterations, we bring variables in and out of the basis, leading to changes of the form
AAT + σwwT. Other application areas where the techniques developed in this pa-
per are applicable include least-squares problems in statistics, the analysis of elec-
trical circuits and power systems, structural mechanics, sensitivity analysis in linear
programming, boundary condition changes in partial differential equations, domain
decomposition methods, and boundary element methods. For a discussion of these
application areas and others, see [25].

Section 2 introduces our notation. For an introduction to sparse matrix tech-
niques, see [9, 13]. In section 3 we discuss the structure of the nonzero elements in the
Cholesky factorization of AAT, and in section 4 we discuss the structure associated
with the Cholesky factors of AAT + σwwT. The symbolic update and downdate
methods provide the framework for our sparse version of Method C1 of Gill et al.
[20] for modifying a dense Cholesky factorization. We discuss our sparse algorithm in
section 5. Section 6 presents the general algorithm for modifying the sparse Cholesky
factorization for any sparse symmetric positive definite matrix. A single update or
downdate in the general case is more complicated and requires both a symbolic update
and a symbolic downdate, based on the methods for AAT presented in section 4. The
results of a numerical experiment with a large optimization problem from Netlib [8]
are presented in section 7. Section 8 concludes with a discussion of future work.

2. Notation. Throughout the paper, matrices are capital bold letters like A or
L, while vectors are lower-case bold letters like x or v. Sets and multisets are in
calligraphic style like A, L, or P. Scalars are either lower-case Greek letters or italic
style like σ, k, or m.

Given the location of the nonzero elements of AAT, we can perform a symbolic
factorization (this terminology is introduced by George and Liu in [13]) of the matrix
to predict the location of the nonzero elements of the Cholesky factor L. In actuality,
some of these predicted nonzeros may be zero due to numerical cancellation during
the factorization process. The statement “lij 6= 0” will mean that lij is symbolically
nonzero. The main diagonals of L and D are always nonzero since the matrices that
we factor are positive definite (see [35, p. 253]). The nonzero pattern of column j of
L is denoted Lj ,

Lj = {i : lij 6= 0},
while L denotes the collection of patterns:

L = {L1,L2, . . . ,Lm}.
Similarly, Aj denotes the nonzero pattern of column j of A,

Aj = {i : aij 6= 0},
while A is the collection of patterns:

A = {A1,A2, . . . ,An}.
The elimination tree can be defined in terms of a parent map π (see [29]). For any

node j, π(j) is the row index of the first nonzero element in column j of L beneath
the diagonal element:

608 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

π(j) = min Lj \ {j},

where “min X” denotes the smallest element of X :

min X = min
i∈X

i.

Our convention is that the min of the empty set is zero. Note that j < π(j) except
in the case where the diagonal element in column j is the only nonzero element. The
inverse π−1 of the parent map is the children multifunction. That is, the children of
node k are the set defined by

π−1(k) = {j : π(j) = k}.

The ancestors of a node j, denoted P(j), are the set of successive parents:

P(j) = {j, π(j), π(π(j)), . . .} = {π0(j), π1(j), π2(j), . . .}.

Here the powers of a map are defined in the usual way: π0 is the identity while πi

for i > 0 is the i-fold composition of π with itself. The sequence of nodes j, π(j),
π(π(j)), . . . , forming P(k), is called the path from j to the associated tree root. The
collection of paths leading to a root form an elimination tree. The set of all trees is
the elimination forest. Typically, there is a single tree whose root is m; however, if
column j of L has only one nonzero element, the diagonal element, then j will be the
root of a separate tree.

The number of elements (or size) of a set X is denoted |X |, while |A| or |L|
denotes the sum of the sizes of the sets they contain. Let the complement of a set X
be denoted as X c = {x : x /∈ X}.

3. Symbolic factorization. Any approach for generating the pattern set L is
called symbolic factorization [10, 11, 12, 13, 34]. The symbolic factorization of a
matrix of the form AAT is given in Algorithm 1 (see [14, 29]).

Algorithm 1 (symbolic factorization of AAT).
π(j) = 0 for each j
for j = 1 to m do

Lj = {j} ∪
 ⋃
c∈π−1(j)

Lc \ {c}
 ∪

 ⋃
min Ak=j

Ak

π(j) = min Lj \ {j}
end for

Algorithm 1 basically says that the pattern of column j of L can be expressed as
the union of the patterns of each column of L whose parent is j and the patterns of the
columns of A whose first nonzero element is j. The elimination tree, connecting each
child to its parent, is easily formed during the symbolic factorization. Algorithm 1
can be done in O(|L|+ |A|) time1 [14, 29].

Observe that the pattern of the parent of node j contains all entries in the pattern
of column j except j itself [33]. That is,

Lj \ {j} = Lj ∩ {i : π(j) ≤ i} ⊆ Lπ(j).

1Asymptotic complexity notation is defined in [7]. We write f(n) = O(g(n)) if there exist positive
constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n > n0.

MODIFYING A SPARSE CHOLESKY FACTORIZATION 609

Proceeding by induction, if k is an ancestor of j, then

{i : i ∈ Lj , k ≤ i} ⊆ Lk.(3.1)

This leads to the following relation between Lj and the path P(j). The first part of
this proposition, and its proof, are given in [33]. Our proof differs slightly from the
one in [33]. We include it here since the same proof technique is exploited later.

Proposition 3.1. For each j, we have Lj ⊆ P(j); furthermore, for each k and
j ∈ P(k), Lj ⊆ P(k).

Proof. Obviously, j ∈ P(j). Let i be any given element of Lj with i 6= j. Since
j < i, we see that the following relation holds for l = 0:

π0(j) < π1(j) < · · · < πl(j) < i.(3.2)

Now suppose that (3.2) holds for some integer l ≥ 0, and let k denote πl(j). By (3.1)
and the fact that k < i, we have i ∈ Lk, which implies that

i ≥ π(k) = π(πl(j)) = πl+1(j).

Hence, either i = πl+1(j) or (3.2) holds with l replaced by l+1. Since (3.2) is violated
for l sufficiently large, we conclude that there exists an l for which i = πl+1(j).
Consequently, i ∈ P(j). Since each element of Lj is contained in P(j), we have
Lj ⊆ P(j). If j ∈ P(k) for some k, then j is an ancestor of k and P(j) ⊆ P(k). Since
we have already shown that Lj ⊆ P(j), the proof is complete.

As we will see, the symbolic factorization of AAT + wwT can be obtained by
updating the symbolic factorization of AAT using an algorithm that has the same
structure as that of Algorithm 1, except that it operates only on nodes in the path
P(j) (of the updated factors) for some node j. The symbolic update algorithm adds
new entries to the nonzero pattern, which can be done with a simple union operation.

However, downdating is not as easy as updating. Once a set union has been
computed, it cannot be undone without knowledge of how entries entered the set. We
can keep track of this information by storing the elements of L as multisets rather
than as sets. The multiset associated with column j has the form

L]j = {(i,m(i, j)) : i ∈ Lj},
where the multiplicity m(i, j) is the number of children of j that contain row index i
in their pattern plus the number of columns of A whose smallest entry is j and that
contain row index i. Equivalently,

m(i, j) = |{k ∈ π−1(j) : i ∈ Lk}|+ |{k : min Ak = j and i ∈ Ak}|.
With this definition, we can undo a set union by subtracting multiplicities.

We now define some operations involving multisets. First, if X] is a multiset
consisting of pairs (i,m(i)) where m(i) is the multiplicity associated with i, then X is
the set obtained by removing the multiplicities. In other words, the multiset X] and
the associated base set X satisfy the relation

X] = {(i,m(i)) : i ∈ X}.
We define the addition of a multiset X] and a set Y in the following way:

X] + Y = {(i,m′(i)) : i ∈ X or i ∈ Y},

610 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

where

m′(i) =

 1 if i /∈ X and i ∈ Y,
m(i) if i ∈ X and i /∈ Y,
m(i) + 1 if i ∈ X and i ∈ Y.

Similarly, the subtraction of a set Y from a multiset X] is defined by

X] − Y = {(i,m′(i)) : i ∈ X and m′(i) > 0},
where

m′(i) =

{
m(i) if i /∈ Y,
m(i)− 1 if i ∈ Y.

The multiset subtraction of Y from X] cancels a prior addition. That is, for any
multiset X] and any set Y, we have

((X] + Y)− Y) = X].
In contrast ((X ∪ Y) \ Y) is equal to X if and only if X and Y are disjoint sets.

Algorithm 2 below performs a symbolic factorization of AAT with each set union
operation replaced by a multiset addition. This algorithm is identical to Algorithm 1
except for the bookkeeping associated with multiplicities.

Algorithm 2 (symbolic factorization of AAT using multisets).
π(j) = 0 for each j
for j = 1 to m do

L]j = {(j, 1)}
for each c ∈ π−1(j) do

L]j = L]j + (Lc \ {c})
end for
for each k where min Ak = j do

L]j = L]j +Ak
end for
π(j) = min Lj \ {j}

end for
We conclude this section with a result concerning the relation between the pat-

terns of AAT and the patterns of AAT + wwT.
Proposition 3.2. Let C and D be the patterns associated with the symmetric

positive definite matrices C and D, respectively. Neglecting numerical cancellation,
Cj ⊆ Dj for each j implies that (LC)j ⊆ (LD)j for each j, where LC and LD are the
patterns associated with the Cholesky factors of C and D, respectively.

Proof. In [13, 31] it is shown that an edge (i, j) is contained in the undirected
graph of the Cholesky factor of a symmetric positive definite matrix C if and only
if there is a path from i to j in the undirected graph of C with each intermediate
vertex of the path between 1 and min {i, j}. If Cj ⊆ Dj for each j, then the paths
associated with the undirected graph of C are a subset of the paths associated with
the undirected graph of D. It follows that (LC)j ⊆ (LD)j for each j.

Ignoring numerical cancellation, the edges in the undirected graph of AAT are a
subset of the edges in the undirected graph of AAT + wwT. By Proposition 3.2, we
conclude that the edges in the undirected graphs of the associated Cholesky factors
satisfy the same inclusion.

MODIFYING A SPARSE CHOLESKY FACTORIZATION 611

4. Modifying the symbolic factors. Let A be the modified version of A. We
put a bar over a matrix or a set or a multiset to denote its value after the update or
downdate is complete. In an update, A is obtained from A by appending the column
w on the right, while in a downdate, A is obtained from A by deleting the column w
from A. Hence, we have

A A
T

= AAT + σwwT,

where σ is either +1 and w is the last column of A (update) or σ is −1 and w is a
column of A (downdate). Since A and A differ by at most a single column, it follows
from Proposition 3.2 that Lj ⊆ Lj for each j during an update, while Lj ⊆ Lj during
a downdate. Moreover, the multisets associated with the Cholesky factor of either the
updated or downdated matrix have the structure described in the following theorem.

Theorem 4.1. Let k be the index associated with the first nonzero component

of w. For an update, P(k) ⊆ P(k). Moreover, L]i = L]i for all i ∈ P(k)c. That is,

L]i = L]i for all i except when i is k or one of the new ancestors of k. For a downdate,

P(k) ⊆ P(k). Moreover, L]i = L]i for all i ∈ P(k)c. That is, L]i = L]i for all i except
when i is k or one of the old ancestors of k.

Proof. To begin, let us consider an update. We will show that each element of
P(k) is a member of P(k) as well. Clearly, k lies in both P(k) and P(k). Proceeding
by induction, suppose that

π0(k), π1(k), π2(k), . . . , πj(k) ∈ P(k),

and define l = πj(k). We need to show that

π(l) = π(πj(k)) = πj+1(k) ∈ P(k)

to complete the induction. Since l ∈ P(k), we have l = πh(k) for some h. If π(l) =
π(l), then

πh+1(k) = π(πh(k)) = π(l) = π(l) = π(πj(k)) = πj+1(k).

Since πj+1(k) = πh+1(k) ∈ P(k), the induction step is complete and πj+1(k) ∈ P(k).
If π(l) 6= π(l), then by Proposition 3.2, π(l) < π(l) and the following relation

holds for p = 1:

π1(l) < π2(l) < · · · < πp(l) < π(l).(4.1)

Now suppose that (4.1) holds for some integer p ≥ 1, and let q denote πp(l). By
Proposition 3.2, π(l) ∈ Ll ⊆ Ll, and combining this with (4.1), q = πp(l) < π(l) ∈ Ll.
It follows from (3.1) that π(l) ∈ Lq for q = πp(l). By the definition of the parent,

π(q) = π(πp(l)) = πp+1(l) ≤ π(l) ∈ Lq.
Hence, either πp+1(l) = π(l) or (4.1) holds with p replaced by p + 1. Since (4.1) is
violated for p sufficiently large, we conclude that there exists an integer p such that
πp(l) = π(l), from which it follows that

πj+1(k) = π(πj(k)) = π(l) = πp(l) = πp(πh(k)) = πp+h(k) ∈ P(k).

Since πj+1(k) ∈ P(k), the induction step is complete and P(k) ⊆ P(k).

612 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Suppose that l ∈ P(k)c. It is now important to recall that k is the index of the
first nonzero component of w, the vector appearing in the update. Observe that l

cannot equal k since l ∈ P(k)c and k ∈ P(k). The proof that L]l = L]l is by induction
on the height h defined by

h(l) = max{i : πi(j) = l for some j}.
If h(l) = 0, then l has no children and the child loop of Algorithm 2 will be skipped

when either L]l or L]l are evaluated. And since l 6= k, the pattern associated with w

cannot be added into L]l . Hence, when h(l) = 0, the identity L]l = L]l is trivial. Now,

assuming that for some p ≥ 0 we have L]l = L]l whenever l ∈ P(k)c and h(l) ≤ p,

let us suppose that h(l) = p + 1. If i ∈ π−1(l), then h(i) ≤ p. Hence, L]i = L]i for
i ∈ π−1(l) by the induction assumption. And since l 6= k, the pattern of w is not

added to L]l . Consequently, when Algorithm 2 is executed, we have L]l = L]l , which
completes the induction step.

Now consider the downdate part of the theorem. Rearranging the downdate

relation A A
T

= AAT −wwT, we have

AAT = A A
T

+ wwT.

Hence, in a downdate, we can think of A as the updated version of A. Consequently,
the second part of the theorem follows directly from the first part.

4.1. Symbolic update algorithm. We now present an algorithm for evaluating
the new pattern L associated with an update. Based on Theorem 4.1, the only sets Lj
that change are those associated with P(k) where k is the index of the first nonzero
component of w. Referring to Algorithm 2, we can set j = k, j = π(k), j = π2(k),
and so on, marching up the path from k, and we can evaluate all the changes induced
by the additional column in A. In order to do the bookkeeping, there are at most
four cases to consider:

Case 1: j = k. At the start of the new path, we need to add the pattern for w to
L]j .

Case 2: c ∈ P(k), j ∈ P(k), j > k, and c ∈ π−1(j) ∩ π−1(j). In this case, c is a
child of j in both the new and the old elimination trees. Since the pattern Lc may

differ from Lc, we need to add the difference to L]j . Since j has a unique child on the

path P(k), there is at most one node c that satisfies these conditions. Also note that
if

c ∈ π−1(j) ∩ π−1(j) ∩ P(k)c,

then by Theorem 4.1 Lc = Lc and hence this node c does not lead to an adjustment

to L]j in Algorithm 2.

Case 3: j ∈ P(k), j > k, and c ∈ π−1(j) \ π−1(j). In this case, c is a child of
j in the new elimination tree, but not in the old tree, and the entire set Lc should

be added to L]j since it was not included in L]j . By Theorem 4.1, π(p) = π(p) for all

p ∈ P(k)c. Since c ∈ π−1(j) but c 6∈ π−1(j), it follows that π(c) = j 6= π(c), and
hence, c 6∈ P(k)c or, equivalently, c ∈ P(k). Again, since each node on the path P(k)
from k has only one child on the path, there is at most one node c satisfying these
conditions and it lies on the path P(k).

MODIFYING A SPARSE CHOLESKY FACTORIZATION 613

Case 4: j ∈ P(k), j > k, and c ∈ π−1(j) \ π−1(j). In this case, c is a child of j in
the old elimination tree, but not in the new tree, and the set Lc should be subtracted

from L]j since it was previously added to L]j . Since π(p) = π(p) for each p ∈ P(k)c,

the fact that π(c) = j 6= π(c) implies that c ∈ P(k). In the algorithm that follows,
we refer to nodes c that satisfy these conditions as lost children. A node j in the
elimination tree can lose multiple children.

In each of the cases above, every node c that led to adjustments in the pattern
was located on the path P(k). To make these changes, Algorithm 3 (below) simply
marches up the path P(k) from k to the root making the adjustments enumerated in
Cases 1 through 4 above. Consider a node c. If its parent changes, we have π(c) < π(c)
by Proposition 3.2. Both the new parent π(c) and the old parent π(c) are on the path
P(k). Node c is a new child of π(c) (Case 3), which is the next node in the path
P(k). Node c is a lost child of π(c) (Case 4). That is, one node’s new child is another
node’s lost child. If Algorithm 3 is at node j = π(c) and we notice a single new
child c, we can place that node in a lost-child-queue for node π(c) and process that
queue when we come to the node π(c) later in the path. We could instead modify
node π(c) the moment we find that it loses a child, but this could not be done in a
simple left-to-right pass of the columns corresponding to the nodes in the path P(k).
As we will see in section 5, this will allow us to combine the symbolic and numeric
algorithms into a single pass.

Algorithm 3 (symbolic update, add new column w).
Case 1: first node in the path
W = {i : wi 6= 0}
k = min W
L]k = L]k +W
π(k) = min Lk \ {k}
c = k
j = π(c)
while j 6= 0 do

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j + (Lc \ Lc)
else

Case 3: c is a new child of j and a lost child of π(c)

L]j = L]j + (Lc \ {c})
place c in lost-child-queue of π(c)

end if
Case 4: consider each lost child of j
for each c in lost-child-queue of j do

L]j = L]j − (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(k)c

end Algorithm 3
The time taken by this algorithm is given by the following lemma.

614 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

4

2 3

1

6

7

8

5

*

AT

=

AATA

L elimination tree of L

Fig. 4.1. An example matrix, its factor, and its elimination tree.

Lemma 4.2. The time to execute Algorithm 3 is bounded above by a constant
times the number of entries associated with patterns for nodes on the new path P(k).
That is, the time is

O

 ∑
j∈P(k)

|Lj |
 .

Proof. In Algorithm 3, we simply march up the path P(k) making adjustments

to L]j as we proceed. At each node j, preparing column j for all set subtractions or

additions takes O(|Lj |) time (a scatter operation), and it takes O(|Lj |) time to gather
the results at the end of step j. For each child of j, the set subtraction/addition adds
time proportional to the size of the subtracted/added set. Each node is visited as a
child c at most twice, since it falls into one or two of the four cases enumerated above
(a node c can be a new child of one node and a lost child of another). If this work
(proportional to |Lc| or |Lc|) is accounted to step c instead of j, the time to make the
adjustment to the pattern is bounded above by a constant times either |Lj | or |Lj |.
Since |Lj | ≤ |Lj | by Theorem 4.1, the proof is complete.

In practice, we can reduce the execution time for Algorithm 3 by skipping over
the current node j if it has no lost children and if its child c falls under Case 2 with

Lc = Lc. This check can be made in constant time, and if true, implies that L]j = L]j .
We illustrate Algorithm 3 with an example. Figure 4.1 shows the nonzero pattern

of an 8-by-8 matrix A, the patterns of AAT and its factor L, and the elimination tree
of L. The highlighted portion of the elimination tree of L corresponds to the nodes
in the path P(k) if AAT is updated with wwT, where the nonzero pattern of w is

W = {4, 6, 8}. The updated matrix A A
T

, its factor L, and the elimination tree of L
are shown in Figure 4.2. The new column w is appended to the original matrix A.

MODIFYING A SPARSE CHOLESKY FACTORIZATION 615

TA

8

7

6

4

2 3

1

5

AAA

L elimination tree of L

*

T

=

Fig. 4.2. An example matrix after update.

For this example, we have W = {4, 6, 8} and thus k = 4. The pattern of column
4 of L falls under Case 1 and becomes L4 = {4, 6, 7, 8}. The new parent of node 4 is
node 6. At node 6, we find that c = 4 is a lost child of π(4) = 7 and a new child of
node 6 (Case 3). The pattern of column 6 does not change, although its multiplicities
do. The parent of node 6 is thus unchanged (node 7). Node 4 is placed in column 7’s
lost-child-queue. Node 6’s lost-child-queue is empty. At column 7, we find that c = 6
is the old child of node 7 (Case 2), and node 4 is found in node 7’s lost-child-queue
(Case 4). This changes the multiplicities of column 7, but not its pattern. Finally, at
node 8, nothing changes.

4.2. Symbolic downdate algorithm. Let us consider the removal of a column
w from A, and let k be the index of the first nonzero entry in w. The symbolic
downdate algorithm is analogous to the symbolic update algorithm, but the roles of
P(k) and P(k) are interchanged in accordance with Theorem 4.1. Instead of adding

entries to L]j , we subtract entries; instead of lost-child-queues, we have new-child-

queues; instead of walking up the path P(k), we walk up the path P(k) ⊇ P(k).

Algorithm 4 (symbolic downdate, remove column w).
Case 1: first node in the path
W = {i : wi 6= 0}
k = min W
L]k = L]k −W
π(k) = min Lk \ {k}
c = k
j = π(c)
while j 6= 0 do

if j = π(c) then

616 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Case 2: c is an old child of j, possibly changed

L]j = L]j − (Lc \ Lc)
else

Case 3: c is a lost child of j and a new child of π(c)

L]j = L]j − (Lc \ {c})
place c in new-child-queue of π(c)

end if
Case 4: consider each new child of j
for each c in new-child-queue of j do

L]j = L]j + (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(k)c

end Algorithm 4
Similar to Algorithm 3, the execution time obeys the following estimate.
Lemma 4.3. The time to execute Algorithm 4 is bounded above by a constant

times the number of entries associated with patterns for nodes on the old path P(k).
That is, the time is

O

 ∑
j∈P(k)

|Lj |
 .

We can skip over some nodes that do not change in a similar manner as Algo-
rithm 3. Figures 4.1 and 4.2 can be viewed as an example of symbolic downdate,

A A
T −wwT = AAT, where w is the ninth column of A. The roles of A and A are

reversed.

5. The numerical factors. When we add or delete a column in A, we update
or downdate the symbolic factorization in order to determine the location in the
Cholesky factor of either new nonzero entries or old nonzero entries that are now
zero. Knowing the location of the nonzero entries, we can update the numerical value
of these entries. We first consider the case when A and L are dense and draw on the
ideas of [20]. Then we show how the method extends to the sparse case.

5.1. Modifying a dense factorization. Our algorithm to implement the nu-
merical update and downdate is based on a modification of Method C1 in [20] for
dense matrices. Although this algorithm is portrayed as a nonorthogonal algorithm
in [20], it is equivalent, after a diagonal scaling, to the orthogonal algorithm of Pan
[4, 30]. Hence, Method C1 should possess strong numerical stability properties com-
parable to those of Pan’s method. Other dense update or downdate methods include
[2, 5, 21, 22].

To summarize Gill et al.’s approach, we can write

A A
T

= AAT+σwwT = LDLT+σwwT = L(D+σvvT)LT = L(L̃D̃L̃T)LT = L D L
T
,

where v = L−1w, L = LL̃, and D = D̃. In Algorithm 5 below, we evaluate the new
Cholesky factor L = LL̃ without forming L̃ explicitly [20] by taking advantage of the

MODIFYING A SPARSE CHOLESKY FACTORIZATION 617

special structure of L̃. The product is computed column by column, moving from left
to right. In practice, L can be overwritten with L.

Algorithm 5 (dense numeric update/downdate; Method C1, modified).
α = 1
for j = 1 to m do

α = α+ σw2
j/dj

γ = wj/(αdj)

dj = (α/α)dj
α = α
wj+1,...,m = wj+1,...,m − wjLj+1,...,m,j

Lj+1,...,m,j = Lj+1,...,m,j + σγwj+1,...,m

end for

Note that Algorithm 5 also overwrites w with v = L−1w. In the jth iteration,
wj is simply equal to vj . This observation is important to the sparse case discussed
in the next section. Since σ is ±1, the floating point operation count of Algorithm 5
is precisely 2m2 +5m, counting multiplications, divisions, subtractions, and additions
separately. As noted above, if we introduce a diagonal scaling in Algorithm 5, we
obtain Pan’s method [4, 30] for modifying the sparse LLT factorization, for which the
corresponding operation count is 2.5m2 + 6.5m plus an additional m square roots.
Whether we use Algorithm 5 or Pan’s algorithm to update the numerical factors, the
symbolic algorithms are unchanged.

5.2. Modifying a sparse factorization. In the sparse case, v = L−1w is
sparse and its nonzero pattern is crucial. In Algorithm 5, we can essentially by-pass
those executable statements associated with values of j for which the variable wj
vanishes. That is, when wj vanishes, the values of α, dj , w, and column j of L
are unchanged. Since wj has been overwritten by vj , it follows that when executing
Algorithm 5, column j of L changes only when vj does not vanish. The nonzero
pattern of v can be found using the following lemma. The lemma is based on the
directed graph G(LT) = {V, E}, where V = {1, 2, . . . ,m} is the vertex set and E =
{(j, i) | i ∈ Lj} is the directed edge set.2

Lemma 5.1. The nodes reachable from any given node k by path(s) in the directed
graph G(LT) coincide with the path P(k).

Proof. If P(k) has a single element, the lemma holds. Proceeding by induction,
suppose that the lemma holds for all k for which |P(k)| ≤ j. Now, if P(k) has j + 1
elements, then by the induction hypothesis, the nodes reachable from π(k) by path(s)
in the directed graph G(LT) coincide with the path P(π(k)). The nodes reachable
in one step from k consist of the elements of Lk. By Proposition 3.1, each of the
elements of Lk is contained in the path P(k). If i ∈ Lk, i 6= k, then |P(i)| ≤ j. By
the induction hypothesis, the nodes reachable from i coincide with P(i) ⊆ P(k). The
nodes reachable from k consist of the union of {k} with the nodes reachable from Lk.
Since k ∈ P(k), it follows that the nodes reachable from k are contained in P(k).
On the other hand, for each p, the element of LT in row πp(k) and column πp+1(k)
is nonzero. Hence, all the elements of P(k) are reachable from k. Since the nodes
in P(k) coincide with the nodes reachable from k by path(s) in the directed graph
G(LT), the induction step is complete.

2Note that this definition of G(LT) includes self-loops corresponding to the diagonal entries
of L.

618 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

Theorem 5.2. During symbolic downdate A A
T

= AAT −wwT (where w is a
column of A), the nonzero pattern of v = L−1w is equal to the path P(k) in the (old)
elimination tree of L where

k = min {i : wi 6= 0}.(5.1)

Proof. Let W = {i : wi 6= 0}. Theorem 5.1 of Gilbert [15, 16, 19] states that
the nonzero pattern of v is the set of nodes reachable from the nodes in W by paths
in the directed graph G(LT). By Algorithm 1, W ⊆ Lk. Hence, each element of W
is reachable from k by a path of length one, and the nodes reachable from W are a
subset of the nodes reachable from k. Conversely, since k ∈ W, the nodes reachable
from k are a subset of the nodes reachable from W. Combining these inclusions, the
nodes reachable from k and from W are the same, and by Lemma 5.1, the nodes
reachable from k coincide with the path P(k).

Corollary 5.3. During symbolic update A A
T

= AAT + wwT, the nonzero
pattern of v = L−1w is equal to the path P(k) in the (new) elimination tree of L
where k is defined in (5.1).

Proof. Since LDLT = A A
T − wwT, we can view L as the Cholesky factor for

the downdate A A
T −wwT. Hence, we can apply Theorem 5.2, in effect replacing P

by P.
As a result of Theorem 5.2, a sparse downdate algorithm can skip over any column

j ∈ P(k)c. Similarly, as a result of Corollary 5.3, a sparse update algorithm can skip
over any column j ∈ P(k)c. In both cases, the jth iteration of Algorithm 5 requires
both the old and new nonzero patterns of the jth column of L (that is, Lj and
Lj). These are computed in the symbolic update and downdate Algorithms 3 and 4.
Finally, note that the symbolic and numeric algorithms have the same structure. They
both iterate over the columns in the associated path. Therefore, Algorithms 3 and 5
can be combined to obtain a complete sparse update algorithm that makes just one
pass of the matrix L. The jth iteration of Algorithm 5 is placed just before the
j = π(c) statement in Algorithm 3. Since Lj ⊆ Lj during a sparse update, the total
time taken for Algorithms 3 and 5 is

O

 ∑
j∈P(k)

|Lj |
 .

Similarly, Algorithms 4 and 5 can be combined to obtain a complete sparse down-
date algorithm. Since Lj ⊆ Lj during a sparse downdate, the time taken for Algo-
rithms 4 and 5 is

O

 ∑
j∈P(k)

|Lj |
 .

This time can be much less than the O(m2) time taken by Algorithm 5 in the dense
case.

6. Arbitrary symbolic and numerical factors. The methods we have devel-
oped for computing the modification to the Cholesky factors of AAT corresponding
to the addition or deletion of columns in A can be used to determine the effect on

MODIFYING A SPARSE CHOLESKY FACTORIZATION 619

the Cholesky factors of a general symmetric positive definite matrix M of any sym-
metric change of the form M +σwwT that preserves positive definiteness. We briefly
describe how Algorithms 1 through 5 are modified for the general case.

Let Mj denote the nonzero pattern of the lower triangular part of M:

Mj = {i : mij 6= 0 and i ≥ j}.

The symbolic factorization of M [10, 11, 12, 13, 34] is obtained by replacing the union
of Ak terms in Algorithm 1 with the setMj . With this change, Lj of Algorithm 1 is
given by

Lj = {j} ∪
 ⋃
c∈π−1(j)

Lc \ {c}
 ∪Mj .

This leads to a change in Algorithm 2 for computing the multiplicities. The multi-
plicity of an index i in Lj becomes

m(i, j) = |{k ∈ π−1(j) : i ∈ Lk}|+ (1 if i ∈Mj , or 0 otherwise).

The loop involving the Ak terms in Algorithm 2 is replaced by the single statement
L]j = L]j +Mj . More precisely, we have

for each k where min Ak = j do

L]j = L]j +Ak
end for

 ⇒ L]j = L]j +Mj .

Entries are removed or added symbolically from AAT by the deletion or addition
of columns of A, and numerical cancellation is ignored. Numerical cancellation of
entries in M should not be ignored, however, because this is the only way that entries
can be dropped from M. When numerical cancellation is taken into account, neither
of the inclusions Mj ⊆ Mj nor Mj ⊆ Mj may hold. We resolve this problem
by using a symbolic modification scheme with two steps: a symbolic update phase
in which new nonzero entries in M + σwwT are taken into account, followed by a
separate symbolic downdate phase to handle entries that become numerically zero.
Since each modification step now involves an update phase followed by a downdate
phase, we attach (in this section) an overbar to quantities associated with the update
and an underbar to quantities associated with the downdate.

Let W be the nonzero pattern of w, namely, W = {i : wi 6= 0}. In the first
symbolic phase, entries from W are symbolically added to Mj for each j ∈ W. That
is, if i 6∈ Mj , but i, j ∈ W with i > j, then we add i to Mj :

Mj =Mj ∪ {i ∈ W : i > j}.

In the second symbolic phase, entries fromW are symbolically deleted for each j ∈ W:

Mj =Mj \ {i ∈ W : i > j, mij + σwiwj = 0}.(6.1)

In practice, we need to introduce a drop tolerance t and replace the equality

mij + σwiwj = 0

620 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

in (6.1) by the inequality |mij + σwiwj | ≤ t. For a general matrix, the analogue of
Theorem 4.1 is the following.

Theorem 6.1. If α is the first index for which Mα 6=Mα, then P(α) ⊆ P(α).

Moreover, L]i = L]i for all i ∈ P(α)c. If β is the first index for which Mβ 6= Mβ,

then P(β) ⊆ P(β). Moreover, L]i = L]i for all i ∈ P(β)c.

In evaluating the modification in the symbolic factorization associated with M +
σwwT, we start at the first index α whereMα 6=Mα and we march up the path P(α)

making changes to L]j , obtaining L]j . In the second phase, we start at the first index

where Mβ 6=Mβ and we march up the path P(β) making changes to L]j , obtaining

L]j . The analogue of Algorithm 3 in the general case differs only in the starting index

(now α) and in the addition of the sets Mj \Mj in each pass through the j-loop.

Algorithm 6a (symbolic update phase, general matrix).
Case 1: first node in the path
α = min {i :Mi 6=Mi}
L]α = L]α +Mα \Mα

π(α) = min Lα \ {α}
c = α
j = π(c)
while j 6= 0 do

L]j = L]j +Mj \Mj

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j + (Lc \ Lc)
else

Case 3: c is a new child of j and a lost child of π(c)

L]j = L]j + (Lc \ {c})
place c in lost-child-queue of π(c)

end if
Case 4: consider each lost child of j
for each c in lost-child-queue of j do

L]j = L]j − (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(α)c

end Algorithm 6a

Similarly, the analogue of Algorithm 4 in the general case differs only in the
starting index (now β) and in the subtraction of the sets Mj \ Mj in each pass
through the j-loop.

Algorithm 6b (symbolic downdate phase, general matrix).
Case 1: first node in the path
β = min {i :Mi 6=Mi}
L]β = L]β −Mβ \Mβ

π(β) = min Lβ \ {β}

MODIFYING A SPARSE CHOLESKY FACTORIZATION 621

c = β
j = π(c)
while j 6= 0 do

L]j = L]j −Mj \Mj

if j = π(c) then
Case 2: c is an old child of j, possibly changed

L]j = L]j − (Lc \ Lc)
else

Case 3: c is a lost child of j and a new child of π(c)

L]j = L]j − (Lc \ {c})
place c in new-child-queue of π(c)

end if
Case 4: consider each new child of j
for each c in new-child-queue of j do

L]j = L]j + (Lc \ {c})
end for
π(j) = min Lj \ {j}
c = j
j = π(c)

end while

L]j = L]j and π(j) = π(j) for all j ∈ P(β)c

end Algorithm 6b

Algorithm 5 is completely unchanged in the general case. It can be applied after
the completion of Algorithm 6b so that we know the location of new nonzero entries
in the Cholesky factor. It processes the submatrix associated with rows and columns
in P(k), where k is the index of the first nonzero element of w. When M has the form
AAT and when M is found by either adding or deleting a column in A, then assuming
no numerical cancellations, Algorithm 6b can be skipped when we add a column to A
sinceMj =Mj for each j. Similarly, when a column is removed from A, Algorithm 6a

can be skipped since Mj = Mj for each j. Hence, when Algorithm 6a followed by

Algorithm 6b is applied to a matrix of the form AAT, only Algorithm 6a takes effect
during an update, while only Algorithm 6b takes effect during a downdate. Thus the
approach we have presented in this section for an arbitrary symmetric positive definite
matrix generalizes the earlier approach where we focus on matrices of the form AAT.

7. Experimental results. We have developed Matlab codes to experiment with
all the algorithms presented in this paper, including the algorithms of section 6 for
a general symmetric, positive definite matrix. In this section, we present the results
of a numerical experiment with a large sparse optimization problem from Netlib [8]
in the context of the LP DASA [26]. The computer used for this experiment was a
Model 170 UltraSparc, equipped with 256MB of memory and with Matlab Version
4.2c.

7.1. Experimental design. In the LP DASA, the columns of the matrix A in
the product AAT are all chosen from among the columns of some fixed matrix B.
After a few updates or downdates, the system AATx = b must be solved with a
dense right-hand side b.

The Cholesky factorization of the initial AAT (before any columns are added or
deleted) is often preceded by a fill-reducing permutation P of the rows and columns

622 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

([1], for example). We can compute a permutation to reduce the fill for BBT since the
Cholesky factors of AAT will be at least as sparse as those of BBT by Proposition 3.2,
regardless of how the columns of A are chosen from the columns of B. Based on the
number of nonzeros in each column of the Cholesky factors of BBT, we allocate a
static storage structure that will always contain the Cholesky factors of each AAT.
This can lead to wasted space if the number of nonzeros in the Cholesky factors
of AAT is far less than the number of nonzeros in the Cholesky factors of BBT.
Alternatively, we could store the Cholesky factor of the current AAT in a smaller
space and reallocate storage during the updates and downdates, based on the changes
in the nonzero patterns.

We selected an optimization problem from airline scheduling (DFL001). Its con-
straint matrix B is 6,071-by-12,230 with 35,632 nonzeros. We rescaled the variables
so that the columns of B are all unit vectors, and we augmented B by appending on
its right the matrix 10−6I. This ensures that BBT is strictly positive definite. The
matrix BBT has 37,923 nonzeros in its strictly lower triangular part. The Cholesky
factor LB has 1.49 million nonzeros (with a fill-minimizing permutation PB of the
rows of B, described below) and requires 1.12 billion floating point operations and 115
seconds to compute (the LP DASA does not require this matrix; however, as noted
above, this is an upper bound on the number of nonzeros that can occur during the
execution of the LP DASA). This high level of fill-in in LB is the result of the highly
irregular nonzero pattern of B. The matrix A0, corresponding to an optimal solu-
tion of the linear programming problem, has 5,446 columns taken from the original
columns of B plus the 6,071 columns of the appended matrix 10−6I.

We wrote a set of Matlab scripts that implements our complete sparse Cholesky
update/downdate algorithm, discussed in section 4 and section 5. We first found
PB , using 101 trials of Matlab’s column multiple minimum degree ordering algorithm
(colmmd [17]), 100 of them with a different random permutation of the rows of B. We
then took the best permutation found. The time for the initial Cholesky factorization
of AAT is given by (see [13]) the following expression:

O

 m∑
j=1

|Lj |2
 ,

which is O(m3) if L is dense. With our permutation PB , the factor L of A0A
T
0 has

831 thousand nonzeros and took 481 million floating point operations and 51 seconds
to compute (using Matlab’s chol). Following the method used in LP DASA, we added
10−12 to the diagonal to ensure positive definiteness (the columns of B are scaled to
be unit vectors). We used the same permutation PB for the entire experiment. The
initial symbolic factorization took 15 seconds (Algorithm 2). It is this matrix and its
factor that are required by the LP DASA.

We did not use Matlab’s sparse matrix data structure since Matlab removes ex-
plicit zeros. Changing the nonzero pattern by a single entry can cause Matlab to
make a new copy of the entire matrix. This would defeat the asymptotic performance
of our algorithms. Instead, the column-oriented data structure we use for L, L], and
L consists of three arrays of length |LB |, an array of length m that contains indices
to the first entry in each column, and an array of length m holding the number of
nonzeros in each column. The columns are allocated so that each column can hold as
many nonzeros as the corresponding column of LB without reallocation.

Starting with the matrix A0, we added one column at a time until all 12,230

MODIFYING A SPARSE CHOLESKY FACTORIZATION 623

columns from the original B were present, and then we removed them one at a time
(in a first-in first-out order) to obtain the starting A0. No linear programming solver
does so much work, but this provides a simple contrived test of our methods under
a wide range of conditions that could occur in practice. The average time and work
required to modify the factors at each step was 3.5 seconds and 2.6 million floating
point operations. By comparison, solving a linear system LDLTx = b with a dense
right-hand side b (using our column-oriented data structure for L) at each step took
an average of 6.9 seconds and 5.0 million floating point operations (each solve takes
O(|L|) time). Thus, modifying the factors takes about half the time and work as using
the factors to solve a linear system.

The time taken for the entire update/downdate computation would be much
smaller if our code was written in a compiled language. Solving one system LDLTx =
b with a dense right-hand side (using the factorization of the matrix A0) takes 5.5
seconds using our column-oriented data structure, 1.3 seconds using a Matlab sparse
matrix for L, and 0.22 seconds using Fortran 77. Hence, for the DFL001 test problem,
we expect that our computation (both symbolic and numerical) would take about a
tenth of a second per update or downdate in Fortran 77, on average.

7.2. Numerical accuracy. In order to measure the error in the computed

Cholesky factorization, we evaluated the difference ‖AAT− L̂D̂L̂
T‖1, where L̂D̂L̂

T
is

the computed Cholesky factorization. For the airline scheduling matrix of section 7,

L̂ has up to 1.49 million nonzeros and it is impractical to compute the product L̂D̂L̂
T

after each update. To obtain a quick and accurate estimate for ‖E‖1, where E =

AAT − L̂D̂L̂
T

, we applied the strategy presented in [23] (see [24, p. 139] for a sym-
bolic statement of the algorithm) to estimate the 1-norm of a matrix. That is, we used
a gradient ascent approach to compute a local maximum for the following problem:

max{‖Ex‖1 : ‖x‖1 = 1}.
Since L̂ is used multiple times in the following algorithm, we copied our data structure
for L̂ into a Matlab sparse matrix. In exact arithmetic, Algorithm 7 computes a lower
bound on the 1-norm of E.3

Algorithm 7 (estimate 1-norm of an m-by-m matrix E).
xi = 1/m for 1 ≤ i ≤ m
ρ = 0 (ρ is the current estimate for ‖E‖)
while ‖Ex‖1 > ρ do

ρ = ‖Ex‖1
for i = 1 to m do

yi = 1 if (Ex)i ≥ 0
yi = −1 if (Ex)i < 0

end for
z = ETy
j = arg max {|zi| : i = 1 to m}
if |zj | ≤ zTx return
xi = 0 for i = 1 to n
xj = 1

end while
end Algorithm 7

3Algorithm 7 is available in Mathwork’s contributed m-files ftp site, ftp.mathworks.com, as the
file pub/contrib/v4/linalg/normest1.m.

624 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−12

step

E
rr

or
 n

or
m

, a
s

es
tim

at
ed

 b
y

A
lg

or
ith

m
 7

Fig. 7.1. Estimated 1-norm of error in the LDLT factorization.

To improve the accuracy of the 1-norm estimate, we used Algorithm 7 three times.
In the second and third trials, a different starting vector x was used as described in
[23]. Observe that Algorithm 7 only makes use of the product between the matrix
E and a vector. This feature is important in the context of sparse matrices since

E contains the term L̂D̂L̂
T

. It is impractical to compute the product L̂D̂L̂
T

, but

it is practical to multiply L̂D̂L̂
T

by a vector. For the airline scheduling matrix of
section 7, the values for ‖E‖1 initially, at step 6,784, and at the end were 2.5× 10−13,
2.4× 10−12, and 3.0× 10−12, respectively. The estimates obtained using Algorithm 7
were nearly identical at the same three steps (2.6×10−13, 2.5×10−12, and 2.9×10−12,
respectively). On the other hand, the times to compute ‖E‖1 at the initial step and at
step 6,784 were 119.4 and 266.4 seconds, while the times for three trials of Algorithm 7
were 8.3 and 13.5 seconds, respectively (excluding the time to construct the Matlab
sparse matrix for L̂).

Our methods were quite accurate for this problem. After 6,784 updates and
6,784 downdates, or 13,568 changes in A, the 1-norm of E increased by only a factor
12. Figure 7.1 shows the estimated value of ‖E‖1 computed every 10 steps using
Algorithm 7. The initial and final estimates are circled. The 1-norm of the matrix
AAT increases from 458.0 initially to 1107.0 at iteration 6,784, then returns to 458.0
at iteration 13,568. Hence, the product of the computed Cholesky factors agrees with
the product AAT to about 15 significant digits initially, while the products agree to
about 14 significant digits after 13,568 modifications of A.

7.3. Alternative permutations. Our methods are optimal in the sense that
they take time proportional to the number of nonzero entries in L and D that change
at each step. However, they are not optimal with respect to fill-in, since we assume a
single initial permutation and no subsequent permutations. A fill-reducing ordering
of BBT might not be the best ordering to use for all the A matrices. A simple
pathological example is the m-by-n matrix B, where n = m(m−1)/2 and the nonzero
pattern of each column of B is a unique pair of integers from the set {1, 2, . . . ,m}.

MODIFYING A SPARSE CHOLESKY FACTORIZATION 625

0 2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

step

N
on

ze
ro

s
in

 L

Nonzeros in L for three different permutations

Fig. 7.2. Nonzeros in L using three different permutations.

In this case, every element of BBT is nonzero, while the nonzero pattern of AAT

is arbitrary. As the matrix A changes, it might be advantageous to compute a fill-
reducing ordering of AAT if the size of its factors grow “too large.” A refactorization
with the new permutation would then be required.

We found a fill-reducing permutation PA of the starting matrix A0A
T
0 (again, the

best of 101 trials of colmmd). This results in a factor L with 381 thousand nonzeros,
requiring only 169 million floating point operations to compute. This is significantly
less than the number of nonzeros (831 thousand) and floating point operations (481
million) associated with the fill-reducing permutation for BBT. We also computed an
ordering of AAT at each step, using colmmd just once, and then computed the number
of nonzeros in the factor if we were to factorize AAT using this permutation (Ps).
Although it only takes about 1 second to compute the ordering [17] and symbolic
factorization [18], it is not practical to use 100 random trials at each step.

Figure 7.2 depicts the nonzero counts of L for these three different permutations
at each of the 13,568 steps. The fixed permutation PB results in the smooth curve
starting at 831 thousand and peaking at 1.49 million. The fixed permutation PA

results in a number of nonzeros in L that starts at 381 thousand and rises quickly,
leaving the figure at step 1,206 and peaking at 7.4 million in the middle. It surpasses
PB at step 267. Using a permutation Ps, computed at each step s, gives the erratic
line in the figure, starting at 390 thousand and peaking at 1.9 million in the middle.
These results indicate that it might be advantageous to start with the fixed permuta-
tion PA, use it for 267 steps, and then refactorize with the permutation Ps computed
at step 267. This results in a new factor with only 463 thousand nonzeros. Near the
center of the figure, however, A includes most of the columns in B, and in this case
the PB permutation should be used.

8. Summary. We have presented a new method for updating and downdating
the factorization LDLT or LLT of a sparse symmetric positive definite matrix AAT.
Our experimental results show that the method should be fast and accurate in prac-
tice. Extensions to an arbitrary sparse symmetric positive definite matrix, M, have
been discussed. We mention additional extensions to our work that would be useful.

626 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

One drawback of our approach is the increase in storage. With the compressed
pattern (a supernodal form of L) [13], the storage of L is dominated by the floating
point values. In our storage scheme, we require two integers per floating point value
(a row index and its multiplicity). Our methods almost double the storage for L
(assuming 8-byte floating point values and 4-byte integers). A method based on a
supernodal form could require less time and storage. However, supernodes would
merge during update and split during downdate, which would be complicated to
manage. Although implementing supernodes in the context of our current update
and downdate methods is difficult, the numerical factorization can still be based on a
supernodal method.

Some applications, such as local mesh refinement and coarsening and primal ac-
tive set algorithms in optimization, require changes to the dimension of a symmetric
positive definite matrix. These changes can be implemented using the techniques
presented in this paper.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] R. H. Bartels, G. H. Golub, and M. A. Saunders, Numerical techniques in mathematical
programming, in Nonlinear Programming, J. B. Rosen, O. L. Mangasarian, and K. Ritter,
eds., Academic Press, New York, 1970, pp. 123–176.

[3] J. M. Bennett, Triangular factors of modified matrices, Numer. Math., 7 (1965), pp. 217–221.
[4] C. H. Bischof, C.-T. Pan, and P. T. P. Tang, A Cholesky up- and downdating algorithm for

systolic and SIMD architectures, SIAM J. Sci. Comput., 14 (1993), pp. 670–676.
[5] N. A. Carlson, Fast triangular factorization of the square root filter, AIIA J., 11 (1973),

pp. 1259–1265.
[6] S. M. Chan and V. Brandwajn, Partial matrix refactorization, IEEE Trans. on Power Sys-

tems, PWRS-1 (1986), pp. 193–200.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Elec-

trical Engineering and Computer Science Series, MIT Press, Cambridge, MA; McGraw–
Hill, New York, 1990.

[8] J. J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail,
Comm. ACM, 30 (1987), pp. 403–407.

[9] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, London, 1986.

[10] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix
package, I: The symmetric codes, Internat. J. Numer. Methods Engrg., 18 (1982), pp. 1145–
1151.

[11] A. George and J. W. H. Liu, The design of a user interface for a sparse matrix package,
ACM Trans. Math. Software, 5 (1979), pp. 139–162.

[12] A. George and J. W. H. Liu, An optimal algorithm for symbolic factorization of symmetric
matrices, SIAM J. Comput., 9 (1980), pp. 583–593.

[13] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[14] A. George, J. Liu, and E. Ng, A data structure for sparse QR and LU factorizations, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 100–121.

[15] J. R. Gilbert, Predicting Structure in Sparse Matrix Computations, Tech. report CS-86-750,
Computer Science Dept., Cornell Univ., Ithaca, NY, 1986.

[16] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62–79.

[17] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[18] J. R. Gilbert, E. G. Ng, and B. W. Peyton, An efficient algorithm to compute row and
column counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075–1091.

[19] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 862–874.

MODIFYING A SPARSE CHOLESKY FACTORIZATION 627

[20] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[21] P. E. Gill and W. Murray, Quasi-Newton methods for unconstrained optimization, J. Inst.
Math. Appl., 9 (1972), pp. 91–108.

[22] P. E. Gill, W. Murray, and M. A. Saunders, Methods for computing and modifying the
LDV factors of a matrix, Math. Comp., 29 (1975), pp. 1051–1077.

[23] W. W. Hager, Condition estimates, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 311–316.
[24] W. W. Hager, Applied Numerical Linear Algebra, Prentice–Hall, Englewood Cliffs, NJ, 1988.
[25] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), pp. 221–239.
[26] W. W. Hager, The LP dual active set algorithm, in High Performance Algorithms and Software

in Nonlinear Optimization, R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Kluwer Academic Publishers, Norwell, MA, to appear.

[27] K. H. Law, Sparse matrix factor modification in structural reanalysis, Internat. J. Numer.
Methods Engrg., 21 (1985), pp. 37–63.

[28] K. H. Law, On updating the structure of sparse matrix factors, Internat. J. Numer. Methods
Engrg., 28 (1989), pp. 2339–2360.

[29] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[30] C.-T. Pan, A modification to the LINPACK downdating algorithm, BIT, 30 (1990), pp. 707–
722.

[31] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[32] D. G. Row, G. H. Powell, and D. P. Mondkar, Solution of progressively changing equilib-
rium equations for nonlinear structures, Comput. & Structures, 7 (1977), pp. 659–665.

[33] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), pp. 256–276.

[34] A. H. Sherman, On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equa-
tions, Tech. report 46, Dept. of Computer Science, Yale Univ., New Haven, CT, 1975.

[35] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1980.
[36] J. H. Wilkinson, Linear algebra algorithms, in Software for Numerical Mathematics, Proceed-

ings of the Loughborough Univ. of Technology Conf. of the Inst. of Mathematics and its
Appl., 1973, D. J. Evans, ed., Academic Press, New York, 1974, pp. 17–28.

A NONSTANDARD CYCLIC REDUCTION METHOD, ITS
VARIANTS AND STABILITY∗

TUOMO ROSSI† AND JARI TOIVANEN†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 628–645

Abstract. A nonstandard cyclic reduction method is introduced for solving the Poisson equation
in rectangular domains. Different ways of solving the arising reduced systems are considered. The
partial solution approach leads to the so-called partial solution variant of the cyclic reduction (PSCR)
method, while the other variants are obtained by using the matrix rational polynomial factorization
technique, including the partial fraction expansions, the fast Fourier transform (FFT) approach, and
the combination of Fourier analysis and cyclic reduction (FACR) techniques. Such techniques have
originally been considered in the standard cyclic reduction framework. The equivalence of the partial
solution and the partial fraction techniques is shown. The computational cost of the considered
variants is O(N logN) operations, except for the FACR techniques for which it is O(N log logN).
The stability estimate for the considered method is constructed, and the stability is demonstrated
by numerical experiments.

Key words. separable matrix, fast Poisson solver, block cyclic reduction, partial solution
problem

AMS subject classifications. 65F05, 65N22

PII. S0895479897317053

1. Introduction. The fast direct methods for solving the Poisson problem al-
ready have a history of more than 30 years beginning in 1965 when Hockney [5]
described the Fourier analysis method. In both [5] and [6], another method, called
cyclic reduction, was discussed. The original cyclic reduction approach is unstable,
but being combined with Fourier analysis in the FACR(l) algorithm [6], the unstability
poses no serious restriction since in problems of practical size, typically, less than five
steps of reduction process need to be performed. Stable, so-called Buneman’s variants
of cyclic reduction methods were introduced in [3], making the cyclic reduction a ro-
bust technique. The computational cost of Buneman’s method is O(N logN) floating
point operations, and for the related FACR(l) algorithm with optimal choice of the
number of reduction steps l it is O(N log logN) operations [13]. The approximate
cyclic reduction method was introduced in [14]. Its computational cost is comparable
to the optimal FACR algorithm when the solution is computed in the discretization
accuracy, but it can be applied to a larger class of problems.

In the mid 1980s, another O(N logN) method, utilizing the so-called partial so-
lution technique [2], [9], was introduced in [17] and further developed in [8]. Because
the method is based on the partial solution technique, it can easily be applied to
the solution of elliptic problems which are discretized using nonuniform meshes. In
[10],1 the more efficient radix q variant (q ≥ 2) of this method was considered and the
method was generalized to the case of symmetric separable block band matrices. In

∗Received by the editors February 18, 1997; accepted for publication (in revised form) by L. Reichel
April 23, 1998; published electronically March 23, 1999. The work of the authors was supported by
the Academy of Finland grant 34063.

http://www.siam.org/journals/simax/20-3/31705.html
†Laboratory of Scientific Computing, Department of Mathematics, University of Jyväskylä, PO

Box 35, FIN-40351 Jyväskylä, Finland (Tuomo.Rossi@math.jyu.fi, Jari.Toivanen@math.jyu.fi).
1Here, a similar algorithm was called the divide and conquer method. Due to the ambiguity in

this terminology, the authors prefer to use the name PSCR method instead.

628

A NONSTANDARD CYCLIC REDUCTION METHOD 629

radix q variants, the number of block equations is changed by the factor q between two
consequent steps of the algorithm, whereas in the standard cyclic reduction method
this factor is always two. The parallel implementation of this method, using a dis-
tributed memory parallel computer, is considered in [11]. In that paper, the method
is called the partial solution variant of the cyclic reduction (PSCR) method due to
its close relation to the cyclic reduction methodology.

The purpose of this paper is to develop a cyclic reduction-type formulation for
the radix two variant of the PSCR method in order to show the close relationship
between these two approaches. As a model problem, we consider the Dirichlet bound-
ary value problem for the Poisson equation on the two-dimensional unit square. The
model problem is discretized using the piecewise linear continuous finite elements on
a triangulated uniform rectangular mesh with 2k−1 interior mesh points in both di-
rections. This leads to a linear system with a separable block tridiagonal matrix. We
choose this problem because the relation between different methods can be clearly
seen in this particular case. Usually, the PSCR method is formulated by means of
hierarchical sequences of projection matrices [10], [11]. Using this formulation, the
radix q variant of the PSCR method has been generalized to the cases of nonuniform
meshes, arbitrary matrix dimensions, and block bandwidths. A combination of the
PSCR method and FFT, leading to an O(N log logN) algorithm resembling the opti-
mal FACR approach [13], was introduced in [7] for problems discretized using uniform
meshes.

The cyclic reduction-type formulation leads to a sequence of problems which can
be solved with a variety of different techniques. The main difference between our
formulation and the classical one is the way in which the equations are eliminated.
However, we are able to introduce variants of the classical rational polynomial factor-
ization, partial fraction expansion, and FFT and FACR techniques to our nonstandard
formulation. We also consider the partial solution approach which leads to the radix
two variant of the PSCR method. We show that the partial fraction technique intro-
duced in [16] essentially provides the partial solution version in the case of uniform
meshes. We give only rough estimates of the computational costs of the different
variants, while a more detailed estimate can be found in [11].

Finally, we present a detailed error analysis of the proposed method which, to
our knowledge, appears to be a new result for the PSCR method. Our estimate
shows that for the Poisson problem, the columnwise error cannot, asymptotically,
grow faster than the same rate that the spectral radius of the inverse of the system
matrix grows when the problem size increases. The validity of the stability estimate
is verified by numerical experiments, which show that the variants given in this paper
are essentially as stable as the well-known Buneman’s second variant of the standard
cyclic reduction method, which is implemented according to formulas given in [4].

2. A nonstandard cyclic reduction method. As a model problem, we con-
sider the Dirichlet boundary value problem for the Poisson equation on the unit
square. The piecewise linear finite element approximation on a uniform triangulated
rectangular mesh with n×n interior nodes leads to the block tridiagonal linear system
of the form

630 TUOMO ROSSI AND JARI TOIVANEN

A −T
−T A −T

−T A
. . .

. . .
. . . −T
−T A

u1

u2

...

un−1

un

=

f1

f2

...

fn−1

fn

,(2.1)

where

A = tridiag {−1 4 −1} ∈ Rn×n, T = I ∈ Rn×n.(2.2)

We assume that n = 2k−1 for some k = 1, 2, We also assume that the matrices
A and T commute, which is valid in our model problem. In the following formulas,
we set u0 = un+1 = 0.

Let us consider three successive block rows in (2.1) for i = 2, 4, . . . , n− 1:

− Tui−2 +Aui−1 − Tui = fi−1,(2.3a)

− Tui−1 +Aui − Tui+1 = fi,(2.3b)

− Tui +Aui+1 − Tui+2 = fi+1.(2.3c)

In the classical formulation of the cyclic reduction method, the block equations (2.3a)
and (2.3c) are multiplied by the matrix T , and the second equation (2.3b) is multiplied
by A. After that, the equations are summed up. This procedure eliminates the odd
block rows from the system.

We propose an alternative way. We multiply the block equations (2.3a) and (2.3c)
by TA−1 and add them to the second equation (2.3b). This leads to the reduced
system of 2k−1−1 block equations

−T 2A−1ui−2 + (A− 2T 2A−1)ui − T 2A−1ui+2 = fi + TA−1fi−1 + TA−1fi+1,

i = 2, 4, . . . , n− 1.(2.4)

After solving the system of equations (2.4), we obtain the solution blocks ui for
i = 2, 4, . . . , n − 1. The unknown odd solution blocks can then be solved from the
block diagonal system

Auj = fj + Tuj−1 + Tuj+1, j = 1, 3, . . . , n− 2, n.(2.5)

The elimination (2.4) is repeated k − 1 times until we have only one equation for the
block u(n+1)/2. To define this procedure recursively, we denote A(0) = A, T (0) = T ,

and f (0) = f . Then, after r steps of elimination, 0 ≤ r ≤ k − 1, the reduced system
has the block dimension 2k−r−1, and it reads

A(r) −T (r)

−T (r) A(r) −T (r)

−T (r) A(r) . . .

. . .
. . . −T (r)

−T (r) A(r)

u2r

u2·2r

u3·2r
...

un−2r+1

=

f
(r)
2r

f
(r)
2·2r

f
(r)
3·2r
...

f
(r)
n−2r+1

,(2.6)

A NONSTANDARD CYCLIC REDUCTION METHOD 631

where, for r = 1, . . . , k − 1 and i = 1, . . . , 2k−r−1,

A(r) = A(r−1) − 2
(
T (r−1)

)2 (
A(r−1)

)−1

,(2.7)

T (r) =
(
T (r−1)

)2 (
A(r−1)

)−1

,(2.8)

f
(r)
i·2r = f

(r−1)
i·2r + T (r−1)

(
A(r−1)

)−1 (
f

(r−1)
i·2r−2r−1 + f

(r−1)
i·2r+2r−1

)
.(2.9)

After k − 1 steps of elimination, the resulting single block equation reads

A(k−1)u2k−1 = f
(k−1)

2k−1 ,(2.10)

from which we solve the middle block u2k−1 . After we have solved the system (2.10),
the rest of the unknown blocks are solved from the block diagonal systems of elimi-
nated equations for r = k− 2, . . . , 0. The system of the eliminated equations has the
block dimension 2k−r−1, and it is of the form

A(r)

A(r)

A(r)

. . .

A(r)

u2r+1−2r

u2·2r+1−2r

u3·2r+1−2r

...

un−2r+1

=

g
(r)
2r+1−2r

g
(r)
2·2r+1−2r

g
(r)
3·2r+1−2r

...

g
(r)
n−2r+1

,(2.11)

where

g
(r)
j·2r+1−2r = f

(r)
j·2r+1−2r + T (r)

(
u(j−1)·2r+1 + uj·2r+1

)
, j = 1, . . . , 2k−r−1.(2.12)

In the next sections, we consider how the right-hand sides f (r) and the solution vector
u can be computed. First, we discuss the PSCR method involving the use of the partial
solution technique. After that, we consider the rational polynomial factorization
technique and its derivatives, the FFT approach, and the resulting FACR method.

3. The partial solution variant of the cyclic reduction method.

3.1. The reduction and backsubstitution stages. First, we shall formulate
a lemma which will be needed in the subsequent two theorems.

Lemma 3.1. For the matrix T (s), s = 1, . . . , k, it holds that

T (s) = T (0)
(
A(0)

)−1

T (0)
(
A(1)

)−1

T (1) · · ·
(
A(s−1)

)−1

T (s−1).(3.1)

Proof. The result follows easily using induction and the definition of the matrices
T (r) and from the fact that the matrices A(r) and T (r) commute.

We denote in the following:

M (r) =

A −T
−T A

. . .

. . .
. . . −T
−T A

 ,(3.2)

632 TUOMO ROSSI AND JARI TOIVANEN

where the block dimension of M (r) equals 2r−1.
We shall first consider the computation of the vectors f (r) given by (2.9). The

next result gives an equivalent way to compute them.
Lemma 3.2. Let m = 2r−1. Then

f
(r)
i·2r = f

(r−1)
i·2r + T

(
x(1)
m + x

(2)
1

)
,(3.3)

where x
(1)
m is the last block of length n of the vector x(1), and x

(2)
1 is the first block of

length n of the vector x(2), where the vectors x(k), k = 1, 2, are given by the linear
systems

M (r)x(k) = y(k).(3.4)

The vectors y(k) have the block structures

y
(k)
j =

{
f

(r−1)

i·2r+(−1)k·2r−1 , j = (m+ 1)/2,

0, otherwise.
(3.5)

Proof. Let us apply the considered cyclic reduction method to solve a linear
system of the form M (r)x = y, where the only nonzero block of the vector y is
y(m+1)/2. Because of the sparse structure of the vector y, it follows that the solution
block x(m+1)/2 can be obtained from

A(r−1)x(m+1)/2 = y(m+1)/2 =⇒ x(m+1)/2 =
(
A(r−1)

)−1

y(m+1)/2.

We need the solution blocks x1 and xm. We shall consider the solution of the block x1;
the case of xm is treated analogously. By using the backsubstitution formula (2.11)
for the steps j = r−2, . . . , 0, and by following the first block equation, we notice that

Tx1 = T (0)x1 = T (0)
(
A(0)

)−1

T (0)
(
A(1)

)−1

T (1) · · ·
(
A(r−2)

)−1

T (r−2)x(m+1)/2,

which, by using Lemma 3.1, gives

Tx1 = T (r−1)x(m+1)/2 = T (r−1)
(
A(r−1)

)−1

y(m+1)/2

from which the assertion follows.
Hence, we have shown that in order to compute the vector f (r), it is sufficient to

solve 2k−r linear systems with the matrix M (r). These systems have a very special
structure. The right-hand side vectors have only one nonzero block—the middle one,
and the solution needs to be computed at most for two blocks of the solution vector,
namely, the first and last ones. Thus, we have a partial solution problem for the linear
system (3.4), and we show in the forthcoming section how to solve it efficiently by
applying Fourier techniques.

The partial solution technique can be applied in the backsubstitution stage as
well. At each level k − 1 ≥ r ≥ 0, according to (2.11), we must solve 2k−r−1 systems

A(r)ui·2r+1−2r = f
(r)
i·2r+1−2r + T (r)

(
u(i−1)·2r+1 + ui·2r+1

)
, i = 1, . . . , 2k−r−1.

Note that the above formulation also includes the single block equation which we
solve when r = k− 1. The following result gives us an equivalent way to compute the
solution vector blocks.

A NONSTANDARD CYCLIC REDUCTION METHOD 633

Lemma 3.3. Let m = 2r+1−1. Then ui·2r+1−2r = x(m+1)/2, where x(m+1)/2 is

the middle block of length n of the solution vector x of the system M (r+1)x = y. Here
the vector y is defined as

yj =

Tu(i−1)·2r+1 , j = 1,

f
(r)
i·2r+1−2r , j = (m+ 1)/2,

Tui·2r+1 , j = m,

0, otherwise,

(3.6)

except when r = 0, the only block y1 is given by y1 = f
(0)
2·i−1 + T (u2·(i−1) + u2·i).

Proof. Due to the linearity, we may write

x(m+1)/2 = x
(1)
(m+1)/2 + x

(2)
(m+1)/2 + x

(3)
(m+1)/2,

where x
(k)
(m+1)/2 is the middle block of the solution x(k) of the system M (r+1)x(k) =

y(k). The vectors y(k) are defined by

y
(1)
j =

{
f

(r)
i·2r+1−2r , j = (m+ 1)/2,

0, textotherwise,
y

(2)
j =

{
Tu(i−1)·2r+1 , j = 1,

0, otherwise,

y
(3)
j =

{
Tui·2r+1 , j = m,

0, otherwise.

We already know, from the proof of Lemma 3.2, that

x
(1)
(m+1)/2 =

(
A(r)

)−1

f
(r)
i·2r+1−2r .

Let us consider the solution of M (r+1)x(2) = y(2). The solution of x(3) can be treated
similarly. We shall again apply the proposed cyclic reduction method in solving the

middle block x
(2)
(m+1)/2.

Let us denote the arising right-hand side vectors by g(j) (starting with g(0) = y(2)).
Due to the special structure of the vector g(0), we realize by following the update chain
of the right-hand side vectors g(j) and by using Lemma 3.1 that

g
(r)
(m+1)/2 = T (r−1)

(
A(r−1)

)−1

· · ·T (0)
(
A(0)

)−1

Tu(i−1)·2r+1 = T (r)u(i−1)·2r+1 .

Hence, again, from the proof of Lemma 3.2, we obtain that

x
(2)
(m+1)/2 =

(
A(r)

)−1

T (r)u(i−1)·2r+1 .

In a similar way, we can show that

x
(3)
(m+1)/2 =

(
A(r)

)−1

T (r)ui·2r+1 ,

which completes the proof.
Hence, each backsubstitution stage k − 1 ≥ r ≥ 0 can be realized by solving

2k−r−1 partial solution problems with the matrix M (r+1).

634 TUOMO ROSSI AND JARI TOIVANEN

3.2. Partial solution technique. Let us describe how we can apply the so-
called partial solution technique [2], [9], in solving the arising linear systems with the
matrices M (r) and M (r+1). We denote by Is the identity s× s matrix and

Ks =

2 −1

−1 2
. . .

. . .
. . . −1

−1 2

s×s

.(3.7)

In our model case, it now follows that the matrix M (r) is separable, that is, it has the
representation

M (r) = I2r−1 ⊗Kn +K2r−1 ⊗ In,(3.8)

where ⊗ denotes the tensor product of matrices which in our case is defined as follows.
For A ∈ Rk×k and B ∈ Rs×s,

A⊗B = {Ai,jB}ki,j=1 ∈ Rks×ks.(3.9)

Let us consider the eigenvalue problem

K2r−1wi = λiwi, i = 1, . . . , 2r − 1.(3.10)

In this case, we know the explicit eigenvalues and orthonormal eigenvectors. They
are given by

λi = 4

(
sin

(
iπ

2r+1

))2

, (wi)j =
√

21−r sin

(
ijπ

2r

)
, i, j = 1, . . . , 2r − 1.(3.11)

We denote in the following:

W = [w1 w2 . . . w2r−1] = WT ∈ R(2r−1)×(2r−1).(3.12)

In the reduction stage, we need to solve the linear systems

M (r)x = y,(3.13)

where the vector y has only one nonzero block, the middle one y2r−1 , and we only
need the blocks x1 and x2r−1 of the solution vector x. By multiplying (3.13) from
the left by the matrix WT ⊗ In, and by denoting x̃ = (WT ⊗ In)x, we obtain a block
diagonal linear system

Kn + λ1In
Kn + λ2In

. . .

Kn + λ2r−1In

x̃1

x̃2

...
x̃2r−1

 =

ỹ1

ỹ2

...
ỹ2r−1

 ,(3.14)

where ỹj = (wj)2r−1y2r−1 , j = 1, . . . , 2r−1. It is clear that x = (W ⊗ In)x̃ and,
thus, after solving the block diagonal system (3.14), the required solution blocks are
obtained by

x1 =
2r−1∑
j=1

(wj)1x̃j , x2r−1 =
2r−1∑
j=1

(wj)2r−1x̃j .(3.15)

A NONSTANDARD CYCLIC REDUCTION METHOD 635

This special implementation of the classical method of separation of variables is called
the partial solution method. Its computational cost is O(n(2r − 1)). The cost of
computing the right-hand side vectors for the block diagonal system (3.14) is n(2r−1)
floating point operations since these vectors are simply obtained by scaling with a
scalar. The cost of solving the arising 2r−1 tridiagonal systems is O(n(2r − 1)).
Finally, the cost computing both x1 and x2r−1 by (3.15) is 4n(2r − 1), which leads to
the given estimate.

The partial solution problems involving the matrix M (r+1) are solved in a similar
manner. The required eigenvalues and eigenvectors can be obtained from (3.11) by
replacing r by r+ 1. In this case the right-hand side vectors have only three nonzero
blocks, the first, the middle, and the last one. The sparse Fourier transforms are
carried out using the eigenvectors wj leading to 2r+1−1 tridiagonal systems

(Kn + λjIn)x̃j = ỹj , j = 1, . . . , 2r+1 − 1,(3.16)

where

ỹj = (wj)1y1 + (wj)2ry2r + (wj)2r+1−1y2r+1−1.(3.17)

The required middle solution block x2r is then computed by

x2r =
2r+1−1∑
j=1

(wj)2r x̃j .(3.18)

The cost of this procedure is O(n(2r+1 − 1)).
From these estimates it follows that the cost of each reduction and backsubstitu-

tion stage is O(n2) floating point operations leading to the total cost of O(n2 log2 n)
operations.

It should be noted that the partial solution technique is not restricted to the case
of uniform meshes. Furthermore, the dimensions of the partial solution problems can
be arbitrary. These properties follow from the fact that we do not apply FFT in
computing the required sparse Fourier transforms. This is the reason why the PSCR
method can be quite easily generalized to treat more complicated situations.

4. Other variants.

4.1. Rational polynomial factorization technique. The reduction and back-
substitution stages (2.9) and (2.11) can also be computed in a traditional cyclic re-
duction manner using a rational polynomial factorization of the matrices A(r) and
T (r). Let us define three matrix functions recursively as follows: Set α(0)(A, T) = A,
τ (0)(T) = T, and β(0)(A, T) = I. For r = 1, . . . , k − 1, set

α(r)(A, T) =
(
α(r−1)(A, T)

)2

− 2
(
τ (r−1)(T)

)2

,

τ (r)(T) =
(
τ (r−1)(T)

)2

= T 2r ,

β(r)(A, T) = β(r−1)(A, T)
(
α(r−1)(A, T)

)−1

.

(4.1)

Then, it is straightforward to show that

A(r) = β(r)(A, T)α(r)(A, T) and T (r) = β(r)(A, T)τ (r)(T).(4.2)

636 TUOMO ROSSI AND JARI TOIVANEN

In [4], it has been shown that the polynomial α(r) has the expansion

α(r)(A, T) =
2r∏
j=1

(A− θ(j, r)T), θ(j, r) = 2 cos

(
(2j − 1)π

2r+1

)
,(4.3)

and from this, it easily follows that

β(r)(A, T) =
2r−1∏
j=1

(A− φ(j, r)T)−1, φ(j, r) = 2 cos

(
jπ

2r

)
.(4.4)

In the reduction stage, we compute vectors of the form x = T (r−1)
(
A(r−1)

)−1
y. By

using the above formulas we obtain

x = T (r−1)
(
A(r−1)

)−1

y = τ (r−1)(T)
(
α(r−1)(A, T)

)−1

y

=

2r−1∏
j=1

[
(A− θ(j, r − 1)T)−1T

]
y.

(4.5)

This multiplication can be carried out in a standard cyclic reduction way by solving
a sequence of tridiagonal linear systems. Furthermore, the reduction stage can be
implemented in such a way that the LU decomposition of each matrix A−θ(j, r−1)T
is computed only once at each reduction level r. This LU decomposition can then be
used in solving all the arising 2k−r−1 problems at level r.

In the backsubstitution stage, we have to compute the following type of vectors:

x =
(
A(r)

)−1 (
y + T (r)z

)
. The vector x can be computed in a stable way as follows:

x =
(
α(r)(A, T)

)−1 (
β(r)

)−1

y +
(
α(r)(A, T)

)−1

τ (r)(T)z

=

2r∏
j=2

[
(A− θ(j, r)T)−1(A− φ(j − 1, r)T)

]
(A− θ(1, r)T)−1y

+
2r∏
j=1

[
(A− θ(j, r)T)−1T

]
z.

(4.6)

The cost of the above algorithm can again be slightly reduced by computing the LU
decomposition of each matrix A− θ(j, r)T only once. Then, all the systems involving
this matrix in the 2k−r−1 problems of level r are solved using the LU decomposition.

The number of arithmetic operations which are needed in solving a tridiagonal
n×n linear system is O(n). A straightforward analysis of the proposed variant shows
that the number of tridiagonal systems which have to be solved is O(n(log2 n − 1)).
Hence, the cost of this variant is proportional to O(n2 log2 n).

4.2. Rational polynomial approach using partial fractions. In this sec-
tion, we describe how the partial fraction technique [16] is applied in computing (4.5)
and (4.6). The basic idea is given by the next lemma [16].

Lemma 4.1. Let p(t) and q(t) be two polynomials satisfying the following:
1. p and q are relatively prime,
2. deg p < deg q = n,

A NONSTANDARD CYCLIC REDUCTION METHOD 637

3. the roots, α1, α2, . . . , αn, of q are distinct.
Then,

p(t)

q(t)
=

n∑
j=1

cj
t− αj , where cj =

p(αj)

q′(αj)
.

Let us consider the specific case T = I. Then, it follows that

α(r)(A, I) = C2r (A), β(r)(A, I) = (S2r−1(A))
−1
, τ (r)(I) = I,(4.7)

where C2r (t) and S2r−1(t) are the modified Chebyshev polynomials (see, for example,
[1]) defined by

C2r (t) =

{
2 cos (2r arccos(t/2)) , 0 ≤ t < 2,

2 cosh (2r arccosh(t/2)) , t ≥ 2,
(4.8)

S2r−1(t) =

{
sin (2r arccos(t/2)) / sin (arccos(t/2)) , 0 ≤ t < 2,

sinh (2r arccosh(t/2)) / sinh (arccosh(x/2)) , t ≥ 2.
(4.9)

In the reduction stage (4.5), we need to perform matrix–vector multiplications of the
form

x = p(A)q(A)−1y, with p(A) = I, q(A) = C2r−1(A).(4.10)

Since

q′(t) = C ′2r−1(t) = 2r−1S2r−1−1(t),(4.11)

we obtain, by substituting t with the roots αj = θ(j, r− 1), j = 1, . . . , 2r−1 given by
(4.3), that the vector x in (4.5) can be computed in an additive manner by

x = 21−r
2r−1∑
j=1

(−1)j−1 sin

(
(2j − 1)π

2r

)
(A− θ(j, r − 1)I)−1y.(4.12)

A similar technique can be employed also in the backsubstitution stage (4.6). Ob-

viously, the computation of the part
(
A(r)

)−1
T (r)z can be computed analogously to

(4.12). Let us therefore consider the matrix–vector multiplication
(
A(r)

)−1
y. Hence,

it suffices to study the expressions

p(A)q(A)−1y, with p(A) = S2r−1(A), q(A) = C2r (A).(4.13)

It immediately follows from (4.11) that for all j = 1, . . . , 2r, we have cj = 2−r. This
means that the vector x in (4.6) can be computed in an equivalent way by

x = 2−r
2r∑
j=1

(A− θ(j, r)I)−1

(
y + (−1)j−1 sin

(
(2j − 1)π

2r+1

)
z

)
.(4.14)

Theorem 4.2. In the case T = I, the partial fraction technique is equivalent
to the partial solution approach in the sense that it gives all the tridiagonal systems
(3.14), (3.16) of the arising partial solution problems which have a nonzero solution.

638 TUOMO ROSSI AND JARI TOIVANEN

Table 4.1
The number of arising tridiagonal systems in the partial solution, rational polynomial factor-

ization, and partial fraction variants, and in the Buneman’s second variant of the standard cyclic
reduction method.

Variant No. of tridiagonal systems
part.sol. (2n+ 3) log2(n+ 1)− 4n
rat.fact. 3

2
(n+ 1) log2(n+ 1)− n

part.frac. (n+ 1) log2(n+ 1)− n
Buneman (n+ 1) log2(n+ 1)− n

Proof. In the reduction stage of the partial solution approach, we compute the
vector blocks x1 and x2r−1 of a given partial solution problem with the only nonzero
right-hand side block being y2r−1 . We shall only consider the computation of x1. The
case of x2r−1 can be treated analogously. We have

x1 =
2r−1∑
k=1

(wk)1x̃k =
2r−1∑
k=1

(wk)1(Kn + λkIn)−1(wk)2r−1y2r−1

= 21−r
2r−1∑
k=1

sin

(
kπ

2r

)
sin

(
kπ

2

)
(Kn + λkIn)−1y2r−1

= 21−r
2r−1∑
j=1

(−1)j−1 sin

(
(2j − 1)π

2r

)
(Kn + λ2j−1In)−1y2r−1 .

Since

2 cos

(
(2j − 1)π

2r

)
= 2− 4

(
sin

(
(2j − 1)π

2r+1

))2

, j = 1, . . . , 2r−1,

we obtain that

x1 = 21−r
2r−1∑
j=1

(−1)j−1 sin

(
(2j − 1)π

2r

)
(A− θ(j, r − 1)I)−1y2r−1 .

It is easy to see in a similar manner that the backsubstitution stages are also equiva-
lent. The only difference in the above analysis is the treatment of the nonzero middle
block of the right-hand side vector. Since the middle components of the correspond-
ing eigenvectors wj are of the form

√
2−r sin(jπ/2), it follows that the contribution of

the Fourier transforms is only a scaling factor 2−r, which indeed appears in the term
corresponding to the middle block in the formula (4.14).

We have collected the numbers of the arising tridiagonal solves in Table 4.1 for
the variants considered so far. For comparison, we also include the Buneman’s second
variant of the standard cyclic reduction method [3], [4], [13]. As can be seen, the
computational cost of the radix two partial solution variant is about two times larger
than that of the Buneman’s method. However, a performance comparable to the
Buneman’s method can be achieved by using the partial fraction variant. The partial
solution variant has a wider set of applications. For example, it is straightforward to
apply it in the solution of problems discretized on nonuniform meshes. Its performance
can be improved by increasing the radix of the algorithm which can be conveniently
done by an alternative formulation using orthogonal projection matrices [10], [11]. In
[11], it was observed that this approach leads to an algorithm which appears to be
more efficient than the method considered in [12], [15].

A NONSTANDARD CYCLIC REDUCTION METHOD 639

4.3. FFT approach. An alternative way to solve the arising linear systems
(2.9) and (2.11) is to apply the FFT. Because the matrices A(r) and T (r) commute,
they have the same set of eigenvectors. Let us denote by Λ(0) and Γ(0) the diagonal
matrices which contain the eigenvalues of A and T , respectively. Hence,

A = QΛ(0)QT , T = QΓ(0)QT ,(4.15)

where Q is the orthogonal matrix whose column vectors are the eigenvectors of the
matrices A and T . From the update formulas (2.7) and (2.8), we obtain

A(r) = QΛ(r)QT ⇐⇒
(
A(r)

)−1

= Q
(

Λ(r)
)−1

QT ,

T (r) = QΓ(r)QT ,
(4.16)

where

Λ(r) = Λ(r−1) − 2
(

Λ(r−1)
)−1 (

Γ(r−1)
)2

,

Γ(r) =
(

Λ(r−1)
)−1 (

Γ(r−1)
)2

.

(4.17)

In the case of our model problem, we have the explicit formulas for the eigenvalues
and eigenvectors of the matrices A and T . They are given by

Λ
(0)
i,i = 2 + 4

(
sin

(
iπ

2(n+ 1)

))2

, Γ
(0)
i,i = 1, i = 1, . . . , n,

Qi,j =

√
2

n+ 1
sin

(
ijπ

n+ 1

)
, i, j = 1, . . . , n.

(4.18)

Due to the special structure of the eigenvectors, we can apply the fast discrete sine
transform in the multiplication by the matrix Q. The use of the expansions (4.16)
leads to the following algorithms for the reduction and backsubstitution stages. The

computation of x = T (r−1)
(
A(r−1)

)−1
y in the reduction stage is done by

x = QΓ(r−1)
(

Λ(r−1)
)−1

QT y.(4.19)

The operations of the form x =
(
A(r)

)−1 (
y + T (r)z

)
in the backsubstitution stages

can be computed by

x = Q
(

Λ(r)
)−1 (

QT y + Γ(r)QT z
)
.(4.20)

In both cases, the multiplications by the matrices Q and QT can be done using the
FFT. It should be noted that the number of matrix–vector multiplications could be re-
duced by storing the Fourier coefficients from the previous levels. The asymptotic cost
of this approach can be estimated by counting the number of matrix–vector multipli-
cations by the matrices Q or QT . Since we apply FFT, the cost of one multiplication
by either Q or QT is O(n log2 n). The total number of the considered multiplications
is 5n, and hence, the cost of this variant is O(n2 log2 n).

640 TUOMO ROSSI AND JARI TOIVANEN

4.4. FACR(l) approach. From the previous estimates we noticed that all steps
of the polynomial factorization variant are approximately as expensive. However, in
the FFT-based approach, the steps become cheaper as r increases. This suggests
that we combine these methods in such a way that for small values of r we use
the polynomial factorization and solve the intermediate part using an FFT-based
approach. This is exactly what is done in the FACR(l)-type algorithms (see, for
example, [6], [13]).

The resulting FACR(l) algorithm can be easily deduced. After 0 ≤ l ≤ k−1 steps
of the reduction stage, we have the system

A(l) −T (l)

−T (l) A(l) . . .

. . .
. . . −T (l)

−T (l) A(l)

u2l

u2·2l
...

un−2l+1

 =

f

(l)

2l

f
(l)

2·2l
...

f
(l)

n−2l+1

 ,(4.21)

which is transformed to n tridiagonal systems by applying the FFT to the blocks f
(l)
j

and by diagonalizing the matrices A(l) and T (l). These tridiagonal systems are of
dimension (2k−l − 1)× (2k−l − 1) and they have the structure

aj −tj
−tj aj

. . .

. . .
. . . −tj
−tj aj

(x2l)j

(x2·2l)j
...

(xn−2l+1)j

 =

(QT f

(l)

2l
)j

(QT f
(l)

2·2l)j
...

(QT f
(l)

n−2l+1
)j

 .(4.22)

Here aj = Λ
(l)
j,j , tj = Γ

(l)
j,j and (QT f

(l)

i·2l)j , j = 1, . . . , n, denotes the jth component

of the vector QT f
(l)

i·2l , which is computed using the FFT. After all the n tridiag-
onal systems (4.22) are solved, the solution blocks are obtained with the FFT as
ui·2l = Qxi·2l . The remaining solution blocks are then recovered performing the
backsubstitution stages l − 1, . . . , 0.

Let us next study the optimal choice of l. We shall consider the case when the
reduction and backsubstitution stages are computed with the partial solution variant.
The rational polynomial factorization and partial fraction variants could also be used
here and the computational cost would be of the same order. The cost of performing l
steps of reduction and backsubstitution is of order lc n2 operations, while the solution
of the system (4.22) requires 2−l(c n2 + 2dn2 log2 n) operations, where c and d are
independent of n. Hence, the total cost is of order

lc n2 + 2−l(c n2 + 2dn2 log2 n),(4.23)

which attains its minimum when

l = log2

(
(c+ 2d log2 n) log 2

c

)
= O(log2 log2 n).(4.24)

By substituting this in the formula (4.23), we obtain that the cost is O(n2 log2 log2 n).

A NONSTANDARD CYCLIC REDUCTION METHOD 641

5. Numerical stability. We shall prove that the proposed variants of the non-
standard cyclic reduction method are linearly stable with respect to the size of the
problem n2 in the case when T = I, A = AT , and the smallest eigenvalue of A is at
least two. We shall use similar techniques as in [4] in our error analysis. The stability
of the proposed methods is also demonstrated in numerical experiments.

5.1. The stability estimate. Let ‖ · ‖ denote the spectral norm of a matrix
and let λ(A) denote the set of eigenvalues of the matrix A. Since we assumed that
λ ≥ 2 for all λ ∈ λ(A), the polynomials are of the latter form in (4.8) and (4.9). To
simplify the notation, we define

θ = arccosh(λ/2) = log a, a = λ/2 +

√
(λ/2)

2 − 1.(5.1)

Now, according to (4.7),∥∥∥∥(A(r)
)−1

∥∥∥∥ =

∥∥∥∥(β(r)(A, I)α(r)(A, I)
)−1

∥∥∥∥ =
∥∥S2r−1(A)C2r (A)−1

∥∥
≤ max
λ∈λ(A)

∣∣∣∣S2r−1(λ)

C2r (λ)

∣∣∣∣ = max
λ∈λ(A)

∣∣∣∣ sinh(2rθ)

2 sinh(θ) cosh(2rθ)

∣∣∣∣
= max
λ∈λ(A)

∣∣∣∣∣ eθ

e2θ − 1
· e

2r+1θ − 1

e2r+1θ + 1

∣∣∣∣∣ = max
λ∈λ(A)

∣∣∣∣∣ a

a2 − 1
· a

2r+1 − 1

a2r+1 + 1

∣∣∣∣∣
= max
λ∈λ(A)

∣∣∣∣∣a
∑2r

i=1 a
2r+1−2i

a2r+1 + 1

∣∣∣∣∣ = max
λ∈λ(A)

|q1(a)| .

(5.2)

In our case, λ ∈ (2, 6), from which it follows that a ∈ (1, 3 + 2
√

2). The function
q1(a) > 0 decays when a increases. Hence,∥∥∥∥(A(r)

)−1
∥∥∥∥ ≤ lim

a→1
q1(a) = 2r−1.(5.3)

A similar analysis shows that∥∥∥∥T (r)
(
A(r)

)−1
∥∥∥∥ ≤ max

λ∈λ(A)

∣∣C2r (λ)−1
∣∣ = max

λ∈λ(A)

∣∣∣∣ 1

a2r + a2−r

∣∣∣∣ = max
λ∈λ(A)

|q2(a)| .(5.4)

Again, we obtain that q2(a) > 0, and∥∥∥∥T (r)
(
A(r)

)−1
∥∥∥∥ ≤ lim

a→1
q2(a) =

1

2
.(5.5)

Let us now consider the error accumulation in the considered cyclic reduction

algorithm. Let f
(0)
i = fi denote the exact right-hand side vector blocks and let f

(0)
i,ε

be the floating point counterpart of f
(0)
i . Let ε ≥ 0 denote the approximation error

in the following sense. For every i = 1, . . . , n, we have∥∥∥f (0)
i − f (0)

i,ε

∥∥∥
2
≤ ε.(5.6)

642 TUOMO ROSSI AND JARI TOIVANEN

Then, from the update formula (2.9) for the right-hand side vectors, we obtain that
for r = 1, . . . , k − 1,∥∥∥f (r)

i·2r − f (r)
i·2r,ε

∥∥∥
2
≤
∥∥∥f (r−1)
i·2r − f (r−1)

i·2r,ε
∥∥∥

2
+

∥∥∥∥T (r)
(
A(r)

)−1
∥∥∥∥

·
(∥∥∥f (r−1)

i·2r−2r−1 − f (r−1)
i·2r−2r−1,ε

∥∥∥
2

+
∥∥∥f (r−1)
i·2r+2r−1 − f (r−1)

i·2r+2r−1,ε

∥∥∥
2

)
≤
∥∥∥f (r−1)
i·2r − f (r−1)

i·2r,ε
∥∥∥

2

+
1

2

(∥∥∥f (r−1)
i·2r−2r−1 − f (r−1)

i·2r−2r−1,ε

∥∥∥
2

+
∥∥∥f (r−1)
i·2r+2r−1 − f (r−1)

i·2r+2r−1,ε

∥∥∥
2

)
.(5.7)

Hence, ∥∥∥f (r)
i·2r − f (r)

i·2r,ε
∥∥∥

2
≤ g(r)(ε, δ),(5.8)

where

g(0)(ε, δ) = ε,

g(r)(ε, δ) = 2g(r−1)(ε, δ) + δ = 2rε+ (2r − 1)δ, r = 1, . . . , k − 1.
(5.9)

The positive parameter δ denotes the upper limit for the roundoff error resulting from
the computations which are performed at each level r.

Let us analyze the backsubstitution stage. When r = k − 1, we have∥∥u(n+1)/2 − u(n+1)/2,ε

∥∥
2
≤
∥∥∥∥(A(k−1)

)−1
∥∥∥∥ g(k−1)(ε, δ)

≤ 2k−2g(k−1)(ε, δ) = γ(k−1)(ε, δ).

(5.10)

For the levels r = k − 2, . . . , 0, we obtain, according to the backsubstitution scheme
(2.11), that∥∥uj·2r+1−2r − uj·2r+1−2r,ε

∥∥
2
≤
∥∥∥∥(A(r)

)−1

T (r)

∥∥∥∥ 2γ(r+1)(ε, δ)

+

∥∥∥∥(A(r)
)−1

∥∥∥∥ g(r)(ε, δ) + δ(5.11)

≤ γ(r+1)(ε, δ) + 2r−1g(r)(ε, δ) + δ = γ(r)(ε, δ).

Hence, the maximum error of the solution blocks uj , which are computed at the level
k − 1 ≥ r ≥ 0, is bounded from above with γ(r)(ε, δ), where

γ(k−1)(ε, δ) = 2k−2g(k−1)(ε, δ),

γ(r)(ε, δ) = 2k−2g(k−1)(ε, δ) +
k−2∑
i=r

(
2i−1g(i)(ε, δ) + δ

)
, r = k − 2, . . . , 0.

(5.12)

Since the error accumulates most to the blocks which are computed at the level r = 0,
we have proven the following result.

Theorem 5.1. Let fi, i = 1, . . . , n be the accurate right-hand side vector blocks
and let fi,ε be the floating point counterpart of fi, for which it holds that

‖fi − fi,ε‖2 ≤ ε.

A NONSTANDARD CYCLIC REDUCTION METHOD 643

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

10 100 1000

er
ro

r

n

part.sol.
rat.fact.
fast F.t.

Buneman

Fig. 5.1. The stability of the partial solution, rational polynomial factorization, FFT, and
Buneman’s variants. Error is the maximum blockwise Euclidean norm of the error vector used in
Theorem 5.1.

Let ui be the solution vector blocks corresponding to fi, which are obtained using exact
arithmetics, and let ui,ε be the solution vector blocks corresponding to fi,ε, which are
computed with floating point arithmetics. Then

‖ui − ui,ε‖2 ≤ γ(0)(ε, δ) ≤ 7

48
(n+ 1)2(ε+ δ), i = 1, . . . , n,

where δ denotes the upper bound of the roundoff error appearing in the computations
at each level r.

It should be noted that when solving the model Poisson problem, the spectral
radius of the inverse of the coefficient matrix is O(n2) as n grows. According to
Theorem 5.1, the blockwise error cannot, asymptotically, grow faster than O(n2).

5.2. Numerical experiments demonstrating stability. In this section, we
shall numerically demonstrate the stability properties of some of the proposed vari-
ants when solving the Poisson problems. We have tested all the different techniques
proposed in this paper. All the considered methods were implemented using the for-
mulas given earlier in this paper. Furthermore, for comparison, we also tested the
well-known stable Buneman’s second variant of the standard cyclic reduction method
which was implemented according to formulas given in [4].

First, we generated a random solution vector u whose components were uniformly
distributed to the interval (0, 1). From the vector u, we computed the corresponding
right-hand side vector f by multiplying u by the coefficient matrix A given by (2.1) and
(2.2). We then recovered the solution with all the proposed methods and computed
the norm of the blockwise error appearing in the error estimate of Theorem 5.1. All
the computations were performed in double-precision arithmetics conforming to the
IEEE standard.

Some of the test results are plotted in Figure 5.1. We chose the variants which use
the partial solution method, the rational polynomial factorization, and the FFTs. The
results of Buneman’s method are also given for comparison. The missing FACR(l)
method and the partial fraction approach behave in a similar manner to those shown
in the figure.

644 TUOMO ROSSI AND JARI TOIVANEN

As can be seen, the errors can be accurately estimated by Theorem 5.1. In partic-
ular, the methods presented in this paper appear to have similar stability properties
in this experiment as does the classical Buneman’s method.

6. Conclusions. In this paper, we have presented a nonstandard cyclic reduc-
tion method which, being combined with the partial solution technique, leads to the
PSCR method. The cyclic reduction-type formulation also made it possible to adopt
the other well-known techniques to the considered nonstandard method leading, for
example, to the O(n2 log log n) FACR variant. We showed that in the considered
framework, the use of the partial fraction expansions for the rational polynomial
factorizations is equivalent to the use of the partial solution technique in the case
of uniform discretization meshes. The considered partial fraction variant is computa-
tionally as expensive as the Buneman’s second variant of the standard cyclic reduction
method, whereas the partial solution variant is approximately twice more expensive.
However, the partial solution variant is applicable to a wider class of problems and,
furthermore, its efficiency can be considerably improved by increasing its radix from
two. Also, we modified the error analysis of the standard cyclic reduction technique
to our nonstandard framework. According to the stability estimate and our numeri-
cal experiments, the accuracy of the PSCR method is comparable to the well-known
Buneman’s variants of the block cyclic reduction when solving the Poisson equation.

Acknowledgment. The authors wish to thank Professor Yuri A. Kuznetsov for
introducing them to the PSCR method.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1968.

[2] A. Banegas, Fast Poisson solvers for problems with sparsity, Math. Comp., 37 (1978), pp.
441–446.

[3] O. Buneman, A Compact Non-iterative Poisson Solver, Technical report 294, Stanford Uni-
versity Institute for Plasma Research, Stanford, CA, 1969.

[4] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s
equations, SIAM J. Numer. Anal., 7 (1970), pp. 627–656.

[5] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc.
Comput. Mach., 12 (1965), pp. 95–113.

[6] R. W. Hockney, The potential calculation and some applications, Methods Comput. Phys., 9
(1970), pp. 135–211.

[7] Yu. A. Kuznetsov, Matrix computational processes in subspaces, in Computing Methods in
Applied Sciences and Engineering, VI, R. Glowinski and J.-L. Lions, eds., North–Holland,
Amsterdam, New York, 1984, pp. 15–31.

[8] Yu. A. Kuznetsov, Numerical methods in subspaces, in Vychisl. Processy i Sistemy II, G. I.
Marchuk, ed., Nauka, Moscow, 1985, pp. 265–350 (in Russian).

[9] Yu. A. Kuznetsov and A. M. Matsokin, On partial solution of systems of linear algebraic
equations, Soviet J. Numer. Anal. Math. Modelling, 4 (1989), pp. 453–468.

[10] Yu. A. Kuznetsov and T. Rossi, Fast direct method for solving algebraic systems with sepa-
rable symmetric band matrices, East-West J. Numer. Math., 4 (1996), pp. 53–68.

[11] T. Rossi and J. Toivanen, A parallel fast direct solver for block tridiagonal systems with
separable matrices of arbitrary dimension, SIAM J. Sci. Comput., to appear.

[12] P. N. Swarztrauber, A direct method for the discrete solution of separable elliptic equations,
SIAM J. Numer. Anal., 11 (1974), pp. 1136–1150.

[13] P. N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algo-
rithm for the discrete solution of Poisson’s equation on a rectangle, SIAM Rev., 19 (1977),
pp. 490–501.

[14] P. N. Swarztrauber, Approximate cyclic reduction for solving Poisson’s equation, SIAM J.
Sci. Statist. Comput., 8 (1987), pp. 199–209.

A NONSTANDARD CYCLIC REDUCTION METHOD 645

[15] P. N. Swarztrauber and R. A. Sweet, Efficient FORTRAN subprograms for the solution of
separable elliptic partial differential equations, ACM Trans. Math. Software, 5 (1979), pp.
352–364.

[16] R. A. Sweet, A parallel and vector variant of the cyclic reduction algorithm, SIAM J. Sci.
Statist. Comput., 9 (1988), pp. 761–765.

[17] P. S. Vassilevski, Fast algorithm for solving a linear algebraic problem with separable variables,
C. R. Acad. Bulgare Sci., 37 (1984), pp. 305–308.

LOGARITHMIC NORMS FOR MATRIX PENCILS∗

INMACULADA HIGUERAS† AND BERTA GARCÍA-CELAYETA†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 646–666

Abstract. We extend the usual concepts of least upper bound norm and logarithmic norm
of a matrix to matrix pencils. Properties of these seminorms and logarithmic norms are derived.
This logarithmic norm can be used to study the growth of the solutions of linear variable coefficient
differential algebraic systems.

Key words. matrix pencil, logarithmic norm, Lyapunov stability, differential algebraic system

AMS subject classifications. 15A22, 34D20, 65L07

PII. S0895479897325955

1. Introduction. We are interested in the growth of the solutions of the homo-
geneous linear time varying differential system

A(t)x′(t) +B(t)x(t) = 0(1.1)

with A(t), B(t) n×n matrices. If the matrix A(t) is regular, then (1.1) is an ordinary
differential equation (ODE); otherwise, (1.1) is a differential algebraic system (DAE).
During recent years, DAEs have been deeply studied [7, 12, 2, 8, 3, 15]. One important
characteristic of DAEs is that we cannot impose an initial condition of the form
x(t0) = x0 for any x0 ∈ Rn; only some of them, called consistent initial conditions,
are admissible.

The concept of logarithmic norm for a matrix was introduced in 1958 by Dahlquist
and Lozinskij as a tool to study the growth of solutions to ODEs and the error growth
in discretization methods for their approximate solution. For details see [5]. For a
matrix A, the logarithmic norm is defined by

µ[A] = lim
∆→0+

‖I + ∆A‖ − 1

∆
.

The norm here is generally assumed to be a least upper bound (l.u.b.) norm,

‖A‖ = max
x6=0

‖Ax‖
‖x‖ .

Properties of norms and logarithmic norms can be found in [11, 5, 4]. In the following
lemmas we collect some well-known ones.

Lemma 1.1. For an n × n matrix A with spectral radius ρ(A) we have the fol-
lowing:

(i) ρ(A) ≤ ‖A‖ for any l.u.b. norm.
(ii) given ε > 0, there exists a norm such that ‖A‖ ≤ ρ(A) + ε.

∗Received by the editors August 11, 1997; accepted for publication (in revised form) by V.
Mehrmann May 20, 1998; published electronically March 23, 1999. This research was supported
by the Gobierno de Navarra project “Métodos numéricos en la simulación de fenómenos evolutivos
y en la aproximación de superficies” (O.F. 510/1994).

http://www.siam.org/journals/simax/20-3/32595.html
†Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona,

Spain (higueras@upna.es, berta@upna.es).

646

LOGARITHMIC NORMS FOR MATRIX PENCILS 647

(iii) ε = 0 is possible in (ii) if and only if no eigenvalue λ of A with |λ| = ρ(A)
is defect. (An eigenvalue is defect if it has a noncomplete set of eigenvectors.)

Lemma 1.2. Let A and B be n×n matrices. Denote by α(A) the spectral abscissa
of A (i.e., the maximal real part of the eigenvalues of A) and by λi[A] the eigenvalues
of A. Then we have the following:

(i) −‖A‖ ≤ −µ[−A] ≤ Re (λi[A]) ≤ µ[A] ≤ ‖A‖, 1 ≤ i ≤ n.
(ii) µ[cA] = |c|µ[sgn (c)A] for all c ∈ R.
(iii) µ[A+ zI] = µ[A] + Re z for all z ∈ C.
(iv) max(µ[A]− µ[−B],−µ[−A] + µ[B]) ≤ µ[A+B] ≤ µ[A] + µ[B].
(v) If ‖ · ‖ is an inner product norm, then

µ[A] = max
x6=0

〈Ax, x〉
〈x, x〉 .

This means that the logarithmic norm is the smallest one-sided Lipschitz constant.
(vi) If ‖ · ‖ is an inner product norm, then the logarithmic norm is the smallest

element of the set

M = {θ/‖eAt‖ ≤ eθt, t ≥ 0}.(1.2)

Thus µ[A] provides the optimal exponential bound for ‖eAt‖ for t ≥ 0. We get ‖eAt‖ ≤
1 for all t ≥ 0 if and only if µ[A] ≤ 0.

(vii) The logarithmic norm can also be written as

µ[A] = lim
h→0+

ln ‖eAh‖
h

.(1.3)

We briefly note here the connection between logarithmic norms and linear con-
stant coefficient ODEs. If we consider the problem

x′(t) = Ax(t),(1.4)

whose solution is x(t) = eAtx(0), it can be proved that

‖x(t)‖ ≤ eµ[A]t‖x(0)‖, t ≥ 0.(1.5)

Thus ‖eAt‖ ≤ eµ[A]t and µ[A] is in the set M (1.2). Moreover, if µ[A] < 0, (1.5)
implies that the solution is asymptotically stable.

To construct the set M (1.2) and prove that µ[A] is in M , it has been used that
the solution of the linear constant coefficient ODE (1.4) can be expressed in terms of
the exponential of a matrix. In order to work in a similar way for matrix pencils, we
need the solution of (1.1). We must also remember some concepts on matrix pencils
and DAEs that we will use later. For details see [7, 3, 6] and the introduction in [16].

In the case of the linear constant coefficient DAE (1.1), in order to get unique-
ness for the solution of initial value problems, the pencil (A,B) must be regular.
This means that there exists λ ∈ C such that det (λA+B) 6= 0. Otherwise, if
det (λA+B) = 0 for all λ, the pencil is called singular. Regularity of the pencil is
also needed to get uniqueness of the numerical solution for the DAE with the usual
methods for ODEs.

Observe that if the pencil (A,B) is regular, then Ker (A) ∩Ker (B) = {0}. Oth-
erwise, for a v ∈ Ker (A)∩Ker (B), we have (λA+B)v = 0 for any λ, and the pencil
is singular.

648 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

For a regular pencil, det (λA+B) is a polynomial with degree less than or equal
to n. The complex values λ such that det (λA+B) = 0 are called finite eigenvalues
of the pencil. Observe that not every pencil has finite eigenvalues. For example, the
pencil (A,B) for

A =

(
0 1
0 0

)
, B =

(
1 0
0 1

)
has no finite eigenvalues. It is said that infinity is an eigenvalue of the pencil (A,B)
if det (A) = 0. The ODE (1.4) has only finite eigenvalues; the DAE (1.1) have infinite
eigenvalues and may have finite ones. We will consider only the set of finite eigenvalues
of the pencil and denote it by σ(A,B), the finite spectrum of (A,B):

σ(A,B) = {λ ∈ C/det (λA+B) = 0}.
For λ ∈ C, the vectors v ∈ Cn such that (λA+B)v = 0 are called eigenvectors associ-
ated with the finite eigenvalue λ. Observe that for any eigenvector v associated with
finite eigenvalues, we have Av 6= 0. The eigenvectors associated with the eigenvalue
infinity are all the vectors in Ker (A).

The spectral radius, denoted by ρ(A,B), is defined as

ρ(A,B) = max{|λ|/λ ∈ σ(A,B)}.
For a regular matrix pencil (A,B), there are regular matrices P and Q such that

PAQ =

(
Ir

N

)
, PBQ =

(
J

In−r

)
,

where N is a block diagonal (n−r)×(n−r) matrix formed by Jordan blocks associated
with the zero eigenvalue, and J , an r×r matrix, is formed by Jordan blocks associated
with the finite eigenvalues of the pencil. The index of nilpotency of the DAE (or index)
is the order of nilpotency of the matrix N . The pencil (diag(Ir, N),diag(J, In−r)) is
called the Weierstrass–Kronecker canonical form of (A,B). Observe that σ(A,B) =
σ(−J).

If k is the index of the pencil, we also have

Rn = Ker (Âk)⊕ Img (Âk),

with Â = (cA+ B)−1A, B̂ = (cA+ B)−1B for any c such that cA+ B is regular. It
can be proved that Â and B̂ commute. The above expressions are independent of the
constant c chosen to construct the matrices Â and B̂. If we want to note the specific
value c used, we will write Âc and B̂c. To get the solution of the DAE, we decompose

x(t) = ÂDÂx(t) + (I − ÂDÂ)x(t) = y(t) + z(t),

with AD the Drazin inverse of the matrix A [3, p. 121]. One of the properties of the
Drazin inverse is that Img (ÂDÂ) = Img (Âk). In the homogeneous case, z(t) = 0 and
the function y(t) solves the differential problem

y′(t) = −ÂDB̂y(t).(1.6)

Thus y(t) = e−Â
DB̂ty0, and the solution is given by

x(t) = e−Â
DB̂ty0 = e−Â

DB̂tÂDÂx0

LOGARITHMIC NORMS FOR MATRIX PENCILS 649

for any x0 ∈ Rn. Only one part of the solution, namely y(t) = ÂDÂx(t), is given by
the constant coefficient differential equation (1.6). Therefore, to know the behavior
of the solution of the DAE we must study this ODE without forgetting the DAE
context. For example, for (1.6) we have to consider initial conditions only in the
lower dimension space Img (ÂDÂ). If we consider a solution for the problem (1.6), we
get

ÂDÂy(t) = ÂDÂe−Â
DB̂ty0 = ÂDÂy0 + [e−Â

DB̂t − I]y0 = (ÂDÂ− I)y0 + y(t),

where we have used that ÂDÂÂD = ÂD. Thus the solution of any linear differential
system with coefficient matrix −ÂDB̂ and y0 in Img (ÂDÂ) is in Img (ÂDÂ). Observe
that the consistent initial condition is x(0) = ÂDÂx0 ∈ Img (ÂDÂ), and the solution
x(t) is also in Img (ÂDÂ). Observe too that we get the same expression if we restrict
to vectors x0 in Img (ÂDÂ).

The rest of the paper is structured as follows. In section 2 we define a seminorm
for a matrix pencil and derive some properties. In section 3 we define the logarithmic
norm for a matrix pencil and get some properties. In section 4 we relate the qualitative
behavior of the solutions of linear variable coefficient DAEs with the logarithmic norm
of a pencil constructed from the original one. Some examples are given. Finally,
in section 5 we give other characterizations of the logarithmic norm for some sub-
spaces V .

2. Seminorms. Given a matrix pencil (A,B), we are looking for an extension
of the l.u.b. norm for a matrix, such that a similar property to (i) in Lemma 1.1
holds, i.e., the spectral radius, whenever it exists, should be less than or equal to this
number. In order to find this value, we proceed in a way similar to how it is done for
l.u.b. norms. If v is an eigenvector of the pencil associated with the eigenvalue λ, we
have

|λ|‖Av‖ = ‖Bv‖,
and as Av 6= 0, we can consider the eigenvector w = v/‖Av‖,

|λ| = ‖Bw‖.
We can be tempted to bound this expression by

sup
v∈Rn,‖Av‖=1

‖Bv‖,

but a simple example shows us that this supreme is not always finite.
Example 1. For A and B,

A =

(
0 0
0 1

)
, B =

(
1 0
0 0

)
,

the pencil is regular. If vn = (n, 1)t, then ‖Avn‖∞ = 1, ‖Bvn‖∞ = n, and the set
{‖Bv‖/‖Av‖ = 1} is not bounded.

Definition 2.1. We consider a vectorial norm ‖·‖. Given a matrix pencil (A,B)
and a set V ⊆ Rn such that

{‖Bv‖/v ∈ V, ‖Av‖ = 1
}

is nonempty and bounded, we
define ‖A,B‖V by

‖A,B‖V = sup
v∈V,‖Av‖=1

‖Bv‖.(2.1)

650 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

We characterize the sets for which (2.1) exists.
Proposition 2.2. Let V ⊆ Rn be a subspace such that V 6= {0} and V ∩

Ker (A) = {0}. Then ‖A,B‖V is well defined.
Proof . Consider the linear, continuous, and injective function f : V → Rn,

v ↪→ Av. We can define f−1 : f(V) → V , w ↪→ f−1(w), which is also a continuous
function.

As the set

T = {w ∈ f(V)/‖w‖ = 1}

is compact in f(V), the set

f−1(T) = {v ∈ V/‖Av‖ = 1}

is also a compact set in V and in Rn. Therefore there exists

sup
v∈V,‖Av‖=1

‖Bv‖ = max
v∈V,‖Av‖=1

‖Bv‖.

Definition 2.3. We say that a subspace V 6= {0} is an admissible subspace for
‖A, ·‖V if V ∩Ker (A) = {0}.

Remark . We can also define ‖A,B‖V for singular pencils (A,B).
In what follows we will always consider admissible subspaces V . There are other

equivalent definitions to (2.1).
Proposition 2.4. If V is an admissible subspace for ‖A, ·‖, then

‖A,B‖V = sup
v∈V
‖Av‖≤1

‖Bv‖ = sup
v∈V
‖Av‖<1

‖Bv‖ = sup
v∈V
‖Av‖6=0

‖Bv‖
‖Av‖

= inf{c/‖Bx‖ ≤ c‖Ax‖,∀x ∈ V }.

Moreover, all the suprema are maxima.
Proof. The proof is straightforward.
Proposition 2.5. Properties of (2.1) are as follows:

(i) ‖Bv‖ ≤ ‖A,B‖V .‖Av‖ for all v ∈ V .

(ii) For any α, β ∈ C, with α 6= 0, we have ‖αA, βB‖V = |β|
|α|‖A,B‖V .

(iii) ‖A,B + C‖V ≤ ‖A,B‖V + ‖A,C‖V .
(iv) If V ⊆ Ker (B), then ‖A,B‖V = 0. Thus ‖A,B‖V = 0 does not imply

B = 0. The application

PA,V : L(Rn)→ R, B ↪→ PA,V (B) = ‖A,B‖V
is a seminorm.

(v) If V contains an eigenvector associated with any eigenvalue λ of (A,B),
then

|λ| ≤ ‖A,B‖V .(2.2)

(vi) If V contains an eigenvector associated with any eigenvalue λ of (A,B) such
that |λ| = ρ(A,B), then

ρ(A,B) ≤ ‖A,B‖V .(2.3)

LOGARITHMIC NORMS FOR MATRIX PENCILS 651

(vii) Let P be a nonsingular matrix; then ‖AP,BP‖V = ‖A,B‖PV , where PV =
{Px/x ∈ V }. In particular, if A is not singular, then

‖A,B‖Rn = ‖I,BA−1‖Rn = ‖BA−1‖.
Proof. The proof is immediate from the definition and the properties of vectorial

norms.
Remark . For any nonsingular matrix P , in general ‖PA,PB‖V 6= ‖A,B‖V . For

example, for

A =

(
1 0
0 0

)
, B =

(
1 1
0 1

)
, P =

(
1 0
1 1

)
,

and V = 〈(1, 1)t〉,

‖A,B‖V =
‖(2, 1)t‖
‖(1, 0)t‖ , ‖PA,PB‖V =

‖(2, 3)t‖
‖(1, 1)t‖ .

Remark . The definition depends on V . In general ‖A,B‖V 6= ‖A,B‖W even if
Rn = Ker (A)⊕ V = Ker (A)⊕W . Consider for example

A =

 1
1

0

 , B =

 1
1

1

 .

This is an index 1 DAE, with finite eigenvalues λ = −1 (double), Ker (A) = 〈(0, 0, 1)t〉.
We consider V1 = 〈(1, 0, 0)t, (0, 1, 0)t〉. Then

max
v∈V1,‖Av‖6=0

‖Bv‖
‖Av‖ = max

v=(v1,v2,0)t

‖(v1,v2,0)t‖6=0

‖(v1, v2, 0)t‖
‖(v1, v2, 0)t‖ = 1.

We consider now V2 = 〈(1, 0, 0)t, (0, 1, 1)t〉. Then

max
v∈V2,‖Av‖6=0

‖Bv‖
‖Av‖ = max

v=(v1,v2,v2)t

‖(v1,v2,v2)t‖6=0

‖(v1, v2, v2)‖
‖(v1, v2, 0)‖ =

√

2 in ‖ · ‖2,
2 in ‖ · ‖1, and

1 in ‖ · ‖∞.
Remark . Observe that for A = In and V = Rn, ‖In, B‖Rn = ‖B‖, but we can

also use ‖In, B‖V := ‖B‖V for any other lower dimension subspace. Then

‖Bx‖ ≤ ‖B‖V ‖x‖ for all x ∈ V,
and if ν is a constant such that

‖Bx‖ ≤ ν‖x‖ for all x ∈ V,
then ‖B‖V ≤ ν.

Remark . If V = Img (C) and BC = C, then ‖In, B‖V = 1. This situation
occurs for V = Img (AÂDÂ). A simple computation gives AÂD(cA+ B)−1AÂDÂ =
AÂDÂÂDÂ = AÂDÂ, and thus

‖AÂD(cA+B)−1‖Img (AÂDÂ) = 1.

652 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

For the Euclidean norm, ‖A‖2 = ρ1/2(AtA). For matrix pencils, we get the
following result.

Proposition 2.6. Consider the n× s matrix S whose columns are a basis of V .
Then

‖A,B‖V,2 =
√
ρ(StAtAS, StBtBS).

Proof . We compute

‖A,B‖2V,2 = max
v∈V
v 6=0

‖Bv‖2
‖Av‖2 = max

v∈V
v 6=0

vtBtBv

vtAtAv
= max

x∈Rs
x6=0

xtStBtBSx

xtStAtASx
.

Observe that StAtAS is a positive matrix because V ∩Ker (A) = 0. Thus the pencil
(StAtAS, StBtBS) is positive. Therefore the eigenvalues are positive and, from [6],

max
x∈Rs
x6=0

xtStBtBSx

xtStAtASx
= λmax(StAtAS, StBtBS) = ρ(StAtAS, StBtBS).

Given a nonsingular matrix T and a vectorial norm ‖ · ‖, we can define ‖x‖T =
‖Tx‖. The corresponding subordinate matrix norm satisfies ‖A‖T = ‖TAT−1‖, and
the logarithmic norm becomes µT (A) = µ(TAT−1). It is said that the norms ‖ · ‖
and ‖ · ‖T are similar.

For matrix pencils we can define similar concepts. Given a vectorial norm ‖ · ‖
and nonsingular matrices T and T̃ ,

‖A,B‖T,V = max
x∈V
x6=0

‖Bx‖T
‖Ax‖T

= max
x∈V
x6=0

‖TBx‖
‖TAx‖ = max

y∈T̃V
y 6=0

‖TBT̃−1y‖
‖TAT̃−1y‖ ,

where T̃ V = {T̃ x/x ∈ V }. Thus

‖A,B‖T,V = ‖TA, TB‖V = ‖TAT̃−1, TBT̃−1‖T̃ V .
If V is T̃ -invariant, then

‖A,B‖T,V = ‖TAT̃−1, TBT̃−1‖V .
Observe that (2.3) is the analogous expression to Lemma 1.1(i). For the seminorm

defined for the matrix pencil, equivalent results to Lemma 1.1(ii) can be proved.
Theorem 2.7. Let (A,B) be a matrix pencil with spectral radius ρ(A,B). Given

ε > 0, there exist a vectorial norm ‖ · ‖ and a subspace V such that

ρ(A,B) ≤ ‖A,B‖V ≤ ρ(A,B) + ε.

Moreover, ε = 0 is possible if and only if no eigenvalue λ of (A,B) with |λ| = ρ(A,B)
is defect.

Proof . We consider the Kronecker canonical form

PAQ =

(
Ir

N

)
, PBQ =

(
J

In−r

)
.

Suppose that J = diag(J1, . . . , Jk), with Ji Jordan blocks of size ri associated with
the eigenvalue λi. Consider E = {(x1, 0)/x1 ∈ Rr, ‖x1‖∞ ≤ 1} and the block diagonal
matrix ω(ε) = diag(ω1, . . . , ωk) with each block ωi = diag(1, ε, ε2, . . . , εri−1), and

ω̃(ε) =

(
ω(ε)

In−r

)
.

LOGARITHMIC NORMS FOR MATRIX PENCILS 653

Thus

‖ω̃(ε)PAQω̃(ε)−1, ω̃(ε)PBQω̃(ε)−1‖∞,E

=

∥∥∥∥(Ir N

)
,

(
ω(ε)Jω(ε)−1

In−r

)∥∥∥∥
∞,E

= ‖ω(ε)Jω(ε)−1‖∞.

For a Jordan block Ji associated with the eigenvalue λi, we have

ωi(ε)Jiωi(ε)
−1 =

λi 0 0 · · ·
ε λi 0 · · ·
0 ε λi · · ·
· · · ·

 .

Thus

‖ω(ε)Jω(ε)−1‖∞ = ρ(J) + ε = ρ(A,B) + ε.

We consider the subspace V = Qω̃(ε)−1E. If Q1 is the matrix formed by the first
r columns in Q, then

V = Qω̃(ε)−1E = Img (Q1ω(ε)−1).

From the Kronecker canonical form,

AQ1ω(ε)−1x = P−1

(
ω(ε)−1x

0

)
,

we get ker (A)∩V = {0}, and V is an admissible subspace for ‖A, ·‖V . If we consider
the vectorial norm, ‖ · ‖∞,ω̃(ε)P , then

‖A,B‖∞,ω̃(ε)P,V

satisfies the required bound.
As V contains eigenvectors associated with all the finite eigenvalues of the pencil,

we also get ρ(A,B) ≤ ‖A,B‖V .
If no eigenvalue λ of (A,B) with |λ| = ρ(A,B) is defect, the we can choose ε such

that ‖ω(ε)Jω(ε)−1‖∞ = ρ(J).

3. Logarithmic norms. With the seminorms above defined, we can define an
extension of the logarithmic norm of a matrix A.

Definition 3.1. Let (A,B) be a matrix pencil in Rn and V an admissible sub-
space for ‖A, ·‖V . We define the logarithmic norm of the pencil as

µV [A,B] = lim
∆→0+

‖A,A−∆B‖V − 1

∆
.(3.1)

Proposition 3.2. The limit (3.1) exists for all matrix pencils (A,B) and all
well-defined seminorms.

Proof. Let θ ∈ (0, 1). Then

‖A,A− θ∆B‖V = ‖A, θ(A−∆B) + (1− θ)A‖V ≤ θ‖A,A−∆B‖V + (1− θ)‖A,A‖V .
With the definition of seminorm given, ‖A,A‖V = 1; thus

‖A,A− θ∆B‖V − 1

θ∆
≤ θ‖A,A−∆B‖V + (1− θ)− 1

θ∆
=
‖A,A−∆B‖V − 1

∆
,

654 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

and consequently

h(∆) =
‖A,A−∆B‖V − 1

∆

is a nondecreasing function of ∆. From

‖A,A−∆B‖V ≤ ‖A,−∆B‖V + ‖A,A‖V = ∆‖A,B‖V + 1

and

1 = ‖A,A‖V = ‖A,A−∆B + ∆B‖V ≤ ‖A,A−∆B‖V + ∆‖A,B‖V
we get

−‖A,B‖V ≤ ‖A,A−∆B‖V − 1

∆
≤ ‖A,B‖V ,(3.2)

and thus the limit (3.1) exists.
Observe that for the pencil (In, B) and V = Rn, (3.1) is µ[−B].
The next result states some properties of the logarithmic norm defined for matrix

pencils.
Proposition 3.3. The following are properties of the logarithmic norm:

(i) −‖A,B‖V ≤ µV [A,B] ≤ ‖A,B‖V .
(ii) For any α, β in R, α 6= 0,

µV [αA, βB] =
|β|
|α|µV [A, sgn (α · β)B].

(iii) µV [A,B + C] ≤ µV [A,B] + µV [A,C].
(iv) If V contains an eigenvector associated with any eigenvalue λ of (A,B),

then Re (λ) ≤ µV [A,B].
(v) µV [A,B + zA] = µV [A,B] + Re z for all z ∈ C.

(vi) If ‖ · ‖ is an inner product norm, then

µV [A,B] = max
Ax6=0
x∈V

〈Ax,−Bx〉
〈Ax,Ax〉 .

This means that the logarithmic norm is the smallest constant (one-sided Lipschitz
constant) such that

〈Ax,−Bx〉 ≤ ν〈Ax,Ax〉 for all x ∈ V.
(vii) If A is invertible, and V = Rn, then

µV [A,B] = µV [In, BA
−1] = µ[−BA−1].

(viii) ‖Bx‖ ≥ max(−µV [A,B],−µV [A,−B]) for all x ∈ V .
(ix) For regular matrices T and T̃ ,

µV,T (A,B) = µV (TA, TB) = µT̃ V (TAT̃−1, TBT̃−1),

and if V is T̃ -invariant,

µV,T (A,B) = µV (TAT̃−1, TBT̃−1).

LOGARITHMIC NORMS FOR MATRIX PENCILS 655

Proof . Part (i) follows from (3.2).
(ii) We have

‖αA,αA−∆βB‖V =

∥∥∥∥αA,α [A−∆
β

α
B

]∥∥∥∥
V

=

∥∥∥∥A,A−∆
β

α
B

∥∥∥∥
V

.

Thus we can compute

µV [αA, βB] = lim
∆→0+

‖αA,αA−∆βB‖V − 1

∆
= lim

∆→0+

‖A,A−∆β
αB‖V − 1

∆

=
|β|
|α| lim

∆→0+

‖A,A−∆ |β||α| sgn (α · β)B‖V − 1

∆ |β||α|

=
|β|
|α|µV [A, sgn (α · β)B].

(iii) Using the properties of the seminorm defined above we have

µV [A,B + C] = lim
∆→0+

‖A,A−∆(B + C)‖V − 1

∆

≤ lim
∆→0+

(‖A, 1
2A−∆B‖V − 1

2

∆
+
‖A, 1

2A−∆C‖V − 1
2

∆

)
= lim

∆→0+

(‖A,A− 2∆B‖V − 1

2∆
+
‖A,A− 2∆C‖V − 1

2∆

)
= µV [A,B] + µV [A,C].

(iv) We take any ∆ > 0. If v is an eigenvector of (A,B) with eigenvalue λ, then
v is an eigenvector of (A,A−∆B) with eigenvalue −1−∆λ. By (2.2)

|∆λ+ 1| − 1

∆
≤ ‖A,A−∆B‖V − 1

∆
.(3.3)

When ∆→ 0+, the right-hand side of (3.3) tends to µV (A,B). A simple computation
on the left-hand side gives

|1 + ∆λ| − 1

∆
=

2 Reλ+ ∆(Reλ)2 + ∆(Imλ)2√
(1 + ∆ Reλ)2 + (∆ Imλ)2 + 1

,

and thus, when ∆→ 0+, the left-hand side of (3.3) tends to Re (λ).
(v) A simple computation gives

µV [A,B + zA] = lim
∆→0+

‖A,A+ ∆(B + zA)‖V − 1

∆

= lim
∆→0+

|1 + z∆|
∥∥∥∥A,A+

∆

|1 + z∆|B
∥∥∥∥
V

− 1

∆

= lim
∆→0+

∥∥∥∥A,A+

∆

|1 + z∆|B
∥∥∥∥
V

− 1

∆

|1 + z∆|
+

1− 1

|1 + z∆|
∆

|1 + z∆|

= µV [A,B] + Re z.

656 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

(vi) We can write

‖A,A−∆B‖V − 1

∆
= max

x∈V
x6=0

‖(A−∆B)x‖ − ‖Ax‖
∆‖Ax‖

= max
x∈V
x6=0

‖(A−∆B)x‖2 − ‖Ax‖2
∆‖Ax‖(‖(A−∆B)x‖+ ‖Ax‖)

= max
x∈V
x6=0

〈−Bx,Ax〉+ ∆/2‖Bx‖2
‖Ax‖2 + 1/2‖Ax‖(‖(A−∆B)x‖ − ‖Ax‖) ,

and therefore

µV [A,B] = lim
∆→0+

‖A,A−∆B‖V − 1

∆
= max

x∈V
x6=0

〈−Bx,Ax〉
‖Ax‖2 .

(viii) For θ > 0, and x ∈ V , we have

‖Bx‖ =
‖θBx‖
θ

=
‖Ax− (A− θB)x‖

θ
≥ ‖Ax‖ − ‖(A− θB)x‖

θ

≥ ‖Ax‖ − ‖A,A− θB‖V ‖Ax‖
θ

=
1− ‖A,A− θB‖V

θ
‖Ax‖,

and thus

‖Bx‖ ≥ −µV [A,B] · ‖Ax‖.
In a similar way

‖Bx‖ =
‖ − θBx‖

θ
=
‖Ax− (A+ θB)x‖

θ
≥ ‖Ax‖ − ‖(A+ θB)x‖

θ

≥ ‖Ax‖ − ‖A,A+ θB‖V ‖Ax‖
θ

=
1− ‖A,A+ θB‖V

θ
‖Ax‖,

and we get

‖Bx‖ ≥ −µV [A,−B] · ‖Ax‖.
Remark . Given a Banach space W , the logarithmic derivative of the vector norm

‖ · ‖ is defined in [14] as

µ(u, v) = lim
h→0+

‖u+ hv‖ − ‖u‖
h‖u‖

for any u, v ∈W , u 6= 0. We have µ(u,Au) ≤ µ[A], and in the finite-dimensional case,

sup
u 6=0

µ(u,Au) = µ[A].

For two linear mappings (A,B) of W into itself, we can define in a similar way its
seminorm and its logarithmic norm. Observe that now both ‖A,B‖V and µV [A,B]
can be infinite if dim V =∞. We can write µ(Au,−Bu) for u such that Au 6= 0, and
with the properties of the seminorms above defined, it is immediate to prove

µ(Au,−Bu) ≤ µV [A,B]

LOGARITHMIC NORMS FOR MATRIX PENCILS 657

for any u such that Au 6= 0. In the finite-dimensional case, for admissible subspaces
V we have

max
u∈V

µ(Au,−Bu) = µV [A,B].

For matrices, µ2[A] = λmax((A + At)/2). For matrix pencils, we have the next
result.

Proposition 3.4. Consider the n× s matrix S whose columns are a basis of V .
Then

µV,2[A,B] = λmax

(
StAtAS,−St (B

tA+AtB)

2
S

)
.

Proof . We compute

µV,2[A,B] = max
v∈V
v 6=0

−vt (BtA+AtB)
2 v

vtAtAv
= max

x∈Rs
x6=0

−xtSt (BtA+AtB)
2 Sx

xtStAtASx

= λmax

(
StAtAS,−St (B

tA+AtB)

2
S

)
.

4. Growth of solutions. We are in position to study the growth of the solutions
of the variable coefficient DAEs

A(t)x′(t) +B(t)x(t) = 0,(4.1)

with A(t) an n × n continuously differentiable matrix in [t0,∞) and B(t) an n × n
continuous matrix in [t0,∞).

We will need the right-hand differential operator D+ that for a given function
z(t) is defined by

D+z(0) = lim
τ→0+

z(τ)− z(0)

τ
.

Under some hypothesis, we can compute D+‖z(t)‖.
Lemma 4.1 (see [5, Lemma 1.5.3]). Consider the vector valued function z(t) ∈

Rn of the real variable t which has the right-hand derivative ν(t) = D+z(t). Then
‖z(t)‖ has a right-hand derivative D+‖z(t)‖ and

D+‖z(t)‖ = lim
∆→0+

‖z(t) + ∆ν(t)‖ − ‖z(t)‖
∆

.

Theorem 4.2. Let V be an admissible subspace for ‖A(t), ·‖V such that the
solution x(t) of the DAE (4.1) is in V . Then

‖A(t)x(t)‖ ≤ e
∫ t
t0
µV [A(u),B(u)−A′ (u)]du · ‖A(t0)x(t0)‖.(4.2)

Proof. By definition

D+‖A(t)x(t)‖ = lim
∆→0+

‖A(t)x(t) + ∆[A(t)x(t)]
′‖ − ‖A(t)x(t)‖

∆
.

658 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

We compute

‖A(t)x(t) + ∆[A(t)x(t)]
′‖ = ‖[A(t) + ∆A

′
(t)−∆B(t)]x(t)‖

≤ ‖A(t), A(t) + ∆A
′
(t)−∆B(t)‖V · ‖A(t)x(t)‖,

where we have used (4.1). The fact that the solution is in V allows us to use property
(i) in Proposition 2.5. Hence from

D+‖A(t)x(t)‖ ≤ lim
∆→0+

‖A(t), A(t) + ∆A
′
(t)−∆B(t)‖V · ‖A(t)x(t)‖ − ‖A(t)x(t)‖

∆

= µV [A(t), B(t)−A′(t)] · ‖A(t)x(t)‖
we get the differential inequality

D+‖A(t)x(t)‖ ≤ µV [A(t), B(t)−A′(t)] · ‖A(t)x(t)‖,
which can be integrated to obtain (4.2).

Remark . If A(t) is regular, then

µR[A(t), B(t)−A′(t)] = µR[−(B(t)−A′(t))A(t)−1].

We get the logarithmic norm of the matrix obtained when the change of variables
y(t) = A(t)x(t) is done.

Corollary 4.3. Let V be an admissible subspace for ‖A(t), ·‖V such that the
solution x(t) of the DAE (4.1) is in V . If∫ t

t0

µV [A(u), B(u)−A′(u)]du < 0,

then ‖A(t)x(t)‖ is exponentially decreasing.
In order to show that the solutions of the DAE are asymptotically stable, we

must
1. find an admissible subspace V containing the solution of the DAE;
2. compute the logarithmic norm;
3. obtain the estimates of x(t) from that of A(t)x(t).

We study steps 1 and 2 for linear constant coefficient, index 1, and tractable with
index 2 DAEs.

4.1. Linear constant coefficient DAEs. In the case of constant coefficient
DAE, (4.2) is

‖Ax(t)‖ ≤ eµV [A,B]t‖Ax(0)‖, t ≥ 0.(4.3)

Observe that x(0) must always be a consistent initial condition, i.e., x(0) ∈ Img (ÂDÂ).
In this case, we know that the solution is in Img (ÂDÂ), and thus we will take
V = Img (ÂDÂ). The next lemma shows that this subspace is admissible for ‖A, ·‖V .

Lemma 4.4. For V = Img (ÂDÂ), we have V ∩Ker (A) = 0.
Proof. If x ∈ Img (ÂDÂ) = Img (Âk) and x ∈ Ker (A), then x ∈ Ker (Â) ⊆

Ker (Âk). Thus V ∩Ker (A) = 0.
Inequality (4.3) shows that if µV [A,B] < 0 for V = Img (ÂDÂ), then

lim
t→∞ ‖Ax(t)‖ = 0,

but this is equivalent to the asymptotic stability of the solution.
Proposition 4.5. limt→∞ ‖Ax(t)‖ = 0 if and only if limt→∞ ‖x(t)‖ = 0.
Proof. Observe that x(t) = ÂDÂx(t) = ÂD(cA+B)−1Ax(t).

LOGARITHMIC NORMS FOR MATRIX PENCILS 659

4.2. Linear variable coefficient index 1 DAEs [7]. For index 1 DAEs,

Rn = Ker (A)⊕ S(t),

with S(t) = {x/B(t)x ∈ Img (A(t))}. The solution is in S(t). The subspace V = S(t)
is an admissible subspace for ‖A(t), ·‖V . With the help of the canonical projector
onto S(t) along Ker (A(t)) [7],

Ps(t) = (A(t) +B(t)Qs(t))
−1A(t),

we get

‖x(t)‖ = ‖Ps(t)x(t)‖ = ‖(A(t) +B(t)Qs(t))
−1A(t)x(t)‖

≤ ‖(A(t) +B(t)Qs(t))
−1‖ · ‖A(t)x(t)‖.

Thus imposing conditions on (A(t) +B(t)Qs(t))
−1, we can get the desired result.

Example 1 (see [10]). Consider the linear variable coefficient DAE (4.1) for

A(t) =

(
1 (1 + ε)t
0 0

)
, B(t) = µ

(
1 (1 + ε)t
1 (1 + ε)t− ε

)
.

This DAE has index 1 for εµ 6= 0. Thus R2 = Ker (A)⊕S(t), with S(t) = {x/B(t)x ∈
Img (A(t))}. The solution is in S(t). The subspace V = S(t) is an admissible subspace
for ‖A(t), ·‖V . In this case,

µV [A(t), B(t)−A′(t)] =
1 + ε

ε
− µ.

Thus for

1 + ε

ε
− µ < 0,

we get that ‖A(t)x(t)‖ is exponentially decreasing and

lim
t→0
‖A(t)x(t)‖ = 0.

The canonical projector onto S(t) along Ker (A(t)) is

Ps(t) = (A(t) +B(t)Qs(t))
−1A(t) =

1

ε

(
ε− t(1 + ε) (1 + ε)(ε− t(1 + ε))t

1 t(1 + ε)

)
,

and as

(A(t) +B(t)Qs(t))
−1 =

1

ε

(
ε− t(1 + ε) (1+ε)t

µ

1 − 1
µ

)
,

the solution is asymptotically stable.
We get the same sufficient condition that is obtained in [10], where for x = (y, z)t,

the essentially underlying ODE is computed,

z′(t) =

[
1 + ε

ε
− µ

]
z, y = [ε− (1 + ε)t]z,

660 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

and thus the solution is asymptotically stable if and only if

1 + ε

ε
− µ < 0.

In [7], the asymptotical stability for nonlinear transferable DAEs is studied. Lin-
ear DAEs are called contractive [7, p. 78] if there is a constant c ≤ 0 and a symmetric
positive definite matrix S such that

〈y, P (t)x〉S ≤ −c‖P (t)x‖2(4.4)

holds for any x, y such that

A(t)y + (B(t)−A(t)P ′(t))x = 0.(4.5)

It is proved that this definition implies contractivity for ‖P (t)x(t)‖S , and thus if
the canonical projector is continuously differentiable, as x(t) = Psx(t), asymptotical
stability is obtained for the trivial solution. If the DAE is contractive in the sense
of Griepentrog and März, in particular as the solutions x(t) and y(t) = (P (t)x(t))′

satisfy (4.5), we get

〈(P (t)x(t))′, P (t)x(t)〉S ≤ −c‖P (t)x(t)‖2.(4.6)

It can be proved [7, p. 43] that

y(t) = (P ′(t)− P (t)(I + P ′(t))A−1
1 B(t))P (t)x(t),

and thus with the definition of logarithmic norm given in this paper, (4.6) is

µV [In,−P ′(t) + P (t)(I + P ′(t))A−1
1 B(t)] < 0

for V = Img (P (t)).

4.3. Tractable with index 2 DAEs [12]. For these problems S(t)∩Ker (A(t)
is nontrivial and A1(t) = A(t) + B(t)Q(t) is singular. If Q1(t) denotes a projector
onto Ker (A1(t)), and P1(t) = In − Q1(t), for tractable with index 2 DAEs it holds
that the matrix G2(t) = A1(t) + B(t)P (t)Q1(t) is nonsingular. If we denote Π(t) =
(In − (QQ1)′ − QP1A

−1
2 B)PP1, the solution [9] is in Img Π(t). The subspace V =

Img Π(t) is an admissible subspace for ‖A, ·‖V . As A(t)x(t) = A2(t)P1(t)Px(t), and
PP1(t)P = PP1(t), we get

PP1(t)x(t) = PA2(t)−1A2(t)PP1(t)x(t) = PA2(t)−1A(t)x(t).

Thus by imposing conditions on PA2(t)−1 we can get that PP1(t)x(t) is asymptoti-
cally stable. The solution x(t) can be decoupled into

x(t) = Qx(t) + PP1(t)x(t) + PQ1(t)x(t).

For the homogeneous system [9, eqs. (1.10)–(1.12)], PQ1(t)x(t) = 0 and

Qx(t) = −(QP1(t)A2(t)−1B(t) + (QQ1(t))′)PP1(t)x(t).

Therefore, imposing conditions on the matrix that multiplies PP1(t)x(t), we can de-
rive asymptotical stability for the solution.

LOGARITHMIC NORMS FOR MATRIX PENCILS 661

Example 2 (see [1]). Consider the linear variable coefficient DAE (4.1) for

A =

 1 0 0
0 1 0
0 0 0

 , B(t) =

−λ+ 1
2−t 0 λ(2− t)

1−λ
2−t 1 1− λ

−(t+ 2) 4− t2 0

 .

For t 6= 2, this DAE is tractable with index 2 [12]. In this case,

Img Π(t) = 〈((2− t), 1,−2)t〉.
The subspace V = Img Π(t) is an admissible subspace for ‖A, ·‖V , and some compu-
tation gives

µV [A,B(t)] =
−λt2 + 4λt+ t− 5λ− 2

t2 − 4t+ 5
.

Thus, if λ > 0, the solution is asymptotically stable. The solution of the DAE with
consistent initial condition x(3) = (−e−3λ, e−3λ,−2e−3λ)t is

x(t) = ((2− t)e−λt, e−λt,−2e−λt)t.

Example 3 (see [9]). Consider the linear variable coefficient DAE (4.1) for

A =

 1 0 0
0 1 0
0 0 0

 , B(t) =

 λ −β −1
βη(1− ηt)− η λ −ηt

1− ηt 1 0

 ,

where β, λ, and η ∈ R are constant. This DAE is tractable with index 2 [12]. In this
case

Img Π(t) = 〈(1, ηt− 1,−β(ηt− 1))t〉.
The subspace V = Img Π(t) is an admissible subspace for ‖A, ·‖V , and some compu-
tation gives

µV [A,B(t)] = −λ− η − η2t

2− 2ηt+ η2t2
.

Thus, if λ > 0, the solution is asymptotically stable. The solution of the DAE with
consistent initial condition at t = 0 is

x(t) = (x0
1e
−λt, x0

1(ηt− 1)e−λt,−x0
1β(ηt− 1)e−λt)t.

In [13], the asymptotical stability of equilibrium points is studied for tractable
with index 2 quasi-linear DAEs. The DAE is linearized and a linear constant co-
efficient DAE is studied. Projectors P and P1 can be chosen in such a way that
x(t) = PP1x(t), and it is proved that u = PP1x(t) solves a linear system u′ = Mu
with M a matrix such that

〈Mz, z〉S ≤ −c‖z‖2S(4.7)

for any z ∈ Img (PP1) and some symmetric positive definite matrix S. Contractiv-
ity for ‖PP1x‖S is obtained, and hence the trivial solution is asymptotically stable.
With the logarithmic norm concept defined in this paper, (4.7) is µV [I,−M] ≤ 0 for
V = Img (PP1) and a norm similar to the Euclidean norm (recall property (vi) in
Proposition 3.3).

662 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

4.4. An index 3 example. We consider the constrained linear mechanical sys-
tem I

M
0

 q
v
λ

′ +
 0 −I 0
K C Gt

G 0 0

 q
v
λ

 = 0,(4.8)

where M , K, C are symmetric positive semidefinite matrices, M is positive definite
on the null-space of G, and G is constant and has full row rank. We can derive the
last equation twice to obtain the linear system(

M Gt

G 0

)(
v′

λ

)
= −

(
Kq + Cv

0

)
.(4.9)

Under the above assumptions, this system has unique solution, and thus (4.8) is an
index 3 DAE. If F12 denotes the (1,2)-block of the inverse matrix in (4.9), it holds
that GF12 = I and the solution of (4.8) is in

V = {(x, y, z) ∈ R2n+m|x, y ∈ ker (G), z = −F t12[Kx+ Cy]}.
It can be checked that V is an admissible subspace. If the norms used are monotonic,∥∥∥∥∥∥

 I
M

0

 ,

 I
M

0

−∆

 0 −I 0
K C −M ′ Gt

G 0 0

∥∥∥∥∥∥
V

= max
(x,y)∈V ∗

∥∥∥∥(x
My

)
−∆

(−y
(I − π)[Kx+ Cy]−M ′y

)∥∥∥∥∥∥∥∥(x
My

)∥∥∥∥
with V ∗ = {(x, y) ∈ R2n|x, y ∈ ker (G)} and π the projector GtF t12. Thus the
logarithmic norm used in Theorem 4.2 is

µV ∗

[(
I

M

)
,

(
0 −I

(I − π)K (I − π)C −M ′
)]

.(4.10)

If we denote by F a matrix whose m linearly independent columns expand ker (G),
(4.10) is

µV ∗∗

[(
F

MF

)
,

(
0 −F

(I − π)KF [(I − π)C −M ′]F
)]

(4.11)

with V ∗∗ = R2m.
For the Euclidean norm, by Proposition 3.4, (4.10) is

λmax

[(
F tF

F tM2F

)
,

(
0 K̃t

K̃ C̃

)]
,

where K̃ and C̃ are given by

K̃ = −1

2
(−F tF + F tM(I − π)KF),

C̃ = −1

2
(F tM [(I − π)C −M ′]F) + F t[C(I − πt)−M ′]MF).

LOGARITHMIC NORMS FOR MATRIX PENCILS 663

A simple computation gives that the eigenvalues are the roots of

det (λ2F tM2F + λC̃ − K̃t(F tF)−1K̃) = 0,

and thus the symmetric quadratic eigenvalue problem

λ2F tM2Fx+ λC̃x− K̃t(F tF)−1K̃x = 0

must be studied. If we multiply the left-hand side by x∗ and denote Mx = x∗F tM2Fx,
Cx = x∗C̃x and Kx = x∗K̃x, we get the equation

λ2Mx + λCx −Kx = 0,

which implies that the eigenvalues cannot be strictly negative; for the particular case
in which K̃ = 0 and C̃ are a positive semidefinite matrix, the logarithmic norm in
(4.11) is zero.

If M is regular, then any subspace is admissible, and an upper bound for (4.10)
is the usual logarithmic norm

µ

[
−
(

0 −M−1

(I − π)K [(I − π)C −M ′]M−1

)]
.(4.12)

For the constant coefficient case it is well known [5] that if the spectral abscissa of a
matrix A is strictly negative, then there is an elliptic norm ‖ · ‖X such that µX [A] <
0. Thus we must study the spectrum of the matrix in (4.12), whose characteristic
polynomial is

det (λ2M2 + λ(I − π)C + (I − π)K) = 0,

and therefore a nonsymmetric quadratic eigenvalue problem must be studied.

5. Other characterizations of the logarithmic norm. If we consider the
subspace V = Img (ÂDÂ), a similar definition to (1.3) can be given for the logarithmic
norms defined above.

Proposition 5.1. For V = Img(ÂDÂ),

µV [A,B]

= lim
h→0+

ln ‖A,Ae−ÂDB̂h‖Img (ÂDÂ)

h

= lim
h→0+

ln ‖Ae−ÂDB̂hÂD(cA+B)−1‖Img (AÂDÂ)

h
.

Proof. It is immediate to prove that

‖A,Ae−ÂDB̂h‖Img (ÂDÂ) = ‖Ae−ÂDB̂hÂD(cA+B)−1‖Img (AÂDÂ).

We also have

ln ‖Ae−ÂDB̂hÂD(cA+B)−1‖Img (AÂDÂ)

= ‖A(In − hÂDB̂)ÂD(cA+B)−1‖Img (AÂDÂ) − 1 + ϑ(h2),

664 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

and in the above expression

‖AÂD(cA+B)−1 − hAÂDB̂ÂD(cA+B)−1‖Img (AÂDÂ)

= max
y∈Rn,AÂDÂy 6=0

AÂD(cA+B)−1AÂDÂy − hAÂDB̂ÂD(cA+B)−1AÂDÂy

AÂDÂy

= max
y∈Rn,AÂDÂy 6=0

AÂDÂy − hAÂDB̂ÂDÂy
AÂDÂy

= max
x∈Img (ÂDÂ),Ax 6=0

Ax− hAÂDB̂x
Ax

= ‖A,A− hAÂDB̂‖V

for V = Img (ÂDÂ), where we have used ÂDÂÂD = ÂD. Now as ÂD, Â, and B̂D

commute, AÂDB̂ = BÂDÂ, which implies AÂDB̂ = BÂDÂ. If we take the limit
h→ 0 in the above expressions, we get the desired result.

Finally, we study whether there is a similar set (1.2) related to the exponentials
that appear in the solution of the DAE and the logarithmic norm.

As the solution of the DAE is given by

x(t) = e−Â
DB̂tÂDÂx0 = e−Â

DB̂tÂD(cA+B)−1Ax0,

by Theorem 4.2 we have

‖Ax(t)‖ = ‖Ae−ÂDB̂tÂD(cA+B)−1Ax0‖ ≤ eµV [A,B]t‖Ax0‖,
and thus

‖Ae−ÂDB̂tÂD(cA+B)−1‖Img (AÂDÂ) ≤ eµV [A,B]t(5.1)

for any c such that cA + B is regular. Lemma 5.2 below ensures that the above
expression is independent from the value c chosen.

Lemma 5.2. For any α and β such that αA+B and βA+B are regular, we have

ÂDα (αA+B)−1 = ÂDβ (βA+B)−1.

Proof. The proof follows the lines of Theorem 9.2.2 in [3]:

[(αA+B)−1A]D(αA+B)−1 = [((βA+B)−1(αA+B))−1Âβ]D(αA+B)−1

= [(αÂβ + B̂β)−1Âβ]D(αA+B)−1 = ÂDβ (αÂβ + B̂β)(αA+B)−1 = ÂDβ (βA+B)−1,

where we have used that if A and B commute, then (AB)D = BDAD = ADBD, and
if A is regular, AD = A−1.

Observe that if A is invertible (i.e., we have an ODE), then

ÂDc (cA+B)−1 = [(cA+B)−1A]D(cA+B)−1 = A−1,

and thus

Ax(t) = Ae−A
−1Btx0 = Ae−A

−1BtA−1Ax0

and (5.1) is ‖Ae−A−1BtA−1‖ ≤ eµV [A,B]t with V = Rn and coincides with (1.5) for
A = In.

LOGARITHMIC NORMS FOR MATRIX PENCILS 665

From (5.1) we construct the set

M = {θ/‖Ae−ÂDB̂tÂD(cA+B)−1‖Img (AÂDÂ) ≤ eθt, t ≥ 0}
= {θ/‖A,Ae−ÂDB̂t‖Img (ÂDÂ) ≤ eθt, t ≥ 0}

and study its relationship with µV [A,B]. We use the expression given by property
(vi) in Proposition 3.3.

Theorem 5.3. Consider an index k pencil (A,B). Let µV [A,B] be the smallest
constant such that

〈Ax,−Bx〉 ≤ µV [A,B]〈Ax,Ax〉 for all x ∈ V

with V = Img (ÂDÂ) = Img (Âk). Then µV [A,B] is the smallest element of the
set M .

Proof. By (5.1) we have µV [A,B] ∈M . Now let θ ∈M ; then for any x0 ∈ V we
have

‖Ae−ÂDB̂tx0‖ = ‖Ae−ÂDB̂tÂD(cA+B)−1Ax0‖
≤ ‖Ae−ÂDB̂tÂD(cA+B)−1‖‖Ax0‖ ≤ eθt‖Ax0‖.

Let the function φ(t) be defined by

φ(t) = 〈Ae−ÂDB̂tx0, Ae
−ÂDB̂tx0〉 = 〈Ae−ÂDB̂tÂDÂx0, Ae

−ÂDB̂tÂDÂx0〉

and the function ψ(t) = e2θt‖Ax0‖2. We have

φ(t) ≤ ψ(t), t ≥ 0.

Observe that φ(0) = ψ(0). If D+ denotes the right differential operator,

D+φ(0) = lim
τ→0

φ(τ)− φ(0)

τ
,

then from the above inequalities we get

D+φ(0) ≤ D+ψ(0).

A simple computation using the fact that x(t) = e−Â
DB̂tÂDÂx0 is the solution for

the problem Ax′(t) +Bx(t) = 0 gives

D+φ(0) = 2〈Ax0,−Bx0〉.

Thus

〈Ax0,−Bx0〉 =
1

2
D+φ(0) ≤ 1

2
D+ψ(0) = θ‖Ax0‖2 = θ〈Ax0, Ax0〉.

This can be done for any x0 ∈ V . Thus µV [A,B] ≤ θ.

666 INMACULADA HIGUERAS AND BERTA GARCÍA-CELAYETA

REFERENCES

[1] U.M. Ascher and L.R. Petzold, Projected implicit Runge–Kutta methods for differential-
algebraic equations, SIAM J. Numer. Anal., 28 (1991), pp. 1097–1120.

[2] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial Value Prob-
lems in Differential Algebraic Equations, North–Holland, New York, 1989.

[3] S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover,
New York, 1991.

[4] C. Desoer and H. Haneda, The measure of a matrix as a tool to analyze computer algorithms
for circuit analysis, IEEE Trans. Circuit Theory, 19 (1972), pp. 480–486.

[5] K. Dekker and J.G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differ-
ential Equations, North–Holland, Amsterdam, 1984.

[6] F.R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea Publishing Company, New York,
1989.

[7] E. Griepentrog and R. März, Differential algebraic equations and their numerical treatment,
Teubner-Texte Math. 88, Teubner, Leipzig, 1986.

[8] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, Springer, Berlin, 1991.

[9] M. Hanke, E. Izquierdo Macana, and R. März, On asymptotics in case of linear index-2
differential-algebraic equations, SIAM J. Numer. Anal. 35 (1998), pp. 1326–1346.

[10] M. Hanke and R. März, On the Asymptotics in the Case of Differential Algebraic Equations,
Talk given in Oberwolfach, October 1995.

[11] P. Lascaux and R. Théodor, Analyse numérique matricielle appliquée a l’art de l’ingénieur,
Masson, Paris, 1986.

[12] R. März, Index-2 differential algebraic equations, Results Math., 15 (1989), pp. 148–171.
[13] R. März, On Quasilinear Index 2 Differential Algebraic Equations, preprint 269, Fachbereich

Mathematik, Humboldt Universität zu Berlin, Berlin, Germany, 1990.
[14] A. Neumaier, Global and realistic bounds for the solution of dissipative differential equations,

Part I: Theory, Computing, 52 (1994), pp. 315–336.
[15] P.J. Rabier and W.C. Rheinboldt, Time-dependent linear DAEs with discontinuous inputs,

Linear Algebra Appl., 247 (1996), pp. 1–29.
[16] G.W. Stewart, On the sensitivity of the eigenvalue problem Ax = λBx, SIAM J. Numer.

Anal., 9 (1972), pp. 669–686.

A GEOMETRIC APPROACH TO PERTURBATION THEORY OF
MATRICES AND MATRIX PENCILS. PART II: A

STRATIFICATION-ENHANCED STAIRCASE ALGORITHM∗

ALAN EDELMAN† , ERIK ELMROTH‡ , AND BO KÅGSTRÖM‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 667–699

Abstract. Computing the Jordan form of a matrix or the Kronecker structure of a pencil
is a well-known ill-posed problem. We propose that knowledge of the closure relations, i.e., the
stratification, of the orbits and bundles of the various forms may be applied in the staircase algorithm.
Here we discuss and complete the mathematical theory of these relationships and show how they
may be applied to the staircase algorithm. This paper is a continuation of our Part I paper on versal
deformations, but it may also be read independently.

Key words. Jordan canonical form, Kronecker canonical form, staircase algorithm, matrix
pencils, closure relations, stratification, quivers

AMS subject classifications. 65F15, 15A21, 15A22

PII. S0895479896310184

Notation.

A A square matrix of size n× n. I or In is the identity matrix.
AT The transpose of A.
vec(A) An ordered stack of the columns of a matrix A from left to

right.
det(A) Determinant of A.
N (A) The column nullspace of A.
diag(A1, . . . , Ab) A block diagonal matrix with diagonal blocks Ai.
A⊗B The Kronecker product of two matrices A and B whose (i, j)th

block element is aijB.
A1 A2 A canonical form whose Segre characteristics are the sum of

those of A1 and A2, or equivalently whose Weyr characteristics
are the union of those of A1 and A2.

A− λB A matrix pencil of size m× n. Also denoted P .
A(k) − λB(k) Deflated pencil at step k of a staircase algorithm.
mk, sk mk = dimension of nullspace of A(k),

mk − sk = dimension of common nullspace of A(k) and B(k).
λi Eigenvalue of A or A− λB. Also µi, α, β, γ, and δ are used.
Jj(λi) Jordan block of size j × j associated with λi.
Nj Jordan block of size j×j associated with the infinite eigenvalue

(sometimes denoted Jj(∞)).
Lj Singular block of right (column) minimal index of size j×(j+1).
LTj Singular block of left (row) minimal index of size (j + 1)× j.

∗Received by the editors October 1, 1996; accepted for publication (in revised form) by J. Varah
May 17, 1998; published electronically March 23, 1999.

http://www.siam.org/journals/simax/20-3/31018.html
†Department of Mathematics, Room 2-380, Massachusetts Institute of Technology, Cambridge,

MA 02139 (edelman@math.mit.edu). The work of this author was supported by NSF grant DMS-
9501278 and an Alfred P. Sloan Foundation Research Fellowship.
‡Department of Computing Science, Ume̊a University, S-901 87 Ume̊a, Sweden (elmroth@

cs.umu.se, bokg@cs.umu.se). The work of the authors was supported by Swedish Research Council
for Engineering Sciences grant TFR 222-95-34.

667

668 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

αiαjβk Compact notation for Ji(α)⊕ Jj(α)⊕ Jk(β).
nrk(A− λB) Normal rank of A− λB.
O(A) The orbit of A, i.e., the set of matrices similar to A.
O(A− λB) The orbit of A − λB, i.e., the set of matrix pencils equivalent

to A− λB.
O(·) The closure of an orbit.
B(A) The bundle of A, i.e., the set of matrices with the Jordan struc-

ture of A, but with the eigenvalues unspecified.
B(A− λB) The bundle of A − λB, i.e., the set of matrix pencils with the

Kronecker structure of A − λB, but with the eigenvalues un-
specified.

B(·) The closure of a bundle.
S ⊕ T Direct sum of subspaces S and T of Rn.
dim(S) Dimension of subspace S. dim(S) denotes dimension of sub-

space spanned by the columns of S.
cod(S) Codimension is the dimension of the subspace complementary

to S.
κ(A) κ = (k1, k2, . . .) is the integer partition representing the Segre

characteristics for an eigenvalue λi of A.
µ(A) Integer partition representing the Weyr characteristics for an

eigenvalue λi of A.
κ′ The conjugate partition of κ, e.g., µ(A) = κ(A)′.
Jµi Jµi = (j1, j2, . . .) is the integer partition representing the Weyr

characteristics of A− λB for the eigenvalue µi.
R R = (r0, r1, . . .) is the integer partition representing the right

singular structure of A− λB.
L L = (l0, l1, . . .) is the integer partition representing the left

singular structure of A− λB.
〈P1, P2〉1 Inner product for Kronecker structures defined as dim{V :

A2V B
T
1 = B2V A

T
1 }, where P1 = A1−λB1 and P2 = A2−λB2.

〈P1, P2〉2 Inner product for Kronecker structures defined as dim{(U, V) :
UP1 = P2V } (also denoted 〈P1, P2〉).

Am, Ãm The quivers Am and Ãm.
(x− y)+ max(x− y, 0).

1. Introduction. The determination of the Jordan form of a matrix A with
multiple defective or derogatory eigenvalues is an ill-posed problem in the presence
of roundoff error [26]. The same is true for the Kronecker form of a matrix pencil
A − λB. Therefore modern numerical software such as GUPTRI [15, 16] regularizes
the problem by allowing a tolerance for rank decisions so as to find a matrix pencil near
A − λB with an interesting Kronecker (or Jordan) structure. These algorithms are
known to occasionally fail, thereby accidentally producing wrong nearby structures.
Failure appears to occur when the matrix or pencil is close to a manifold of interesting
structures of higher codimension [13]. Motivating examples arise in control theory,
where linear control systems have been found that the staircase algorithm can decide
are easily controllable, but in fact these systems were nearly uncontrollable (see, e.g.,
[6]). Because of these occasional failures, we propose to make use of the mathematical
knowledge of the stratification of the Jordan and Kronecker structures in order to
enhance the staircase algorithm. This stratification, in effect, shows which structures

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 669

1.98 1.985 1.99 1.995 2 2.005 2.01 2.015 2.02
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1.99 1.992 1.994 1.996 1.998 2 2.002 2.004 2.006 2.008 2.01
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Fig. 1.1. Perturbed eigenvalues of J3(2) ⊕ J2(2). Left: predominate structure. Right: nearby
structure J5(2).

are near other structures (in the sense of being in the closure) in the space of matrices.
During the execution of a staircase algorithm the user or the program can be aware
of the other nearby structures.

There are a number of ways to see the effects of nearby structures. Numerical ex-
periments on random perturbations of 2×3 matrix pencils using GUPTRI are reported
by Elmroth and K̊agström [21, Table 3.1]. Assuming a fixed relative accuracy of the
input data, the structures are studied as functions of the sizes of the perturbations.
Even in the admittedly small 2× 3 case, it becomes clear that there is an interesting
combinatorial relationship among the possibilities, which we will investigate.

Consider the qualitative approach to the Jordan form proposed by Chaitin-
Chatelin and Frayssé [10] using their example of the Ruhe matrix whose Jordan
structure for eigenvalue λ = 2 is J3(2)⊕ J2(2). The computed eigenvalues of roughly
1000 (real) normally distributed random perturbations of size

√
ε (ε = 2−52 is the

usual IEEE double precision “epsilon”) allow us to plot perturbed eigenvalues as in
the picture to the left in Figure 1.1.

The six lines from the origin (four are fuzzy) and the smaller cross predict the
Jordan structure J3(2)⊕ J2(2). Besides this predominant structure, other structures
may also appear [10]. We ran 50, 000 tests and filtered out those with roughly the
predominant structure, thereby leaving around 1000 matrices whose perturbed eigen-
values appear to the right in Figure 1.1. This figure suggests that the structure J5(2)
is somehow nearby. It turns out that J4(2)⊕ J1(2) is also nearby but is much rarer.
In 500,000 random tests none were found.

In addition to J4(2)⊕ J1(2) and J5(2), one may wonder if we may have somehow
missed other nearby structures. (We have not!) A more important question is if
an algorithm such as GUPTRI or the qualitative approach suggest a certain Jordan
structure, how can the user or a program be given the information of what struc-
tures are worth considering? The answer is that the staircase algorithm may be given
expert knowledge of the combinatorial relationships among the various Jordan struc-
tures known as strata. In this paper we discuss these relationships and complete the
mathematical theory needed not only for the Jordan eigenvalue case, but also for the
Jordan bundle (see section 2.3) problem, the Kronecker structure problem, and the
Kronecker bundle problem.

670 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

Before we introduce the form of the relationships among the strata, it is helpful to
think about the information produced from one iteration to the next in the staircase
algorithm. Suppose that we already have determined a subblock corresponding to a
single eigenvalue. For simplicity suppose that the eigenvalue is zero so that we know
from the beginning that we are trying to find the Jordan structure of a nilpotent
matrix. It is well known that the most generic such matrix has the single Jordan
block Jn(0) as its Jordan form. Such matrices form a dense set within the set of
nilpotent matrices. Therefore all we know at first is that the matrix is in the closure
of the matrices similar to a single Jordan block. As the staircase algorithm to deduce
the Jordan form proceeds, we gain more and more information about the matrix.
What in fact happens at each point in the algorithm is that we learn that the matrix
is in the closure of the set of matrices similar to some other Jordan form. Indeed one
may view the algorithm as identifying a nested sequence of closures. If during the
course of the algorithm the user is unhappy with any choice, he or she might wish
to have the power to backtrack through the algorithm and be offered other choices.
Alternatively at the end of the algorithm the user might wish to know what he or
she has missed in what has been described eloquently by Hough [30, p. 270] (in the
polynomial case) as the “thicket” of nearby structures.

Following Arnold, Gusein-Zade, and Varchenko [3, p. 41] (also see historical and
rather technical discussions by Goresky and MacPherson [27, pp. 33, 37]), we say
that we have a stratified manifold if it is the union of nonintersecting manifolds whose
closure is the finite union of itself with strata of smaller dimensions (thereby defining
stratified manifolds recursively). For matrices, the strata are orbits of similar matrices,
or perhaps the union of such orbits (known as bundles). For pencils, the strata consist
of strictly equivalent pencils (or bundles). The problem of stratification is to find the
closure relations among the various orbits or bundles. These relations define a partial
ordering on orbits or bundles. One structure covers another if its closure includes the
closure of the other and there is no other structure in between.

While we are the first to propose the use of stratifications in an algorithm, some of
the mathematical theory, at least for nilpotent matrices, goes back to 1961. It is known
to the lie algebra community as the closure ordering [11] and to the algebra community
as degenerations of modules over the Ã0 quiver (see section 5.2) [9]. Combinatorically
it is trivial; it is the well-known dominance ordering on partitions. This is the case
of relevance in an algorithm when the eigenvalues are well clustered so that we may
shift all the blocks to be nilpotent.

When eigenvalues are not well clustered, we have to consider the bundle case
as defined by Arnold [2]. We have not seen the closure relation for this case in the
literature so we believe that our theorems are new. We show that testing the closure
relation for bundles leads to an NP-complete problem; therefore it may be expensive
to use a stratification-enhanced algorithm in the bundle case when more than only a
few eigenvalues need to be clustered.

For orbits of matrix pencils, the closure ordering was published in a linear algebra
journal by Pokrzywa [37] in 1986. A general unifying algebraic theory of degenerations
has been obtained for quivers by several authors including Abeasis and Del Fra [1]
and Bongartz [9]. Bongartz studied the pencil case in 1990, apparently unaware of
Pokrzywa’s work. In algebraic language, for a matrix or pencil orbit or bundle to
cover another, it is necessary to have an extension. This condition is not sufficient;
another new result in this paper is the necessary and sufficient conditions for covers.
The Kronecker bundle case also seems to be new.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 671

We summarize the main theorems in the box below. The closure decision problem
is the question of how to test whether the closure of a given orbit or bundle is contained
within the closure of another. The closely related covering relationship tells us which
structures are covered by a given structure. The * indicates that to the best of
our knowledge the results were either previously unknown or not strong enough for
purposes of numerical computations. (For example, we extend Pokrzywa’s results by
providing both necessary and sufficient conditions for one Kronecker orbit to cover
another.)

Closure Decision Problem Covering Relationship

Jordan Orbits Theorem 2.2 Corollary 2.3
Jordan Bundles Theorem 2.6, 2.7 * Theorem 2.6 *

Kronecker Orbits Theorem 3.1 Theorem 3.2 *

Kronecker Bundles Theorem 3.3 * Theorem 3.3 *

We begin our paper reviewing the combinatorics of integer partitions in section
2.1. We then discuss the nilpotent orbit case already known in section 2.2, providing
our own simple proof in terms of the staircase form. Section 2.3 addresses the bundle
case showing that the decision procedure is an NP-complete problem. Section 3
covers the more complicated Kronecker case. In section 3.1 we state the stratification
theorems for both orbits and bundles. Examples are worked out in section 3.2. Some
special cases that arise in applications are further explored in sections 3.3 and 3.4.
The proofs of the theorems may be found in section 3.5. Section 4 provides some of
the necessary details for using the theorems inside of the staircase algorithms yielding
our so-called “stratification-enhanced staircase algorithm.” Finally, section 5 covers
some mathematical aspects of the problem and also provides a short exposition on
the algebraic notation so as to narrow the gap between the numerical and algebraic
communities.

2. Stratification of the Jordan canonical form. When the user of a numer-
ical algorithm is confident in the clustering of the eigenvalues, then the only question
that may arise is, What is the Jordan structure corresponding to an individual eigen-
value? In that case, there is no loss of generality assuming the eigenvalue is 0; hence we
are interested in the stratification of orbits of nilpotent matrices, the topic of section
2.2. When we are less confident in the clustering, we must consider the stratification
of bundles as discussed in section 2.3. We start with some elementary combinatorial
notions.

2.1. Integer partitions. A partition κ of an integer n is a sequence of integers
(k1, k2, k3, . . .) such that k1 + k2 + · · · = n and k1 ≥ k2 ≥ · · · ≥ 0. We use standard
vector operations and if m is a scalar we denote (k1 +m, k2 +m, . . .) as κ+m. The
partitions of an integer form a lattice ([40] is a good undergraduate reference) under
the dominance ordering: the dominance ordering on partitions (or integer sequences)
specifies that κ ≥ λ if and only if k1 + · · · + ki ≥ l1 + · · · + li, for i = 1, 2, . . ., and
we say that κ > λ if and only if κ ≥ λ and κ 6= λ. To say that we have a lattice
means that for every pair of partitions one can find an upper bound and a lower
bound, i.e., a partition that dominates the pair, and a partition that is dominated
by the pair. In a lattice we say that κ covers λ if and only if κ > λ, but there is
no µ such that κ > µ > λ. In Figure 2.1, the covering relationship for all integer
partitions of n = 8 is illustrated in a Hasse diagram. Notice that we have placed the
most dominant partition at the bottom of the diagram, i.e., the diagram shows the
reversed dominance ordering.

672 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

11111111

|

2111111

|

221111

/ \

22211 311111

| \ /

2222 32111

| / |

3221 |

| 41111

3311 |

| \ |

332 4211

| / |

422 |

| 5111

431 |

| \ |

44 521

| / \

53 611

\ /

62

|

71

|

8

Fig. 2.1. Covering relationship for all integer partitions of n = 8.

One can easily illustrate the covering relationship (Figure 2.2) by placing n coins
in a table with k1 in the first column, k2 in the second column, etc., corresponding to
a Ferrer diagram. A partition κ1 covers κ2 if κ2 may be obtained from κ1 by moving
a coin rightward one column, or downward one row, so long as the partition remains
monotonic [11]. Or equivalently, κ1 covers κ2 if κ1 may be obtained from κ2 by moving
a coin leftward one column, or upward one row, and keeping the monotonicity of the
partition. We call these moves a minimum rightward and a minimum leftward coin
move, respectively.

The final elementary notion that we need is the conjugate partition, which is the
partition obtained by “transposing” the coins and is here denoted κ′. Figure 2.3
shows how (3,2,2,1) and (4,3,1) are conjugate partitions. Since transposing reverses
the direction of coin moves, it is clear that κ > λ if and only if κ′ < λ′.

2.2. Stratification of nilpotent orbits. Consider two set of matrices; the first
consists of the matrices similar to the nilpotent matrix A1 and the second is the set
similar to the nilpotent matrix A2. When is the closure of the second set similar to
that of the first? The closure is a mathematically precise way to discuss the vague
idea of a Jordan form being “near” another Jordan form.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 673

Fig. 2.2. “Coin move” illustrates that (3,2,2,1) covers (2,2,2,2).

Fig. 2.3. Transposing illustrates that (3,2,2,1) and (4,3,1) are conjugate partitions.

Formally, in n2-dimensional matrix space, consider the orbits of matrices under
similarity transformations:

O(A) ≡ {SAS−1 : det(S) 6= 0}.

When is O(A1) ⊇ O(A2)? Trivially, if A1 and A2 are similar, then O(A1) = O(A2).
If O(A1) ⊃ O(A2), then A1 is “more generic” than A2 or A1 “degenerates” into A2.
In general, if an orbit O1 is more generic than an orbit O2, then dim O1 > dim O2.
However, this is not a sufficient condition for the closure of O2 to be a proper subset
of the closure of O1.

Associated with every nilpotent matrix A is the partition κ(A) = (k1, k2, k3, . . .)
that lists in decreasing order the sizes of the Jordan blocks associated with A. The
ki are known as the Segre characteristics. The partition µ(A) that is conjugate to
κ(A) contains what are known as the Weyr characteristics. (See, for example, [13] or
older textbooks for discussion.) The staircase form [26, 33] is obtained by applying
a unitary similarity transformation that puts the nilpotent matrix A in the form
illustrated in Figure 2.4 for a partition with four parts. Here, the Ai,i+1 blocks are of
full column rank, the *’s are arbitrary, the “lower staircase” (below the Ai,i+1 blocks)
consists of only zero entries, and mi (= the number of principal vectors of grade i) are
the Weyr characteristics. The Weyr characteristics are the block sizes that appear in
the staircase form. The nilpotent A in Figure 2.4 has m1 −m2,m2 −m3,m3 −m4,
and m4 Jordan blocks Ji(0) of size i = 1, 2, 3, and 4, respectively.

Strictly upper triangular matrices are associated with directed acyclic graphs by
taking the sparsity graph, meaning that node i points to node j if the (i, j) entry
is not 0. Conversely, one can start with a directed acyclic graph G and find the
Jordan structure of a generic matrix with sparsity graph G by a procedure suggested
by Gansner [22]: a path in G is a sequence of vertices connected by directed edges
in the usual orientation. A k-path is a subset of vertices that can be partitioned into

674 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

A12 * *

A23 *

A34

m1 m2 m3 m4

m1

m2

m3

m4

Fig. 2.4. Example of a nilpotent A in staircase form.

1 2

3 4

65

Fig. 2.5. Digraph illustrating a J4 ⊕ J2.

k or fewer paths. Let s1 denote the length of the longest path (1-path) in G, and
inductively define sj by letting s1 + · · ·+sj denote the size of a longest (most vertices)
j-path. These si are the Segre characteristics associated with the digraph. The dual
notion to longest k-paths is the shortest k-truncated path. Consider a partition of the
vertices of the digraph into paths labeled 1, . . . , l. Let wi denote the length of the ith
path or k, whichever is smaller. The length of such a k-truncated path is w1 + · · ·+wl;
the smallest such sum is the length of the shortest k-truncated path. This gives a
graph interpretation of the Weyr characteristics.

It would be a misconception that the size of the kth largest Jordan block can be
found by looking at the longest path remaining after removing the longest (k−1)-path,
since this may not be included in the longest k-path, as in the example in Figure 2.5.
Here, the longest 1-path (1, 2, 5, 6) of length four is not included in the longest 2-path
(1, 2, 3), (4, 5, 6) of length six. (The Jordan normal form (JNF) of the generic matrix
corresponding to the graph is J4 ⊕ J2, not J4 ⊕ J1 ⊕ J1.) By inspection we also see
that this matrix cannot be put in staircase form by using only permutations. Even if
the longest (k − 1)-path is a subset of the longest k-path, it still may not necessarily
be permuted into staircase form. The following is a graph characterization of the
staircase form for nilpotent matrices.

Theorem 2.1. Denote the sources of a digraph as the 1-sources; deleting these
sources we may denote the new sources as 2-sources, etc. A nilpotent matrix may be
permuted to staircase form if and only if the k-sources form an antichain (i.e., no
edges between them) and there is a matching between a subset of the (k − 1)-sources
and the k-sources.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 675

Weyr: (4, 3, 3)→ (4, 4, 2) (4, 3, 2, 1)→ (5, 2, 2, 1) (4, 2, 2, 2)→ (4, 3, 2, 1)

Digraph
Form: ♦

♠
♦

♦
♠

Staircase
Form:

0

0

0

1
1

1♠♦
1

1

i = 2, j = 3

0

0

0
0

♦
1

1

1
1

1

i = 1, j = 2

0

0
0

0

1
1

♠♦
1

1
1

i = 2, j = 4

Fig. 2.6. The ♦ goes from 1 to 0. The ♠ = 1 is introduced to preserve rank conditions. The
solid lines indicate the original Jordan structure in staircase form. The dashed lines indicate the
diagonal blocks of the final Jordan structure obtained when ♦ = 0.

Proof. The nodes in the k-sources correspond to the kth diagonal block of the
staircase form. The antichain corresponds to Ak,k = 0, and the matching condition
is the full-rank condition on Ak,k+1.

Our own version of the proof of the nilpotent stratification is quite short. Much
of the proof may be understood by inspection of the staircase form or the digraph.

Theorem 2.2. O(A1) ⊇ O(A2) if and only if µ(A2) ≥ µ(A1), or equivalently
κ(A1) ≥ κ(A2), where µ and κ denote the Weyr and Segre characteristics, respec-
tively.

Proof. We first remark that if A2 ∈ O(A1), then O(A2) ⊆ O(A1) by taking
similarity transformations. It then follows upon taking the closure of both sides that
O(A2) ⊆ O(A1). Therefore, to prove the “if” assertion, it suffices to assume that
µ2 covers µ1 and to exhibit an A1 and A2 such that µ(Ai) = µi for i = 1, 2 and
A2 ∈ O(A1).

For any µ2 that covers µ1, we have a “coin move” that decrements a column
of size mj and increments that of mi, where i < j. The A1 that we will pick with
µ(A1) = µ1 has square identity matrices placed at the top of the superdiagonal blocks,
except for Aj,j+1, where the identity matrix is placed at the bottom (if j < jmax, the
size of the largest Jordan block). We also place a 1 (denoted ♠ in Figure 2.6) in the
first column of the super-super diagonal block Ai−1,i+1 in the last row (if i > 1). By
zeroing the 1 in the first column of Ai,i+1 continuously, we effect a coin move that
reduces mj by one and increases mi by one.

In Figure 2.6 we illustrate a few cases. The diamond (♦) moves continuously
from 1 to 0. The spade (♠ = 1) is introduced if i > 1. Note the cascading effect when
j 6= i+ 1 in the equal blocks. The graph picture of the proof in terms of paths is also
displayed in Figure 2.6. The deletion of the edge with the diamond corresponds to a
coin move.

To prove the “only if” assertion, we assume that A2 is a limit point of a contin-
uous path Γ in O(A1). We may continuously decompose every point on Γ into the

676 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

staircase form corresponding to the partition µ(A1). By the boundedness of the set
of orthogonal matrices (compactness of the orthogonal group), although A2, which is
in the closure of O(A1), may not be in O(A1), it may also be put into the very same
staircase form, although we may lose the full rank conditions on the Ai,i+1.

A rank one drop in one such Ai,i+1 corresponds to a leftward coin move. For
example, if the rank of A23 in Figure 2.4 drops by one, then after an orthogo-
nal similarity transformation, m3 is decremented by one and m2 (or possibly m1 if
m1 = m2) increments by one. (This assumes that the matrix consisting of A13

on top of A23 does not itself lose column rank, otherwise we have a more “long-
distance” coin move obtainable by cascading short coin moves.) Therefore µ(A2)
dominates µ(A1).

From Theorem 2.2 and the definition of covering partitions we get the following
obvious characterization for covering orbits of nilpotent matrices A1 and A2.

Corollary 2.3. O(A1) covers O(A2) if and only if µ(A2) can be obtained from
µ(A1) by a minimum leftward coin move.

By reading the Hasse diagram in Figure 2.1 from top to bottom we get the
stratification in terms of the Weyr characteristics. Reading the diagram from bottom
to top, we get the closure hierarchy in terms of the Segre characteristics.

2.3. Stratification of Jordan bundles. Let Jn(α) denote a single n× n Jor-
dan block with eigenvalue α. Our first example of a bundle as defined by Arnold
[2, Sect. 5.3] is

⋃
αO(Jn(α)), the set of all matrices whose Jordan form consists of

a single block. Notice that the bundle is the union of orbits. Here is the general
definition. If two matrices have the same Jordan structure except that the distinct
eigenvalues are different, we say they are in the same bundle. More precisely, let
w(λ1), w(λ2), . . . , w(λp) be the Weyr characteristics of a matrix A with distinct eigen-
values λ1, . . . , λp. (Remember that w(λi) is a partition of ni, the algebraic multiplicity
of the eigenvalue λi.) Another matrix B is said to be in the bundle B(A) if the dis-
tinct eigenvalues µ1, . . . , µp of B may be ordered in such a way that the sequence of
partitions w(µ1), w(µ2), . . . , w(µp) is identical to that of A.

Let A1 and A2 be two nilpotent matrices. We define A1 A2 to be the matrix
in Jordan form (with the Jordan blocks ordered in decreasing order) whose Segre
characteristics are the sums of those of A1 and A2, or equivalently whose Weyr char-
acteristics are the union of those of A1 and A2. We point out that A1 ⊕A2 goes the
other way: the Segre characteristics are the union, and the Weyr characteristics are
the sum. For example, if A1 = J3(0) ⊕ J1(0) and A2 = J3(0) ⊕ J2(0) ⊕ J1(0), then
A1 ⊕ A2 = 2J3(0)⊕ J2(0)⊕ 2J1(0) and A1 A2 = J6(0)⊕ J3(0)⊕ J1(0). We define
an extension of A1 and A2 to be any matrix of the form(

A1 X
0 A2

)
,

where X could be any matrix of conforming size. For the example above, we get an
extension with Jordan structure A1 A2 by choosing x31 and x44 nonzero and all
other elements in X (of size 4× 6) as zero.

We have already pointed out that when X = 0, the Segre characteristics of the
extension is the union of the Segre characteristics of A1 and A2. Therefore, an easy
consequence of Theorem 2.2 is that O(A1 ⊕A2) ⊂ O(A1 A2).

Lemma 2.4. The most generic extensions of A1 and A2 are in the orbit of
A1 A2.

Proof. The easiest proof of this statement is obtained by assuming that A1 and

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 677

A2 are in Jordan form and by examining the longest k-paths in an extension. At most
we can connect the longest path from the graph of A1 to that of A2, then the next
longest of each, etc. Another proof may also be found in [25, Prop. 4.2.2].

If A is an extension of A1 and A2, then we have the obvious statement that

O(A1 ⊕A2) ⊆ O(A) ⊆ O(A1 A2).(2.1)

The set of matrices A satisfying the relation (2.1) form a sublattice of the domi-
nance ordering. Unfortunately, in general, this sublattice is not the set of extensions
of A1 and A2. (An example is A1 = J6(0) and A2 = J4(0) ⊕ J2(0). In the lattice,
J6(0) ⊕ J5(0) ⊕ J1(0) is between A1 A2 and A1 ⊕ A2, but it is not an extension
of A1 and A2.) The characterization of the extensions (a further sublattice of this
sublattice) is an open problem according to [25, p. 133], but it is not needed for our
purposes.1

In the next lemma, we consider limit points of continuous paths A(t) such that
when 0 ≤ t < 1, the path is contained in a bundle consisting of two distinct eigenval-
ues.

Lemma 2.5. Suppose A(t) is similar to A1(t) ⊕ A2(t) for 0 ≤ t ≤ 1, where
A1(t) − β(t)I and A2(t) − γ(t)I are nilpotent, and for 0 ≤ t < 1, β(t) 6= γ(t), but
when t = 1, β(1) = γ(1) = 0. In other words, A1(t) has the unique eigenvalue β(t),
A2(t) has the unique eigenvalue γ(t), and these eigenvalues coalesce at 0 when t = 1.
Then

O(A(1)) ⊆ O(A1(1) A2(1)).

Proof. We may find a continuous orthogonal similarity transformation Q(t) such
that

QT (t)A(t)Q(t) =

(
A′1(t) X(t)

0 A′2(t)

)
,

and A′1(t) is similar to A1(t) and A′2(t) is similar to A2(t) for 0 ≤ t < 1. Therefore,
by Lemma 2.4,(

A′1(t) X(t)
0 A′2(t)

)
−
(
β(t)I

γ(t)I

)
∈ O(A1(1) A2(1))

for 0 ≤ t < 1. Letting t → 1 shows that A(1) ∈ O(A1(1) A2(1)), from which the
result follows.

The Jordan bundle stratification theorem follows below. Our results for the clo-
sure decision problem are also derived in [36, 17]. We believe the covering relationship
is new.

Theorem 2.6. Suppose that we have two bundles B(A1) and B(A2) such that the
former has at least as many distinct eigenvalues as the latter. Then B(A1) ⊇ B(A2)
if and only if it is possible to coalesce eigenvalues and apply the dominance ordering
coin moves to the bundle defined by A1 to reach that of A2. Furthermore, a cover
is obtained either by a minimal coin move (on the structure for one eigenvalue) or a
generic extension (of the structures for two distinct eigenvalues assumed to coalesce).

Proof. All that remains is to prove the minimality property of these covering
relations. There are two natural quotient lattices of the bundle lattice. The first

1We prefer the use of the word “extension” rather than “completion” as used by [25] for consis-
tency with the algebraic notion of extension of two modules.

678 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

αααβ

αβγδ

α β

α

α α

ααβγ

αααα

2

α ββ

ααββ

0

1

2

3

4

5

6

7

8

9

15

α α

 α αα

3

Codim

2 2

2

3

2 2

2

α αβ

4

2

α β

α βγ

Fig. 2.7. The bundle stratification for 4× 4 matrices.

counts the number of eigenvalues. The second is the partition of n obtained by taking
the union of the partitions corresponding to all of the eigenvalues. Moving a coin
in one partition moves down the first lattice but not the second. Coalescing two
eigenvalues (forming the union of two partitions) moves down the second lattice but
not the first. Therefore each operation cannot be obtained from the result of the other
operation, so each is minimal.

Figure 2.7 plots the bundle stratification for 4×4 matrices. Here, we use Arnold’s
compact notation for Jordan blocks: αk ≡ Jk(α). Circled in the top of the figure
are those structures corresponding to coalescing eigenvalues. It is possible to gain
an appreciation of the complicated manner of how these structures fit inside each
other from the swallowtail diagram in Figure 2.8 [2], which shows the projection
of these structures into three-dimensional space. The point α4 is the swallowtail
point, the curve α3β are the two cusp edges coming out from the swallowtail, α2β2 is
the transversal intersection of the wings, and α2βγ is the surface of the swallowtail.
Everything outside the swallowtail is represented by αβγδ. Any reliable numerical
attempt to find the nearest structure of a certain particular form must somehow
implicitly or explicitly deal with this kind of geometry. The circled structures in the
lower part of the figure are those that correspond to the stratification of nilpotent
orbits.

Figure 2.7 captures all distinct singularities of codimension 1 (α2) and 2 (α3, α2β2)
and two of the four distinct bundles of codimension 3 (α4 and αα). The missing ones
are α3β2 and α2β2γ2.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 679

Fig. 2.8. The swallowtail.

Unfortunately, although the decision procedure for testing the closure relation for
nilpotent matrices is trivial (all that is required is to test if one partition dominates
the other), the corresponding procedure for bundles is an NP-complete problem. We
speculate that this may capture some of the essence of the true difficulty associated
with the clustering problem for perturbed eigenvalues. Another result that is slightly
related was obtained by Gu [28], who showed that finding a well-conditioned similarity
transformation to block-diagonalize a nonsymmetric matrix is an NP-hard problem.

Theorem 2.7. Deciding whether a bundle is in the closure of another bundle is
an NP-complete problem.

Proof. Suppose that we have a matrix of dimension n = km that has 3m distinct
eigenvalues with multiplicities k1, . . . , k3m with the property that k/4 < ki < k/2
for each i. Consider the existence of a clustering of all of these eigenvalues into m
triples so that the sum of the multiplicities of the three eigenvalues in each cluster
is exactly k. This problem is the three-partition problem and is well known to be
NP-complete [24].

The implication of Theorem 2.7 is that it is unlikely to find an efficient algorithm
that solves all instances of the decision problem. However, it is still possible that
there exist algorithms that can solve most practical cases efficiently.

3. Stratification of the Kronecker canonical form. The notions of canoni-
cal form, orbits, bundles, and partitions extend to the matrix pencil case in a straight-
forward manner as follows. Any matrix pair (A,B), where A and B are m × n with
real or complex entries, defines an orbit (manifold) of strictly equivalent matrix pencils
in the 2mn-dimensional space P of m× n pencils:

O(A− λB) = {U−1(A− λB)V : det(U)det(V) 6= 0}.(3.1)

Let P1 = A1 − λB1, P2 = A2 − λB2 be two pencils (of possibly different sizes). A
pair (U, V) satisfying UP1 = P2V defines a homomorphism from P1 to P2 (see section
5.1). Let the dimension of such (U, V) be

〈P1, P2〉 = dim{(U, V) : UP1 = P2V }.(3.2)

We also define cod(A−λB) as the codimension of O(A−λB), which is the dimension
of the space complementary to the orbit, e.g., the dimension of the space normal to
O(A−λB) at the point A−λB [43, 13, 19]. It is known that cod(P) = 〈P, P 〉−(m−n)2.

The Kronecker canonical form (KCF) (e.g., see [23]) for a pencil is the direct sum
of the right singular, left singular, and regular structures, consisting of Lk blocks of

680 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

size k × (k + 1) for the right singular structure and LTk blocks for the left singular
structure. The regular structure consists of Jordan blocks Jk(µ) corresponding to
eigenvalue µ and Nk for the eigenvalue ∞. For short, we omit the word “singular”
when clear from context. If A − λB is m × n, where m 6= n, then for almost all A
and B it will have the same KCF, depending only on m and n (the generic case; see
section 3.3).

Define the normal rank of A− λB as

nrk(A− λB) = n− r0 = m− l0,
where r0 and l0 are the total number of right and left blocks, respectively, in the KCF
of A− λB.

As in the matrix case we consider two main problems in order to understand the
stratification of matrix pencils. First, given two m×n matrix pencils P1 = A1− λB1

and P2 = A2−λB2 we want to have a procedure for deciding whether O(P1) ⊇ O(P2).
Second, we want to find a procedure for generating covering pencils, i.e., the closest
neighboring orbits above or below in the closure hierarchy. These two problems are
also investigated for bundles of pencils.

Because of the three basic structures (right, left, regular) in the Kronecker form,
the complete characterization of all possible m×n Kronecker forms, their orbits, and
bundles is somewhat more intricate than for the matrix case. We not only will need to
define partitions for each eigenvalue, but in addition we will need partitions to define
the right and left singular structures.

Let R(P) and L(P) denote the partitions for the right and left structures, respec-
tively, of P = A − λB and let Jµ(P) denote the partition for the Jordan structure
corresponding to the eigenvalue µ (finite or infinite). When it is clear from context,
we use the abbreviated notation R, L, and Jµ. The ji’s in a J partition are the Weyr
characteristics for the eigenvalue µ, i.e., ji is the number of Jk(µ) blocks of size k ≥ i.
Similarly, ri of R (or li of L) is the number of Lk (or LTk) blocks of size k ≥ i.

We have shown in section 2 that the closure hierarchy of the set of n×n nilpotent
matrices is completely determined by the dominance ordering of the integer n. Since
the Kronecker structure for matrix pencils includes both Jordan blocks and singular
blocks, a corresponding characterization involves integer sequences corresponding to
each kind of block.

3.1. Stratification of Kronecker orbits and bundles. The decision proce-
dure for the closure of orbits was derived by Pokrzywa [37] in 1986, was later refor-
mulated by De Hoyos [12] in 1990, and was formulated differently by Bongartz [9] in
1990. In the following we give our formulation of De Hoyos’s closure characteriza-
tion. In section 5.2 we explain the algebraic and geometric connections between these
approaches.

Theorem 3.1 (see [37, 12, 9]). O(P1) ⊇ O(P2) if and only if the following
relations hold:

• R(P1) + nrk(P1) ≥ R(P2) + nrk(P2),
• L(P1) + nrk(P1) ≥ L(P2) + nrk(P2),
• Jµi(P1) + r0(P1) ≤ Jµi(P2) + r0(P2)

for all µi ∈ C, i = 1, 2, . . ., where C = C
⋃{∞}.

We remark that we could have used the more symmetric looking expression
Jµi(P1) − nrk(P1) ≤ Jµi(P2) − nrk(P2) as item three in the theorem at the cost
of having “negative coins.” If nrk(P1) = nrk(P2), we say that P1 and P2 are on the
same level playing field, and the relations in Theorem 3.1 reduce to R(P1) ≥ R(P2),
L(P1) ≥ L(P2), and Jµi(P1) ≤ Jµi(P2).

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 681

In a contemporary paper [7], Boley applies Theorem 3.1 and shows similar ma-
jorizing results of integer sequences associated with the KCF when a single row or
column is appended to a matrix pencil. The application considered is adding a single
input or output to a linear time-invariant dynamical system.

Now that we can test if one structure is more generic than another in the closure
lattice, the next question we consider is the generation of all structures covered by
a given pencil. Necessary conditions for two structures to be (closest) neighbors in
the lattice are given in [37, 12, 9] and are used in an algorithm for computing the
complete Kronecker structure hierarchy in [20]. We believe we are the first to give both
necessary and sufficient conditions for neighbors in the lattice (which in addition gives
an optimal algorithm for computing the complete hierarchy). We present these results
in the form of coin moves associated with R, L, and Jµi for different eigenvalues µi.

Theorem 3.2. O(P1) covers O(P2) if and only if P2 can be obtained by applying
one of the rules (1)–(4) to the integer partitions of P1:

(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, append that coin as a

new rightmost column of some Jµi (which may be empty initially).
(3) Minimum leftward coin move in any Jµi .
(4) Let k denote the total number of coins in all of the longest (= lowest) rows

from all of the Jµi . Remove these k coins, add one more coin to the set, and
distribute k+ 1 coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k− t− 1 such that
at least all nonzero columns of R and L are given coins.

Rules (1) and (2) may not make coin moves that affect r0 (or l0).
Notice that the restriction for rules (1) and (2) implies that the number of left

and right blocks remains fixed, while rule (4) adds one new block of each kind. We
also remark that rule (4) cannot be applied if the total number of nonzero columns
in R and L is more than k + 1. Rule (3) corresponds to the nilpotent case.

As in the matrix case we also consider stratification of bundles. Two pencils are in
the same bundle if they have the same left and right singular structures and the same
Jordan structure except that the distinct eigenvalues may be different. Of course, if
O(P1) covers O(P2), then B(P1) ⊃ B(P2), but the two bundles may not necessarily
be covering, since there is a possibility of other structure changes from coalescing
eigenvalues.

Theorem 3.3. B(P1) covers B(P2) if and only if P2 can be obtained by applying
one of the rules (1)–(5) to the integer partitions of P1:

(1) Same as rule 1 in Theorem 3.2.
(2) Same as rule 2 in Theorem 3.2, except it is allowed only to start a new set

corresponding to a new eigenvalue (i.e., no appending to nonempty sets).
(3) Same as rule 3 in Theorem 3.2.
(4) Same as rule 4 in Theorem 3.2, but apply only if there is just one eigenvalue

in the KCF or if all eigenvalues have at least two Jordan blocks.
(5) Let any pair of eigenvalues coalesce, i.e., take the union of their sets of coins.
The problem of deciding if the closure of the bundle of one pencil contains the

bundle of another is NP-complete, just as for the matrix case (see Theorem 2.7). We
postpone the proofs of Theorems 3.2 and 3.3 to section 3.5 and continue by illustrating
the theorems with some examples. In section 4 an algorithmic implication of Theorem
3.2 is presented. We express different structure transitions in rules (1)–(4) in terms
of the structure indices computed by a staircase algorithm.

682 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

P1 = L0 ⊕ L1 ⊕ L2 ⊕ J1(µ1)⊕ J4(µ1)⊕ J3(µ2)⊕ LT1 ⊕ LT3
Structure blocks Partition Coins

Right L0 ⊕ L1 ⊕ L2 R = (3, 2, 1)
◦◦ ◦◦ ◦ ◦

Left LT1 ⊕ LT3 L = (2, 2, 1, 1) ◦ ◦◦ ◦ ◦ ◦
Regular eig=µ1 J1(µ1)⊕ J4(µ1) Jµ1 = (2, 1, 1, 1) ◦◦ ◦ ◦ ◦

eig=µ2 J3(µ2) Jµ2 = (1, 1, 1) ◦ ◦ ◦

Fig. 3.1. Example Kronecker structure P1 with corresponding partitions.

3.2. Examples. To focus the reader’s attention on how the covering theorem
may be used in a numerical algorithm, we will examine two examples in detail. In the
first example we take a particular pencil P1 of size 17×18 and illustrate the application
of some of the rules from Theorem 3.2. In the second example, we focus on a smaller
case—the 2× 3 pencils—and show the entire lattices for orbits and bundles. We also
use this example to illustrate Theorem 3.1.

Our example pencil P1 has KCF L0⊕L1⊕L2⊕J1(µ1)⊕J4(µ1)⊕J3(µ2)⊕LT1 ⊕LT3 .
We illustrate how the four rules in Theorem 3.2 can be used to find a pencil P2 that is
covered by P1. The starting configuration for P1 may be found in Figure 3.1 and the
application of some of the rules is shown in Figure 3.2. We display KCF structures
as both integer partitions and columns of “coins” (◦). In Figure 3.2 we illustrate how
each of the rules can be applied to P1. (We append the notation a and b to rules (1)
and (2) to denote application to the right or left structure, respectively.) The symbol
• is used to denote a coin that will be moved in P1’s coin arrays or a coin that has been
moved in P2’s coin arrays. Notice that some of the rules can also be applied to other
combinations of blocks of P1, i.e., the figure does not show all possible transitions
that give a pencil P2 that is covered by P1. Each row of the figure shows how one
of the rules may be applied to some of the blocks in the KCF. In the last column of
Figure 3.2 (labeled “Block transitions”) we record only the blocks that are involved
in the application of the rule.

Recently, Elmroth and K̊agström did a comprehensive study of the set of 2 × 3
pencils, including the stratification problem [21]. There are 9 possible bundles in this
case. (From an algorithmic point of view, we may not want to bundle in the zero
and infinite eigenvalue, in which case there are 20 bundles.) Fix the eigenvalues in
the bundle to be γ and δ, with γ 6= δ. The closure lattice corresponding to the orbits
is shown in Figure 3.3. Following [21] we display the lattice with orbits (nodes) of
the same codimension on the same horizontal level. The generic case (L2) is at the
highest level and the most degenerate pencil (3L0⊕2LT0 which is the 2×3 zero pencil)
is at the lowest level. A pencil P2 is in O(P1) if and only if there is a path from P1

to P2. The labels of the arcs correspond to which covering rules in Theorem 3.2 we
have applied.

In Figure 3.4 we show the closure lattice corresponding to the bundles of 2 × 3
pencils. Here, a node represents the bundle consisting of all pencils with the displayed
Kronecker structure, where the value of the eigenvalues γ and δ may vary, but γ 6= δ.
The arc labels show which of the rules in Theorem 3.3 we have applied. Since the

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 683

Rule Partition P1 P2 Block transitions

(1a) R ◦◦ •◦ ◦ ◦
◦◦◦ ◦ ◦ • L1 ⊕ L2 −→ L0 ⊕ L3

(1b) L ◦ •◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ • LT1 ⊕ LT3 −→ LT0 ⊕ LT4

(2a) R ◦◦ ◦◦ ◦ •
◦◦ ◦◦ ◦ L2 ⊕ J4(µ1) −→ L1 ⊕ J5(µ1)

Jµ1
◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ •

(2b) L ◦ ◦◦ ◦ ◦ • ◦ ◦◦ ◦ ◦ J3(µ2)⊕ LT3 −→ J4(µ2)⊕ LT2
Jµ2

◦ ◦ ◦ ◦ ◦ ◦ •

(3) Jµ1
◦◦ ◦ ◦ • ◦ •◦ ◦ ◦ J1(µ1)⊕ J4(µ1) −→ J2(µ1)⊕ J3(µ1)

(4) R ◦◦ ◦◦ ◦ ◦
•◦ •◦ ◦ •◦ ◦ ◦ J4(µ1)⊕ J3(µ2) −→ L2 ⊕ LT4

L ◦ ◦◦ ◦ ◦ ◦ • •◦ ◦ • •◦ ◦ ◦ ◦ •
Jµ1

◦• • • • ◦

Jµ2
• • •

Fig. 3.2. Illustration of the covering rules in Theorem 3.2 starting with P1 as in Figure 3.1.

eigenvalues may vary in the bundles, the codimension for each Kronecker structure
with regular part is one less for each eigenvalue compared to the orbit case (see Figure
3.3). For example, the codimension of L1 ⊕ J1(γ) is 2 in Figure 3.3 and 1 in Figure
3.4, since γ is an extra degree of freedom in the bundle case.

When comparing the closure hierarchies for bundles and orbits, we see that the
bundle structure L0 ⊕ J2(γ) is found as the most generic one when γ and δ coalesce
(rule (5)) in L0 ⊕ J1(γ)⊕ J1(δ), while these two structures are on different branches
in the hierarchy for orbits (where the eigenvalues are assumed to be specified and
therefore never may coalesce). This illustrates the restriction of rule (2) in Theorem
3.3.

Finally, we illustrate Theorem 3.1 by investigating the closure relations for the
orbits of 2×3 pencils P1 = L1⊕J1(γ), P2 = L0⊕J2(γ), P3 = L0⊕J1(γ)⊕J1(δ), and
P4 = 2L0 ⊕ LT1 . From Table 3.1 we see that P2, P3, P4 are in O(P1), P4 is in P1, P2

and P3, but neither P2 or P3 are in the closure of the other. To realize that P1 and
P4 are closest neighbors to both P2 and P3 we have to apply Theorem 3.2 (see Figure
3.3).

3.3. Generic and full normal rank pencils. The generic Kronecker structure
for A− λB of size m× n with d = n−m > 0 is

diag(Lα, . . . , Lα, Lα+1, . . . , Lα+1),(3.3)

where α = bm/dc, the total number of blocks is d, and the number of Lα+1 blocks
is m mod d (which is 0 when d divides m) [41, 13]. The same statement holds for
d = m − n > 0 if we replace Lα, Lα+1 in (3.3) by LTα , L

T
α+1. Indeed, a generic

684 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

� �ªL2

?

2a� �ªL1⊕J1(γ)

Q
Q
Q
Q
Q
QQs

�
�
�
�
�
��+

2a 2a

� �ªL0⊕J2(γ)

?

PPPPPPPPPPPPPq

S
S
S
S
S
S
S
S
S
Sw

3 4

4

� �ªL0⊕J1(γ)⊕J1(δ)

?

�
�
�
�
�
�
�
�
�
�/

4

4
� �ªL0⊕L1⊕LT0

�
�
�
�
�
�
�
�
�
�/

2a
� �ªL0⊕2J1(γ)

Q
Q
Q
Q
Q
QQs

4

� �ª2L0⊕LT1

?

2b� �ª2L0⊕J1(γ)⊕LT
0

?

4� �ª3L0⊕2LT
0

Cod(A− λB)

0

2

4

5

6

8

12

Fig. 3.3. Closure hierarchy of orbits for the set of 2× 3 pencils.

nonsquare pencil A− λB is equivalent to one of the following two forms:[
0 Im

]− λ [Im 0
]
, (m < n) and

[
0
In

]
− λ

[
In
0

]
, (m > n).

Square pencils are generically regular, i.e., det(A − λB) = 0 if and only if λ is an
eigenvalue. The generic singular pencils of size n × n have the Kronecker structures
[43]:

diag(Lj , L
T
n−j−1), j = 0, . . . , n− 1.

All generic pencils have full normal rank, i.e., nrk(A−λB) = min(m,n). However,
a pencil can have full normal rank without being generic. An m×n pencil with m < n
has full normal rank if and only if it has no LTk blocks. Similarly, if m > n the pencil
has full normal rank if and only if it has no Lk blocks. Finally, a square pencil (m = n)
has full normal rank if and only if it has no singular blocks.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 685

� �ªL2

?

2a� �ªL1⊕J1(γ)

?

2a� �ªL0⊕J1(γ)⊕J1(δ)

?

5� �ªL0⊕J2(γ)

Q
Q
Q
Q
Q
QQs

�
�
�
�
�
��+

3 4

?

4

� �ªL0⊕2J1(γ)

S
S
S
S
S
S
S
S
S
Sw

4

� �ªL0⊕L1⊕LT0

�
�
�
�
�
�
�
�
�
�/

2a
� �ª2L0⊕LT1

?

2b� �ª2L0⊕J1(γ)⊕LT
0

?

4� �ª3L0⊕2LT
0

Cod(A− λB)

0

1

2

3

5

6

7

12

Fig. 3.4. Closure hierarchy of bundles for the set of 2× 3 pencils.

Next we consider full normal rank pencils with only Lk or LTk blocks in their
KCF. Let us assume that m < n; otherwise we can just perform the same process
on the transposed pencil. The R partition corresponding to the generic pencil is
(r0, r1, · · · , rα, rα+1), where

r0 = r1 = · · · = rα = d and rα+1 = m mod d

for d = n −m and α = bm/dc. Notice that ri = 0 for i > α + 1. Then we have the
following corollary of Theorem 3.2.

Corollary 3.4. The dominance ordering of R = (r0, r1, . . . , rα, rα+1) with
r0 = d = n−m > 0 kept fixed defines the closure hierarchy of the set of m×n matrix
pencils with only Lk blocks.

686 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

Table 3.1
Partitions for deciding closure relations between sample 2× 3 pencils.

R L Jγ Jδ r0 nrk(·)
P1 (1, 1, 0, . . .) (0, . . .) (1, 0, . . .) (0, . . .) 1 2
P2 (1, 0, . . .) (0, . . .) (1, 1, 0, . . .) (0, . . .) 1 2
P3 (1, 0, . . .) (0, . . .) (1, 0, . . .) (1, 0, . . .) 1 2
P4 (2, 0, . . .) (1, 1, 0, . . .) (0, . . .) (0, . . .) 2 1

R+ nrk(·) L+ nrk(·) Jγ + r0 Jδ + r0
P1 (3, 3, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 1, 1, 1, . . .) (1, 1, 1, 1, . . .)
P2 (3, 2, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 2, 1, 1, . . .) (1, 1, 1, 1, . . .)
P3 (3, 2, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 1, 1, 1, . . .) (2, 1, 1, 1, . . .)
P4 (3, 1, 1, 1, . . .) (2, 2, 1, 1, . . .) (2, 2, 2, 2, . . .) (2, 2, 2, 2, . . .)

444

|

4431

|

4422

/ \

44211 4332

| \ |

| 43311

441111 |

| 43221

| / |

432111 42222

| \ |

4311111 422211

\ /

4221111

|

42111111

|

411111111

Fig. 3.5. Covering relationship for R = (4, 4, 4) with r0 = 4 kept fixed.

We illustrate the corollary for the set of 8 × 12 pencils. The generic Kronecker
structure is 4L2 (d = 4, α = 2,m mod d = 0) which gives R = (4, 4, 4). The
example is chosen so that parts of the dominance ordering for n = 8 can be reused
(see Figure 2.1). The dominance ordering for R with r0 kept fixed is displayed in
Figure 3.5. Note the diagram is not symmetric since we are using only a sublattice
from Figure 2.1.

A similar result holds for the set of m × n matrix pencils with a regular part of
fixed Jordan structure besides Lj blocks in the KCF. The R partition corresponding
to the most generic pencil with a k × k regular part is similar to (3.3), where now

d = m − n − k and α = b(m − k)/dc. Since we can write P1 as P
(1)
1 ⊕ P (2)

1 , where

P
(1)
1 and P

(2)
1 correspond to the regular and right singular parts, respectively, we can

apply Corollary 3.4 to P
(2)
1 which defines the R partition.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 687

Corollary 3.5. The dominance ordering of R = (r0, r1, . . . , rα, rα+1) with
r0 = n−m− k > 0 kept fixed defines the closure hierarchy of the set of m× n matrix
pencils with a fixed Jordan structure (regular part) of size k × k (0 ≤ k ≤ m) and Lj
blocks only in the KCF.

These sets of matrix pencils have important applications in linear systems theory.
Let A−λB = [F,C]−λ[E, 0], where Eẋ(t) = Fx(t)+Cu(t) is a linear system with m
states and p controls. Then Corollary 3.4 gives the closure hierarchy for the the set of
completely controllable systems with m states and p controls. Similarly, Corollary 3.5
gives the closure hierarchy for the sets of linear systems with k uncontrollable modes
with fixed Jordan structure.

3.4. Interesting nearness problems. One motivation for our work on versal
deformations (see Part I [19]) and stratifications of orbits and bundles (the present
paper) was to get an improved understanding of important nearness problems, such
as

• closest degenerate (nongeneric) pencil of a generic A− λB,
• closest matrix pencil with a specified Kronecker structure,
• closest neighbors (covering pencils) of a given A− λB.

Several of these problems have interesting applications in linear system theory.
For example, if we add the restriction that the closest degenerate pencil to a generic
m× n pencil (with m < n) should have a regular part, then the first problem corre-
sponds to finding the closest uncontrollable system (see also section 3.3).

The closure hierarchy lattice gives one kind of answer to these nearness prob-
lems for equivalence orbits of pencils, where we use the codimension instead of the
Euclidean distance. We make use of the theorem for covering pencils to prove the
following statement.

Theorem 3.6. Let m < n. Then the m × n pencils with regular part form a
codimension n−m+ 1 stratified submanifold of all pencils equal to the closure of the
orbit of

J1(γ)⊕A1 − λB1, where A1 − λB1 = diag(Lᾱ, . . . , Lᾱ, Lᾱ+1, . . . , Lᾱ+1),(3.4)

ᾱ = b(m− 1)/dc, d = n−m > 0, is the total number of L blocks, and the number of
Lᾱ+1 blocks is (m− 1) mod d. Therefore, the nearest pencil with a regular part to a
generic pencil is generically of the form (3.4).

Proof. First, we can apply rule (1a) of Theorem 3.2 only until we get a single
largest Lk block. Then we apply rule (2a) with the implication that Lk ⊕ ∅ →
Lk−1 ⊕ J1(γ). The codimension of J1(γ)⊕A1 − λB1 is n−m+ 1.

Notably, A1 − λB1 is the generic pencil of size (m − 1) × (n − 1) and J1(γ) is a
Jordan block of size one with an unspecified eigenvalue γ.

We illustrate Theorem 3.6 for 7× 12 pencils. In Figure 3.6 we show a sublattice
corresponding to equivalence orbits of codimension ≤ 8. We see that L0 ⊕ 2L1 ⊕ 3L2

has the least nonzero codimension (= 3) (Corollary 3.4), and 4L1 ⊕ L2 ⊕ J1(γ) has
codimension 6 and is the most generic pencil with a regular part (Theorem 3.6). We
remark that no structures with a regular part and codimension less than 8 can be
found by following the “empty” arc from L0⊕2L1⊕L2⊕L3, since application of rule
(2a) here gives L0 ⊕ 2L1 ⊕ L2 ⊕ L3 and 2L0 ⊕ 2L2 ⊕ L3, with codimensions 8 and 9,
respectively.

Given a generic m× n pencil we can apply Theorem 4.2 in our Part I paper [19]
to get lower bounds on the distance (measured in the Frobenius norm) to the closest
nongeneric pencils of codimension n−m+ 1.

688 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

� �ª3L1⊕2L2

?

Q
Q
Q
Q
Q
QQs

1a

1a

� �ªL0⊕L1⊕3L2

?

1a
� �ª4L1⊕L3

?

Q
Q
Q
Q
Q
QQs

2a

1a

� �ªL0⊕2L1⊕L2⊕L3

?

Q
Q
Q
QQs

2a

2a

� �ª4L1⊕L2⊕J1(γ)

Q
Q
Q
Q
Q
QQs

?2a

1a

� �ªL0⊕2L1⊕2L2⊕J1(γ)

Cod(A− λB)

0

3

4

5

6

8

Fig. 3.6. Illustration of Theorem 3.6. The closure hierarchy shows that 4L1 ⊕ L2 ⊕ J1(γ) is
the most generic 7× 12 structure with one eigenvalue.

3.5. Proofs of Theorems 3.2 and 3.3. Given a pencil P1, Pokrzywa’s Lemma
5 [37] on necessary conditions for covering pencils exhibits a pencil P2 such that
O(P1) ⊃ O(P2), but there may still exist another pencil P such that O(P1) ⊃ O(P) ⊃
O(P2), i.e., Pokrzywa’s rules do not guarantee a cover. The pencils found by his
lemma, however, include all pencils P2 that are covered by P1; therefore the lemma
includes the necessary conditions for covering pencils. We prove Theorem 3.2 by
showing that we have included all possible restrictions to the rules without missing
any links. For each rule in the proof we denote Pokrzywa’s corresponding rule [37,
Lem. 5] as (P1), (P2), etc., and consider them in terms of coin moves.

Proof of Theorem 3.2.
(1) (P1) is a rightward coin move in R (or L) that is consistent with the columns

being monotonically ordered. The restriction to a minimum rightward coin
move precludes the possibility of reaching the same state with another se-
quence of moves.

(2) (P2) is a coin move from R (or L) to Jµi for any µi. In Theorem 3.2, the
reason for moving the rightmost coin in R (or L) is that if we move a coin
c that is not the rightmost one, then the same partition can be found by a
series of moves (move the coin c using rule (1) until it is in the rightmost

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 689

position and then move it to the Jµi partition). This shows that we can
generate the same partition with other partitions in between. Similarly, the
reason for placing the coin in the rightmost position of Jµi is that a partition
obtained by placing it in any other position can be obtained by first placing
it in the rightmost position and then applying rule (3).

(3) (P3) is a leftward coin move in Jµi that is consistent with the columns being
monotonically ordered. Our restriction to a minimum leftward coin move is
obvious.

(4) (P4) is the removal of a row of coins from one or several eigenvalues. Add one

more coin to these k̂ coins and distribute all k̂+1 coins from left to right in R
and L. There are several restrictions. By picking the longest row from each
of the Jµi , we can always move coins back again (using rule (2)) in order to
find the partitions we would have found by removing a shorter row. This is
also the reason why we pick the longest row for all eigenvalues; if we want to,
we can bring them back for all but one eigenvalue. The restriction that each
column of R and L must have one coin each is required, since otherwise we
could obtain the same sequence by first moving more coins to the J partitions
using rule (2) and then applying rule (4).

It is obvious that these four rules are now minimal under these restrictions.
The proof of Theorem 3.3 is based on the fact that if one orbit is covered by

another, then also its bundle is in the closure of the bundle of the other, but the
covering relation may be overruled by the possibility of eigenvalues coalescing.

Proof of Theorem 3.3. Rule (5) follows from the matrix case, and since the bundles
are unions of orbits, all the covering relations for orbits are also valid for the bundle
case, as long as the same operation cannot be performed in more than one step using
rule (5). Since it is obvious that the operations corresponding to rules (1) and (3)
cannot be done in more steps using rule (5), we only have to focus on rules (2) and
(4).

Rule (2) in Theorem 3.2 allows a coin to be moved to any eigenvalue µi, but for
bundles this can be done in two steps: move the coin to a new eigenvalue µj and
apply rule (5) on µi and µj , i.e., append the coin from µj to the longest row of coins
for µi (now = µj).

The next question is whether rule (4) can be replaced with a sequence involving
rule (5). If there is only one eigenvalue, rule (5) is not applicable, and if each eigenvalue
has at least two Jordan blocks, then rule (5) must necessarily decrement the number
of distinct eigenvalues while rule (4) does not. Otherwise if an eigenvalue has only
one Jordan block, one may apply rule (5) before rule (4) to achieve the same result
as a single application of rule (4).

4. Empowering the staircase algorithm with stratifications. The stair-
case algorithm is a powerful tool for computing the Kronecker structure of an m× n
pencil A−λB [4, 8, 32, 35, 34, 41, 44]. The reduction of A−λB into generalized Schur
form requires several applications of the staircase algorithm. Typically, the first ap-
plication extracts the right structure and the Jordan structure of the zero eigenvalue
using a finite sequence of orthogonal (unitary) equivalence transformations. This
decomposition is called the RZ-staircase form (RZ for “right-zero”).

In step k (= 1, 2, . . .) of the first phase, GUPTRI [15, 16] computes the RZ form
by determining mk = dimension of the column nullspace of A(k) and mk − sk =
dimension of the common column nullspace of A(k) and B(k). Here, A(1) = A and
B(1) = B and (A(k), B(k)) for k > 1 correspond to the deflated matrix pair obtained

690 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

after the equivalence transformation in step k−1. The structure indices (RZ-indices)
display the Kronecker structure as follows:

mk − sk = number of Lk−1 blocks, sk −mk+1 = number of Jk(0) blocks.

The Jordan structure associated with a finite but nonzero eigenvalue is obtained
by applying the RZ-staircase algorithm to a shifted pencil. One way to find the left
structure is to apply the same algorithm to the transposed pencil. Another way is
to directly determine the sizes of the corresponding row nullspaces as done in the
GUPTRI algorithm. Then by working on B − µA we get the LI-staircase form and
now mk−sk and sk−mk+1, which are the number of LTk−1 and Nk blocks, respectively,
define the LI-indices. Applying the RZ-staircase algorithm to B−µA gives the right
structure and the Jordan structure of ∞ (RI-indices). Similarly, we can get the left
structure and the Jordan structure of zero (LZ-indices) by applying the LI-staircase
algorithm to A− λB. All combinations (RZ, RI, LI, and LZ) are possible.

Knowing the RZ- and LI-indices we can easily extract the integer sequences
(partitions) R,L, and Jµi or the corresponding staircase indices (R, L, Z, and I).
For example, the R and J0 partitions are obtained from the RZ-indices as

ri−1 =
∞∑
k=i

mk − sk and ji =
∞∑
k=i

sk −mk+1.

4.1. Modified staircases and covering pencils. In the following we make an
algorithmic application of Theorem 3.2. Given a pencil P1 and the staircase indices
defining its Kronecker structure, we want to find all pencils P2 covered by P1. We
can therefore, for example, give the user a selection of choices or perhaps choose
one automatically. The four rules in Theorem 3.2 correspond to different structure
transitions. Rules (3) and (1) correspond to finding a covering orbit for nilpotent
matrices (Corollary 2.3) and full normal rank pencils with only L (or LT) blocks
(Corollary 3.4), respectively. Rule (2) is applicable only if there exists a unique
largest Lj (or LTj) block in P1. Then the size of that block is decreased by one, while
the size of the largest Jordan block (possibly 0× 0) for one eigenvalue is increased by
one. Rule (4) replaces the regular structure consisting of the largest Jordan blocks
associated with all eigenvalues in P1 by a generic square singular part. The new L
and LT blocks in P2 must be at least as large as the corresponding largest singular
blocks in P1.

We assume that the left and right structures are captured only in the structure in-
dices corresponding to one eigenvalue (possibly different for left and right structures).
The remaining structure indices capture only Jordan structures, e.g., the RZ-indices
associated with an eigenvalue µi reduces to Z-indices (mk = sk).

We propose that a nice user interface based on Algorithm 4.1 should be available
to the user.

Algorithm 4.1. For all valid coin moves from column j to column k in the
appropriate integer sequences (R,L, and Jµi) of rules (1)–(3) in Theorem 3.2, the
staircase indices are adjusted as follows. (Remember that R and L start counting
columns from 0 but Jµi starts from 1.) We use a right arrow (→) to show how one
block in the KCF is transferred to another.

(1a) Let mk and sk be RZ-indices (or RI-indices). Then mj+1 := mj+1 − 1,
sj := sj − 1 (Lj → Lj−1), mk+1 := mk+1 + 1, and sk := sk + 1 (Lk−1 → Lk).

(1b) Same as item (1a), where now mk and sk are LI-indices (or LZ-indices).

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 691

(2a) Letmk and sk be theRZ-indices (orRI-indices) associated with an eigenvalue
µ ∈ C (RI-indices if µ = ∞). Then mj+1 := mj+1 − 1, sj := sj − 1
(Lj → Lj−1), mk := mk + 1, and sk := sk + 1 (Jk−1(µ)→ Jk(µ)).

(2b) Same as item (2a), where now mk and sk are the LZ-indices (or LI-indices)
associated with µ ∈ C.

(3) Let mk and sk be any of the staircase indices (RZ, RI, LI, or LZ) associated
with µ ∈ C. Thenmj := mj−1, sj := sj−1 (Jj(µ)→ Jj−1(µ)), mk := mk+1,
sk := sk + 1 (Jk−1(µ)→ Jk(µ)).

For all valid coin moves in the appropriate integer sequences (R,L, and Jµi) of
rule 4 in Theorem 3.2, the staircase indices are adjusted as follows.

(4) Each valid coin move is defined by k and t in the theorem and the following
operations replace the selected k×k regular part with a generic square singular
pencil (Jk1

(µi)⊕ Jk2
(µ1)⊕ · · · ⊕ Jkp(µp)→ Lt⊕LTk−t−1). Here, ki is the size

of the largest Jordan block of µi and k =
∑
ki.

– Repeat for all p eigenvalues µi: Let mk and sk be the RZ-indices (or
RI-indices) of µi ∈ C. Then sι := sι− 1, mι := mι− 1 for ι = 1, . . . , ki.

– Update RZ-indices (or RI-indices) with respect to new Lt block: mι :=
mι + 1 for ι = 1, . . . , t+ 1, sι := sι + 1 for ι = 1, . . . , t (if t > 0).

– Update LZ-indices (or LI-indices) with respect to new LTk−t−1 block:
mι := mι + 1 for ι = 1, . . . , k − t, sι := sι + 1 for ι = 1, . . . , k − t− 1 (if
k − t− 1 > 0).

Each valid application of any of the rules (1)–(4) results in a pencil P2 such that
O(P1) covers O(P2) and each P2 is on a different branch in the closure lattice. Starting
with a generic pencil, repeated applications of the stratification-enhanced algorithm
will give us the complete closure hierarchy. Given mk and sk corresponding to any
of the staircase forms of an arbitrary m × n pencil up to a certain point, the most
generic object is the one where the remaining m̃× ñ pencil is generic. In other words,
based on the information obtained up to this point, we know that the pencil is in the
closure of the orbit corresponding to this situation. The values of m̃ and ñ determine
the KCF and the staircase indices of the remaining generic pencil (see section 3.3).
Any application of the rules (1)–(4) will result in a less generic pencil. Note that the
number of different orbits in the closure lattice is exponentially growing as a function
of the problem size (m,n), so the algorithm is recursively applied only a few steps if
m and n are large.

Similarly, given P1 it is possible to characterize a pencil P2 such that O(P2)
covers O(P1). Of course, this will impose different prerequisites on and changes of
P1’s structure indices. Moreover, algorithmic applications of Theorem 3.3 for finding
covering bundles can be formulated similarly. The algorithmic details are omitted
here.

For an illustration of the stratification-enhanced staircase algorithm we return
to the examples in Figure 3.2. In Figure 4.1 we display staircase form transitions
corresponding to different blocks of P1 with KCF L0 ⊕ L1 ⊕ L2 ⊕ J1(µ1)⊕ J4(µ1)⊕
J3(µ2)⊕LT1 ⊕LT3 . Each of the six cases illustrates the structure index changes imposed
by one of the rules of the algorithm. The diagonal blocks in the staircase forms of size
sk ×mk reveal the Kronecker structures of P1 and P2. In order to keep the picture
small and clear, we display only the blocks that are directly affected by the transition
from P1 to P2. These staircase forms correspond to the coin moves illustrated in
Figure 3.2. Following the notation from Figure 2.6 the diamond (♦ for A and ♦λ for
B) is used to denote a matrix entry that the algorithm forces to zero and thereby

692 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

Blocks of P1 −→ Blocks of P2

(1a)

 −λ 1
♦λ ♠λ 1

−λ 1

−→
 −λ 1

0 ♠λ 1

−λ 1

(1b)

−λ
1 −λ

1 −λ
♠ −λ
♦

1

−→

−λ
1 −λ

1 −λ
♠ −λ
0

1

(2a)

−λ 1
−λ 1

−λ 1
♦λ ♠λ 1

−λ 1

−λ

−→

−λ 1
−λ 1

−λ 1

0 ♠λ 1

−λ 1

−λ

(2b)

♠ −λ
♦ −λ

1 −λ
1 −λ

1 −λ
1

1

−→

♠ −λ
0 −λ

1 −λ
1 −λ

1 −λ
1

1

(3)

−λ 1
−λ ♠
−λ ♦
−λ 1

−λ

−→

−λ 1
−λ ♠
−λ 0
−λ 1

−λ

(4)

−λ 1

−λ 1

♦λ 1

−λ 1

µ̃2 − λ 1
µ̃2 − λ 1

µ̃2 − λ

−→

−λ 1

−λ 1

0 1
−λ 1

µ̃2 − λ 1
µ̃2 − λ 1

µ̃2 − λ

Fig. 4.1. RZ- and LI-staircase forms of P1 and P2 displayed in Figure 3.2.

changes the computed Kronecker structure from the KCF of P1 to the KCF of P2.
The spade (♠ for A and ♠λ for B) in P1 is a nonzero entry that if not existing can
be introduced by an equivalence transformation. If not introduced (i.e., the spade
does not appear in P2), then the KCF of P2 is even less generic, which corresponds
to further applications of the stratification-enhanced algorithm.

For cases (1a), (2a), (3), and (4) Figure 4.1 shows the RZ-staircase form of
P1 and P2. Similarly, the LI-staircase form is displayed for cases (1b) and (2b).
For completeness, we could have included the LI-staircase form for case (4) as well.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 693

Rule Indices P1 P2

(1a) RZ
k 1 2 3 4 5
mk 5 3 2 1 0
sk 4 2 1 1 0

k 1 2 3 4 5
mk 5 2 2 2 0
sk 3 2 2 1 0

(1b) LI
k 1 2 3 4 5
mk 3 3 2 1 0
sk 3 2 2 0 0

k 1 2 3 4 5 6
mk 3 2 2 1 1 0
sk 2 2 2 1 0 0

(2a) RZ See (1a)
k 1 2 3 4 5 6
mk 5 3 1 1 1 0
sk 4 1 1 1 1 0

(2b) LI See (1b)
k 1 2 3 4 5
mk 3 3 2 1 0
sk 3 2 1 1 0

(3) RZ See (1a)
k 1 2 3 4
mk 5 4 2 0
sk 4 3 1 0

(4) RZ See (1a)
k 1 2 3 4
mk 5 3 2 0
sk 4 2 0 0

LI See (1b)
k 1 2 3 4 5 6
mk 3 3 2 2 1 0
sk 3 2 2 1 0 0

Fig. 4.2. Examples of structure index changes in the stratification-enhanced staircase algorithm.

However, we see immediately that the last diagonal block of P2 is an LT4 block. Here
µ̃2 corresponds to an eigenvalue µ2 − µ1 of the shifted pencil A − (λ + µ1)B. The
sizes (mk × sk) of the diagonal blocks of these staircase forms reveal the changes in
the local structure indices that result after applying rules (1)–(4) in the algorithm.
For the RZ-staircase forms we start at the top left corner when listing mk and sk for
k = 1, Similarly, for the LI-staircase forms we start at the bottom right corner.
More interesting are the corresponding changes in the global structure indices (RZ,
LI, etc.) for these examples, which are displayed in Figure 4.2. Without loss of
generality we have chosen µ1 = 0 and µ2 =∞ in Figure 4.2.

Applying the GUPTRI algorithm in finite precision arithmetic means that all rank
decisions for computing the structure indices are made with respect to a user supplied
tolerance which reflects the relative accuracy of the data [15, 16]. Assuming a fixed
accuracy of the input data it is possible to increase or decrease the tolerance for rank
decisions such that a less generic or a more generic pencil, respectively, is computed.
Alternatively, given a Kronecker structure computed by the staircase algorithm we
can impose a more degenerate Kronecker structure by applying any of the applicable
structure index changes. A stratification-enhanced GUPTRI algorithm can deliver an

694 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

upper bound on the size of the distance from the pencil P1 we started with to the
pencil P2 we imposed such that O(P1) covers O(P2). The other way around, we can
start with a pencil P1 and construct a more generic pencil P2 by adding perturbations
(whose sizes are dependent on the rank decision tolerance) such that O(P2) covers
O(P1).

In infinite precision arithmetic we can always go upwards in the closure hierarchy
by adding arbitrary small perturbations. This is normally not the case for going
downwards in the hierarchy. See [21] for computable normwise bounds of the smallest
perturbations for going downward (or upward) in the closure hierarchy of the set of
2× 3 pencils.

5. The abstract algebra of matrix pencils. We give a high-level view of
the proofs of Theorem 3.1, mentioning a few new conjectures that we have solved.
The Pokrzywa proof uses ordinary linear algebra notation; the algebraic notation by
Bongartz would be foreign to many numerical readers. Moreover, we provide a quick
introduction to narrow the gap between the algebra and numerical communities. The
elegance in the algebraic approach is the unifying treatment obtained for the Jordan,
Kronecker, echelon, and many other forms.

5.1. Closure relations, inner products, and codimension counts. While
the covering relationships might be thought of as combinatorial, the closure relations,
which are statements about geometry, are derived mainly by algebraic techniques. As
discussed earlier, there have been two independent derivations [37, 9] of the closure
hierarchy. We suspected that the two very different looking proofs might be somehow
“isomorphic,” particularly since both count the dimension of the space of solutions to
test homogeneous equations.

To be more precise, consider the two inner products on Kronecker structures for
pencils P1 = A1 − λB1 and P2 = A2 − λB2,

〈P1, P2〉1 = dim{V : A2V B
T
1 = B2V A

T
1 },

defined by Pokrzywa [37], and the already defined (before without subscript (3.2))

〈P1, P2〉2 = dim{(U, V) : UP1 = P2V }.
The inner product 〈P1, P2〉2 is used by Bongartz, who generalizes techniques of Abeasis
and Del Fra [1], and by Riedtmann [38], who studied the dimension of the linear space
of homomorphisms (dim Hom(P1, P2) = 〈P1, P2〉2 in our case) between path algebra
modules (see section 5.2).

Using Kronecker products we can express the inner products as

〈P1, P2〉1 = dim{x : T1x = 0} and 〈P1, P2〉2 = dim{y : T2y = 0},
where

T1 =
[
B1 ⊗A2 −A1 ⊗B2

]
, x = vec(V),

and

T2 =

[
AT1 ⊗ Im −In ⊗A2

BT1 ⊗ Im −In ⊗B2

]
, x =

[
vec(U)
vec(V)

]
.

Thus, indeed we have that

〈P1, P2〉1 = dim N (T1) and 〈P1, P2〉2 = dim N (T2),

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 695

whereN (·) denotes the nullspace of a matrix. It is clear that with either inner product,
if O(P1) ⊇ O(P2), then 〈P1, T 〉 ≤ 〈P2, T 〉 for any test pencil T . Both Pokrzywa and
Bongartz prove the converse, giving necessary and sufficient conditions. Furthermore,
both observe that one need consider only the indecomposable blocks T ∈ {Lk, LTk , Jk}
as test pencils giving three sequences of conditions. Explicit formulas may be found
in Demmel and Edelman (under the term “interaction”) [13] and Beitia and Gracia
[5, Thm. 4.5] although these papers did not make the connection to closure relations.

Since the inner product is bilinear, it is sufficient to display a table where the
arguments are indecomposable blocks:

〈P1, P2〉1 Lk LTk Jk(γ)

Lj j + k + 1 (k − j)+ k
LTj (j − k)+ 0 0

Jj(γ) j 0 min(j, k)

〈P1, P2〉2 Lk LTk Jk(γ)

Lj (j + 1− k)+ 0 0
LTj j + k (k + 1− j)+ k

Jj(γ) j 0 min(j, k)

The inner product on Jordan structures corresponding to different eigenvalues is 0.
Here, Jk(λ) denotes a Jordan block for a finite or infinite eigenvalue. Notice from the
tables that

〈P,Lk〉1 = 〈PT , Lk+1〉2, 〈P,LTk 〉1 = 〈PT , LTk−1〉2, 〈P, Jk〉1 = 〈PT , Jk〉2.
This is not coincidence; we have shown that by eliminating the U from the Bongartz
equation involving U and V , one obtains exactly the corresponding Pokrzywa relation,
which the reader may notice is symmetric.

Demmel and Edelman were interested in cod(P) = 〈P, P 〉2 − (m − n)2 so as to
understand the codimension of O(P) and the relation to the staircase algorithms for
their computation. In our Part I paper [19] we observed that 〈P, P 〉2 = dim N (T2).
Indeed, when P = P1 = P2, the tangent space of P = A − λB is the range of the
Kronecker product block matrix T2 [19].

Of course cod(P1) ≤ cod(P2) if O(P1) ⊇ O(P2), but the converse does not hold.
We at first conjectured that a test pencil approach might work here. The conjecture
was that if cod(P1 ⊕ T) ≤ cod(P2 ⊕ T) for all test pencils T , then O(P1) ⊇ O(P2).
Unfortunately, this does not hold even for the Jordan case. We found a counterex-
ample consisting of two matrices A1 and A2 with Segre characteristics (5, 1, 1, 1) and
(4, 3, 1), respectively. For this example cod(A2 ⊕ Jk) ≤ cod(A1 ⊕ Jk) for every k, but
there is no closure relationship between the orbits of the two matrices (see Figure
2.1).

5.2. Quiver representations and path algebra modules. Perhaps some
numerical analysts find it unsatisfying to talk about the Jordan case and then proceed
to “analogues” or “generalizations” to the Kronecker case. In fact, the notions of
equivalent structures, closure relations, indecomposable blocks, etc., all are elements
of an elaborate general theory of quiver representations and path algebra modules.

In this theory, the echelon form corresponds to an A2 quiver with graph consisting
of a single arrow (•−→•), the Jordan form is an Ã0 quiver whose graph is a loop
(i•�), and the Kronecker form is an Ã1 quiver with two arrows (• −→−→ •). A
quiver is really a synonym for a directed graph. We obtain a representation [18, 39]
of the quiver if we associate vertices with vector spaces and arrows with linear maps
between the spaces, i.e., matrices. If two vectors are connected tail to tip, then
the matrices may be multiplied. A representation of the quiver with three arrows
(• −→ • −→ • −→ •) is simply three matrices A,B,C that can be multiplied to form
CBA. Two representations are said to be equivalent if one can be obtained from the

696 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

other by a change of basis in the vector space. Thus we have defined similarity of
square matrices, strict equivalence of pencils, and many other equivalences with one
sentence.

Let E be the incidence matrix of the quiver defined so that Eij is the number of
arrows pointing from i to j. The matrix B = E+ET is independent of the orientation
of the arrows. The diagonal elements of B count the number of loops at the node
twice. Depending on whether the matrix 2I − B is positive definite, semidefinite, or
indefinite, the graph is said to be finite, tame, or wild. The finite graphs are known as
Dynkin diagrams [31]. They correspond to canonical forms built from finitely many
blocks, e.g., there are three building blocks for the echelon form: matrices of dimension
1 × 1, 1 × 0, and 0 × 1. The tame quivers include the Jordan and Kronecker forms
and are manageable. The wild quivers are more difficult.

We may now define the path algebra of a quiver. Formally, it is a vector space
generated by elements called paths where multiplication also is defined. A path is
simply a sequence of vertices that follow edges. A path of length l may be denoted
(a|α1, . . . , αl|b), where a and b are nodes, α1 is an arrow pointing away from a, the
successive arrows point towards each other, and the last arrow points toward b. Paths
that connect may be multiplied in the obvious way

(a|α1, . . . , αl|b)(b|β1, . . . , βs|c) = (a|α1, . . . , αl, β1, . . . , βs|c).
Two paths that do not connect are defined to have product 0. Notice that the paths
of length 0: (a|a) are idempotent: (a|a)2 = (a|a) and the sum of all the length 0 paths
(one for each node) is the identity.

The Kronecker pencil example is the path algebra for Ã1. With the arrows labeled
e1 and e2, it may be thought of as the four-dimensional space of the form

α(1|1) + β(1|e1|2) + γ(1|e2|2) + δ(2|2)

with the path algebra multiplication table:

(1|1) (1|e1|2) (1|e2|2) (2|2)
(1|1) (1|1) (1|e1|2) (1|e2|2) 0

(1|e1|2) 0 0 0 (1|e1|2)
(1|e2|2) 0 0 0 (1|e2|2)

(2|2) 0 0 0 (2|2)

We can write such an element as (α, β, γ, δ). This algebra is isomorphic to the set of
four-dimensional matrices α 0 β

0 α γ
0 0 δ

with ordinary matrix multiplication. Let A and B be arbitrary m × n rectangular
matrices. We say that vectors v of length m+n form a module over the path algebra
of Ã1. Define (α, β, γ, δ)v to mean(

αIm βA+ γB
0 δIn

)
v.(5.1)

It is easy to check that the product

(α1, β1, γ1, δ1)(α2, β2, γ2, δ2)v

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 697

may be computed in either order giving the same answer. (One way requires multi-
plication in the path algebra; the other is ordinary matrix-vector multiplication.)

There is a one-to-one correspondence between equivalent pencils and modules
over the path algebra of Ã1, and generally this holds between representations and
modules over a path algebra of a quiver. Given two representations of a quiver, if we
have linear maps Ui from the first to the second, we say that we have a homomorphism
if the diagram composed of the two quivers and the connecting Ui’s is commutative,
as in the following example:

U1 U2 U3 U4

A B C1 11

A C2 B 22

It is the dimension of the set of homomorphisms between two quivers (dim Hom)
that is used explicitly by Bongartz and implicitly by Pokrzywa to obtain the closure
relations.

The coin moves also have an algebraic interpretation. Pencils with only Lk blocks
correspond to what algebraists call projective modules, while those with only LTk
blocks are the injective modules. To denote that a matrix A is an extension of A1

and A2 (see section 2.3), algebraists write a short exact sequence:

0→ A1 → A→ A2 → 0.

This generalizes to any quiver, and each coin move corresponds to some exact se-
quence.

This concludes our brief introduction to the algebraic language for these ideas.
It is worthwhile to mention that not every equivalence relation in systems theory
corresponds to a quiver. The set of matrix pairs (A,B) with A m ×m and B n ×
n with the equivalence (A,B) ∼ (U−1AU,U−1B) does not correspond to a quiver
representation, but if we add the matrix V : (A,B) ∼ (U−1AU,U−1BV) then we do
have a (wild) quiver [29]. Similarly if we have the matrix quadruples often studied in
systems theory [42, 14] with the equivalence relation(

P R
O Q

)(
A B
C D

)(
P−1 0
S T

)
=

(
A′ B′

C ′ D′

)
,

we do not have a quiver, but if we omit the matrices R and S, then once again we
have a wild quiver.

Acknowledgments. The first author would like to thank Jim Demmel for sug-
gesting this problem one New Year’s Eve in Evans Hall (weeks before he met his wife
in Evans Hall). We would like to thank Richard Stanley, who always knows the best
references and pointers to the literature. We are indebted to Michel Goemans for his
help with the proof of Theorem 2.7. Finally we thank Klaus Bongartz for very helpful
email discussions, and the minters of Belgian, British, Swedish, French, and American
coins.

698 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM

REFERENCES

[1] S. Abeasis and A. Del Fra, Degenerations for the representations of a quiver of type Am, J.
Algebra, 93 (1985), pp. 376–412.

[2] V. I. Arnold, On matrices depending on parameters, Russian Math. Surveys, 26 (1971), pp.
29–43.

[3] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable
Maps, Vol. I, Birkhäuser Boston, Cambridge, MA, 1985.

[4] T. Beelen and P. Van Dooren, An improved algorithm for the computation of Kronecker’s
canonical form of a singular pencil, Linear Algebra Appl., 105 (1988), pp. 9–65.

[5] M. A. Beitia and J.-M. Gracia, Sylvester matrix equations for matrix pencils, Linear Algebra
Appl., 232 (1996), pp. 155–197.

[6] D. Boley, Estimating the sensitivity of the algebraic structure of pencils with simple eigenvalue
estimates, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 632–643.

[7] D. Boley, The Algebraic Structure of Pencils and Block Toeplitz Matrices, Report TR-96-048,
Department of Computer Science and Engineering, University of Minnesota, Minneapolis,
MN, 1996.

[8] D. Boley and P. Van Dooren, Placing zeros and the Kronecker canonical form, Circuits
Systems Signal Process., 13 (1994), pp. 783–802.

[9] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math.,
121 (1996), pp. 245–287.

[10] F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations, SIAM,
Philadelphia, PA, 1996.

[11] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras,
Van Nostrand Reinhold, New York, 1993.

[12] I. De Hoyos, Points of continuity of the Kronecker canonical form, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 278–300.

[13] J. Demmel and A. Edelman, The dimension of matrices (matrix pencils) with given Jordan
(Kronecker) canonical forms, Linear Algebra Appl., 230 (1995), pp. 61–87.

[14] J. Demmel and B. Kågström, Accurate solutions of ill-posed problems in control theory,
SIAM J. Matrix. Anal. Appl., 9 (1988), pp. 126–145.

[15] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil A−
λB: Robust software with error bounds and applications, part I: Theory and algorithms,
ACM Trans. Math. Software, 19 (1993), pp. 160–174.

[16] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil
A− λB: Robust software with error bounds and applications, part II: Software and appli-
cations, ACM Trans. Math. Software, 19 (1993), pp. 175–201.

[17] H. den Boer and Ph. A Thijsse, Semi-stability of sums of partial multiplicities under additive
perturbation, Integral Equations Operator Theory, 3 (1980), pp. 23–42.

[18] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem.
Amer. Math. Soc., 6 (1996), pp. 155–197.

[19] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory
of matrices and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl.,
18 (1997), pp. 653–692.

[20] E. Elmroth, On the Stratification of the Kronecker Canonical Form, Report UMINF-95.14,
Department of Computing Science, Ume̊a University, Ume̊a, Sweden, 1995.

[21] E. Elmroth and B. Kågström, The set of 2-by-3 matrix pencils—Kronecker structures and
their transitions under perturbations, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1–34.

[22] E. R. Gansner, Acyclic digraphs, Young tableaux and nilpotent matrices, SIAM J. Alg. Dis-
crete Methods, 2 (1981), pp. 429–440.

[23] F. Gantmacher, The Theory of Matrices, Vols. I, II, Chelsea, New York, 1959.
[24] M. R. Garey and D. S. Johnson, Computers and Intractabilty, A Guide to the Theory of

NP-Completeness, Freeman and Company, San Francisco, 1979.
[25] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applica-

tions, John Wiley, New York, 1986.
[26] G. H. Golub and J. H. Wilkinson, Ill-conditioned eigensystems and the computation of the

Jordan canonical form, SIAM Rev., 18 (1976), pp. 578–619.
[27] M. Goresky and R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin, New

York, 1988.
[28] M. Gu, Finding well-conditioned similarities to block-diagonalize non-symmetric matrices is

NP-hard, J. Complexity, 11 (1995), pp. 377–391.

A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 699

[29] D. Hinrichsen and D. Prätzel-Wolters, A wild quiver in linear systems theory, Linear
Algebra Appl., 91 (1987), pp. 143–175.

[30] D. G. Hough, Explaining and Ameliorating the Ill Condition of Zeros of Polynomials, Ph.D.
thesis, Memo UCB/ERL M77/30, Electronics Research Lab, University of California,
Berkeley, CA, 1977.

[31] V. G. Kac, Montecatini lectures on invariant theory, in Invariant Theory: Proceedings of the
First 1982 session of the Centro Internazionale Matematico Estivo, Springer-Verlag, Berlin,
1983, Lecture Notes in Math., Vol. 996, Proceedings, Montecatini, Italy, 1982.

[32] B. Kågström, RGSVD—An algorithm for computing the Kronecker structure and reducing
subspaces of singular A− λB pencils, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 185–211.

[33] B. Kågström and A. Ruhe, An algorithm for the numerical computation of the Jordan normal
form of a complex matrix, ACM Trans. Math. Software, 6 (1980), pp. 389–419.

[34] V. B. Khazanov and V. Kublanovskaya, Spectral problems for matrix pencils, methods and
algorithms I, Sov. J. Numer. Anal. Math. Modelling, 3 (1988), pp. 337–371.

[35] V. Kublanovskaya, AB-algorithm and its modifications for the spectral problem of linear
pencils of matrices, Numer. Math., 43 (1984), pp. 329–342.

[36] A. S Markus and E. É. Parilis, The change of the Jordan structure of a matrix under small
perturbations, Linear Algebra Appl., 54 (1983), pp. 139–152.

[37] A. Pokrzywa, On perturbations and the equivalence orbit of a matrix pencil, Linear Algebra
Appl., 82 (1986), pp. 99–121.

[38] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École
Norm. Sup, 4 (1986), pp. 275–301.

[39] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math., 1099,
Springer-Verlag, Berlin, 1984.

[40] R. P. Stanley, Enumerative Combinatorics, Wadsworth & Brooks/Cole, Monterey, CA, 1986.
[41] P. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil, Linear

Algebra Appl., 27 (1979), pp. 103–141.
[42] P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans.

Automat. Control, AC-26 (1981), pp. 111–129.
[43] W. Waterhouse, The codimension of singular matrix pairs, Linear Algebra Appl., 57 (1984),

pp. 227–245.
[44] J. H. Wilkinson, Linear differential equations and Kronecker’s canonical form, in Recent

Advances in Numerical Analysis, C. de Boor and G. Golub, eds., Academic Press, New
York, 1978, pp. 231–265.

EFFECTIVE METHODS FOR SOLVING BANDED TOEPLITZ
SYSTEMS∗

DARIO ANDREA BINI† AND BEATRICE MEINI†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 700–719

Abstract. We propose new algorithms for solving n×n banded Toeplitz systems with bandwidth
m. If the function associated with the Toeplitz matrix has no zero in the unit circle, then O(n logm+
m log2 m log log ε−1) arithmetic operations (ops) are sufficient to approximate the solution of the
system up to within the error ε; otherwise the cost becomes O(n logm+m log2 m log n

m
) ops. Here

m = o(n) and n > log ε−1. Some applications are presented. The methods can be applied to infinite
and bi-infinite systems and to block matrices.

Key words. banded matrices, Toeplitz matrices, displacement rank, cyclic reduction, Graeffe’s
method

AMS subject classifications. 65F05, 65F10, 15A23

PII. S0895479897324585

1. Introduction. Let {ak}k∈Z be a sequence of real numbers such that ak = 0
for k < m2, and for k > m1, am1am2 6= 0, where Z is the ring of integers, and
m1,m2 ∈ Z, m2 < 0 < m1. We may associate with {ak}k∈Z the function φ(z) =∑m1

i=m2
aiz

i and a matrix T = (ti,j), having entries ti,j = ai−j . Let us use different
notations for T according to its size. That is, we denote by T±∞ = (ti,j)i,j∈Z the

bi-infinite matrix, by T∞ = (ti,j)i,j≥0 the infinite matrix, and by Tn = (ti,j)i,j=1,...,n

the matrix having size n. We leave the notation T for a matrix having an unspecified
size. T is a banded matrix with bandwidth m = max{m1,−m2}, and has the Toeplitz
structure; i.e., its entries are constant along the diagonals.

In this paper we propose a new approach to solving the (block) banded Toeplitz
systems Tx = b with bandwidth m, leading to an algorithm that can be used either
as a direct algorithm or as an iterative one. For n × n systems the direct method,
which can be applied with almost no restriction, has a sequential cost of O(n logm+
t(m) log n

m) arithmetic operations (ops), where t(m) is the arithmetic cost of solving

an m×m Toeplitz-like system, i.e., t(m) ∈ {m2,m log2m,m logm} according to the
algorithm adopted (compare [23], [1], [15]).

Under suitable conditions generally satisfied in most part of the applications, the
direct algorithm turns into an iterative one, and its convergence speed is quadratic.
In this way the number of ops needed to approximate n components of the solution
up to within an O(ε) error is O(n logm+ t(m) log log ε−1).

The cost O(t(m) log log ε−1) is required for arriving at an approximate LU factor-
ization of the (infinite) matrix obtained by means of a suitable permutation of rows
and columns of T . The O(n logm) term is the cost of the back substitution stage
of the algorithm. This nice convergence property allows us to approximate n con-
secutive components of the solution of infinite and bi-infinite systems with the same
computational cost as well. In the parallel random access machine (PRAM) model of
parallel computation, the algorithm costs O(ts(m) log n

m) steps with max{tp(m), n}

∗Received by the editors July 16, 1997; accepted for publication (in revised form) by G. Golub
May 26, 1998; published electronically April 14, 1999.

http://www.siam.org/journals/simax/20-3/32458.html
†Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy

(bini@dm.unipi.it, meini@dm.unipi.it).

700

BANDED TOEPLITZ SYSTEMS 701

processors, where ts(m), tp(m) are the number of steps and of processors, respectively,
needed to solve an m×m Toeplitz-like system.

1.1. The problem and its relevance. The problem of solving banded Toeplitz
systems as Tx = b plays an important role in many applications. Example of these
systems are frequently encountered in the numerical solution of ordinary differential
equations with boundary values, where the banded Toeplitz matrix provides a finite
difference discretization of the differential operator [31], and in the numerical solution
of many Markov chains coming from the modeling of queueing problems, where the
involved matrix defines the probabilities of transition from one state to the other [26],
[25], [18]. Another indirect and more recent application is related to the solution of
general Toeplitz systems, like the ones encountered in the problems in signal process-
ing [16], where the banded Toeplitz matrix is used as a preconditioner for speeding
up the convergence of preconditioned conjugate gradient techniques [17], [30], [29].

In all the above problems the dimension of the matrices involved is typically huge
or, sometimes, may even be infinite [26]. Moreover, in multidimensional problems the
banded Toeplitz structure is expressed in terms of blocks; i.e., the scalar entries aj−i
are replaced by square matrices.

This makes it particularly important to devise efficient and reliable algorithms for
the solution of (block) banded (block) Toeplitz systems that maintain their efficiency
in the case of matrices having a very large, or even infinite, size.

A certain attention has been devoted to this problem in the literature, especially
concerning the analysis of the complexity in parallel models of computation, like the
PRAM model. In the PRAM model it is assumed that a certain number of processors
work concurrently; more specifically, at each time unit (parallel step) each processor
performs a single arithmetic operation. In this model the cost of a computation is
expressed in terms of the number of parallel steps and of the number of processors
needed to carry out the computation.

Different direct parallel algorithms have been developed [20], [4], [6], [5]. They
are based mainly on two different techniques: embedding the matrix into a slightly
larger matrix that can be diagonalized by means of trigonometric transforms (FFT)
and correcting the matrix by means of a low rank additive correction in order to find
a new matrix that can be diagonalized by a trigonometric transform and applying the
Morrison–Sherman–Woodbury formula.

The algorithms obtained in this way have a parallel cost of O(log n+log2m) steps
with nm2 processors, and their sequential cost of O(n log n+m2n) ops is not inferior
to the cost of Gaussian elimination, that is, O(m2n) ops. Moreover most of these
algorithms have problems of numerical stability.

Recently, a direct and fully parallelizable algorithm for inverting block Toeplitz
matrices in block Hessenberg form, based on a doubling technique and on the use of
the Morrison–Sherman–Woodbury formula, has been proposed in [11]. The algorithm,
applied to solve the system Tnx = b, has a sequential cost of O(t(m) log n

m + n log n)
ops. However, this algorithm does not fully exploit the band structure of the system
and requires a large storage.

Iterative algorithms, based on the preconditioned conjugate gradient (PCG) tech-
niques, are fully parallelizable and have a sequential cost per iteration of O(n log n).
There exists a wide literature concerning these techniques; see, for instance, [16],
[15], [29], [32]. The number of PCG iterations needed in the worst case depends

702 DARIO ANDREA BINI AND BEATRICE MEINI

on the bandwidth m (compare [30] for the dependency of the number of iterations
on the specific features of the function associated with the matrix). Due to the
Axelsson–Lindskög theorem [2], the number of iterations sufficient to reach a super-
linear convergence is proportional to m if a circulant [14], [32] or τ -class [6], [7], [28]
preconditioner is used. Moreover, O(mn log n) ops are needed for the currently known
preconditioners [30].

1.2. New results. The new approach that we present in this paper is based
on the following idea. The matrix T is partitioned into m × m blocks so that we
obtain a block Toeplitz block tridiagonal matrix with Toeplitz blocks. The technique
of cyclic reduction (see [19]) is applied to the reblocked matrix T ; that is, an odd-even
permutation of the block rows and the block columns of T is followed by a step of
block Gaussian elimination.

We prove that the block tridiagonal block Toeplitz structure is kept almost ev-
erywhere by the cyclic reduction step. In other words, the Schur complement that we
obtain after applying the single step of block Gaussian elimination to the matrix with
permuted block rows and block columns is still block tridiagonal and, except for the
block in position (1,1), block Toeplitz.

Moreover, a sort of deterioration occurs in the inner Toeplitz structure of the
blocks of T . In fact, the blocks of the Schur complement obtained just at the first
step of cyclic reduction are not Toeplitz any more. In principle, this fact would imply
that each block must be stored in m2 memory locations and that managing with blocks
would cost O(m3) ops. In this way cyclic reduction would require O(m2n+m3 log n

m)
ops in order to solve an n× n banded Toeplitz system with bandwidth m.

However, even though the Toeplitz structure of the blocks is lost, a more general
structure is maintained by the blocks of the Schur complement at each step of cyclic
reduction. More precisely, the main result that we prove in section 3 is that each
block defining the Schur complement is a Toeplitz-like matrix of displacement rank at
most four. Each block can be represented as the sum of at most four products of pairs
of lower and upper triangular Toeplitz matrices. Therefore it can be stored in O(m)
memory locations by representing the block by means of few vectors. Furthermore,
performing multiplications between the blocks costs O(m logm) ops, and inverting a
block costs t(m) ∈ {m2,m log2m} ops.

Moreover we prove explicit relations which hold among the vectors defining the
blocks of the Schur complement at two consecutive steps. These relations allow us to
implement the cyclic reduction technique in O(n logm+ t(m) log n

m) ops.

The algorithm can be easily extended to banded block Toeplitz systems. For
blocks of size h the cost is increased by the factor h3.

The cyclic reduction algorithm obtained in this way has a further nice feature. If
the polynomial a(z) = z−m2φ(z) =

∑m1

i=m2
aiz

i−m2 has m zeros inside (outside) the
unit circle and if the blocks have bounded norm, we may prove that the lower (upper)
diagonal blocks of the Schur complement obtained at the jth step of cyclic reduction
tend to zero as γ2j , where 0 < γ < 1 (double exponential convergence).

For stochastic matrices, like the ones modeling Markov chains that arise in quasi-
birth-death (QBD) problems [26], the above conditions are satisfied [9], [10]. In the
case where T is symmetric and the polynomial a(z) has no zero of modulus 1, then
the above property is satisfied simultaneously inside and outside the unit circle, and
the boundedness of the blocks follows from the Cauchy interlace theorem. In this case

BANDED TOEPLITZ SYSTEMS 703

we may prove that the constant γ that rules the double exponential convergence is
the modulus of the zero of a(z) in the open unit disc, closest to the unit circle.

This property generalizes and extends the results of [13] proved for tridiagonal
Toeplitz matrices, where m = 1. The conditions under which the convergence occurs
are much weaker than the conditions given in [22], [33].

For matrices associated with polynomials having some zeros of modulus 1, we
provide a simple trick that enables us to move the zeros of modulus 1 slightly in or out
of the unit disc. Then, constructing the normal equations leads us to a system having
a banded matrix with a nearly Toeplitz structure, which satisfies the convergence
theorem. This fact allows us to improve the robustness of our algorithm.

The algorithm proposed in this paper is numerically stable if applied to positive
definite symmetric matrices. In fact, all the m×m linear systems involved at each step
of cyclic reduction have condition numbers not greater than the condition number of
the original matrix T .

Another interesting feature of the algorithm is its close relationship with poly-
nomial computations. In fact, we show that applying the cyclic reduction algorithm
to a banded Toeplitz matrix corresponds to applying the Graeffe iteration [27] to the
polynomial α(z) having as zeros the mth powers of the zeros of a(z). Moreover, this
similarity between polynomial and Toeplitz computations enables us to extend the
Graeffe iteration to matrix polynomials.

We have implemented in Fortran 90 different versions of our algorithm which in-
clude the cases of matrices with scalar and block entries, symmetric and unsymmetric
matrices, and stochastic matrices.

The algorithms have been compared with the PCG method with circulant precon-
ditioner. From the many numerical experiments performed on an Alpha workstation,
our algorithms have proved to be robust, numerically stable, and fast. For matrices
of size n = 524288 and bandwidth m = 32 our programs have been 16 times faster
than the PCG method. For larger dimensions the conjugate gradient method could
not be applied for lack of memory.

The programs are available at the URL http://www.dm.unipi.it/pages/bini/
public html/ric.html.

2. Preliminaries. Without loss of generality let us assume that −m2 ≥ m1;
moreover, let n be an integer multiple of m, i.e., n = mq, for an integer q. We refer to
φ(z) as the generating function of the matrix T , and we call Tn an n-section of T∞.

The matrix T can be partitioned into m×m blocks yielding a block tridiagonal
Toeplitz matrix. In particular Tn has the following structure:

Tn =

A0 A−1 ©
A1 A0 A−1

. . .
. . .

. . .

A1 A0 A−1

© A1 A0

 ,

704 DARIO ANDREA BINI AND BEATRICE MEINI

where

A1 =

am am−1 . . . a1

0 am
. . .

...
...

. . .
. . . am−1

0 . . . 0 am

 ,

A0 =

a0 a−1 . . . a−m+1

a1 a0
. . .

...
...

. . .
. . . a−1

am−1 . . . a1 a0

 ,

A−1 =

a−m 0 . . . 0

a−m+1 a−m
. . .

...
...

. . .
. . . 0

a−1 . . . a−m+1 a−m

 ,

(2.1)

and similarly T∞ and T±∞.
In light of the above block structure we may associate with T the matrix polyno-

mial A(z) = A−1 + zA0 + z2A1.
In this section we first recall the cyclic reduction algorithm, originally introduced

for the numerical solution of the Poisson equation [19], used in [8] for computing the
probability invariant vector of stochastic matrices, and here adjusted in order to solve
the block tridiagonal block Toeplitz system Tx = b. Then we introduce the concept
of displacement rank, and we recall some properties that are needed for the design
and analysis of our algorithm.

2.1. Cyclic reduction. Consider the system

Tx = b,(2.2)

and partition the vectors x and b into blocks xk, bk of dimension m, respectively;
that is, x = (xk), b = (bk). By performing an odd-even permutation of the block
rows and block columns in (2.2) we find that[

D
(0)
1 U (0)

L(0) D
(0)
2

][
x

(0)
+

x
(0)
−

]
=

[
b

(0)
+

b
(0)
−

]
,(2.3)

where x
(0)
+ = (x2k), x

(0)
− = (x2k−1), b

(0)
+ = (b2k), b

(0)
− = (b2k−1);

D
(0)
1 = D

(0)
2 =

 A0 ©
A0

© . . .

 , L(0) =

A−1 ©
A1 A−1

. . .
. . .

© . . .
. . .

 ,

U (0) =

A1 A−1 ©

A1 A−1

. . .
. . .

© . . .

 .

BANDED TOEPLITZ SYSTEMS 705

Applying one step of block Gaussian elimination to the 2× 2 block system (2.3)
yields the equivalent system{

(D
(0)
2 − L(0)D

(0)−1

1 U (0))x
(0)
− = b

(0)
− − L(0)D

(0)−1

1 b
(0)
+ ,

x
(0)
+ = D

(0)
1

−1
(b

(0)
+ − U (0)x

(0)
−).

(2.4)

Denoting

T (1) = D
(0)
2 − L(0)D

(0)−1

1 U (0)(2.5)

the Schur complement of D
(0)
2 , x(1) = x

(0)
− , b(1) = b

(0)
− − L(0)D

(0)−1

1 b
(0)
+ , the above

system is ultimately reduced to solving

T (1)x(1) = b(1).(2.6)

It is interesting to observe that T (1) is a block tridiagonal matrix which, except
for the northwest corner block, has the block Toeplitz structure, i.e.,

T (1) =

Â(1) A

(1)
−1 ©

A
(1)
1 A

(1)
0 A

(1)
−1

A
(1)
1 A

(1)
0

. . .

© . . .
. . .

 .

In other words, T (1) is uniquely determined by the blocks A
(1)
−1, A

(1)
0 , A

(1)
1 , Â(1). Once

x(1) has been computed or approximated, the solution of the original system (2.2)
can be recovered by means of back substitution through (2.4). In order to compute
the solution x(1) we may cyclically apply the same reduction (cyclic reduction) to the

system (2.6). In this way we obtain a sequence of systems {T (j)x(j) = b(j)}, where
T (0) = T , and T (j) is a block tridiagonal matrix having, except for the northwest
corner, the block Toeplitz structure. Each matrix T (j) is uniquely determined by the

blocks Â(j), A
(j)
−1, A

(j)
0 , A

(j)
1 .

For a finite banded Toeplitz system Tnx = b, where n = mq, q = 2p, p is a

positive integer, the cyclic reduction generates a sequence of systems T
(j)
nj x

(j) = b(j),
j = 1, 2, . . . , p, of dimension nj = m2p−j .

For a bi-infinite block tridiagonal block Toeplitz system T±∞x = b, where x =
(xi)i∈Z , b = (bi)i∈Z , the cyclic reduction generates a sequence of bi-infinite block

tridiagonal block Toeplitz systems T
(j)
±∞x

(j) = b(j), where T
(j)
±∞ is the bi-infinite block

tridiagonal block Toeplitz matrix defined by the m×m blocks A
(j)
i , i = −1, 0, 1.

For finite matrices of size n = m2p, the cyclic reduction process is carried out in
p steps. The solution x(p) is computed by solving the m×m system T (p)x(p) = b(p),
and the whole solution of (2.2) is computed by means of back substitution, recursively
applying (2.4) extended to the generic jth step.

For infinite or bi-infinite matrices, under suitable conditions (see section 4), we

may prove that the sequence of systems T (j)x(j) = b(j) converges to a system having
a block (bi)diagonal structure. In this way, by choosing j large enough, we may
approximate to any precision an arbitrary finite number of components of the solution
x(j). The back substitution stage completes the recovering of the solution of (2.2).

706 DARIO ANDREA BINI AND BEATRICE MEINI

The block entries A
(j+1)
i , i = −1, 0, 1, Â(j+1), obtained at step j + 1 that define

the matrix T (j+1), are related to the block entries A
(j)
i , i = −1, 0, 1, Â(j), obtained at

step j, by means of simple relations. For this purpose let us associate with T (j) the
matrix polynomial

A(j)(z) = A
(j)
−1 + zA

(j)
0 + z2A

(j)
1(2.7)

and express in compact form the block odd-even permutation and the Gaussian elim-
ination of one step of cyclic reduction in terms of A(j)(z).

In fact from (2.5) we may easily deduce that{
A(j+1)(z) = zA

(j)
0 − (A

(j)
−1 + zA

(j)
1)A

(j)−1

0 (A
(j)
−1 + zA

(j)
1),

Â(j+1) = Â(j) −A(j)
−1A

(j)−1

0 A
(j)
1 .

(2.8)

The above relations yield the matrix equations
A

(j+1)
−1 = −A(j)

−1A
(j)−1

0 A
(j)
−1,

A
(j+1)
0 = A

(j)
0 −A(j)

1 A
(j)−1

0 A
(j)
−1 −A(j)

−1A
(j)−1

0 A
(j)
1 ,

A
(j+1)
1 = −A(j)

1 A
(j)−1

0 A
(j)
1 ,

Â(j+1) = Â(j) −A(j)
−1A

(j)−1

0 A
(j)
1 ,

(2.9)

which allow us to compute the sequence of blocks defining the matrices T (j), j =
1, 2,

A direct inspection shows that the Toeplitz structure of the blocks A
(0)
i , i =

−1, 0, 1, is no longer kept by the blocks A
(j)
i , i = −1, 0, 1, and Â(j). For this property

one might deduce that the initial structure cannot be exploited in order to increase
the efficiency of the cyclic reduction algorithm.

However, we may prove that a more general structure, i.e., the displacement

structure, is maintained by the blocks A
(j)
i , i = −1, 0, 1, and Â(j). This fact allows

us to devise a suitable FFT-based implementation of the cyclic reduction algorithm,
thus reaching a dramatic reduction of the complexity bound.

For this purpose we need to rewrite the functional relation (2.8) for the matrix
power series A(j)(z) in the following equivalent form:

A(j+1)(z2) =

(
A(j)(z)−1 −A(j)(−z)−1

2z

)−1

= −A(j)(z)A
(j)−1

0 A(j)(−z).(2.10)

2.2. Displacement rank. The concept of displacement rank, introduced by
Kailath, Vieira, and Morf in [24], is fundamental in devising and analyzing algorithms
related to Toeplitz matrices. Several displacement operators have been introduced and
analyzed in the literature; here we adopt an operator that seems to be particularly
suitable for dealing with our problems.

Define the m×m down-shift matrix

Z =

0
1 0

. . .
. . .

1 0

 ,

BANDED TOEPLITZ SYSTEMS 707

and consider the displacement operator

∆(H) = ZH −HZ
defined for any m×m matrix H. Moreover, denote by L(w) the m×m lower triangular
Toeplitz matrix defined by its first column w.

Let us also introduce the following notation: the vectors e1 = [1, 0, . . . , 0]T , em =
[0, . . . , 0, 1]T denote the first and the last column of the identity matrix of order m,
respectively.

Observe that for a general Toeplitz matrix A the displacement ∆(A) is zero except
for the entries in the first row and in the last column, from which the rank of ∆(A)
is at most 2.

We say that the matrix H has displacement rank r if r is the rank of ∆(H), i.e.,
if there exist vectors ui,vi, i = 1, . . . , r, satisfying the equation ∆(H) =

∑r
i=1 uiv

T
i .

According to this definition an m×m Toeplitz matrix A has displacement rank
at most 2; more precisely it holds that

∆(A) = −e1e
T
mAZ + ZAeme

T
m.

A nice property of ∆(H) is that the displacement of the inverse matrix can be
explicitly related to the displacement of the matrix itself; in fact, if H is nonsingular,
then

∆(H−1) = −H−1∆(H)H−1.(2.11)

The following result has been proved in [3], [12].
Theorem 2.1. Let K be an m×m matrix such that ∆(K) =

∑r
i=1 uiv

T
i , where

ui and vi are m-dimensional vectors. Then we have

K = L(Ke1)−
r∑
i=1

L(ui)L
T (Zvi).

The above result allows one to represent any matrix K as a sum of products of
lower and upper triangular Toeplitz matrices defined by the first column of K and by
the vectors ui, vi associated with the displacement of K.

If the matrix K is nonsingular, then the above representation theorem can be
applied to K−1 in light of (2.11), yielding the following result:

K−1 = L(K−1e1) +
r∑
i=1

L(K−1ui)L
T (ZK−Tvi).

We recall that multiplying anm×m Toeplitz matrix and a vector costsO(m logm)
ops if the computation is performed by means of FFT [12]. In the PRAM model, the
cost is O(logm) steps with m processors.

3. Structural properties of cyclic reduction. In this section we prove that
the matrix polynomials A(j)(z), j = 0, 1, . . . , defined in (2.7), (2.10), have displace-
ment rank at most 2 and provide explicit formulae relating the displacement of A(j)(z)

to the displacement of A(j+1)(z). As a consequence we find that A
(j)
−1 and A

(j)
1 have

displacement rank at most 2, and A
(j)
0 has displacement rank at most 4. Moreover,

we show that the blocks Â(j) have displacement rank at most 3.

708 DARIO ANDREA BINI AND BEATRICE MEINI

These properties allow us to devise an algorithm, based on FFT, that performs
a single cyclic reduction step in O(m log2m) arithmetic operations if super-fast algo-
rithms for the inversion of m×m Toeplitz-like matrices are used.

We need the following result.
Theorem 3.1. For the matrix polynomial A(j)(z) generated by the cyclic reduc-

tion (2.10) we have

∆(A(j)(z)) = a(j)(z)u(j)T (z)− v(j)(z)c(j)T (z), j ≥ 0,(3.1)

where the vectors a(j)(z), c(j)(z), u(j)(z), v(j)(z) have entries which are polynomials
in z, and are defined by the following equations:

a(j)(z) = A(j)(z)e1, c
(j)T (z) = eTmA

(j)(z), j ≥ 0;

u(j)(z2)T = (−u(j−1)(z)T (A
(j−1)
0)−1A(j−1)(−z)

+u(j−1)(−z)T (A
(j−1)
0)−1A(j−1)(z))/(2z), j ≥ 1;

v(j)(z2) = (−A(j−1)(−z)(A(j−1)
0)−1v(j−1)(z)

+A(j−1)(z)(A
(j−1)
0)−1v(j−1)(−z))/(2z), j ≥ 1;

u(0)(z)T = zeTm, v
(0)(z) = ze1.

(3.2)

Proof. We prove relation (3.1) by induction on j. For j = 0 a simple calculation
shows that

∆(A(0)(z)) = z(A(0)(z)e1e
T
m − e1e

T
mA

(0)(z))

= A(0)(z)e1u
(0)T (z)− v(0)(z)eTmA

(0)(z).

Suppose that relation (3.1) holds for a fixed j ≥ 0; we show that it holds for j + 1.
For simplicity let us denote B = A(j)(z)−1 − A(j)(−z)−1. For the properties of the
displacement operator (2.11) and for (2.10) we have

∆(A(j+1)(z2)) = 2z∆(B−1) = −2zB−1∆(B)B−1

= −2zB−1(−A(j)(z)−1∆(A(j)(z))A(j)(z)−1

+ A(j)(−z)−1∆(A(j)(−z))A(j)(−z)−1)B−1;

by substituting relation (3.1) in the above equation we obtain

∆(A(j+1)(z2)) = 2zB−1e1u
(j)(z)TA(j)(z)−1B−1 − 2zB−1A(j)(z)−1v(j)(z)eTmB

−1

− 2zB−1e1u
(j)(−z)TA(j)(−z)−1B−1

+ 2zB−1A(j)(−z)−1v(j)(−z)eTmB−1

= A(j+1)(z2)e1u
(j+1)(z2)T − v(j+1)(z2)eTmA

(j+1)(z2).

By induction on j, from (3.2), it readily follows that u(j)(z) and v(j)(z) have
components which are polynomials of degree at most 1. Therefore, since a(j)(z) and
c(j)(z) have degree at most 2, we may denote

u(j)(z) = u
(j)
−1 + zu

(j)
0 ,

v(j)(z) = v
(j)
−1 + zv

(j)
0 ,

a(j)(z) = a
(j)
−1 + za

(j)
0 + z2a

(j)
1 ,

c(j)(z) = c
(j)
−1 + zc

(j)
0 + z2c

(j)
1 .

BANDED TOEPLITZ SYSTEMS 709

Moreover, by comparing the term of degree 3 in (3.1) we may deduce that, for any
j ≥ 0, it holds that

a
(j)
1 u

(j)T
0 = v

(j)
0 c

(j)T
1 .(3.3)

In this way, from the above properties and from Theorem 3.1 we deduce explicit

relations for the vectors u
(j)
i , v

(j)
i , i = −1, 0, a

(j)
i , c

(j)
i , i = −1, 0, 1, j ≥ 0, defining

∆(A(j)(z)):

u
(j+1)T
−1 = u

(j)T
−1 − u(j)T

0 A
(j)−1

0 A
(j)
−1,

u
(j+1)T
0 = −u(j)T

0 A
(j)−1

0 A
(j)
1 ,

v
(j+1)
−1 = v

(j)
−1 −A(j)

−1A
(j)−1

0 v
(j)
0 ,

v
(j+1)
0 = −A(j)

1 A
(j)−1

0 v
(j)
0 ,

a
(j+1)
−1 = −A(j)

−1A
(j)−1

0 a
(j)
−1,

a
(j+1)
0 = a

(j)
0 −A(j)

−1A
(j)−1

0 a
(j)
1 −A(j)

1 A
(j)−1

0 a
(j)
−1,

a
(j+1)
1 = −A(j)

1 A
(j)−1

0 a
(j)
1 ,

c
(j+1)T
−1 = −c(j)T

−1 A
(j)−1

0 A
(j)
−1,

c
(j+1)T
0 = c

(j)T
0 − c(j)T

−1 A
(j)−1

0 A
(j)
1 − c(j)T

1 A
(j)−1

0 A
(j)
−1,

c
(j+1)T
1 = −c(j)T

1 A
(j)−1

0 A
(j)
1 ,

(3.4)

where u
(0)
−1 = v

(0)
−1 = 0, u

(0)
0 = em, v

(0)
0 = e1.

The above relations, together with Theorem 3.1, yield the following result.

Theorem 3.2. For the matrices A
(j)
−1, A

(j)
0 , A

(j)
1 , j ≥ 0, generated by the cyclic

reduction (2.8) we have

∆(A
(j)
−1) = a

(j)
−1u

(j)T
−1 − v(j)

−1c
(j)T
−1 ,

∆(A
(j)
0) = a

(j)
−1u

(j)T
0 + a

(j)
0 u

(j)T
−1 − v(j)

−1c
(j)T
0 − v(j)

0 c
(j)T
−1 ,

∆(A
(j)
1) = r(j)u

(j)T
0 − v(j)

0 ĉ(j)T ,

(3.5)

where

r(0) = a
(0)
0 ,

r(j+1) = r(j) −A(j)
1 A

(j)−1

0 a
(j)
−1, j ≥ 0,

(3.6)

and ĉ(j)T = eTmÂ
(j).

Proof. By comparing the terms in z of degree 0 and 1 in relation (3.1) we obtain

the expression for ∆(A
(j)
−1) and ∆(A

(j)
0), respectively. Similarly, by comparing the

terms of degree 2 we have

∆(A
(j)
1) = a

(j)
0 u

(j)T
0 + a

(j)
1 u

(j)T
−1 − v(j)

−1c
(j)T
1 − v(j)

0 c
(j)T
0 .(3.7)

For j = 0 relation (3.5) immediately follows. For j ≥ 1, from an inductive ap-

plication of (3.4) we may deduce that u
(j)T
−1 = −∑j−1

i=0 u
(i)T
0 A

(i)−1

0 A
(i)
−1 and v

(j)
−1 =

−∑j−1
i=0 A

(i)
−1A

(i)−1

0 v
(i)
0 , from which

a
(j)
1 u

(j)T
−1 = −

j−1∑
i=0

a
(j)
1 u

(i)T
0 A

(i)−1

0 A
(i)
−1.(3.8)

710 DARIO ANDREA BINI AND BEATRICE MEINI

On the other hand, from (2.9), it can be easily proved by induction on j that, for any
j ≥ 1 and 0 ≤ i < j, it holds that

A
(j)
1 = (−1)j−i

(
j−1∏
h=i

A
(j−h+i−1)
1 A

(j−h+i−1)−1

0

)
A

(i)
1 ,(3.9)

where
∏h2

h=h1
Xσ(h) = Xσ(h1) · · ·Xσ(h2). Thus, from (3.8), (3.9), and (3.3), we have

a
(j)
1 u

(j)T
−1 = −∑j−1

i=0 (−1)j−i
(∏j−1

h=i A
(j−h+i−1)
1 A

(j−h+i−1)−1

0

)
a

(i)
1 u

(i)T
0 A

(i)−1

0 A
(i)
−1

= −∑j−1
i=0 (−1)j−i

(∏j−1
h=i A

(j−h+i−1)
1 A

(j−h+i−1)−1

0

)
v

(i)
0 c

(i)T
1 A

(i)−1

0 A
(i)
−1.

(3.10)

By applying the recursive relation for v
(j)
0 , given in formula (3.4), it may be proved

by induction on j that, for any j ≥ 1, 0 ≤ i < j, it holds that

v
(j)
0 = (−1)j−i

(
j−1∏
h=i

A
(j−h+i−1)
1 A

(j−h+i−1)−1

0

)
v

(i)
0 ,(3.11)

from which, from (3.10) and (3.11), it follows that

a
(j)
1 u

(j)T
−1 = −

j−1∑
i=0

v
(j)
0 c

(i)T
1 A

(i)−1

0 A
(i)
−1,

and, in (3.7), we obtain

a
(j)
1 u

(j)T
−1 − v(j)

0 c
(j)T
0 = −v(j)

0

(
c

(j)T
0 +

j−1∑
i=0

c
(i)T
1 A

(i)−1

0 A
(i)
−1

)
= −v(j)

0 ĉ(j)T .

Similarly, it may be proved that

a
(j)
0 u

(j)T
0 − v(j)

−1c
(j)T
1 =

(
a

(j)
0 +

j−1∑
i=0

A
(i)
−1A

(i)−1

0 a
(i)
1

)
u

(j)T
0 = r(j)u

(j)T
0 .

The above theorem, in light of the results of section 2.2, yields the following

representations for the matrices A
(j)
−1, A

(j)
0 , A

(j)
1 .

Theorem 3.3. At each step j of cyclic reduction, the matrices A
(j)
−1, A

(j)
0 , A

(j)
1 ,

A
(j)−1

0 can be rewritten as

A
(j)
−1 = L(a

(j)
−1)(I − LT (Zu

(j)
−1) + L(v

(j)
−1)LT (Zc

(j)
−1)),

A
(j)
0 = L(a

(j)
0)(I − LT (Zu

(j)
−1))− L(a

(j)
−1)LT (Zu

(j)
0) + L(v

(j)
−1)LT (Zc

(j)
0)

+ L(v
(j)
0)LT (Zc

(j)
−1),

A
(j)
1 = L(a

(j)
1)− L(r(j))LT (Zu

(j)
0) + L(v

(j)
0)LT (Zĉ(j)),

A
(j)−1

0 = L(A
(j)−1

0 e1) + LT (ZA
(j)−T

0 u
(j)
−1) + L(A

(j)−1

0 a
(j)
−1)LT (ZA

(j)−T

0 u
(j)
0)

− L(A
(j)−1

0 v
(j)
0)LT (ZA

(j)−T

0 c
(j)
−1).

Proof. The proof readily follows from Theorems 3.2 and 2.1.
Similar properties hold for the matrices Â(j).

BANDED TOEPLITZ SYSTEMS 711

Theorem 3.4. For the matrices Â(j), j ≥ 0, generated by the cyclic reduction
(2.8) we have

∆(Â(j)) = −e1c
(0)T
−1 + a

(j)
−1u

(j)T
0 − v(j)

−1ĉ
(j)T ,(3.12)

from which the matrices Â(j) can be rewritten as

Â(j) = L(â(j)) + LT (Zc
(0)
−1)− L(a

(j)
−1)LT (Zu

(j)
0) + L(v

(j)
−1)LT (Zĉ(j)),

where â(j) = Â(j)e1, ĉ(j)T = eTmÂ
(j).

Proof. We prove (3.12) by induction on j. For j = 0 the equation is obviously
verified. Let us suppose that (3.12) holds for j, and let us prove it for j + 1. From
(2.8) and from the properties of displacement rank we have

∆(Â(j+1)) = ∆(Â(j))−∆(A
(j)
−1A

(j)−1

0 A
(j)
1).(3.13)

From (2.11) it follows that

∆(A
(j)
−1A

(j)−1

0 A
(j)
1)

= ∆(A
(j)
−1)A

(j)−1

0 A
(j)
1 −A(j)

−1A
(j)−1

0 ∆(A
(j)
0)A

(j)−1

0 A
(j)
1 +A

(j)
−1A

(j)−1

0 ∆(A
(j)
1).

By substituting relations (3.5) in the above equation, it may be easily proved, by
applying (3.4), that

∆(A
(j)
−1A

(j)−1

0 A
(j)
1)

= −v(j+1)
−1 c

(j)T
−1 A

(j)−1

0 A
(j)
1 − a(j+1)

−1 u
(j+1)T
0 +A

(j)
−1A

(j)−1

0 v
(j)
−1c

(j)
1 +A

(j)
−1A

(j)−1

0 r(j)u
(j)
0 ,

(3.14)
from which, by (3.13), (3.14), and from the inductive hypothesis, it follows that

∆(Â(j+1))

= −e1c
(0)T
−1 + a

(j+1)
−1 u

(j+1)T
0 − v(j+1)

−1 eTm(Â(j) −A(j)
−1A

(j)−1

0 A
(j)
1)

+ (a
(j)
−1 −A(j)

−1A
(j)−1

0 r(j))u
(j)T
0 −A(j)

−1A
(j)−1

0 v
(j)
−1c

(j)T
1 .

On the other hand, by following the same lines of the proof of Theorem 3.2 and from
(3.6), it may be verified that

(a
(j)
−1 −A(j)

−1A
(j)−1

0 r(j))u
(j)T
0 = A

(j)
−1A

(j)−1

0 v
(j)
−1c

(j)T
1 .

The vectors â(j), ĉ(j) obtained at two subsequent stages of cyclic reduction are
related by means of the equations

â(j+1) = â(j) −A(j)
−1A

(j)−1

0 a
(j)
1 ,

ĉ(j+1)T = ĉ(j)T − c(j)T
−1 A

(j)−1

0 A
(j)
1 , j ≥ 0.

(3.15)

Observe that all the above displacement properties still hold when the entries ai
of the blocks Ai, i = −1, 0, 1, of (2.1) are square matrices of dimension h > 1. In
this case ∆(·) is the block displacement operator, Z is the m ×m block down-shift

matrix, and the vectors u
(j)
i , v

(j)
i , a

(j)
i , c

(j)
i , r(j), â

(j)
i , ĉ

(j)
i have m components, each

component being a h× h matrix.

712 DARIO ANDREA BINI AND BEATRICE MEINI

In the case of scalar entries ai, the formulae displayed in Theorems 3.1–3.4 can
be substantially simplified. In fact, from (2.10), we deduce the following.

Proposition 3.5. The matrix polynomials A(j)(z) and the vectors r(j)(z), ĉ(j)(z)
satisfy the following relations:

A(j)(z)T = JA(j)(z)J, ĉ(j)(z) = Jr(j)(z),

where J denotes the permutation (reversion) matrix having unit entries along the
antidiagonal.

From this, the vectors u(j)(z), v(j)(z), a(j)(z), c(j)(z) are related, as stated by
the following.

Proposition 3.6. For the vectors u(j)(z), v(j)(z), a(j)(z), c(j)(z) we have
v(j)(z) = Ju(j)(z), c(j)(z) = Ja(j)(z); thus

∆(A(j)(z)) = a(j)(z)v(j)T (z)J − v(j)(z)a(j)T (z)J.

In the case of symmetric matrices the formulae can be further simplified, since

it can be easily verified that at each step j we have A
(j)
1 = A

(j)T
−1 , A

(j)
0 = A

(j)T
0 ,

Â(j) = Â(j)T . This simplification allows us to describe the algorithm in terms of the

six vectors a
(j)
i , v

(j)
i , i = −1, 0, â(j), r(j).

The following algorithm enables us to perform a single cyclic reduction step by

computing the blocks Â(j+1), A
(j+1)
i , i = −1, 0, 1, given the blocks Â(j), A

(j)
i , i =

−1, 0, 1, by means of few FFTs of length O(m). For the sake of simplicity we assume
that m = 2s for a positive integer s and that the entries ai are scalar numbers.

Algorithm.

Input: the vectors r(j), â(j), v
(j)
i , i = −1, 0, a

(j)
i , i = −1, 0, 1, defining the matrices

Â(j), A
(j)
i , i = −1, 0, 1, by means of Theorems 3.3 and 3.4 and Proposition

3.6;

Output: the vectors r(j+1), â(j+1), v
(j+1)
i , i = −1, 0, a

(j+1)
i , i = −1, 0, 1, defining

the matrices Â(j+1), A
(j+1)
i , i = −1, 0, 1, by means of Theorems 3.3 and 3.4

and Proposition 3.6;
Computation:

1. Compute the vectors A
(j)−1

0 e1, A
(j)−1

0 a
(j)
−1, A

(j)−1

0 v
(j)
0 ZJA

(j)−1

0 v
(j)
−1, that fully de-

fine the six vectors representing the matrix A
(j)−1

0 , by solving four Toeplitz-
like m×m systems.

2. Apply relations (3.4), (3.6), (3.15) in order to compute the vectors r(j+1), â(j+1),

v
(j+1)
i , i = −1, 0, a

(j+1)
i , i = −1, 0, 1. By using the representation formula of

A
(j)−1

0 (see Theorem 3.3) and of the matrices A
(j)
1 , A

(j)
−1, Â(j), together with

the results of section 2.2, this computation can be performed with a finite
number of real FFTs of length 2m.

The above results, integrated with the update of the right-hand side b(j) by means
of (2.4) and with a back substitution stage, lead to a direct algorithm for the solution
of the finite system Tnx = b, where Tn is an n× n matrix, with n = mq, q = 2p, p a
positive integer.

The arithmetic cost of the latter algorithm can be easily estimated. In fact,
denoting by t(m) the cost of solving an m ×m Toeplitz-like system, it follows that
O(n logm+(m logm+ t(m)) log n

m) ops are sufficient to carry out the algorithm. The

BANDED TOEPLITZ SYSTEMS 713

solution of an m×m Toeplitz-like system can be computed by extending the known
algorithms for Toeplitz systems. Therefore, according to the specific properties of the
matrices involved (symmetry, positive definiteness, conditioning), algorithms like the
fast, super-fast, or iterative ones can be used for the computational cost t(m) being
O(m2), O(m log2m), or O(m logm), respectively.

The cyclic reduction algorithm has also nice properties with respect to parallel
computations. In fact, consider the PRAM model, where we assume several processors
working in parallel; at each step a processor performs an arithmetic operation, and
the complexity of an algorithm is measured in terms of the number of parallel steps
and of processors needed. Then the algorithm can be carried out in O(ts(m) log n

m)
parallel steps, using at most max{tp(m), n} processors, where ts(m), tp(m) denotes
the number of parallel steps and of processors, respectively, needed to solve an m×m
Toeplitz-like system. For well-conditioned matrices, where the PCG technique can be
used, we have ts(m) = logm, tp(m) = m.

4. Convergence properties. In this section we relate the polynomial a(z) =
zm
∑m1

k=m2
zkak associated with the matrix T with the polynomial α(z) = detA(z).

The results that we obtain are used in the next section to prove some useful conver-
gence properties of the cyclic reduction algorithm.

Let us first recall the following result of [18] that relates the zero of a(z) and α(z).
Theorem 4.1. For the polynomial α(z) it holds that

α(zm) =
m−1∏
i=0

a(zωi), ω = cos

(
2π

m

)
+ i sin

(
2π

m

)
, i2 = −1.

A consequence of the above theorem is that, if ξ is zero of the polynomial a(z),
then ξm is zero of α(z). Conversely, if η is zero of α(z), then there exists an mth root
of η which is zero of a(z).

Observe also that both the polynomials a(z) and α(z) have degree m+m1. This is
trivial for a(z); in order to prove it for α(z) it is sufficient to consider, in the expansion
of detA(z), the term obtained by multiplying the entries on the m1th diagonal below
the main diagonal and the entries in the (m −m1)th diagonal above the main one,
yielding the zm+m1 term.

It is surprising to observe that the cyclic reduction step is equivalent to the squar-
ing step in the Graeffe algorithm, which is customarily used for factoring polynomials
[27], [12]. In fact by taking determinants in both sides of (2.10) we obtain

α(j+1)(z2) = −α(j)(z)α(j)(−z)/detA
(j)
0 .

An immediate consequence of the above relation is that the polynomials α(j)(z) have
degree m+m1 and their zeros are explicitly given by

ξm2j

i , i = 1, . . . ,m+m1,

where

a(ξi) = 0, i = 1, . . . ,m+m1.

This property is very useful to prove some convergence results of the cyclic reduction
algorithm.

714 DARIO ANDREA BINI AND BEATRICE MEINI

First observe that the vector ξT = (1, ξ, ξ2, . . .) is such that ξTT∞ = (wT , 0, . . .),
where wT is a suitable vector of m components, for ξ ranging in the set of zeros of
a(z). Moreover, assume for simplicity that a(z) has at least m distinct nonnull zeros
ξ1, . . . , ξm, and consider the m ×m Vandermonde matrix Vm = (ξj−1

i)i,j=1,m made
up with this set of zeros. It holds that

(Vm, DVm, D
2Vm, . . .)T∞ = (W,O, . . .), D = Diag(ξm1 , . . . , ξ

m
m).(4.1)

Observe that, for a polynomial a(z) having multiple zeros, the above relation still holds
if the matrix Vm is replaced by a generalized Vandermonde matrix. The homogeneous
part of the above relation can be rewritten as

VmA−1 +DVmA0 +D2VmA1 = O.

By applying the cyclic reduction to the system (4.1) we deduce that

VmA
(j)
−1 +D2jVmA

(j)
0 +D2j+1

VmA
(j)
1 = O, j = 0, 1,

Multiplying the above relation on the left by V −1
m we find

A
(j)
−1 + Fm2jA

(j)
0 + Fm2j+1

A
(j)
1 = O, j = 0, 1, . . . ,

where F = V −1
m DVm is the Frobenius matrix associated with the polynomial having

zeros ξi, i = 1, . . . ,m.
The following result can be obtained from the above relations.
Theorem 4.2. Let ξi, i = 1, . . . ,m + m1, be the zeros of a(z) ordered such

that |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξm+m1 |. If |ξm| < 1 and if the blocks A
(j)
i have norm

bounded from above by a constant, then limA
(j)
−1 = O. Moreover, if ξm is simple,

then for any operator norm || · || it holds that ||A(j)
−1|| = O(|ξm|m2j); otherwise, for

any ε > 0 there exists an operator norm || · || such that ||A(j)
−1|| = O((|ξm| + ε)m2j).

Similarly, if |ξm1+1| > 1 and the blocks have bounded norm, then limA
(j)
1 = O.

Moreover it holds that ||A(j)
1 || = O(|ξm1+1|−m2j) for any operator norm or ||A(j)

1 || =
O((|ξm1+1| − ε)−m2j) for a suitable norm according to the multiplicity of ξm1+1 as
root of a(z).

Proof. For any ε > 0 let || · || be an operator norm such that ||F || < ρ(F) + ε
(compare [19]), where ρ(F) denotes the spectral radius of F . Then we have

||A(j)
−1|| ≤ ||F ||m2j ||A(j)

0 ||+ ||F ||m2j+1 ||A(j)
1 ||,

from which, since ||A(j)
0 ||, ||A(j)

1 || are bounded from above by a constant, it holds that

||A(j)
−1|| = O((ρ(F) + ε)m2j) = O((|ξm|+ ε)m2j).

If ξm is a simple root of a(z), then there exists a norm || · || such that ||F || =
|ξm|. Therefore, by applying the same argument as before, the above relation turns

into ||A(j)
−1|| = O(|ξm|m2j). In order to prove that ||A(j)

1 || = O((|ξm1+1| − ε)−m2j) we

apply a similar argument to the relation A
(j)
−1 + F̂m2jA

(j)
0 + F̂m2j+1

A
(j)
1 = O,

where F̂ is the Frobenius matrix associated with the polynomial having zeros
ξm1+1, . . . , ξm1+m.

BANDED TOEPLITZ SYSTEMS 715

A nice consequence of Theorem 4.2 is that, if T (0) = T∞ or T (0) = T±∞, the
sequence T (j) converges to a block (bi-)diagonal matrix. Thus, for j = O(log log ε−1),
we may approximate an arbitrary finite number of components of the solution of
the system T (j)x(j) = b(j), within the error ε. If our algorithm is applied to solve
the finite system Tnx = b, where n = m2p and p >> log log ε−1, it is sufficient to
perform j = O(log log ε−1) steps of cyclic reduction and then to compute the solution

of T (j)x(j) = b(j), within the error ε, by solving a block (bi-)diagonal system. In this
case the computational cost is O(n logm+ t(m) log log ε−1).

Conditions under which the blocks A
(j)
i have bounded norm are given in [22],

[33]. These conditions can be substantially relaxed in the real symmetric case where
we require only that the polynomial a(z) has no zeros of modulus 1. In this case the
convergence speed depends on the modulus of the zero ξ closest to the unit circle.
These properties are investigated with more details in the next section.

A very important situation where the blocks A
(j)
i have bounded norm is the case

Tn = I −Pn, with Pn a stochastic matrix. This case occurs in the analysis of Markov
chains arising in queueing problems [9], [10].

4.1. The real symmetric positive definite case. Consider the case where

the matrix Tn is real symmetric, so that for the blocks A
(j)
i it holds that A

(j)
−1 = A

(j)T
1

and A
(j)
0 = A

(j)T
0 , j = 0, 1, Assume for simplicity that the polynomial a(z) has

no zero of modulus 1. Due to the symmetricity properties, the polynomial a(z) is
symmetric, that is, a(z) = z2ma(z−1), and its zeros occur in pairs ξi = ξ−1

2m−i+1,
i = 1, . . . ,m. Let us arrange the zeros ξi in such a way that |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξm| <
1 < |ξm+1| ≤ · · · ≤ |ξ2m|.

Due to the Szëgo theory on Toeplitz matrices [21], the matrices Tn, are either
positive definite or negative definite for any n according to the sign that a(z) takes over
the unit circle. Throughout we assume, for simplicity Tn is positive definite. Moreover,
the eigenvalues of the matrix Tn belong to the interval [min|z|=1 |a(z)|,max|z|=1 |a(z)|].

It is useful to observe that the block tridiagonal matrices T (j) generated at each
step of the cyclic reduction, being Schur complements in Tn, have eigenvalues belong-
ing to the interval [minλ(Tn),maxλ(Tn)], where λ(A) denotes the set of eigenvalues
of the matrix A. Similarly the diagonal blocks

A
(j)
0 , Â(j),

[
A

(j)
0 A

(j)T
1

A
(j)
1 A

(j)
0

]
share the same properties due to the Cauchy interlace theorem [19]. Therefore it

follows that the all the blocks A
(j)
0 , A

(j)
1 , Â(j) have norm bounded from above by a

constant.
These observations allow us to conclude with the following theorem.
Theorem 4.3. Let Tn be a real symmetric matrix (Hermitian) matrix such that

the associated polynomial a(z) has no zeros in the unit circle. Then for the matrices

A
(j)
0 , A

(j)
1 , Â(j) generated by the cyclic reduction we have

limA
(j)
1 = O, ||A(j)

1 || ≤ η|ξm|m2j .

The above theorem can be used in order to devise an algorithm for the approx-
imation of n components of the solution of the system Tx = b in O((m logm +
t(m)) log log ε−1 + n logm) ops provided that n is less than the size of T . More pre-
cisely, in light of Theorem 4.2, we may replace the term log log ε−1 with the expression

716 DARIO ANDREA BINI AND BEATRICE MEINI

log2 log θε−1 − log2 log |ξm−1|−m for a suitable constant θ depending on the specific
norm adopted in the proof of Theorem 4.2.

Another consequence of the boundedness of the eigenvalues of T (j) is that cond(T (j))
≤ cond(T), where cond is the condition number expressed in terms of the Euclidean
norm. This means that the intermediate systems that are encountered in the cyclic
reduction steps are not worse conditioned than the initial system.

4.2. The unsymmetric/indefinite case: Normal equations. If the polyno-
mial a(z) is not symmetric or if a(ξ) = 0 for some ξ of unit modulus, the convergence
results of the previous section do not generally hold and the cyclic reduction technique
cannot be used for solving the linear system Tnx = b in an iterative fashion. More-
over, we cannot bound with a constant the condition number of the m×m blocks to be
inverted at each step of cyclic reduction unless a(z) is positive for |z| = 1. Therefore,
the stability of the cyclic reduction technique is not ensured in this case.

However, with a simple trick we may reduce the general case to the positive
definite one.

Let us first assume that a(z) has zeros ξ1, . . . ξm+m1
and that |ξk| = 1 for a given

k. We may replace the system Tnx = b with the systems

DTnD
−1y = Db,

y = Dx,

where D = Diag(1, γ, γ2, . . . , γn−1) for a suitable γ. In this way the new matrix
DTnD

−1 is still Toeplitz and is associated with the polynomial aγ(z) = a(γz). The
parameter γ can be chosen in such a way that aγ(z) has no zero of modulus 1. This
can be done, deterministically, if information about the moduli of the zeros of a(z) is
known or by means of randomization with a random choice of γ in the range [1, 1+σ]
for a given positive σ, which guarantees with probability 1 that aγ(z) has no zero on
the unit circle.

Indeed, if Tn is real symmetric, the new system is no longer symmetric. In order
to keep the symmetricity property, we switch to the normal equations

Kny = c,
Kn = (DTnD

−1)T (DTnD
−1),

c = (DTnD
−1)TDb.

(4.2)

It is easy to check that Kn has 4m + 1 diagonals and is still Toeplitz except for
the entries in the leading and in the trailing m ×m submatrices. Moreover, for the
Toeplitz part, the matrix is associated with the polynomial

qγ(z) = φγ(z)φγ(z−1)z(m1+m)

having zeros ξ1, . . . , ξm+m1
, ξ−1

1 , . . . , ξ−1
m1+m. More precisely Kn = Vn−Diag(R,O, S),

where Vn is the banded Toeplitz matrix associated with qγ(z), R = AT−1A
−1
0 , S =

AT1 A1, and O denotes a null matrix of size n− 2m.
Partitioning Kn into 2m× 2m blocks yields

Kn =

Ĉ B−1

B1 B0 B−1

. . .
. . .

. . .

B1 B0 B−1

B1 C̃

 .(4.3)

BANDED TOEPLITZ SYSTEMS 717

Let us assume n = 2mq, where q = 2p − 1 and p is a positive integer. In this
way the cyclic reduction algorithm applied to the system (4.2) generates a sequence
of systems whose matrices, of dimension (2p−j − 1)2m, have the same structure of

(4.3) and are defined by the 2m× 2m blocks Ĉ(j), C̃(j), B
(j)
i , i = −1, 0, 1, such that

B
(j+1)
−1 = −B(j)

−1B
(j)−1

0 B
(j)
−1,

B
(j+1)
0 = B

(j)
0 −B(j)

1 B
(j)−1

0 B
(j)
−1 −B(j)

−1B
(j)−1

0 B
(j)
1 ,

B
(j+1)
1 = −B(j)

1 B
(j)−1

0 B
(j)
1 ,

B̂(j+1) = B̂(j) −B(j)
−1B

(j)−1

0 B
(j)
1 ,

Ĉ(j+1) = B̂(j+1) + Ĉ −B0,

C̃(j+1) = JB̂(j+1)J + C̃ −B0.

In light of the results of the previous section the matrices Ĉ(j), C̃(j), and B
(j)
i ,

i = −1, 0, 1, have displacement rank independent of j, and an algorithm similar to
that of section 4.1 applies.

Observe that the condition number of B
(j)
0 is bounded by the condition number

of Vn and thus depends on max|z|=1 qγ(z)/min|z|=1 qγ(z). A similar bound cannot be

proved for the blocks Ĉ(j), C̃(j).

5. Numerical experiments and applications. We have implemented several
versions of our algorithms in Fortran 90. The most general one deals with banded
(unsymmetric) block Toeplitz matrices. Two more specific versions deal with the
cases of (unsymmetric) scalar Toeplitz matrices and with symmetric scalar Toeplitz
matrices. For the inversion of the diagonal blocks we used the conjugate gradient
method with no preconditioning. We performed several numerical experiments; here
we report the ones concerning the scalar symmetric case.

The test matrices that we have considered are defined by the function φ(z) =∑m
i=−m z

i + (a0 − 1) for m = 16, 32, 64, n = 2h, h = 14, 15, . . . , 22, where the value
of a0 has been chosen differently in such a way that the polynomial zmφ(z) has some
zeros more or less close to the unit circle. The right-hand vector of the system has
been chosen so that the system has the solution x = (1, . . . , 1)T .

More specifically, for m = 16, we tested the algorithm with a0 = 8.2. In this
case, the polynomial φ(z)zm has no zeros in the unit circle; the zeros closest to the
unit circle are two pairs of modulus 1.003052 and 0.99695731. Their ratio, 1.006, is
far enough from 1 to allow the double exponential convergence of the cyclic reduction
algorithm.

For m = 32 we have chosen a0 = 15.1315. With this value, the polynomial φ(z)zm

has no zeros of modulus 1. The zeros closest to the unit circle have modulus 1.00009
and 0.9999099, and their ratio has modulus 1.00018.

For m = 64 we set a0 = 25. With this value the cyclic reduction algorithm does
not converge since the polynomial φ(z)zm has two pairs of complex zeros of modulus
1.

The algorithm has been compared with the preconditioned conjugate gradient
method obtained by using the circulant preconditioner of Strang [32] on an Alpha
workstation.

In Tables 5.1, 5.2, and 5.3 we report the time in seconds needed by the two
algorithms (“*” denotes failure of the algorithm due to lack of memory), the maximum
error in the solution, and the ratios between the times needed.

718 DARIO ANDREA BINI AND BEATRICE MEINI

Table 5.1
m = 16, a0 = 8.2.

Cyclic reduction PCG
n Time (s.) Residual Time (s.) Residual PCG/CR

8192 0.6 3. e -13 1.0 2. e -11 1.7
16384 1.0 3. e -13 2.6 2. e -11 2.6
32768 1.8 7. e -13 6.9 2. e -11 3.8
65536 3.5 7. e -13 16.0 2. e -11 4.6
131072 6.7 7. e -13 36.9 2. e -11 5.5
262144 13.3 7. e -13 132.0 2. e -11 9.9
524288 26.5 7. e -13 376.3 2. e -11 14.2
1048576 52.8 7. e -13 * * *
2097152 98.3 7. e -13 * * *

Table 5.2
m = 32, a0 = 15.1315.

Cyclic reduction PCG
n Time (s.) Residual Time (s.) Residual PCG/CR

8192 0.7 2. e -11 1.3 1. e -12 1.9
16384 1.1 1. e -10 3.3 1. e -12 3.0
32768 1.8 2. e -10 7.9 1. e -12 4.3
65536 3.4 2. e -10 17.2 4. e -11 5.1
131072 6.4 2. e -10 38.9 4. e -11 6.1
262144 12.3 2. e -10 139.3 4. e -11 11.3
524288 24.3 2. e -10 395.9 4. e -11 16.3
1048576 48.2 2. e -10 * * *
2097152 95.6 2. e -10 * * *

Table 5.3
m = 64, a0 = 25.

Cyclic reduction PCG
n Time (s.) Residual Time (s.) Residual PCG/CR

8192 0.8 2. e -11 1.0 3. e -12 1.3
16384 1.2 4. e -11 2.5 1. e -11 2.1
32768 2.1 1. e -11 6.6 2. e -11 3.1
65536 3.6 6. e -12 15.4 6. e -12 4.3
131072 6.8 2. e -10 37.0 1. e -11 5.4
262144 13.0 4. e -11 123.0 4. e -11 9.5
524288 25.4 4. e -11 328.0 6. e -12 12.9
1048576 49.8 1. e -9 * * *
2097152 99.2 8. e -11 * * *

The numerical experiments confirm that our algorithm is faster than the PCG
method, more efficient in terms of memory use, and numerically stable.

REFERENCES

[1] G. S. Ammar and B. Gragg, Numerical experience with superfast real Toeplitz solver, Linear
Algebra Appl., 121 (1989), pp. 185–206.

[2] O. Axelsson and G. Lindskög, The rate of convergence of the preconditioned conjugate gra-
dient method, Numer. Math., 52 (1986), pp. 499–523.

[3] D. Bini, On a Class of Matrices Related to Toeplitz Matrices, Tech. Report 83-5, SUNY at
Albany, Albany, NY, 1983.

[4] D. Bini, Parallel solution of certain Toeplitz linear systems, SIAM J. Comput., 13 (1984),
pp. 268–276.

[5] D. Bini, Matrix structures in parallel matrix computations, Calcolo, 25 (1988), pp. 37–51.

BANDED TOEPLITZ SYSTEMS 719

[6] D. Bini and M. Capovani, Spectral and computational properties of band symmetric Toeplitz
matrices, Linear Algebra Appl., 52 (1983), pp. 99–126.

[7] D. Bini and F. Di Benedetto, A new preconditioner for the parallel solution of positive
definite Toeplitz systems, in Proceedings of the 2nd Annual SPAA, Crete, Greece, ACM
Press, 1990, pp. 220–223.

[8] D. Bini and B. Meini, On cyclic reduction applied to a class of Toeplitz-like matrices arising
in queueing problems, in Computations with Markov Chains, W. J. Stewart, ed., Kluwer
Academic Publisher, Norwell, MA, 1995, pp. 21–38.

[9] D. Bini and B. Meini, On the solution of a nonlinear matrix equation arising in queueing
problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 906–926.

[10] D. Bini and B. Meini, Improved cyclic reduction for solving queueing problems, Numer. Algo-
rithms, 15 (1997), pp. 57–74.

[11] D. Bini and B. Meini, Inverting block Toeplitz matrices in block Hessenberg form by means
of displacement operators: Application to queueing problems, Linear Algebra Appl., 272
(1998), pp. 1–16.

[12] D. Bini and V. Pan, Matrix and Polynomial Computations, Vol. 1: Fundamental Algorithms,
Birkhäuser, Boston, 1994.

[13] S. Bondeli and W. Gander, Cyclic reduction for special tridiagonal systems, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 321–330.

[14] R. H. Chan, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542–550.

[15] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[16] R. H. Chan and M. K. Ng, Scientific applications of iterative Toeplitz solvers, Calcolo, 33
(1996), pp. 249–267.

[17] R. H. Chan and P. T. P. Tang, Fast band-Toeplitz preconditioners for Hermitian Toeplitz
systems, SIAM J. Sci. Comput., 15 (1994), pp. 164–171.

[18] H. R. Gail, S. L. Hantler, and B. A. Taylor, Non-skip-free M/G/1 and G/M/1 type Markov
chains, Adv. in Appl. Probab., 29 (1997), pp. 733–758.

[19] G. Golub and C. van Loan, Matrix Computations, Johns Hopkins University Press, Balti-
more, 1989.

[20] J. Grcar and A. Sameh, On certain parallel Toeplitz linear system solvers, SIAM J. Sci.
Statist. Comput., 2 (1981), pp. 238–256.

[21] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd ed., Chelsea House,
New York, 1984.

[22] D. Heller, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems,
SIAM J. Numer. Anal., 13 (1976), pp. 484–496.

[23] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[24] T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations, and or-
thogonal polynomials, SIAM Rev., 20 (1978), pp. 106–119.

[25] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University
Press, Baltimore, 1981.

[26] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel
Dekker, New York, 1989.

[27] M. A. Ostrowski, Recherches sur la methode de Graeffe et les zeros des polynomes et des
series de Laurent, Acta Math., 72 (1940), pp. 99–257.

[28] S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems,
BIT, 34 (1994), pp. 579–594.

[29] S. Serra, Optimal, quasi-optimal and superlinear preconditioners for asymptotically ill-
conditioned positive definite Toeplitz systems, Math. Comp., 66 (1997), pp. 651–665.

[30] S. Serra Capizzano, Toeplitz preconditioner constructed from linear approximation processes,
SIAM J. Matrix Anal. Appl., 20 (1999), pp. 446–465.

[31] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

[32] G. Strang, A proposal for Toeplitz matrix computations, Stud. Appl. Math., 74 (1986),
pp. 171–176.

[33] P. Yalamov and V. Pavlov, Stability of the block cyclic reduction, Linear Algebra Appl., 249
(1996), pp. 341–358.

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 720–755

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING∗

JAMES W. DEMMEL† , STANLEY C. EISENSTAT‡ , JOHN R. GILBERT§ , XIAOYE S. LI¶,
AND JOSEPH W. H. LIU‖

Abstract. We investigate several ways to improve the performance of sparse LU factorization
with partial pivoting, as used to solve unsymmetric linear systems. We introduce the notion of
unsymmetric supernodes to perform most of the numerical computation in dense matrix kernels. We
introduce unsymmetric supernode-panel updates and two-dimensional data partitioning to better
exploit the memory hierarchy. We use Gilbert and Peierls’s depth-first search with Eisenstat and
Liu’s symmetric structural reductions to speed up symbolic factorization.

We have developed a sparse LU code using all these ideas. We present experiments demonstrating
that it is significantly faster than earlier partial pivoting codes. We also compare its performance with
UMFPACK, which uses a multifrontal approach; our code is very competitive in time and storage
requirements, especially for large problems.

Key words. sparse matrix algorithms, unsymmetric linear systems, supernodes, column elimi-
nation tree, partial pivoting

AMS subject classifications. 65F05, 65F50

PII. S0895479895291765

1. Introduction. The problem of solving sparse symmetric positive definite sys-
tems of linear equations on sequential and vector processors is fairly well understood.
Normally, the solution process is performed in two phases:

• symbolic determination of the nonzero structure of the Cholesky factor;
• numeric factorization and solution.

Elimination trees [35] and compressed subscripts [41] reduce the time and space
for symbolic factorization. Supernodal [5] and multifrontal [15] elimination allow the
use of dense vector operations for nearly all of the floating-point computation, thus
reducing the symbolic overhead in numeric factorization. Overall, the Megaflop rates
of modern sparse Cholesky codes are nearly comparable to those of dense solvers [37,
38, 39].

∗Received by the editors September 11, 1995; accepted for publication (in revised form) by A.
Greenbaum May 15, 1998; published electronically April 14, 1999.

http://www.siam.org/journals/simax/20-3/29176.html
†Computer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.

edu). The research of the first and fourth authors was supported in part by NSF grant ASC–9313958,
DOE grant DE–FG03–94ER25219, UT Subcontract ORA4466 from ARPA Contract DAAL03–91–
C0047, DOE grant DE–FG03–94ER25206, and NSF Infrastructure grants CDA–8722788 and CDA–
9401156.
‡Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520-8285

(sce@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9400921.
§Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@

xerox.com). The research of this author was supported in part by the Institute for Mathematics
and Its Applications, University of Minnesota, and in part by DARPA Contract DABT63-95-C0087.
¶National Energy Research Scientific Computing (NERSC) Center, Lawrence Berkeley National

Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (xiaoye@nersc.gov). The research of this author was done
at UC Berkeley and as a summer intern and consultant at Xerox PARC.
‖Department of Computer Science, York University, North York, ON, M3J 1P3, Canada,

(joseph@cs.yorku.ca). The research of this author was supported in part by the Natural Sciences
and Engineering Research Council of Canada under grant A5509.

720

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 721

for column j = 1 to n do
f = A(:, j);
Symbolic factor: determine which columns of L will update f ;
for each updating column r < j in topological order do

Col-col update: f = f − f(r) · L(r + 1:n, r);
end for;
Pivot: interchange f(j) and f(m), where |f(m)| = max |f(j:n)|;
Separate L and U : U(1:j, j) = f(1:j); L(j:n, j) = f(j:n);
Scale: L(:, j) = L(:, j)/L(j, j);
Prune symbolic structure based on column j;

end for;

Fig. 1.1. Left-looking LU factorization with column-column updates.

For unsymmetric systems, where pivoting is required to maintain numerical sta-
bility, progress has been less satisfactory. Recent research has concentrated on two
basic approaches: submatrix-based methods and column-based (or row-based) meth-
ods. Submatrix methods typically use some form of Markowitz ordering with threshold
pivoting, in which each stage’s pivot element is chosen from the uneliminated subma-
trix by criteria that attempt to balance numerical quality and preservation of sparsity.
Recent submatrix codes include Amestoy and Duff’s symmetric pattern multifrontal
code MUPS [2] and Davis and Duff’s unsymmetric multifrontal code UMFPACK [7].

Column methods, by contrast, typically use ordinary partial pivoting.1 The pivot
is chosen from the current column according to numerical considerations alone; the
columns may be preordered before factorization to preserve sparsity. Figure 1.1 sketches
a generic left-looking column LU factorization.2 Notice that the bulk of the numeric
computation occurs in column-column (col-col) updates, or, to use BLAS terminol-
ogy [13, 14], in sparse AXPYs.

In column methods, the preordering for sparsity is completely separate from the
factorization, just as in the symmetric case. This is an advantage when several matri-
ces with the same nonzero structure but different numerical values must be factored.
However, symbolic factorization cannot be separated from numeric factorization, be-
cause the nonzero structures of the factors depend on the numerical pivoting choices.
Thus column codes must do some symbolic factorization at each stage; typically this
amounts to predicting the structure of each column of the factors immediately before
computing it. (George and Ng [22, 23] described ways to obtain upper bounds on
the structure of the factors based only on the nonzero structure of the original ma-
trix.) A disadvantage of the column methods is that they do not reorder the columns
dynamically, so there may be more fill.

An early example of such a code is Sherman’s NSPIV [42] (which is actually a row
code). Gilbert and Peierls [29] showed how to use depth-first search and topological
ordering to get the structure of each factor column. This gives a column code that
runs in total time proportional to the number of nonzero floating-point operations,
unlike the other partial pivoting codes. Eisenstat and Liu [21] designed a pruning

1Row methods are exactly analogous to column methods, and codes of both sorts exist. We will
use column terminology; those who prefer rows may interchange the terms throughout the paper.

2We use Matlab notation for integer ranges and submatrices: r:s or (r:s) is the range of integers
(r, r + 1, . . . , s). If I and J are sets of integers, then A(I, J) is the submatrix of A with rows whose
indices are from I and with columns whose indices are from J . A(:, J) abbreviates A(1 : n, J). nnz(A)
denotes the number of nonzeros in A.

722 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

technique to reduce the amount of structural information required for the symbolic
factorization, as we describe further in section 4. The result is that the time and
space for symbolic factorization are typically reduced to a small fraction of the entire
factorization.

In view of the success of supernodal techniques for symmetric matrices, it is
natural to consider the use of supernodes to enhance the performance of unsymmetric
solvers. Like the nonzero structure of the factors, the boundaries of the supernodes
cannot be determined in advance; rather, they emerge depending on pivoting choices
during the factorization.

In this paper, we generalize supernodes to unsymmetric matrices, and we give
efficient algorithms for locating and using unsymmetric supernodes during a column-
based LU factorization. We describe a new code called SuperLU that uses depth-first
search and symmetric pruning to speed up symbolic factorization, and uses unsymmet-
ric supernodes to speed up numeric factorization. The rest of the paper is organized
as follows. Section 2 introduces the tools we use: unsymmetric supernodes, panels,
and the column elimination tree. Section 3 describes the supernodal numeric factor-
ization. Section 4 describes the supernodal symbolic factorization. In section 5, we
present experimental results: we benchmark our code on several test matrices, we
compare its performance to other column and submatrix codes, and we investigate
its cache behavior in some detail. Finally, section 6 presents conclusions and open
questions.

2. Unsymmetric supernodes. The idea of a supernode is to group together
columns with the same nonzero structure, so they can be treated as a dense matrix
for storage and computation. Supernodes were originally used for (symmetric) sparse
Cholesky factorization [5, 15]. In the factorization A = LLT (or A = LDLT), a
supernode is a range (r:s) of columns of L with the same nonzero structure below
the diagonal; that is, L(r:s, r:s) is full lower triangular and every row of L(s:n, r:s) is
either full or zero.

Rothberg and Gupta [38, 39] and Ng and Peyton [37] analyzed the effect of super-
nodes in Cholesky factorization on modern uniprocessor machines with memory hi-
erarchies and vector or superscalar hardware. All the updates from columns of a
supernode are summed into a dense vector before the sparse update is performed.
This reduces indirect addressing and allows the inner loops to be unrolled. In effect, a
sequence of col-col updates is replaced by a supernode-column (sup-col) update. The
sup-col update can be implemented using a call to a standard dense Level 2 BLAS
matrix-vector multiplication kernel. This idea can be further extended to supernode-
supernode (sup-sup) updates, which can be implemented using a Level 3 BLAS dense
matrix-matrix kernel. This can reduce memory traffic by an order of magnitude, be-
cause a supernode in the cache can participate in multiple column updates. Ng and
Peyton reported that a sparse Cholesky algorithm based on sup-sup updates typically
runs 2.5 to 4.5 times as fast as a col-col algorithm. Indeed, supernodes have become
a standard tool in sparse Cholesky factorization [5, 37, 38, 43].

To sum up, supernodes as the source of updates help because of the following:

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS
is replaced by dense Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save
memory references. (Level 1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 723

3. Elements of the source supernode can be reused in multiple columns of the
destination supernode to reduce cache misses. (Level 2 BLAS is replaced by
Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization,
before the numeric factorization begins. However, in sparse LU, the nonzero structure
cannot be predicted before numeric factorization, so we must identify supernodes on
the fly. Furthermore, since the factors L and U are no longer transposes of each other,
we must generalize the definition of a supernode.

2.1. Definition of unsymmetric supernodes. We considered several possible
ways to generalize the symmetric definition of supernodes to unsymmetric factoriza-
tion. We define F = L+ U − I to be the filled matrix containing both L and U .

T1. Same row and column structures: A supernode is a range (r:s) of columns
of L and rows of U , such that the diagonal block F (r:s, r:s) is full, and outside
that block all the columns of L in the range have the same structure and all
the rows of U in the range have the same structure. T1 supernodes make it
possible to do sup-sup updates, realizing all three benefits.

T2. Same column structure in L: A supernode is a range (r:s) of columns of L
with triangular diagonal block full and the same structure below the diagonal
block. T2 supernodes allow sup-col updates, realizing the first two benefits.

T3. Same column structure in L, full diagonal block in U : A supernode is a
range (r:s) of columns of L and U , such that the diagonal block F (r:s, r:s) is
full, and below the diagonal block the columns of L have the same structure.
T3 supernodes allow sup-col updates, like T2. In addition, if the storage for
a supernode is organized as for a two-dimensional (2-D) array (for Level 2 or
3 BLAS calls), T3 supernodes do not waste any space in the diagonal block
of U .

T4. Same column structure in L and U : A supernode is a range (r:s) of columns of
L and U with identical structure. (Since the diagonal is nonzero, the diagonal
block must be full.) T4 supernodes allow sup-col updates, and also simplify
storage of L and U .

T5. Supernodes of ATA: A supernode is a range (r:s) of columns of L correspond-
ing to a Cholesky supernode of the symmetric matrix ATA. T5 supernodes
are motivated by George and Ng’s observation [22] that (with suitable rep-
resentations) the structures of L and U in the unsymmetric factorization
PA = LU are contained in the structure of the Cholesky factor of ATA. In
unsymmetric LU, these supernodes themselves are sparse, so we would waste
time and space operating on them. Thus we do not consider them further.

Figure 2.1 is a schematic of definitions T1 through T4.
Supernodes are only useful if they actually occur in practice. The occurrence of

symmetric supernodes is related to the clique structure of the chordal graph of the
Cholesky factor, which arises because of fill during the factorization. Unsymmetric
supernodes seem harder to characterize, but they also are related to dense subma-
trices arising from fill. We measured the supernodes according to each definition for
126 unsymmetric matrices from the Harwell–Boeing sparse matrix test collection [17]
under various column orderings. Table 2.1 shows, for each definition, the fraction of
nonzeros of L that are not in the first column of a supernode; this measures how much
row index storage is saved by using supernodes. Corresponding values for symmetric
supernodes for the symmetric Harwell–Boeing structural analysis problems usually
range from about 0.5 to 0.9. Larger numbers are better, indicating larger supernodes.

724 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

T1 T2 T3 T4

Columns have same structure Rows have same structure Dense

Fig. 2.1. Four possible types of unsymmetric supernodes.

Table 2.1
Fraction of nonzeros not in the first column of supernode.

T1 T2 T3 T4
median 0.236 0.345 0.326 0.006
mean 0.284 0.365 0.342 0.052

We reject T4 supernodes as being too rare to make up for the simplicity of their storage
scheme. T1 supernodes allow Level 3 BLAS updates, but as we will see in section 3.2
we can get most of their cache advantage with the more common T2 or T3 supernodes
by using supernode-panel updates. Thus we conclude that either T2 or T3 is best by
our criteria. Our code uses T2, which gives slightly larger supernodes than T3 at a
small extra cost in storage (see section 2.2).

Figure 2.2 shows a sample matrix and the nonzero structure of its factors with no
pivoting. Using definition T2, this matrix has four supernodes: {1, 2}, {3}, {4, 5, 6},
and {7, 8, 9, 10}. For example, in columns 4, 5, and 6 the diagonal blocks of L and U
are full, and the columns of L all have nonzeros in rows 8 and 9. By definition T3, the
matrix has five supernodes: {1, 2}, {3}, {4, 5, 6}, {7}, and {8, 9, 10}. Column 7 fails
to join {8, 9, 10} as a T3 supernode because u78 is zero.

2.2. Storage of supernodes. A standard way to organize storage for a sparse
matrix is a one-dimensional (1-D) array of nonzero values in column-major order,
plus integer arrays giving row numbers and column starting positions. This is called
compressed column storage and is also the scheme used in the Harwell–Boeing collec-
tion. We use this layout for both L and U , but with a slight modification: we store
the entire square diagonal block of each supernode as part of L, including both the
strict lower triangle of values from L and the upper triangle of values from U . We
store this square block as if it were completely full (it is full in T3 supernodes, but its
upper triangle may contain zeros in T2 supernodes). This allows us to address each
supernode as a 2-D array in calls to BLAS routines. In other words, if columns (r:s)
form a supernode, then all the nonzeros in F (r:n, r:s) are stored as a single dense 2-D
array. This also lets us save some storage for row indices: only the indices of nonzero
rows outside the diagonal block need be stored, and the structures of all columns
within a supernode can be described by one set of row indices. This is similar to the
effect of compressed subscripts in the symmetric case [41].

We represent the part of U outside the supernodal blocks with compressed column

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 725

1 • • •
• 2 • •

3 • •
4 • • •
• •

• 6 •
7 • •

• •
• • 9

• • • 10

1 • • •
• 2 • • • •

3 • •
4 • • •
• 5 • • •

• • • • • 6 • • •
7 • •

• • • • • • • 8 • •
• • • • • 9 •

• • • • 10

Original matrix A Factors F = L+ U − I

Fig. 2.2. A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.

1
2
3
4
5
6
7
8
9
10

s1 s1 u3 u6

s1 s1 u3 u4 u6 u8

s2 u7 u8

s3 s3 s3 u9

s3 s3 s3 u7 u9

s1 s1 s2 s3 s3 s3 u7 u8 u9

s4 s4 s4

s1 s1 s2 s3 s3 s3 s4 s4 s4 s4

s3 s3 s3 s4 s4 s4 s4

s2 s4 s4 s4 s4

Fig. 2.3. Supernodal structure (by definition T2) of the factors of the sample matrix.

storage: the values are stored by columns, with a companion integer array the same
size to store row indices; another array of n integers indicates the start of each column.

Figure 2.3 shows the structure of the factors in the example from Figure 2.2,
with sk denoting a nonzero in the kth supernode and uk denoting a nonzero in the
kth column of U outside the supernodal block. Figure 2.4 shows the storage layout.
(We omit the indexing vectors that point to the beginning of each supernode and the
beginning of each column of U .)

2.3. The column elimination tree. Since our definition requires the columns
of a supernode to be contiguous, we should get larger supernodes if we bring together
columns of L with the same nonzero structure. But the column ordering is fixed, for
sparsity, before numeric factorization; what can we do?

In symmetric Cholesky factorization, one type of supernodes—the “fundamen-
tal” supernodes—can be made contiguous by permuting the matrix (symmetrically)
according to a postorder on its elimination tree [4]. This postorder is an example of
what Liu calls an equivalent reordering [35], which does not change the sparsity of the
factor. The postordered elimination tree can also be used to locate the supernodes
before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analogue
of the symmetric elimination tree is the column elimination tree, or column etree

726 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1 2

6
8

 s1 s1
s1 s1

s1 s1

s1 s1

3

6
8
10

s2

s2

s2

s2

4 5 6

8
9

s3 s3 s3

s3 s3 s3

s3 s3 s3

s3 s3 s3

s3 s3 s3

7 8 9 10
s4 0 s4 s4

s4 s4 s4 s4

s4 s4 s4 s4

s4 s4 s4 s4

Supernodal blocks (stored in column-major order)

u3 u3 u4 u6 u6 u7 u7 u7 u8 u8 u8 u9 u9 u9

1 2 2 1 2 3 5 6 2 3 6 4 5 6

Nonzeros in columns of U outside supernodes

row

Fig. 2.4. Storage layout for factors of the sample matrix, using T2 supernodes.

for short. The vertices of this tree are the integers 1 through n, representing the
columns of A. The column etree of A is the (symmetric) elimination tree of the
column intersection graph of A, or equivalently the elimination tree of ATA provided
there is no cancellation in computing ATA. See Gilbert and Ng [27] for complete
definitions. The column etree can be computed from A in time almost linear in the
number of nonzeros of A by a variation of an algorithm of Liu [35].

The following theorem states that the column etree represents potential depen-
dencies among columns in LU factorization, and that (for strong Hall matrices) no
stronger information is obtainable from the nonzero structure of A. Note that column
i updates column j in LU factorization if and only if uij 6= 0.

Theorem 2.1 (column etree [27]). Let A be a square, nonsingular, possibly
unsymmetric matrix, and let PA = LU be any factorization of A with pivoting by row
interchanges. Let T be the column etree of A.

1. If vertex i is an ancestor of vertex j in T, then i ≥ j.
2. If lij 6= 0, then vertex i is an ancestor of vertex j in T.
3. If uij 6= 0, then vertex j is an ancestor of vertex i in T.
4. Suppose in addition that A is strong Hall (that is, A cannot be permuted to

a nontrivial block triangular form). If vertex j is the parent of vertex i in T,
then there is some choice of values for the nonzeros of A that makes uij 6= 0
when the factorization PA = LU is computed with partial pivoting.

Just as a postorder on the symmetric elimination tree brings together symmetric
supernodes, we expect a postorder on the column etree to bring together unsymmetric
supernodes. Thus, before we factor the matrix, we compute its column etree and
permute the matrix columns according to a postorder on the tree. We now show that
this does not change the factorization in any essential way.

Theorem 2.2. Let A be a matrix with column etree T. Let π be a permutation
such that whenever π(i) is an ancestor of π(j) in T, we have i ≥ j. Let P be the
permutation matrix such that π = P · (1:n)T . Let Ā = PAPT .

1. Ā = A(π, π).
2. The column etree T̄ of Ā is isomorphic to T ; in particular, relabeling each

node i of T̄ as π(i) yields T.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 727

3. Suppose in addition that Ā has an LU factorization without pivoting, Ā = L̄Ū .
Then PT L̄P and PT ŪP are, respectively, unit lower triangular and upper
triangular, so A = (PT L̄P)(PT ŪP) is also an LU factorization.

Remark 2.3. Liu [35] attributes to F. Peters a result similar to part 3 for the
symmetric positive definite case, concerning the Cholesky factor and the (usual, sym-
metric) elimination tree.

Proof. Part 1 is immediate from the definition of P . Part 2 follows from Corol-
lary 6.2 in Liu [35], with the symmetric structure of the column intersection graph
of our matrix A taking the place of Liu’s symmetric matrix A. (Liu exhibits the
isomorphism explicitly in the proof of his Theorem 6.1.)

Now we prove part 3. We have aπ(i)π(j) = āij for all i and j. Write L = PT L̄P
and U = PT ŪP , so that lπ(i)π(j) = l̄ij and uπ(i)π(j) = ūij . Then A = LU ; we need
show only that L and U are triangular.

Consider a nonzero uπ(i)π(j) of U . In the triangular factorization Ā = L̄Ū , el-
ement ūij is equal to uπ(i)π(j) and is therefore nonzero. By part 3 of Theorem 2.1,
then, j is an ancestor of i in T̄ . By the isomorphism between T̄ and T , this implies
that π(j) is an ancestor of π(i) in T . Then it follows from part 1 of Theorem 2.1 that
π(j) ≥ π(i). Thus every nonzero of U is on or above the diagonal, so U is upper trian-
gular. A similar argument shows that every nonzero of L is on or below the diagonal,
so L is lower triangular. The diagonal elements of L are a permutation of those of L̄,
so they are all equal to 1.

Since the triangular factors of A are just permutations of the triangular factors
of PAPT , they have the same sparsity. Indeed, they require the same arithmetic to
compute; the only possible difference is the order of updates. If addition for updates
is commutative and associative, this implies that with partial pivoting (i, j) is a legal
pivot in Ā if and only if (π(i), π(j)) is a legal pivot in A. In floating-point arithmetic,
the different order of updates could conceivably change the pivot sequence. Thus we
have the following corollary.

Corollary 2.4. Let π be a postorder on the column etree of A, let P1 be any
permutation matrix, and let P2 be the permutation matrix with π = P2 · (1:n)T . If
P1AP

T
2 = LU is an LU factorization, then so is (PT2 P1)A = (PT2 LP2)(PT2 UP2). In

exact arithmetic, the former is an LU factorization with partial pivoting of APT2 if
and only if the latter is an LU factorization with partial pivoting of A.

This corollary states that an LU code can permute the columns of its input matrix
by postorder on the column etree, and then fold the column permutation into the row
permutation on output. Thus our SuperLU code has the option of returning either
four matrices P1, P2, L, and U (with P1AP

T
2 = LU), or just the three matrices PT2 P1,

PT2 LP2, and PT2 UP2, which are a row permutation and two triangular matrices. The
advantage of returning all four matrices is that the columns of each supernode are
contiguous in L, which permits the use of a Level 2 BLAS supernodal triangular solve
for the forward-substitution phase of a linear system solver. The supernodes are not
contiguous in PT2 LP2.

2.4. Relaxed supernodes. We observe that, for most matrices, the average
size of a supernode is only about 2 to 3 columns (though a few supernodes are much
larger). A large percentage of supernodes consists of only a single column, many of
which are leaves of the column etree. Therefore we have devised a scheme to merge
groups of columns at the fringe of the etree into artificial supernodes regardless of
their row structures. A parameter r controls the granularity of the merge. Our merge
rule is: node i is merged with its parent node j when the subtree rooted at j has at

728 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1. for column j = 1 to n do
2. f = A(:, j);
3. Symbolic factorization: determine which supernodes of L will update f ;
4. Determine whether j belongs to the same supernode as j − 1;
5. for each updating supernode (r:s) < j in topological order do
6. Apply supernode-column update to column j:
7. f(r:s) = L(r:s, r:s)−1 · f(r:s); /* Now f(r:s) = U(r:s, j) */
8. f(s+ 1:n) = f(s+ 1:n)− L(s+ 1:n, r:s) · f(r:s);
9. end for;
10. Pivot: interchange f(j) and f(m), where |f(m)| = max |f(j:n)|;
11. Separate L and U : U(1:j, j) = f(1:j); L(j:n, j) = f(j:n);
12. Scale: L(j:n, j) = L(j:n, j)/L(j, j);
13. Prune symbolic structure based on column j;
14. end for;

Fig. 3.1. LU factorization with supernode-column updates.

most r nodes. In practice, the best values of r are generally between 4 and 8 and yield
improvements in running time of 5% to 15%.

Artificial supernodes are a special case of relaxed supernodes, which Duff and
Reid [15] and Ashcraft and Grimes [4] have used in the context of multifrontal methods
for systems with symmetric nonzero structure. They allow a small number of zeros
in the structure of any supernode, thus relaxing the condition that the columns must
have strictly nested structures. It would be possible to use this idea in the unsymmetric
code as well, though we have not experimented with it. Relaxed supernodes could be
constructed either on the fly (by relaxing the nonzero count condition described in
section 4.3 below), or by preprocessing the column etree to identify small subtrees
that we would merge into supernodes.

3. Supernodal numeric factorization. Now we show how to modify the col-
col algorithm to use sup-col updates and supernode-panel updates. This section de-
scribes the numerical computation involved in the updates. Section 4 describes the
symbolic factorization that determines which supernodes update which columns and
also the boundaries between supernodes.

3.1. Sup-col updates. Figure 3.1 sketches the sup-col algorithm. The only dif-
ference from the col-col algorithm is that all the updates to a column from a single
supernode are done together. Consider a supernode (r:s) that updates column j. The
coefficients of the updates are the values from a segment of column j of U , namely
U(r:s, j). The nonzero structure of such a segment is particularly simple: all the
nonzeros are contiguous, and follow all the zeros (as proved in Corollary 4.2, which
appears in section 4.1). Thus, if k is the index of the first nonzero row in U(r:s, j),
the updates to column j from supernode (r:s) come from columns k through s. Since
the supernode is stored as a dense matrix, these updates can be performed by a
dense lower triangular solve (with the matrix L(k:s, k:s)) and a dense matrix-vector
multiplication (with the matrix L(s + 1:n, k:s)). As described in section 4, the sym-
bolic phase determines the value of k, that is, the position of the first nonzero in the
segment U(r:s, j).

The advantages of using sup-col updates are similar to those in the symmetric
case [37]. Efficient Level 2 BLAS matrix-vector kernels can be used for the triangular
solve and matrix-vector multiply. Furthermore, all the updates from the supernodal

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 729

1. for column j = 1 to n step w do
2. Symbolic factor: determine which supernodes will update any of L(:, j:j + w − 1);
3. for each updating supernode (r:s) < j in topological order do
4. for column jj = j to j + w − 1 do
5. Apply supernode-column update to column jj;
6. end for;
7. end for;
8. Inner factorization:

Apply the sup-col algorithm on columns and supernodes within the panel;
9. end for;

k

W

j j+w-1

sr

r

s

U

L

L

J J

J J

j:n J

j

Fig. 3.2. The supernode-panel algorithm, with columnwise blocking. J = 1:j − 1.

columns can be collected in a dense vector before doing a single scatter into the target
vector. This reduces the amount of indirect addressing.

3.2. Supernode-panel updates. We can improve the sup-col algorithm further
on machines with a memory hierarchy by changing the data access pattern. The data
we are accessing in the inner loop (lines 5–9 of Figure 3.1) include the destination
column j and all the updating supernodes (r:s) to the left of column j. Column j
is accessed many times, while each supernode (r:s) is used only once. In practice,
the number of nonzero elements in column j is much less than that in the updating
supernodes. Therefore, the access pattern given by this loop provides little opportunity
to reuse cached data. In particular, the same supernode (r:s) may be needed to update
both columns j and j+1. But when we factor the (j+1)st column (in the next iteration
of the outer loop), we will have to fetch supernode (r:s) again from memory, instead
of from cache (unless the supernodes are small compared to the cache).

3.2.1. Panels. To exploit memory locality, we factor several columns (say w
of them) at a time in the outer loop, so that one updating supernode (r:s) can be
used to update as many of the w columns as possible. We refer to these w consecutive
columns as a panel to differentiate them from a supernode; the row structures of these
columns may not be correlated in any fashion, and the boundaries between panels
may be different from those between supernodes. The new method requires rewriting

730 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

the doubly nested loop as the triple loop shown in Figure 3.2. This is analogous to
loop tiling techniques used in optimizing compilers to improve cache behavior for 2-D
arrays with regular stride. It is also somewhat analogous to the sup-sup updates that
Ng and Peyton [37] and Rothberg and Gupta [38] have used in symmetric Cholesky
factorization.

The structure of each sup-col update is the same as in the sup-col algorithm. For
each supernode (r:s) to the left of column j, if ukj 6= 0 for some r ≤ k ≤ s, then
uij 6= 0 for all k ≤ i ≤ s. Therefore, the nonzero structure of the panel of U consists
of dense column segments that are rowwise separated by supernodal boundaries, as
in Figure 3.2. Thus, it is sufficient for the symbolic factorization algorithm to record
only the first nonzero position of each column segment. As detailed in section 4.4,
symbolic factorization is applied to all the columns in a panel at once, over all the
updating supernodes, before the numeric factorization step.

In dense factorization, the entire supernode-panel update in lines 3–7 of Figure 3.2
would be implemented as two Level 3 BLAS calls: a dense triangular solve with w
right-hand sides, followed by a dense matrix-matrix multiply. In the sparse case, this is
not possible, because the different sup-col updates begin at different positions k within
the supernode, and the submatrix U(r:s, j:j + w − 1) is not dense. Thus the sparse
supernode-panel algorithm still calls the Level 2 BLAS. However, we get similar cache
benefits to those from the Level 3 BLAS, at the cost of doing the loop reorganization
ourselves. Thus we sometimes call the kernel of this algorithm a “BLAS-21

2” method.
In the doubly nested loop (lines 3–7 of Figure 3.2), the ideal circumstance is that

all w columns in the panel require updates from supernode (r:s). Then this supernode
will be used w times before it is forced out of the cache. There is a trade-off between
the value of w and the size of the cache. For this scheme to work efficiently, we need
to ensure that the nonzeros in the w columns do not cause cache thrashing. That is,
we must keep w small enough so that all the data accessed in this doubly nested loop
fit in cache. Otherwise, the cache interference between the source supernode and the
destination panel can offset the benefit of the new algorithm.

3.2.2. Outer and inner factorization. At the end of the supernode-panel
update (line 7), columns j through j + w − 1 of L and U have received all their
updates from columns to the left of j. We call this the outer factorization. What
remains is to apply updates that come from columns within the panel. This amounts
to forming the LU factorization of the panel itself (in columns (j:j + w − 1) and
rows (j:n)). This inner factorization is performed by the sup-col algorithm, almost
exactly as shown in Figure 3.1. The inner factorization includes a columnwise symbolic
factorization just as in the sup-col algorithm.The inner factorization also includes the
supernode identification, partial pivoting, and symmetric structure reduction for the
entire algorithm. Section 4 contains details of the inner factorization.

3.2.3. Reducing cache misses by rowwise blocking. Our first experiments
with the supernode-panel algorithm showed speedups for some medium-sized problems
of around 20–30%. However, the improvement for large matrices was often only a few
percentage points. We now study the reasons and remedies for this.

To implement loops (lines 3–7 of Figure 3.2), we first expand the nonzeros of the
panel columns of A into an n by w full working array, called the sparse accumulator [26]
or SPA. This allows random access to the entries of the active panel. A temporary
array stores the results of the BLAS operations, and the updates are scattered into
the SPA. At the end of panel factorization, the data in the SPA are copied into storage
for L and U . Although increasing the panel size w gives more opportunity for data

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 731

1. for j = 1 to n step w do
2. · · ·
3. for each updating supernode (r:s) < j in topological order do
4. Apply triangular solves to A(r:s, j:j + w − 1) using L(r:s, r:s);
5. for each row block B in L(s+ 1:n, r:s) do
6. for jj = j to j + w − 1 do
7. Multiply B · U(r:s, jj), and scatter into SPA(:, jj);
8. end for;
9. end for;
10. end for;
11. · · ·
12 end for;

Fig. 3.3. The supernode-panel algorithm, with 2-D blocking.

reuse, it also increases the size of the active data set that must fit into cache. The
supernode-panel update loop accesses the following data:

• the nonzeros in the updating supernode L(r:n, r:s);
• the SPA data structure, consisting of an n by w full array and a temporary

store of size n.

By instrumenting the code, we found that the working sets of large matrices are much
larger than the cache size. Hence, cache thrashing limits performance.

We experimented with a scheme suggested by Rothberg [39], in which the SPA

has only as many rows as the number of nonzero rows in the panel (as predicted by
symbolic factorization), and an extra indirection array of size n is used to address the
SPA. Unfortunately, the cost incurred by double indirection is not negligible, and this
scheme was not as effective as the 2-D blocking method we now describe.

We implemented a rowwise blocking scheme on top of the columnwise blocking in
the supernode-panel update. The 2-D blocking adds another level of looping between
the two loops in lines 3 and 4 of Figure 3.2. This partitions the supernodes (and the
SPA structure) into block rows. Then each block row of the updating supernode is used
for up to w partial matrix-vector multiplies, which are pushed all the way through
into the SPA before the next block row of the supernode is accessed. The active data
set accessed in the inner loops is thus much smaller than in the 1-D scheme. The 2-
D blocking algorithm is organized as in Figure 3.3. The key performance gains come
from the loops (lines 5–9), where each row block is reused as much as possible before
the next row block is brought into the cache. The innermost loop is still a dense
matrix-vector multiply, performed by a Level 2 BLAS kernel.

3.2.4. Combining 1-D and 2-D blocking. The 2-D blocking works well when
the rectangular supernodal matrix L(r:n, r:s) is large in both dimensions. If all of
L(r:n, r:s) fits in cache, then the rowwise blocking gives no benefit, but still incurs
overhead for setting up loop variables, skipping the empty loop body, and so on.
This overhead can be nearly 10% for some of the sparser problems. Thus we have
devised a hybrid update algorithm that uses either the 1-D or 2-D partitioning scheme,
depending on the size of each updating supernode. This decision is made at runtime,
with the overhead limited to a one-line test. It turns out that this hybrid scheme
works better than either 1-D or 2-D code for many problems. Therefore, this is the
algorithm that we used in our code.

732 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

4. Symbolic factorization. Symbolic factorization is the process that deter-
mines the nonzero structure of the triangular factors L and U from the nonzero
structure of the matrix A. This in turn determines which columns of L update each
column j of the factors (namely, those columns r for which urj 6= 0), and also deter-
mines which columns of L can be combined into supernodes.

Without numeric pivoting, the complete symbolic factorization can be performed
before any numeric factorization. Partial pivoting, however, requires that the numeric
and symbolic factorizations be interleaved. The sup-col algorithm performs symbolic
factorization for each column just before it is computed, as described in section 4.1.
The supernode-panel algorithm performs symbolic factorization for an entire panel at
once, as described in section 4.4.

4.1. Column depth-first search. From the numeric factorization algorithm, it
is clear that the structure of column F (:, j) depends on the structure of column A(:, j)
of the original matrix and on the structure of L(: , J), where J = 1:j−1. Indeed, F (:, j)
has the same structure as the solution vector for the following triangular system [29]:

@
@
@
@
@
@
@
@
@
@

L(:, J) I

F (:, j) = A(:, j).

A straightforward way to compute the structure of F (: , j) from the structures of
L(: , J) and A(: , j) is to simulate the numerical computation. A less expensive way is
to use the following characterization in terms of paths in the directed graph of L(: , J).

For any matrix M , the notation i
M→ j means that there is an edge from i to j

in the directed graph of M , that is, mij 6= 0. Edges in the directed graph of M are

directed from rows to columns. The notation i
M

=⇒ j means that there is a directed
path from i to j in the directed graph of M . Such a path may have length zero; that

is, i
M

=⇒ i always holds.

Theorem 4.1 (see [24]). fij is nonzero (equivalently, i
F→ j) if and only if

i
L(:,J)
=⇒ k

A→ j for some k ≤ i.
This result implies that the symbolic factorization of column j can be obtained

as follows. Consider the nonzeros in A(: , j) as a subset of the vertices of the directed
graph G = G(L(: , J)T), which is the reverse of the directed graph of L(: , J). The
nonzero positions of F (: , j) are then given by the vertices reachable by paths from
this set in G. We use the graph of LT here because of the convention that edges
are directed from rows to columns. Since L is actually stored by columns, our data
structure gives precisely the adjacency information for G. Therefore, we can determine
the structure of column j of L and U by traversing G from the set of starting nodes
given by the structure of A(: , j).

The traversal of G determines the structure of U(: , j), which in turn determines
the columns of L that will participate in updates to column j in the numerical fac-

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 733

torization. These updates must be applied in an order consistent with a topological
ordering of G. We use depth-first search to perform the traversal, which makes it pos-
sible to generate a topological order (specifically, reverse postorder) on the nonzeros
of U(: , j) as they are located [29].

Another consequence of the path theorem is the following corollary. It states that
if we divide each column of U into segments, one per supernode, then within each
segment the column of U consists of a consecutive sequence of nonzeros. Thus we need
only keep track of the position of the first nonzero in each segment.

Corollary 4.2. Let (r: s) be a supernode (of either type T2 or T3) in the factor-
ization PA = LU . Suppose ukj is nonzero for some j with r ≤ k ≤ s. Then uij 6= 0
for all i with k ≤ i ≤ s.

Proof. Let k ≤ i ≤ s. Since ukj 6= 0, we have k
L(: ,J)
=⇒ m

A−→ j for some m ≤ k
by Theorem 4.1. Now lik is in the diagonal block of the supernode, and hence is

nonzero. Thus i
L(: ,J)−→ k, so i

L(: ,J)
=⇒ m

A−→ j, whence uij is nonzero by Theorem
4.1.

4.2. Pruning the symbolic structure. We can speed up the depth-first search
traversals by using a reduced graph in place of G, the reverse of the graph of L(: , J).
We have explored this idea in a series of papers [20, 21, 25]. Any graph H can be

substituted for G, provided that i
H

=⇒ j if and only if i
G

=⇒ j. The traversals are more
efficient if H has fewer edges; but any gain in efficiency must be traded off against
the cost of computing H.

An extreme choice of H is the elimination directed acyclic graph (elimination
dag) [25], which is the transitive reduction of G, or the minimal subgraph of G that
preserves paths. However, the elimination dag is expensive to compute. The symmetric
reduction [20] is a subgraph that has (in general) fewer edges than G but more edges
than the elimination dag, and that is much less expensive to compute. The symmetric
reduction takes advantage of symmetry in the structure of the filled matrix F ; if F
is completely symmetric, it is just the symmetric elimination tree. The symmetric
reduction of L(: , J) is obtained by removing all nonzeros lrs for which ltsust 6= 0 for
some t < min(r, j). Eisenstat and Liu [21] give an efficient method to compute the
symmetric reduction during symbolic factorization and demonstrate experimentally
that it significantly reduces the total factorization time when used in an algorithm
that does col-col updates.

Our supernodal code uses symmetric reduction to speed up its symbolic factoriza-
tion. Using the sample matrix in Figure 2.2, Figures 4.1 and 4.2 illustrate symmetric
reduction in the presence of supernodes. We use S to represent the supernodal struc-
ture of L(: , J)T and R to represent the symmetric reduction of S. It is this R that
we use in our code. Note that the edges of the graph of R are directed from columns
of L to rows of L.

In the figures, the symbol “�” indicates an entry in S that was pruned from R by
symmetric reduction. The (8, 2) entry was pruned due to the symmetric nonzero pair
(6, 2) and (2, 6). The figure shows the current state of the reduced structure based on
the first seven columns of the filled matrix.

It is instructive to follow this example through one more column to see how
symbolic factorization is carried out in the reduced supernodal structure. Consider
the symbolic step for column 8. Suppose a28 and a38 are nonzero. The other nonzeros
in column 8 of the factor are generated by paths in the reduced supernodal structure
(we show just one possible path for each nonzero):

8
AT→ 2

R→ 6,

734 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1 • • •
• 2 • • •

3 •
4 • •
• 5 • •

• • • • • 6 •
7

• • • • • • •
• • • •

• •

1
• 2

3
4
• 5

• • • • • 6
7

• • • • • • •
• • • •

• •

1
2

3
4
5

• • 6
7

• • • •
• •

• •

1
2

3
4
5

• • 6
7

� • • •
• •

• •

Filled matrix Lower triangle Supernodal Reduced

F (:, J) G S R

Fig. 4.1. Supernodal and symmetrically reduced structures.

1
2

3
4
5

• • 6
7

� • • •
• •

• •

•
•

◦

◦
◦
◦

=⇒

1
2

3
4
5

• • 6
7

� • • • 8
� • •

� • •

Fig. 4.2. One step of symbolic factorization in the reduced structure.

8
AT→ 3

R→ 8,

8
AT→ 2

R→ 6
R→ 9,

8
AT→ 3

R→ 10.

Figure 4.2 shows the reduced supernodal structure before and after column 8. In
column 8 of A, the original nonzeros are shown as “•” and the fill nonzeros are shown
as “◦”. Once the structure of column 8 of U is known, more symmetric reduction is
possible. The entry l10,3 is pruned due to the symmetric nonzeros in l83 and u38. Also,
l96 is pruned by l86 and u68. Figure 4.2 shows the new structure.

The supernodal symbolic factorization relies on the path characterization in The-
orem 4.1 and on the path-preserving property of symmetric reduction. In effect, we
use the modified path condition

i
AT→ m

R
=⇒ j

on the symmetrically reduced supernodal structure R of L(:, J)T .

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 735

4.3. Detecting supernodes. Since supernodes consist of contiguous columns
of L, we can decide at the end of each symbolic factorization step whether the new
column j belongs to the same supernode as column j − 1.

For T2 supernodes, the test is straightforward. During symbolic factorization, we
test whether L(:, j) ⊆ L(:, j− 1) (where the containment applies to the set of nonzero
indices). At the end of the symbolic factorization step, we test whether nnz(L(:, j)) =
nnz(L(:, j − 1)) − 1. Column j joins column (j − 1)’s supernode if and only if both
tests are passed.

T3 supernodes also require the diagonal block of U to be full. To check this, it
suffices to check whether the single element urj is nonzero, where r is the first column
index of the supernode. This follows from Corollary 4.2: urj 6= 0 implies that uij 6= 0
for all r ≤ i ≤ j. Indeed, we can even omit the test L(:, j) ⊆ L(:, j − 1) for T3
supernodes. If urj 6= 0, then uj−1,j 6= 0, which means that column j − 1 updates
column j, which implies L(:, j) ⊆ L(:, j − 1). Thus we have proved the following
theorem.

Theorem 4.3. Suppose a T3 supernode begins with column r and extends at least
through column j − 1. Column j belongs to this supernode if and only if urj 6= 0 and
nnz(L(:, j)) = nnz(L(:, j − 1))− 1.

For either T2 or T3 supernodes, it is straightforward to implement the relaxed
versions discussed in section 2.4. Also, since the main benefits of supernodes come
when they fit in the cache, we impose a maximum size for a supernode.

4.4. Panel depth-first search. The supernode-panel algorithm consists of an
outer factorization (applying updates from supernodes to the active panel) and an
inner factorization (applying sup-col updates within the active panel). Each has its
own symbolic factorization. The outer symbolic factorization happens once per panel
and determines two things: (1) a single column structure, which is the union of the
structures of the panel columns, and (2) which supernodes update each column of the
panel, and in what order. This is the information that the supernode-panel update
loop in Figure 3.2 needs.

The inner symbolic factorization happens once for each column of the panel,
interleaved column by column with the inner numeric factorization. In addition to
determining the nonzero structure of the active column and which supernodes within
the panel will update the active column, the inner symbolic factorization is also re-
sponsible for forming supernodes (that is, for deciding whether the active column will
start a new supernode) and for symmetric structural pruning. The inner symbolic
factorization is, therefore, exactly the sup-col symbolic factorization described above.

The outer symbolic factorization must determine the structures of columns j to
j + w − 1, i.e., the structure of the whole panel, and also a topological order for
U(1:j, j:j + w − 1) en masse. To this end, we developed an efficient panel depth-first
search scheme, which is a slight modification of the column depth-first search. The
panel depth-first search algorithm maintains a single postorder depth-first search list
for all w columns of the panel. Let us call this the PO list, which is initially empty.
The algorithm invokes the column depth-search procedure for each column from j to
j + w − 1. In the column depth-first search, each time the search backtracks from a
vertex, that vertex is appended to the PO list. In the panel depth-first search, however,
the vertex is appended to the PO list only if it is not already on the list. This gives
a single list that includes every position that is nonzero in any panel column, just
once; and the entire list is in (reverse) topological order. Thus the order of updates
specified by the list is acceptable for each of the w individual panel columns.

736 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1
2

3
4
5

• • 6
7

• • •
• •

• •

•
•
•
◦

◦ •
•

◦ ◦
◦ •
◦ •

Reduced supernodal R A(:, 8:9)

[7]

[1,2] [3]

[4,5,6]

Fig. 4.3. The supernodal directed graph corresponding to L(1:7, 1:7)T .

We illustrate the idea in Figure 4.3, using the sample matrix from Figures 4.1
and 4.2, and a panel of width two. The first seven columns have been factored, and
the current panel consists of columns 8 and 9. In the panel, nonzeros of A are shown
as “•” and fill in F is shown as “◦”. The depth-first search for column 8 starts from
vertices 2 and 3. After that search is finished, the panel postorder list is PO = (6, 2, 3).
Now the depth-first search for column 9 starts from vertices 6 and 7 (not 4, since 6
is the representative vertex for the supernode containing column 4). This depth-first
search only appends 7 to the PO list, because 6 is already on the list. Thus, the final
list for this panel is PO = (6, 2, 3, 7). The postorder list of column 8 is (6, 2, 3) and
the postorder list of column 9 is (6, 7), which are simply two sublists of the panel PO
list. The topological order is the reverse of PO, or (7, 3, 2, 6). In the loop of line 3 of
Figure 3.2, we follow this topological order to schedule the updating supernodes and
perform numeric updates to columns of the panel.

5. Evaluation. In this section, we evaluate our algorithms using matrices from
several applications and several sources. We compare the performance of SuperLU,
our supernode-panel code, with its predecessors and with one other approach to sparse
LU factorization.

5.1. Experimental setup. Table 5.1 lists 23 matrices with some characteristics
of their nonzero structures. Some of the matrices are from the Harwell–Boeing collec-
tion [17]. Many of the larger matrices are from the ftp site maintained by Tim Davis
of the University of Florida.3 Those matrices are as follows: Memplus is a circuit
simulation matrix from Steve Hamm of Motorola. Rdist1 is a reactive distillation
problem in chemical process separation calculations, provided by Stephen Zitney at
Cray Research, Inc. Shyy161 is derived from a direct, fully coupled method for solv-
ing the Navier–Stokes equations for viscous flow calculations, provided by Wei Shyy
of the University of Florida. Goodwin is a finite element matrix in a nonlinear solver
for a fluid mechanics problem, provided by Ralph Goodwin of the University of Illinois
at Urbana–Champaign. Venkat01, Inaccura, and Raefsky3/4 were provided by
Horst Simon, then of NASA. Venkat01 comes from an implicit 2-D Euler solver for
an unstructured grid in a flow simulation. Raefsky3 is from a fluid structure interac-
tion turbulence problem. Raefsky4 is from a buckling problem for a container model.

3URL: http://www.cis.ufl.edu/∼davis

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 737

Table 5.1
Characteristics of the test matrices. Structural symmetry s is the fraction of the nonzeros

matched by nonzeros in symmetric locations. None of the matrices are numerically symmetric.

Matrix s n nnz(A) nnz(A)/n
1 Memplus .983 17758 99147 5.6
2 Gemat11 .002 4929 33185 6.7
3 Rdist1 .062 4134 9408 2.3
4 Orani678 .073 2529 90158 35.6
5 Mcfe .709 765 24382 31.8
6 Lnsp3937 .869 3937 25407 6.5
7 Lns3937 .869 3937 25407 6.5
8 Sherman5 .780 3312 20793 6.3
9 Jpwh991 .947 991 6027 6.1
10 Sherman3 1.000 5005 20033 4.0
11 Orsreg1 1.000 2205 14133 6.4
12 Saylr4 1.000 3564 22316 6.3
13 Shyy161 .769 76480 329762 4.3
14 Goodwin .642 7320 324772 44.4
15 Venkat01 1.000 62424 1717792 27.5
16 Inaccura 1.000 16146 1015156 62.9
17 Af23560 .947 23560 460598 19.6
18 Dense1000 1.000 1000 1000000 1000
19 Raefsky3 1.000 21200 1488768 70.2
20 Ex11 1.000 16614 1096948 66.0
21 Wang3 1.000 26064 177168 6.8
22 Raefsky4 1.000 19779 1316789 66.6
23 Vavasis3 .001 41092 1683902 41.0

Table 5.2
Machines used to compare various column LU codes. Column “#” is maximum number of

instruction issues per clock cycle.

Clock On-chip External Peak dgemm dgemv
MHz cache cache # Mflops Mflops Mflops

IBM RS/6000-590 66.5 256 KB 6 266 250 235
SGI MIPS R8000 90 16 KB 4 MB 4 360 340 210
DEC Alpha 21164 300 8 KB-L1 4 MB 4 600 350 135

96 KB-L2
SUN UltraSparc-I 143 16 KB 512 KB 4 286 227 –

Af23560 is from solving an unsymmetric eigenvalue problem, provided by Zhaojun
Bai of the University of Kentucky. Ex11 is from a three-dimensional (3-D) steady
flow calculation in the SPARSKIT collection maintained by Youcef Saad at the Uni-
versity of Minnesota. Wang3 is from solving a coupled nonlinear PDE system in a
3-D (30×30×30 uniform mesh) semiconductor device simulation, as provided by Song
Wang of the University of New South Wales, Sydney. Vavasis3 is an unsymmetric
augmented matrix for a 2-D PDE with highly varying coefficients [44]. Dense1000 is
a dense 1000× 1000 random matrix.

The matrices are sorted in increasing order of flops/nnz(F), the ratio of the
number of floating-point operations to the number of nonzeros nnz(F) in the factored
matrix F = U + L− I. The reason for this order will be described in more detail in
section 5.4.

This paper does not address the performance of column preordering for sparsity.
We simply use the existing ordering algorithms provided by Matlab [26]. For all

738 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

matrices, except 1, 15, and 21, the columns were permuted by Matlab’s minimum
degree ordering of ATA, also known as “column minimum degree.” However, this
ordering produces excessive fill for matrices 1, 15, and 21, because it attempts only
to minimize the upper bound on the actual fill, and the upper bounds are too loose
in these cases. When these three matrices are symmetrically permuted by Matlab’s
symmetric minimum degree ordering on A + AT , the amount of fill is much smaller
than using column minimum degree ordering.

We conducted performance analysis on high-end workstations from four vendors
(IBM, SGI, DEC, and SUN). Some characteristics of these machines are tabulated
in Table 5.2. The instruction caches, if separate from the data cache, are not listed
in the table. In most cases, the on-chip L1 caches are fairly small, so we use either
the L2 cache or the off-chip cache as a reference. The DGEMM and DGEMV Mflop
rates were measured using vendor-supplied BLAS libraries. (Exception: SUN does
not supply a BLAS library, so we report the DGEMM speed from PHiPAC [6].
PHiPAC does not include DGEMV.) Our UltraSparc-I has less physical memory
than the other machines, so some large problems could not be tested on this machine.

5.2. Performance of SuperLU on an IBM RS/6000-590. Table 5.3 pre-
sents the performance of SuperLU on this system. The CPU clock rate is 66.5 MHz.
The processor has two branch units, two fixed-point units, and two floating-point
units, which can all operate in parallel if there are no dependencies. Each FPU can
perform two operations (a multiply and an add or subtract) in each cycle. Thus,
the peak floating-point performance is 266 Mflops. The size of the main memory
is 768 MB. SuperLU is implemented in C; we used the AIX xlc compiler with -O3
optimization. All floating-point computations are performed in double precision.

In the inner loops of our sparse code, we call the two Level 2 BLAS routines
DTRSV (triangular solve) and DGEMV (matrix-vector multiply) provided in the
IBM ESSL library [32], whose BLAS-3 matrix-matrix multiply routine (DGEMM)
achieves about 250 Mflops when the dimension of the matrix is larger than 60 [1]. In
our sparse algorithm, we find that DGEMV typically accounts for more than 80% of
the floating-point operations. As shown in the second to last column of Table 5.3, this
percentage is 95% higher than for many matrices. Our measurements reveal that for
typical dimensions arising from the benchmark matrices, DGEMV achieves roughly
235 Mflops if the data are from cache. If the data are fetched from main memory, this
rate can drop by a factor of 2 or 3.

The BLAS speed is clearly an upper bound on the overall factorization rate.
However, because symbolic manipulation usually takes a nontrivial amount of time,
this bound could be much higher than the actual sparse code performance. The last
column in Table 5.3 presents the percentage of the total execution time spent in
numeric computation. For matrices 1 and 2, the program spent less than 35% of its
time in the numeric part. Compared to the others, these two matrices are sparser, have
less fill, and have smaller supernodes, so our supernodal techniques are less applicable.
Matrix 2 is also highly unsymmetric, which makes the symmetric structural reduction
less effective. However, it is important to note that the execution times for these two
matrices are small.

For larger and denser matrices such as 18–23, the algorithm achieves between
110 and 125 Mflops, which is about half of the machine peak. These matrices take
much longer to factor, which could be a serious bottleneck in an iterative simulation
process. Our techniques are successful in reducing the solution times for this type of
problem.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 739

Table 5.3
Performance of SuperLU on an IBM RS/6000-590.

#flops Time % flops % num

Matrix nnz(F)
nnz(F)
nnz(A)

(106) (sec) Mflops dgemv time

1 Memplus 140388 1.4 1.8 0.57 3.08 70 16
2 Gemat11 93370 2.8 1.5 0.27 5.64 82 33
3 Rdist1 338624 3.6 12.9 0.96 13.47 85 48
4 Orani678 280788 3.1 14.9 1.11 13.48 98 51
5 Mcfe 69053 2.8 4.1 0.24 17.42 96 54
6 Lnsp3937 427600 16.8 38.9 1.50 25.97 95 48
7 Lns3937 449346 17.7 44.8 1.65 27.16 96 48
8 Sherman5 249199 12.0 25.2 0.82 30.78 93 57
9 Jpwh991 140746 23.4 18.0 0.52 34.57 94 58
10 Sherman3 433376 21.6 60.6 1.37 44.24 85 56
11 Orsreg1 402478 28.5 59.8 1.21 49.42 87 50
12 Saylr4 654908 29.3 104.8 2.18 48.07 87 57
13 Shyy161 7634810 23.2 1571.6 25.42 61.83 88 57
14 Goodwin 3109585 9.6 665.1 12.55 52.99 92 63
15 Venkat01 12987004 7.6 3219.9 42.99 74.90 91 63
16 Inaccura 9941478 9.8 4118.7 67.73 60.81 96 64
17 Af23560 13986992 30.4 6363.7 75.91 83.83 92 73
18 Dense1000 1000000 1.0 666.2 5.68 117.28 93 72
19 Raefsky3 17544134 11.8 12118.7 107.60 112.62 94 77
20 Ex11 26207974 23.8 26814.5 247.05 108.54 95 81
21 Wang3 13287108 74.9 14557.5 116.58 124.86 96 81
22 Raefsky4 26678597 20.3 31283.4 263.13 118.89 97 83
23 Vavasis3 49192880 29.2 89209.3 786.94 113.36 98 80

For a dense 1000 × 1000 matrix, our code achieves 117 Mflops. This may be
compared to 168 Mflops reported in the LAPACK manual [3] on a matrix of this
size, and 236 Mflops reported in the online Linpack benchmark files [36].

5.3. Comparison with previous column LU algorithms. In this section,
we compare the performance of SuperLU with three of its predecessors, including the
column code GP by Gilbert and Peierls [29] (Figure 1.1), GP-Mod by Eisenstat and
Liu [21] (section 4.2), and SupCol by Eisenstat, Gilbert, and Liu [19] (Figure 3.1). GP
and GP-Mod were written in Fortran. SupCol was first written in Fortran, and later
translated literally into C; no changes in algorithms or data structures were made in
this translation. SuperLU is written in C. (Matlab contains C implementations of GP
and GP-Mod [26], which we did not test here.)

For the Fortran codes, we use Fortran 77 compilers; for the C codes, we use
ANSI C compilers. In all cases, we use highest possible optimization provided by each
compiler. Both SupCol and SuperLU call Level 2 BLAS routines. For the RS/6000-
590, we use the BLAS routines from IBM’s ESSL library. For the DEC Alpha, we use
the BLAS routines from DEC’s DXML library. There are no vendor-supplied BLAS
libraries on the Sparc, so we use our own routines implemented in C.

Tables 5.4 through 5.7 present the results of comparisons on the four machines.
The blocking parameters w, t, and b (Figure 5.6) for SuperLU are chosen according
to the size of the data cache (Table 5.2) and are reported in each comparison table.
In all these tables, the column labeled “GP” gives the raw factorization time in sec-
onds of GP. The numbers in each successive column are speedups achieved by the
corresponding enhancement over GP. Thus, for example, a speedup of 2 means that
the running time was half that of GP. The numbers in the last two rows of each table

740 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1 3 5 7 9 11 13 15 17 19 21
0

5

10

15

20

25

30

35

SuperLU

SupCol

GP−Mod

GP

Matrix

S
p

e
e

d
u

p
 o

ve
r

G
P

BLAS−2.5

BLAS−2

BLAS−1

BLAS−1

Fig. 5.1. Speedups of each enhancement over GP on the MIPS R8000.

show the average speedup and its standard deviation.
Figure 5.1 gives a visual look at the speedups for SuperLU over its predecessors

on one of the workstations we experimented with (using data from Table 5.5). Of
course, machines with different memory architectures would give different plots.

We make the following observations from these results:
• The symmetric structure pruning in GP-Mod is very effective in reducing

the graph search time. This significantly decreases the symbolic factorization
time in the GP code. It achieves speedup for all problems, on all machines.
Its average speedup on the RS/6000-590 is 3.64, the highest among all the
machines.
• Supernodes in SupCol restrict the search to the supernodal graph and allow

the numeric kernels to employ dense BLAS-2 operations. The effects are not
as dramatic as the pruning technique. For some matrices, such as 1–3, the
runtimes are actually longer than GP-Mod. This is because supernodes are
often small in the sparser matrices.
• Supernode-panel updates in SuperLU reduce the cache miss rate and exploit

dense substructures in the factor F . For problems without much structure, the
gain is often offset by various overheads. However, the advantage of SuperLU
over SupCol becomes significant for larger or denser problems, or on machines
with small cache, such as Alpha 21164, on which SuperLU achieves more than
a factor of 2 speedup over SupCol for the six large matrices 18–23.

With more and more sophisticated techniques introduced, the added complica-
tions of the code increase the runtime overhead to some extent. This overhead can
show up prominently in small or very sparse problems. The two supernodal codes are
particularly sensitive to the characteristics of the problems. This can be seen from the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 741

0 500 1000 1500 2000
0

5

10

15

20

ops−per−nz

S
pe

ed
up

 o
ve

r
G

P

(a) Ops−per−nz as Predictor

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

ops−per−nz

S
pe

ed
 in

 M
flo

ps

(b) Ops−per−nz as Predictor

6 8 10 12 14 16
0

5

10

15

20

ops−per−ref

S
pe

ed
up

 o
ve

r
G

P

(c) Ops−per−ref as Predictor

6 8 10 12 14 16
0

20

40

60

80

100

120

140

ops−per−ref

S
pe

ed
 in

 M
flo

ps

(d) Ops−per−ref as Predictor

Fig. 5.2. Matrix characteristics as predictors of performance.

large standard deviations of their average speedups.

5.4. Understanding cache behavior and parameters. We now analyze the
behavior of SuperLU in detail. We wish to understand when our algorithm is signifi-
cantly faster than other algorithms. We would like performance-predicting variable(s)
that depend on “intrinsic” properties of the problem, such as the sparsity structure,
rather than algorithmic details and machine characteristics.

5.4.1. How much cache reuse can we expect? As discussed in section 3.2,
the supernode-panel algorithm gets its primary gains from improved data locality by
reusing a cached supernode several times. To understand how much cache reuse we
can

hope for, we computed two statistics: ops-per-nz and ops-per-ref . After defining these
statistics carefully, we discuss which more successfully measures reuse.

Ops-per-nz is simply calculated as #flops/nnz(F), the total number of floating-
point operations per nonzero in the filled matrix F . If there were perfect cache be-
havior, i.e., one cache miss per data item (ignoring the effect of cache line size), then
ops-per-nz would exactly measure the amount of work per cache miss. In reality, ops-
per-nz is an upper bound on the reuse. Note that ops-per-nz depends only on the fact
that we are performing Gaussian elimination with partial pivoting, not on implemen-
tation or machine details. Ops-per-nz is a natural measure of potential data reuse,
because it has long been used to distinguish among the different levels of BLAS.

742 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1 3 5 7 9 11 13 15 17 19 21 23
0

5

10

15

Matrix number

M
e

a
n

 s
u

p
e

rn
o

d
e

 s
iz

e
 i
n

 c
o

lu
m

n
s

Fig. 5.3. Mean number of columns per supernode.

In contrast, ops-per-ref provides a lower bound on cache reuse and does depend
on the details of the SuperLU algorithm. Ops-per-ref looks at each supernode-panel
update separately and assumes that all the associated data are outside the cache
before beginning the update. This pessimistic assumption limits the potential reuse
to twice the panel size, 2w.

Now we describe how we compute the average ops-per-ref for the entire factor-
ization. Consider a single update from supernode (r: s) to panel (j: j + w − 1). We
assume that the supernode entry is brought into cache from main memory exactly
once for the entire supernode-panel update, if it is used at all. Thus, during a single
supernode-panel update, each entry accessed in the updating supernode accounts for
between 2 and 2w operations per reference. Define kmin to be the number of the first
row containing a nonzero in the panel,

kmin = min
j≤jj<j+w

{k | k = min
r≤i≤s

{i | A(i, jj) 6= 0}} .

Then nnz(L(r:n, kmin: s)) entries of the supernode are referenced in the supernode-
panel update. The dense triangular solve in column jj of the update takes (s − k +
1) · (s− k) flops. The matrix-vector multiply takes 2 · (s− k + 1) · nnz(L(s+ 1:n, s))
flops. (We count both additions and multiplications.) For all panel updates, we sum
the memory reference counts and the flop counts, then divide the second sum by the
first to arrive at an average ops-per-ref. Ops-per-ref ranges from 2 to 2w, with larger
values indicating better cache use.

Figure 5.2 plots these two statistics against the speedup SuperLU achieved over
the col-col code GP and against SuperLU’s raw execution rate. It is clear that (perhaps
surprisingly) ops-per-nz is superior to ops-per-ref as a predictor of either of these
measures of performance. This is good news, because ops-per-nz measures the best
case reuse, and ops-per-ref the worst case. But neither statistic captures all the
variation in the performance.

5.4.2. How large are the supernodes? The supernode size determines the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 743

(a) Matrix 1: 17758 rows, 16378
supernodes

1 12 24 35 47 58 70 81 93 104

1

2

3

4

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(b) Matrix 2: 4929 rows, 2002
supernodes

1 4 8 12 16 20 23 27 31 35

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(c) Matrix 3: 4134 rows, 2099
supernodes

1 4 8 12 16 20 23 27 31 35

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(d) Matrix 14: 7320 rows, 893
supernodes

1 6 12 18 24 30 36 42 48 54

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

c
c
u

rr
e

n
c
e

s
)

Fig. 5.4. Distribution of supernode size for four matrices.

size of the matrix passed to matrix-vector multiply and other Level 2 BLAS routines.
Figure 5.3 shows the average number of columns in the supernodes of the matrices after
amalgamating the relaxed supernodes at the bottom of the column etree (section 2.4).
The average size is usually quite small.

More important than average size is the distribution of supernode sizes. In sparse
Gaussian elimination, more fill tends to occur in the later stages. Usually there is a
large percentage of small supernodes corresponding to the leaves of the column etree,
even after amalgamation. Larger supernodes appear near the root. In Figure 5.4 we
plot the histograms of the supernode size for four matrices chosen to exhibit a wide
range of behavior. In the figure, the number at the bottom of each bar is the smallest
supernode size in that bin. The mark “o” at the bottom of a bin indicates zero
occurrences; otherwise, a “∗” is put at the bottom of a bin. Relaxed supernodes of
granularity r = 4 are used. Matrix 1 has 16378 supernodes, all but one of which
have less than 12 columns; the single large supernode, with 115 columns, is the dense
submatrix at the bottom right corner of F . Matrix 14 has more supernodes distributed
over a wider spectrum; it has 13 supernodes with 54 to 59 columns. This matrix shows
greater speedups over the nonsupernodal codes.

744 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1 9 14 22 30 38 46 54 62 70

2

4

6

8

10

12

14

16

18

20

 100
 125

 125

 125 125 125

 150

 150

 150

 150

 175

 175

 175

 175
 175

 200

 225

column dimension n

ro
w

 d
im

e
n

s
io

n
 m

(1

0
^
2

)

contour of DGEMV(m, n) MFLOPS

m*n = 32 K doubles

20 40 60 80 100 120 140

50

100

150

200

250

300

350

400

450

500

550

max supernode size t

ro
w

 b
lo

c
k
 s

iz
e

 b

contour of working set size; 256 KB cache size

o (120,200)

w = 8

w = 16

Fig. 5.5. (a) Contour plot of DGEMV performance. (b) Contour plot of working set in 2-D
algorithm.

*J

*JL’

U*J

L
b

W

t

t

b

Fig. 5.6. Parameters of the working set in the 2-D algorithm.

5.4.3. Blocking parameters. In our hybrid algorithm (section 3.2.4), we need
to select appropriate values for the parameters that describe the 2-D data blocking:
panel width w, maximum supernode size t, and row block size b. The key considera-
tions are that the active data we access in the inner loop (the working set) should fit
into the cache, and that the matrices presented to the Level 2 BLAS routine DGEMV
should be the sizes and shapes for which that routine is optimized. Here we describe
in detail the methodology we used to choose parameters for the IBM RS/6000-590.

• DGEMV optimization. As indicated in the last column of Table 5.3, the
majority of the floating-point operations are in the matrix-vector multiply.
The dimensions (m,n) of the matrices in calls to DGEMV vary greatly de-
pending on the supernode dimensions. Very often, the supernode is a tall
and skinny matrix, that is, m � n. We measured the DGEMV Mflops rate
for various m and n and present a contour plot in the (m,n) plane in Fig-

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 745

Table 5.4
Speedups achieved by each enhancement over GP on the RS/6000–590. The blocking parameters

for SuperLU are w = 8, t = 100, and b = 200.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 Memplus 0.40 1.48 1.05 0.68
2 Gemat11 0.27 1.69 1.29 1.00
3 Rdist1 1.90 2.75 2.24 1.94
4 Orani678 13.86 3.55 2.98 3.10
5 Mcfe 1.55 3.44 3.52 3.52
6 Lnsp3937 7.11 3.39 3.86 3.54
7 Lns3937 7.77 3.39 3.85 3.55
8 Sherman5 3.98 3.43 4.57 4.23
9 Jpwh991 2.78 3.61 4.21 4.48
10 Sherman3 7.43 3.54 5.99 5.27
11 Orsreg1 8.73 3.64 5.86 5.98
12 Saylr4 17.51 3.67 5.99 6.30
13 Shyy161 163.14 3.65 6.46 5.67
14 Goodwin 90.63 3.84 6.46 7.16
15 Venkat01 355.50 3.86 8.33 8.87
16 Inaccura 544.91 4.17 7.24 7.94
17 Af23560 823.47 4.23 9.58 10.47
18 Dense1000 83.48 4.21 10.22 14.54
19 Raefsky3 1571.63 4.30 11.54 14.00
20 Ex11 3439.41 4.36 11.42 13.87
21 Wang3 1841.27 4.34 12.23 15.75
22 Raefsky4 3968.16 4.35 11.89 15.39
23 Vavasis3 12342.97 4.79 13.11 15.63
Mean 3.64 6.67 7.52
Std 0.79 3.69 5.04

ure 5.5(a). Each contour represents a constant Mflops rate. The dashed
curve represents mn = 32K double reals, or a cache capacity of 256 Kbytes.
In the optimum region, we achieve more than 200 Mflops; outside this region,
performance drops either because the matrices exceed the cache capacity or
because the column dimension n is too small.
• Working set. By studying the data access pattern in the inner loop of the

2-D algorithm, lines 6–8 in Figure 3.3, we find that the working set size is the
following function of w, t, and b, as shown in Figure 5.6:

WS = b× t︸︷︷︸
supernode rows

+ (t+ b)× w︸ ︷︷ ︸
DGEMV vectors

+ b× w︸ ︷︷ ︸
SPA rows

.

In Figure 5.5(b), we fix two w values and plot the contour lines for WS = 32K
in the (t, b) plane. If the point (t, b) is below the contour curve, then the
working set can fit in a cache of 32K double reals, or 256 Kbytes.

Based on this analysis, we use the following rules to set the parameters.
First we choose w, the width of the panel in columns. Larger panels mean more

reuse of cached data in the outer factorization, but also mean that the inner fac-
torization (by the sup-col algorithm) must be applied to larger matrices. We find
empirically that the best choice for w is between 8 and 16. Performance tends to
degrade for larger w.

Next we choose b, the number of rows per block, and t, the maximum number of
columns in a supernode. Recall that b and t are upper bounds on the row and column

746 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

Table 5.5
Speedups achieved by each enhancement over GP on the MIPS R8000. The blocking parameters

for SuperLU are w = 16, t = 100, and b = 800.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 Memplus 0.42 1.51 1.10 0.59
2 Gemat11 0.29 1.77 1.61 1.11
3 Rdist1 2.03 2.58 2.07 2.07
4 Orani678 2.26 2.61 1.61 1.96
5 Mcfe 0.60 2.93 2.73 2.61
6 Lnsp3937 5.13 3.23 4.17 3.80
7 Lns3937 5.74 3.32 4.22 3.85
8 Sherman5 3.70 3.38 5.37 5.22
9 Jpwh991 2.50 3.63 4.81 5.21
10 Sherman3 8.73 3.78 8.08 7.87
11 Orsreg1 8.18 3.72 7.24 8.10
12 Saylr4 14.92 3.67 7.65 8.58
13 Shyy161 235.77 3.24 7.11 10.04
14 Goodwin 103.66 3.45 8.87 11.27
15 Venkat01 524.46 2.95 8.51 17.22
16 Inaccura 720.86 2.93 6.36 15.13
17 Af23560 1095.30 2.95 7.28 18.42
18 Dense1000 113.28 3.34 11.99 30.21
19 Raefsky3 2263.80 2.88 6.54 28.87
20 Ex11 5302.74 2.96 6.44 25.75
21 Wang3 2710.19 2.80 6.31 31.46
22 Raefsky4 6005.72 2.85 6.29 27.44
Mean 3.02 5.74 12.13
Std 0.57 2.75 10.48

dimensions of the call to DGEMV. We choose t = 120 and b ≈ 200, which guarantees
that the working set fits in cache (per Figure 5.5(b)), and that we can hope to be
near the optimum region of DGEMV performance (per Figure 5.5(a)).

Recall that b is relevant only when we use rowwise blocking. This implies that
the 2-D scheme adds overhead only if the updating supernode is small. In the actual
code, the test for a large supernode is

if ncol > 40 and nrow > b then the supernode is large,

where nrow is the number of dense rows below the diagonal block of the supernode
since ncol is the number of dense columns of the supernode updating the panel. In
practice, this choice usually gives the best performance.

The best choice of the parameters w, t, and b depends on the machine architecture
and on the BLAS implementation, but it is largely independent of the matrix struc-
ture. Thus we do not expect each user of SuperLU to choose values for these param-
eters. Instead, our library code provides an inquiry function that returns the param-
eter values, much in the spirit of the LAPACK environment routine ILAENV. The
machine-independent defaults will often give satisfactory performance. The method-
ology we have described here for the RS/6000 can serve as a guide for users who want
to modify the inquiry function to give optimal performance for particular computer
systems.

5.5. Comparison between SuperLU and multifrontal factorization. A
number of codes for solving unsymmetric linear systems are available at the time of
this writing, differing along several axes: emphasizing unsymmetric versus symmetric
nonzero structure; using direct versus iterative methods; intended to be robust for

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 747

Table 5.6
Speedups achieved by each enhancement over GP on the Alpha 21164. The blocking parameters

for SuperLU are w = 16, t = 50, and b = 100.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 Memplus 0.17 1.25 1.01 0.45
2 Gemat11 0.13 1.54 1.26 0.84
3 Rdist1 0.80 1.76 1.77 1.45
4 Orani678 0.92 1.74 1.47 1.45
5 Mcfe 0.24 1.71 2.01 1.85
6 Lnsp3937 2.09 1.93 2.61 2.27
7 Lns3937 2.33 1.94 2.59 2.27
8 Sherman5 1.50 1.92 3.13 3.00
9 Jpwh991 1.06 2.14 3.20 3.20
10 Sherman3 3.65 2.10 4.06 3.93
11 Orsreg1 3.41 2.07 3.87 3.91
12 Saylr4 6.73 2.05 4.01 4.34
13 Shyy161 102.19 1.81 3.97 4.58
14 Goodwin 46.18 1.92 3.84 4.90
15 Venkat01 235.01 1.71 4.08 7.00
16 Inaccura 333.24 1.72 3.48 6.07
17 Af23560 497.36 1.68 4.03 7.45
18 Dense1000 49.29 1.82 4.82 10.38
19 Raefsky3 1065.88 1.68 4.00 10.02
20 Ex11 1563.17 1.73 4.12 10.61
21 Wang3 1324.79 1.74 3.92 11.06
22 Raefsky4 2939.42 1.73 3.96 10.36
23 Vavasis3 9477.62 1.83 4.51 11.48
Mean 1.80 3.29 5.34
Std 0.20 1.10 3.69

general problems versus efficient for specific applications; and in the public domain
versus subject to commercial restrictions. A comprehensive comparison of all the
codes against all possible metrics would be valuable but is not the purpose of the
present paper. Rather, to locate the performance of SuperLU in the constellation of
linear solvers, we compare it in detail with one alternative: UMFPACK version 2.1
[7, 8, 9]. This is a modern code that, like SuperLU, emphasizes unsymmetric structure
and robustness for general problems. (A recent report [30] compares SuperLU and GP
with some unsymmetric iterative algorithms.)

UMFPACK uses a multifrontal algorithm. Where the outer loop of a left-looking
algorithm like SuperLU is over columns (or panels of columns) of the factors being
computed, the outer loop of a multifrontal algorithm is over pivots (or blocks of pivots)
being eliminated. All the updates created when a block is eliminated are computed at
once and stored as a dense update matrix. Before a block of pivots is eliminated, all
the update matrices contributing to that block are summed into a frontal matrix. The
elimination step can use Level 2 or Level 3 BLAS because the arithmetic is carried
out on the dense frontal matrix. Some extra intermediate storage is needed to record
update matrices that have not yet been assembled into frontal matrices, and some
extra data movement is needed for the assembly. UMFPACK does not use a column
preordering; rather, it chooses row and column pivots to balance considerations of
stability and sparsity by using approximate Markowitz counts with a pivot threshold.
In principle, the pivot threshold can lead to a less accurate solution than strict partial
pivoting; in practice, the lost accuracy can usually be retrieved by iterative refinement
of the solution. In principle, the freedom to choose both row and column pivots dy-

748 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

Table 5.7
Speedups achieved by each enhancement over GP on the UltraSparc-I. The blocking parameters

for SuperLU are w = 8, t = 100, and b = 400.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 Memplus 0.36 1.17 1.08 0.58
2 Gemat11 0.23 1.27 1.16 0.93
3 Rdist1 1.53 1.69 1.56 1.46
4 Orani678 1.86 1.64 1.25 1.33
5 Mcfe 0.52 1.97 1.85 1.92
6 Lnsp3937 4.26 1.86 2.16 2.24
7 Lns3937 4.89 1.94 2.11 2.33
8 Sherman5 3.15 1.94 2.28 3.03
9 Jpwh991 2.32 2.18 2.47 3.09
10 Sherman3 7.73 2.01 2.84 3.59
11 Orsreg1 7.2 1.97 2.69 3.52
12 Saylr4 13.88 1.96 2.52 3.84
13 Shyy161 188.72 1.91 3.01 3.43
14 Goodwin 89.30 1.89 2.62 4.41
18 Dense1000 94.77 2.05 3.33 4.25
Mean 1.83 2.19 2.66
Std 0.28 0.69 1.22

namically could lead to sparser factors than strict partial pivoting; in practice, some
matrices have sparser factors by one method and some by the other.

We compared UMFPACK and SuperLU on a group of 45 structurally unsym-
metric matrices from a variety of applications, as described in Table 5.8. (This is a
more comprehensive test set than the one we used in the earlier experiments with
other left-looking codes described above.) We performed the experiments on the IBM
RS/6000-590 described earlier. UMFPACK is written in Fortran; we compiled it
with the AIX xlf compiler with -O3 optimization and linked it with the IBM ESSL li-
brary for BLAS calls. We used the parameter settings recommended by UMFPACK’s
authors [7].

UMFPACK does not include an initial column ordering step. For the initial
column ordering in SuperLU, we ran Liu’s multiple minimum degree algorithm [34]
on the structure of ATA. We report times for ordering and factorization separately. In
applications where many matrices with the same nonzero structure but different values
are factored, the cost of column ordering can be amortized over all the factorizations;
in applications where only a single matrix is to be factored, preordering is part of the
solution cost.

Table 5.9 gives time requirements and Table 5.10 gives memory requirements
for the two codes on the matrices from the test set. The memory requirement we
report includes only the memory actually used for the factorization, including working
storage. Figures 5.7 and 5.8 summarize the comparison; each figure plots the relative
time requirements against the relative space requirements for the two codes. Column
preordering time is omitted in Figure 5.7 and included in Figure 5.8.

Neither code always dominates the other in either storage cost or time. Some-
what surprisingly, for 24 of the 45 matrices, the dynamic fill-reducing approach in
UMFPACK seems to be less effective than the static preordering. SuperLU uses less
memory for 60% of the matrices. When ordering time is not counted, SuperLU takes
less time for 77% of the matrices. When ordering time is included, SuperLU takes less
time for 44% of the matrices. For some matrices, such as memplus and orani678, the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 749

Table 5.8
Characteristics of the unsymmetric matrices. StrSym is the fraction of nonzeros matched by

nonzeros in symmetric locations. NumSym is the fraction of nonzeros matched by equal values in
symmetric locations.

Matrix n nnz(A) StrSym NumSym Discipline
cry10000 10000 49699 .9979 .2012 crystal growth simulation
memplus 17758 99147 .9830 .5864 circuit simulation
dw8192 8192 41746 .9699 .9320 square Dielectric waveguide
garon2 13535 390607 .9542 .6528 2D FEM, Navier-Stokes
jpwh 991 991 6027 .9469 .9469 circuit physics
af23560 23560 460598 .9465 .0511 eigenvalue problem
bramley2 17933 1021849 .9257 .0466 nonlinear CFD
bramley1 17933 1021849 .9254 .2806 nonlinear CFD
lnsp3937 3937 25407 .8686 .1272 fluid flow
lns 3937 3937 25407 .8686 .1272 fluid flow
watson5 1853 7803 .8590 .6170 circuit simulation
add32 4960 23884 .8310 .3979 computer component design
sherman5 3312 20793 .7802 .2882 petroleum engineering
mhd4800a 4800 102252 .7718 .2806 magnetohydrodynamics
shyy161 76480 329762 .7685 .3085 fluid flow
shyy41 4720 20042 .7664 .3113 fluid flow
olm5000 5000 19996 .7500 .5000 hydrodynamics
fs 541 2 541 4285 .7227 .1262 chemical kinetics
mcfe 765 24382 .7088 .0313 astrophysics
pores 2 1224 9613 .6613 .4689 petroleum engineering
goodwin 7320 324772 .6423 .0194 fluid mechanics
tols4000 4000 8784 .5935 .3642 aeroelasticity
utm5940 5940 83842 .5624 .0708 plasmas nuclear physics
bbmat 38744 1771722 .5398 .0224 structure engineering CFD
rw5151 5151 20199 .4902 .0000 Markov chain transition
psmigr 1 3140 543162 .4816 .0161 demography
gre 1107 1107 5664 .1954 .1954 discrete simulation
onetone2 36057 227628 .1482 .1020 nonlinear circuit
rdist3a 2398 61896 .1468 .0074 chemical engineering
onetone1 36057 341088 .0989 .0681 nonlinear circuit
orani678 2529 90158 .0728 .0023 economics
rdist1 4134 94408 .0620 .0034 chemical engineering
radfr1 1048 13299 .0600 .0066 chemical engineering
rdist2 3198 56934 .0491 .0037 chemical engineering
mahindas 1258 7682 .0302 .0166 economics
lhr04 4101 82682 .0159 .0010 chemical engineering
lhr01 1477 18592 .0085 .0013 chemical engineering
hydr1 5308 23752 .0040 .0006 chemical engineering
extr1 2837 11407 .0040 .0005 chemical engineering
west2021 2021 7353 .0039 .0006 chemical engineering
vavasis1 4408 95752 .0033 .0003 2D PDE
vavasis2 11924 306842 .0025 .0001 2D PDE
gemat11 4929 33108 .0017 .0003 electrical power
lhr71 70304 1528092 .0014 .0002 chemical engineering
vavasis3 41092 1683902 .0009 .0000 2D PDE

MMD ordering takes significantly more time than factorization. It should be noted
that our current approach to ordering can be improved. For example, the column
minimum degree algorithm used in Matlab [26] implements the minimum degree al-
gorithm on ATA without explicitly forming the structure of ATA. In recent work,
Davis, Gilbert, and Ng [10, 45] are investigating better minimum degree algorithms
for unsymmetric matrices that we expect to improve both fill and runtime.

For 9 of the 13 problems whose dimensions are at least 10000, SuperLU outper-

750 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

Table 5.9
Performance of SuperLU and UMFPACK on an IBM RS/6000-590 with 768 MB of memory.

Numbers in parenthesis are factorization rate in Mflops. A “+” before a number indicates SuperLU
outperforms UMFPACK. UMFPACK ran out of memory on bbmat.

Matrix Seconds (Mflops)
SuperLU UMFPACK

order factor
cry10000 +0.35 +1.73 (28) 2.30 (31)
memplus 89.58 +1.65 (22) 1.94 (1)
dw8192 +0.38 +3.69 (28) 5.64 (53)
garon2 +3.86 +22.12 (58) 53.83 (97)
jpwh 991 0.13 0.53 (36) 0.25 (20)
af23560 +9.22 +62.11 (80) 224.89 (112)
bramley2 +23.01 +57.97 (93) 279.42 (101)
bramley1 +23.00 +58.10 (93) 274.46 (106)
lnsp3937 +0.40 +1.28 (21) 3.11 (36)
lns 3937 +0.40 +1.12 (24) 2.52 (31)
watson5 0.22 +0.13 (12) 0.20 (.4)
add32 0.24 +0.17 (.9) 0.36 (.3)
sherman5 0.24 +0.77 (29) 0.88 (33)
mhd4800a +0.74 +0.58 (8) 7.10 (65)
shyy161 +2.33 +22.04 (47) 54.14 (63)
shyy41 +0.14 +0.49 (17) 0.69 (13)
olm5000 0.12 +0.14 (.6) 0.21 (.4)
fs 541 2 0.08 +0.05 (5) 0.12 (3)
mcfe 1.21 +0.22 (13) 0.25 (17)
pores 2 +0.10 +0.17 (14) 0.28 (9)
goodwin +5.34 +10.31 (49) 22.37 (64)
tols4000 +0.06 +0.06 (.6) 0.23 (.1)
utm5940 +0.93 +3.02 (43) 4.23 (61)
bbmat +185.77 +821.49 (54) failed
rw5151 +0.16 +1.24 (27) 1.97 (28)
psmigr 1 290.08 187.86 (89) 93.93 (100)
gre 1107 0.15 0.39 (23) 0.31 (20)
onetone2 3.00 +4.98 (26) 7.02 (26)
rdist3a 0.77 0.48 (24) 0.44 (17)
onetone1 15.77 48.00 (53) 38.87 (79)
orani678 73.41 +1.32 (24) 1.63 (4)
rdist1 1.02 0.76 (23) 0.74 (12)
radfr1 0.09 +0.10 (11) 0.11 (4)
rdist2 0.50 0.45 (16) 0.41 (8)
mahindas 0.69 +0.09 (7) 0.17 (2)
lhr04 2.65 +1.10 (15) 1.71 (9)
lhr01 0.46 +0.21 (11) 0.29 (7)
hydr1 +0.53 +0.26 (3) 0.81 (3)
extr1 +0.13 +0.13 (1) 0.32 (1)
west2021 +0.08 +0.08 (.9) 0.26 (.2)
vavasis1 12.49 7.50 (81) 4.40 (46)
vavasis2 76.51 38.06 (94) 37.09 (56)
gemat11 0.24 +0.26 (4) 0.39 (2)
lhr71 48.23 +23.12 (21) 40.74 (17)
vavasis3 1091.72 660.89 (98) 533.35 (122)

forms UMFPACK both in factorization time and in memory.

6. Remarks.

6.1. The rest of the SuperLU package. In addition to the LU factorization
kernel described in this paper, we have developed a suite of supporting routines to

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 751

Table 5.10
Performance of SuperLU and UMFPACK on an IBM RS/6000-590 with 768 MB of memory.

A “+” before a number indicates SuperLU outperforms UMFPACK. UMFPACK ran out of memory
on bbmat.

Matrix nnz(F) Memory (MB)
SuperLU UMF SuperLU UMF

cry10000 +651412 713789 +8.73 9.01
memplus 356842 157474 7.49 2.29
dw8192 +771299 1315910 +9.87 25.76
garon2 +4744645 8298907 +51.83 144.82
jpwh 991 144499 67703 1.71 1.56
af23560 +12950915 27979292 +136.35 392.83
bramley2 +12652411 29803064 +136.67 376.05
bramley1 +12684407 29355331 +137.04 445.65
lnsp3937 +367691 586976 +4.79 14.62
lns 3937 +373477 494120 +4.76 12.36
watson5 41152 17471 0.48 0.23
add32 40444 35660 1.45 0.47
sherman5 +238905 246358 +3.20 5.16
mhd4800a +227469 1550890 +3.38 31.29
shyy161 +6695357 9524169 +83.29 145.83
shyy41 195685 167723 2.97 2.67
olm5000 40002 35004 1.47 0.42
fs 541 2 +16157 18458 0.30 0.28
mcfe +63940 80595 +0.87 1.52
pores 2 +54028 54405 +0.83 1.01
goodwin +2764580 5162683 +31.30 64.33
tols4000 8872 8784 0.97 0.16
utm5940 +994050 1225186 +11.46 22.31
bbmat +49987183 failed +538.76 failed
rw5151 +379538 440271 +5.12 9.78
psmigr 1 8709183 6369782 +88.75 355.98
gre 1107 110883 79048 +1.40 1.74
onetone2 +1270569 1337258 +20.92 22.34
rdist3a 254176 189852 +2.99 3.53
onetone1 +4676473 5145165 +56.47 103.99
orani678 804641 122079 7.99 6.49
rdist1 398008 277947 4.76 2.97
radfr1 50483 29699 0.72 0.35
rdist2 230084 151860 2.95 1.72
mahindas 23909 14126 0.54 0.31
lhr04 342084 313473 +4.62 4.65
lhr01 66863 60264 1.04 0.85
hydr1 +81335 111919 2.03 1.61
extr1 +34461 36836 0.97 0.48
west2021 19179 14615 0.63 0.20
vavasis1 1495345 915869 +16.21 18.21
vavasis2 5523041 4249821 +59.07 89.19
gemat11 87054 67149 1.93 0.82
lhr71 +7508569 8740127 +96.14 124.55
vavasis3 +39798599 41746313 +418.65 470.75

solve linear systems, all of which are available from Netlib.4 The complete SuperLU
package [12] includes column preordering for sparsity, based on Liu’s multiple mini-
mum degree algorithm [34] applied to the structure of ATA. (As noted above, we plan
to replace this with a new code that does not form ATA.) SuperLU also includes con-
dition number estimation, iterative refinement of solutions, and componentwise error

4URL: http://www.netlib.org/scalapack/prototype/

752 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

44%

33% 7%

16%

SuperLU / UMFPACK time (not including column ordering)

S
u

p
e

rL
U

 /
 U

M
P

F
A

C
K

 m
e

m
o

ry

SuperLU vs UMFPACK on an IBM RS/6000−590

Fig. 5.7. Compare SuperLU to UMFPACK,
when MMD ordering time is not included.

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

33%

11% 29%

27%

SuperLU / UMFPACK time (including column ordering)

S
u

p
e

rL
U

 /
 U

M
P

F
A

C
K

 m
e

m
o

ry

SuperLU vs UMFPACK on an IBM RS/6000−590

Fig. 5.8. Compare SuperLU to UMFPACK,
when MMD ordering time is included.

bounds for the refined solutions. These are all based on the dense matrix routines in
LAPACK [3]. In addition, SuperLU includes a Matlab mex-file interface, so that our
factor and solve routines can be called as alternatives to those built into Matlab.

6.2. Effect of the matrix on performance. The supernodal approach reduces
both symbolic and numeric computation time. But unsymmetric supernodes tend to
be smaller than supernodes in symmetric matrices. The supernode-panel method is
most effective for large problems with enough dense submatrices to use dense block
operations and exploit data locality. In this regard, the dense 1000 × 1000 example
illustrates the largest possible gains. Dense blocks are necessary for top performance in
all modern factorization algorithms, whether left-looking, right-looking, multifrontal,
or any other style.

Our goal has been to develop sparse LU software that works well for problems
with a wide range of characteristics. It is harder to achieve high flop rates on problems
that are very sparse and have no structure to exploit; it is easier on problems that
are denser or become so during elimination. Fortunately, the “hard” matrices by this
definition generally take many fewer floating-point operations than the “easy” ones,
and hence take much less time to factor. Our combination of 1-D and 2-D blocking
techniques gives a good performance compromise for all the problems we have studied,
and with particularly good performance on the largest problems.

6.3. Effect of the computer system on performance. We have studied sev-
eral characteristics of the computing platform that can affect the overall performance,
including the Level 2 BLAS speed and the cache size. We showed how to systemati-
cally make a good choice of the blocking parameters in the code so as to maximize the
speed of the numeric kernel, using the IBM RS/6000-590 as an example. We expect
this methodology to be applicable to other systems (and BLAS implementations) as
well.

6.4. Possible enhancements. We are considering several possible enhance-
ments to the SuperLU code. One is to switch to a dense LU code at a late stage of
the factorization. It would be difficult to implement this in a sup-col code, because
that code is strictly left-looking, and only one column of the matrix is factored at a

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 753

time. However, this would be much easier in the supernode-panel code. At the time
we decide to switch, we simply treat the rest of the matrix columns (say, d of them)
as one panel, and perform the panel update to A(1:n, n− d+ 1:n). (One might want
to split this panel up for better cache behavior.) Then the reduced matrix at the bot-
tom right corner can be factored by calling an efficient dense code, for example, from
LAPACK [3]. The dense code does not spend time on symbolic structure prediction
and pruning, thus streamlining the numeric computation. We believe that, for large
problems, the final dense submatrix will be big enough to make the switch beneficial.
For example, for a 2-D k × k square grid problem ordered by nested dissection, the
dimension of the final dense submatrix is 3

2k× 3
2k; for a 3-D k× k× k cubic grid, it is

3
2k

2 × 3
2k

2, if pivots come from the diagonal. The Harwell library code MA48 [16, 18]
employs such a switch to dense code, which has a significant and beneficial effect on
performance.

To enhance SuperLU’s performance on small and extremely sparse problems, it
would be possible to make a choice at runtime whether to use supernode-panel, sup-
col, or col-col updates. The choice would depend on the size of the matrix A and
the expected properties of its supernodes; it might be based on an efficient sym-
bolic computation of the density and supernode distribution of the Cholesky factor
of ATA [28].

Could we make supernode-panel updates more effective by improving the simi-
larity between the row structures of the columns in a panel? We believe this could
be accomplished with a more sophisticated column permutation strategy. We could
partition the nodes of the column etree into connected subtrees, grouping together
nodes that have common descendants (and therefore the potential for updates from
the same supernodes). Then the overall column order would be a two-level postorder,
first within the subtrees (panels) and then among them. Again, it might be possible
to use information about the Cholesky supernodes of ATA to guide this grouping.

We are also developing a parallel sparse LU algorithm based on SuperLU [11, 33].
In this context, we target large problems, especially those too big to be solved on
a uniprocessor system. Therefore, we plan to parallelize the 2-D blocked supernode-
panel algorithm, which has very good asymptotic behavior for large problems. The
2-D block-oriented layout has been shown to scale well for parallel sparse Cholesky
factorization [31, 40].

Acknowledgments. We thank Rob Schreiber and Ed Rothberg for very help-
ful discussions during the development of SuperLU. Rob pushed us to find a way to
do the supernode-panel update; Ed suggested the ops-per-ref statistic and also pro-
vided access to the SGI MIPS R8000. We are grateful to Tim Davis, Steve Vavasis,
and Randy Bramley for making their matrices available to us. We thank the refer-
ees for their suggestions to improve the presentation of the paper. The Institute for
Mathematics and Its Applications at the University of Minnesota provided the fertile
environment in which this work began.

REFERENCES

[1] R. Agarwal, F. Gustavson, P. Palkar, and M. Zubair, A performance analysis of the
subroutines in the ESSL/LAPACK call conversion interface (CCI), IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1994.

[2] P. R. Amestoy and I. Duff, Vectorization of a multiprocessor multifrontal code, Int. J. Su-
percomputer Appl., 7 (1993), pp. 64–82.

[3] E. Anderson et al., LAPACK User’s Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

754 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

[4] C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal
method, ACM Trans. Math. Software, 15 (1989), pp. 291–309.

[5] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress in sparse matrix
methods for large sparse linear systems on vector supercomputers, Internat. J. of Super-
computer Applications, 1 (1987), pp. 10–30.

[6] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chin, Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology, Tech. Re-
port CS-96-326, Computer Science Department., University of Tennessee, Knoxville, TN,
May 1996. (LAPACK Working Note #111).

[7] T. A. Davis, User’s Guide for the Unsymmetric-Pattern MultiFrontal Package (UMFPACK),
Tech. Report TR-95-004, Computer and Information Sciences Department, University of
Florida, Gainesville, FL, January 1995.

[8] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric
sparse matrices, Tech. Report TR-95-020, Computer and Information Sciences Depart-
ment, University of Florida, Gainesville, FL, 1995.

[9] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 140–158.

[10] T. A. Davis, J. R. Gilbert, E. Ng, and B. W. Peyton, A column approximate minimum de-
gree ordering algorithm, Presented at Sixth SIAM Symposium on Applied Linear Algebra,
Snowbird, UT, 1997.

[11] J. W. Demmel, J. R. Gilbert, and X. S. Li, An Asynchronous Parallel Supernodal Algorithm
for Sparse Gaussian Elimination, Tech. Report UCB//CSD-97-943, Computer Science
Division, University of California, Berkeley, CA, 1997.

[12] J. W. Demmel, J. R. Gilbert, and X. S. Li, SuperLU User’s Guide, Tech. Report UCB//CSD-
97-944, Computer Science Division, University of California, Berkeley, CA, 1997.

[13] D. Dodson and J. Lewis, Issues relating to extension of the basic linear algebra subprograms,
ACM SIGNUM Newsletter, 20 (1985), pp. 2–18.

[14] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson, An extended set of basic
linear algebra subroutines, ACM Trans. Math. Software, 14 (1988), pp. 1–17, 18–32.

[15] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations,
ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[16] I. Duff and J. K. Reid, The design of MA48, a code for the direct solution of sparse unsym-
metric linear systems of equations, ACM Trans. Math. Software, 22 (1996), pp. 187–226.

[17] I. S. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans. Math. Soft-
ware, 15 (1989), pp. 1–14.

[18] I. S. Duff and J. K. Reid, MA48, a Fortran Code for Direct Solution of Sparse Unsymmetric
Linear Systems of Equations, Tech. Report RAL–93–072, Rutherford Appleton Laboratory,
Oxon, UK, 1993.

[19] S. C. Eisenstat, J. R. Gilbert, and J. W. Liu, A supernodal approach to a sparse partial
pivoting code, in Householder Symposium 12, Los Angeles, CA, 1993.

[20] S. C. Eisenstat and J. W. H. Liu, Exploiting structural symmetry in sparse unsymmetric
symbolic factorization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 202–211.

[21] S. C. Eisenstat and J. W. H. Liu, Exploiting structural symmetry in a sparse partial pivoting
code, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 253–257.

[22] J. A. George and E. Ng, An implementation of Gaussian elimination with partial pivoting
for sparse systems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 390–409.

[23] J. A. George and E. Ng, Symbolic factorization for sparse Gaussian elimination with partial
pivoting, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 877–898.

[24] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62–79.

[25] J. R. Gilbert and J. W. H. Liu, Elimination structures for unsymmetric sparse LU factors,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 334–352.

[26] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in Matlab: Design and imple-
mentation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[27] J. R. Gilbert and E. Ng, Predicting structure in nonsymmetric sparse matrix factorizations,
in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H.
Liu, eds., Springer–Verlag, New York, Berlin, 1993.

[28] J. R. Gilbert, E. G. Ng, and B. W. Peyton, An efficient algorithm to compute row and
column counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075–1091.

[29] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862–874.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 755

[30] J. R. Gilbert and S. Toledo, An assessment of incomplete LU preconditioners for nonsym-
metric linear systems, manuscript, 1997.

[31] A. Gupta and V. Kumar, Optimally scalable parallel sparse Cholesky factorization, in Proc.
7th SIAM Conference on Parallel Processing for Scientific Computing, D.H. Bailey et. al.,
eds., SIAM, Philadelphia, 1995, pp. 442–447.

[32] International Business Machines Corporation Engineering and Scientific Subroutine Library,
Guide and Reference, Version 2 Release 2, Order No. SC23-0526-01, 1994.

[33] X. S. Li, Sparse Gaussian Elimination on High Performance Computers, Tech. Report
UCB//CSD-96-919, Computer Science Division, Ph.D. dissertation, University of Cali-
fornia, Berkeley, CA, 1996.

[34] J. W. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM Trans.
Math. Software, 11 (1985), pp. 141–153.

[35] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[36] PDS: The performance database server, http://performance.netlib.org/performance/, May
1995.

[37] E. G. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor
computers, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 1034–1056.

[38] E. Rothberg and A. Gupta, Efficient sparse matrix factorization on high-performance
workstations—exploiting the memory hierarchy, ACM Trans. Math. Software, 17 (1991),
pp. 313–334.

[39] E. Rothberg and A. Gupta, An evaluation of left-looking, right-looking and multifrontal
approaches to sparse Cholesky factorization on hierarchical-memory machines, Internat.
J. High Speed Comput., 5 (1993), pp. 537–593.

[40] E. E. Rothberg and A. Gupta, An efficient block-oriented approach to parallel sparse
Cholesky factorization, in Supercomput., 1993, pp. 503–512.

[41] A. H. Sherman, On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equa-
tions, Ph.D. thesis, Yale University, New Haven, CT, 1975.

[42] A. H. Sherman, Algorithm 533: NSPIV, a FORTRAN subroutine for sparse Gaussian elimi-
nation with partial pivoting, ACM Trans. Math. Software, 4 (1978), pp. 391–398.

[43] H. Simon, P. Vu, and C. Yang, Performance of a Supernodal General Sparse Solver on the
CRAY Y-MP: 1.68 GFLOPS with Autotasking, Tech. Report TR SCA-TR-117, Boeing
Computer Services, Seattle, WA, 1989.

[44] S. A. Vavasis, Stable finite elements for problems with wild coefficients, SIAM J. Numer. Anal.,
33 (1996), pp. 890–916.

[45] S. I. Larimore, An Approximate Minimum Degree Ordering Algorithm, Tech. Report CISE-
TR-98-016, Department of Computer and Information Science and Engineering, University
of Florida, Gainesville, FL, 1998.

AN ALGORITHM FOR CHECKING REGULARITY OF INTERVAL
MATRICES∗

CHRISTIAN JANSSON† AND JIRI ROHN‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 756–776

Abstract. Checking regularity (or singularity) of interval matrices is a known NP-hard problem.
In this paper a general algorithm for checking regularity/singularity is presented which is not a priori
exponential. The algorithm is based on a theoretical result according to which regularity may be
judged from any single component of the solution set of an associated system of linear interval
equations. Numerical experiments (with interval matrices up to the size n = 50) confirm that this
approach brings an essential decrease in the amount of operations needed.

Key words. interval matrix, regularity, singularity, algorithm, branch-and-bound, linear inter-
val equations, linear programming

AMS subject classifications. 65F30, 65G10, 90C90

PII. S0895479896313978

1. Introduction. An interval matrix

AI = [A,A] = {A; A ≤ A ≤ A}

(where A, A are n×n matrices and the inequality is to be understood componentwise)
is called regular if each A ∈ AI is nonsingular, and is said to be singular otherwise (i.e.,
if it contains a singular matrix). The problem of checking regularity naturally arises
in solving linear interval equations, but it is also important in applications since some
frequently used properties of interval matrices (such as positive definiteness, stability,
or the P -matrix property) can be verified via checking regularity.

All presently known necessary and sufficient conditions for regularity of interval
matrices (summed up in [17, Theorem 5.1]) exhibit exponential behavior: they require
solving at least 2n problems of some sort (such as computing determinants, solving
linear equations, inverting matrices, checking the P -matrix property, etc.); hence
they are of little use in practice except for examples of very low dimensions. The
exponentiality inherent in all these conditions was explained by the result stating
that checking regularity of interval matrices is an NP-hard problem (Poljak and Rohn
[15], [16]; see also Nemirovskii [13]). Hence, in view of the present status of the
complexity theory (the conjecture “P6=NP”, Garey and Johnson [4]), there is only
little hope that necessary and sufficient conditions verifiable in polynomial time may
exist.

The present work was motivated by an attempt to construct an algorithm that
would require an exponential number of operations only in the “worst case” examples,
and would behave reasonably in the “average” ones. The algorithm presented in this
paper, whose main idea is due to Jansson [7], is based on a necessary and sufficient
condition of quite a different sort. First, it does not handle solely the interval matrix

∗Received by the editors December 19, 1996; accepted for publication (in revised form) by U.
Helmke July 31, 1998; published electronically April 20, 1999.

http://www.siam.org/journals/simax/20-3/31397.html
†Institute of Computer Science III, Technical University Hamburg-Harburg, Eißendorfer Str. 38,

D-21071 Hamburg, Germany (jansson@tu-harburg.de).
‡Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, and Institute

of Computer Science, Academy of Sciences, Prague, Czech Republic (rohn@uivt.cas.cz). The work
of this author was supported by the Czech Republic Grant Agency under grant 201/98/0222.

756

AN ALGORITHM FOR CHECKING REGULARITY 757

AI , but it deals with the solution set X(AI , b) = {x; Ax = b for some A ∈ AI} of an
interval linear system AIx = b with a specially preselected right-hand side b. Second,
the necessary and sufficient condition says that for any component C of X(AI , b)
(i.e., a maximal nonempty connected subset of X(AI , b)), AI is regular if and only
if C is bounded. Hence, in order to check regularity, it is sufficient to take (better
said, to generate) a single component of X(AI , b) and to check it for boundedness,
which can be done by applying repeatedly a linear programming procedure. The fact
that only one component is to be checked, together with a special choice of b aimed
at minimizing the number of applications of the linear programming procedure, is
decisive for achieving a big reduction in the amount of computations needed. As will
be demonstrated later, we have been able to check in acceptable time regularity of
interval matrices up to the size n = 50, which would be almost impossible via the
classical necessary and sufficient conditions since 250 ≈ 1015.

The paper is organized as follows. To motivate the current research, in section 2
we first show how some properties of interval matrices (positive definiteness, stability,
and the P -property) can be verified via checking regularity. The NP-hardness result
is stated in section 3. In section 4 we derive a necessary and sufficient singularity
condition of classical type; it not only demonstrates the inherent exponentiality of
the problem, but also shows a way how to try to resolve it. The necessary and
sufficient condition employed in the algorithm, formulated in terms of a component of
the solution set as explained above, is proved in section 5. The algorithm is described
in section 6, and the problem of the choice of an adequate right-hand side b is discussed
in section 7. Some examples are given in the last section.

We shall use the following notations. The absolute value of a matrix A = (aij) is
denoted by |A| = (|aij |); the same notation applies to vectors as well. The set of all
±1-vectors in Rn is denoted by Z; hence Z consists of 2n vectors. For each z ∈ Rn
we denote

Tz :=

z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn

 ,

i.e., Tz is the diagonal matrix with diagonal vector z. For x ∈ Rn we denote by sgnx
the sign vector of x defined by

(sgnx)i =

{
1 if xi ≥ 0,
−1 if xi < 0

(i = 1, . . . , n). Hence, sgnx ∈ Z for each x ∈ Rn. Moreover, if z = sgnx, then we
have |x| = Tzx; we shall use this relation later to avoid use of absolute values.

2. Regularity and other properties. To motivate the current research, we
shall state briefly here some results showing that a general method for checking reg-
ularity may be also employed for checking some other properties of interval matrices.

A real matrix A (not necessarily symmetric) is called positive definite if xTAx > 0
for each x 6= 0, stable if Reλ < 0 for each eigenvalue λ of A, and P -matrix if all the
principal minors of A are positive. An interval matrix AI is said to have one of these
properties if each A ∈ AI has this property.

Checking positive definiteness of interval matrices is needed, for example, in global
optimization where branch-and-bound methods for nonlinear optimization problems

758 CHRISTIAN JANSSON AND JIRI ROHN

may be accelerated and may be also made finite by using a so-called expansion scheme
(see Jansson [6]) which is mainly based on proving positive definiteness of an inter-
val matrix. The following result from [19] reduces checking positive definiteness to
checking regularity.

Theorem 2.1. An interval matrix [A,A] is positive definite if and only if the
interval matrix [

1
2 (A+AT), 1

2 (A+A
T

)
]

is regular and contains at least one positive definite matrix.
The problem of checking stability of interval matrices has attracted the interest

of many researchers in the last decade since it is closely connected to the problem of
robust stability of a linear time-invariant system ẋ = Ax under data perturbations
(see Barmish [1], Lunze [9], and the survey paper by Mansour [10]). Here, reduction to
regularity holds for symmetric interval matrices only. An interval matrix AI = [A,A]
is called symmetric if both the bounds A,A are symmetric; hence a symmetric interval
matrix may contain nonsymmetric matrices. The following result again comes from
[19].

Theorem 2.2. A symmetric interval matrix AI is stable if and only if it is
regular and contains at least one symmetric stable matrix.

The study of P -matrices is motivated, among other applications, by the fact that
the linear complementarity problem

x+ = Ax− + b

has a unique solution x = (xi) for each right-hand side b if and only if A is a P -matrix
(see Murty [11]). Here the vectors x+ and x− are defined by x+

i = max{xi, 0} and
x−i = max{−xi, 0} for each i, so that x = x+−x−. We have an analogous result [20].

Theorem 2.3. A symmetric interval matrix AI is a P -matrix if and only if it is
regular and contains at least one symmetric P -matrix.

These results give further motivation for studying the problem of checking regu-
larity of interval matrices.

3. The NP-hardness result. At the end of the 1980s, existence of more than
ten necessary and sufficient conditions for checking regularity of interval matrices,
each of which required an exponential amount of time to check (summed up in [17,
Theorem 5.1]), led to suspicion that the problem might be NP-hard. The correspond-
ing statement was proved by Poljak and Rohn in a report [15] and later in a journal
form [16]; it was independently proved by Nemirovskii [13]. In its most recent form
[8], the result is stated as follows.

Theorem 3.1. Checking regularity is NP-hard in the class of interval matrices
of the form

[A− E,A+ E],

where A is a nonnegative symmetric positive definite rational matrix and E is the
matrix of all ones.

This result shows that checking regularity of interval matrices is a problem at least
as hard as the most difficult combinatorial problems in the class NP. Existence of a
polynomial-time algorithm for checking regularity of interval matrices would imply, in
view of the definition of NP-hardness (see Garey and Johnson [4]), polynomial-time

AN ALGORITHM FOR CHECKING REGULARITY 759

solvability of all problems in the class NP, a possibility which at present cannot be
fully excluded but in view of the experience with solving problems from the class NP
gathered so far ought to be considered very unlikely. Nevertheless, polynomial-time
algorithms may exist for special classes of interval matrices; see [2].

This shows that the problem we are interested in is in its full generality very
difficult.

4. A necessary and sufficient condition. Some of the subsequent results
(Theorems 4.2 and 5.1) can be derived from the Oettli–Prager theorem [14] for interval
linear equations. In order to keep the paper self-contained, we prove them here in
another way using the following result (Theorem 4.1) which is of independent interest.
For the purpose of its formulation, for an interval matrix AI = [A,A] we introduce

Ac = 1
2 (A+A)

(the center matrix) and

∆ = 1
2 (A−A)

(the radius matrix); then AI can be written in the form

AI = [Ac −∆, Ac + ∆],

which we shall use from this point on. We have this result (for its formulation and
proof, we refer to the notations introduced at the end of section 1).

Theorem 4.1. Let AI = [Ac −∆, Ac + ∆] be an n × n interval matrix and let
x ∈ Rn. Then

{Ax; A ∈ AI} = [Acx−∆|x|, Acx+ ∆|x|].

Proof. If A ∈ AI , then |Ax−Acx| = |(A−Ac)x| ≤ ∆|x|, which implies

Ax ∈ [Acx−∆|x|, Acx+ ∆|x|].

Conversely, let b ∈ [Acx−∆|x|, Acx+ ∆|x|], so that |Acx− b| ≤ ∆|x|. Define

yi =

{
(Acx− b)i/(∆|x|)i if (∆|x|)i 6= 0,
1 if (∆|x|)i = 0

(i = 1, . . . , n). Then |yi| ≤ 1 and (Acx− b)i = yi(∆|x|)i holds for each i; hence with
z = sgnx we have Acx−b = Ty∆Tzx and thus (Ac−Ty∆Tz)x = b, where Ac−Ty∆Tz
belongs to AI due to |Ty∆Tz| ≤ ∆. Hence b ∈ {Ax; A ∈ AI}.

Returning to our problem, we obtain this characterization of singularity.
Theorem 4.2. An interval matrix AI = [Ac−∆, Ac + ∆] is singular if and only

if the inequality

|Acx| ≤ ∆|x|(4.1)

has a nontrivial solution.
Proof. Obviously, AI is singular if and only if

0 ∈ {Ax; A ∈ AI}

760 CHRISTIAN JANSSON AND JIRI ROHN

holds for some x 6= 0, which in view of Theorem 4.1 is equivalent to

Acx−∆|x| ≤ 0 ≤ Acx+ ∆|x|(4.2)

and thus also to

|Acx| ≤ ∆|x|.
As we have seen in the proof, the left-hand-side absolute value in (4.1) can be

removed (4.2), but the right-hand-side absolute value remains a problem. We can
remove it only at the expense of the latent exponentiality in (4.1) becoming apparent,
as it can be seen from the next theorem.

Theorem 4.3. An interval matrix AI = [Ac−∆, Ac + ∆] is singular if and only
if the linear programming problem

max{zTx; (Ac −∆Tz)x ≤ 0, (Ac + ∆Tz)x ≥ 0, Tzx ≥ 0}(4.3)

is unbounded for some z ∈ Z.
Proof. If AI is singular, then by Theorem 4.2 there exists a vector x 6= 0 satisfying

−∆|x| ≤ Acx ≤ ∆|x|.(4.4)

Setting z = sgnx, we have |x| = Tzx; hence Tzx ≥ 0 and from (4.4) it follows
(Ac −∆Tz)x ≤ 0 and (Ac + ∆Tz)x ≥ 0, which shows that x is a feasible solution of
(4.3). Moreover, zTx =

∑
i |xi| > 0. Since αx is a feasible solution of (4.3) for each

α > 0, we can see that the linear programming problem (4.3) is unbounded.
Conversely, let (4.3) be unbounded for some z ∈ Z. Then there exists an x

satisfying (Ac−∆Tz)x ≤ 0, (Ac+∆Tz)x ≥ 0, Tzx ≥ 0, and zTx > 0. Since Tzx = |x|,
we obtain that (4.1) is satisfied for some x 6= 0; hence AI is singular.

Let us now discuss this result. If we find out a z ∈ Z for which (4.3) is unbounded,
then AI is proved to be singular and we are done. However, if AI is regular, then we
must inspect all the 2n linear programming problems of type (4.3) (for each z ∈ Z)
in order to be able to prove it. The cornerstone of the exponentiality is the fact
that each linear programming problem (4.3) is feasible (x = 0 is always a feasible
solution); hence none of the problems (4.3) can be a priori excluded. In this way
we come to the basic idea: to replace the zero vector in the right-hand sides of the
constraints (Ac −∆Tz)x ≤ 0, (Ac + ∆Tz)x ≥ 0 by some nonzero vector b in order to
make infeasible as many resulting linear programming problems as possible. We shall
exploit and develop this idea in the next section.

5. Theoretical basis of the algorithm. Given an n × n interval matrix AI

and a vector b ∈ Rn (we shall specify its choice later), consider the solution set of a
system of interval linear equations defined by

X(AI , b) = {x; Ax = b for some A ∈ AI}.
First we have this description.

Theorem 5.1. Let AI = [Ac −∆, Ac + ∆] be an n × n interval matrix and let
b ∈ Rn. Then

X(AI , b) = {x; |Acx− b| ≤ ∆|x|}.(5.1)

Proof. x ∈ X(AI , b) if and only if

b ∈ {Ax; A ∈ AI}

AN ALGORITHM FOR CHECKING REGULARITY 761

holds, which according to Theorem 4.1 is equivalent to

Acx−∆|x| ≤ b ≤ Acx+ ∆|x|,
and thereby also equivalent to

|Acx− b| ≤ ∆|x|.
Next we shall remove the absolute values from (5.1).
Theorem 5.2. Let AI = [Ac −∆, Ac + ∆] be an n × n interval matrix and let

b ∈ Rn. Then

X(AI , b) =
⋃
z∈Z

Xz(A
I , b),

where

Xz(A
I , b) = {x; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.2)

for z ∈ Z.
Proof. If x ∈ X(AI , b), then |Acx−b| ≤ ∆|x| and we can easily see that x satisfies

(Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0(5.3)

for z = sgnx; hence x ∈ Xz(A
I , b). Conversely, if x ∈ Xz(A

I , b) for some z ∈ Z, then
from (5.3) we have |Acx− b| ≤ ∆|x|; hence x ∈ X(AI , b).

The set Xz(A
I , b), defined by (5.2), is nothing else than the intersection of the

solution set X(AI , b) with the orthant {x ∈ Rn; Tzx ≥ 0}. Since Xz(A
I , b) is de-

scribed by a system of linear inequalities, it is a convex polytope; in particular, it is
connected (let us recall that a set is called connected (sometimes, path-connected) if
any two points of it can be connected by a curve which belongs entirely to the set;
in case of a convex set the curve is simply the segment connecting the two points).
However, X(AI , b), as the union of such sets, may be neither convex nor connected.
Consider a one-dimensional example

[−1, 1]x1 = [1, 1].

Here X(AI , b) consists of two disjoint unbounded connected sets

X−1(AI , b) = (−∞,−1]

and

X1(AI , b) = [1,∞).

We shall see later (Theorem 5.3) that such a situation may occur for singular interval
matrices only (indeed, Ac is singular here).

A nonempty connected subset C of X(AI , b) is called a component of X(AI , b) if
it has the property

C ⊆ D ⊆ X(AI , b), D connected ⇒ C = D,

i.e., if it is a maximal connected subset of X(AI , b) with respect to inclusion. Hence,
each set Xz(A

I , b), z ∈ Z, being connected, must be entirely contained in a single
component. This implies that each component C of X(AI , b) is of the form

C =
⋃
z∈Y

Xz(A
I , b)(5.4)

762 CHRISTIAN JANSSON AND JIRI ROHN

for some Y ⊆ Z. The following theorem shows that regularity or singularity of AI

may be judged from each single component of X(AI , b). The result is due to Jansson
[7], where it appeared in another formulation.

Theorem 5.3. Let AI be an n × n interval matrix, let b ∈ Rn, and let C be an
arbitrary component of X(AI , b). Then AI is singular if and only if C is unbounded.

Proof. Both implications are proved by contradiction. If AI is regular, then
X(AI , b), as the range of the continuous mapping A 7→ A−1b on a compact set AI , is
connected and bounded; hence C = X(AI , b), which implies that C is bounded.

Conversely, let C be bounded. Since C 6= ∅ by definition, there exists an x0 ∈ C
satisfying A0x0 = b for some A0 ∈ AI , and boundedness of C implies nonsingularity
of A0 (if A0 were singular, then A0x̂ = 0 for some x̂ 6= 0 and C would contain an
unbounded set {x0 + λx̂; λ ∈ R1}, a contradiction). To prove that AI is regular,
assume to the contrary that AI contains a singular matrix A1. For each t ∈ [0, 1]
denote

At = A0 + t(A1 −A0),(5.5)

and let

τ = inf{t ∈ [0, 1]; At is singular}.

In view of continuity of the determinant, the infimum is achieved as minimum; hence
Aτ is singular and τ ∈ (0, 1]. For each t ∈ [0, τ), At is nonsingular; hence

xt = A−1
t b

is well defined and the mapping s 7→ xs, s ∈ [0, t], defines a curve in X(AI , b) con-
necting x0 with xt. Hence xt ∈ C for each t ∈ [0, τ). Consider now the sequence of
points {xtm} with

tm = (1− 1
m)τ,(5.6)

m = 1, 2, Then {xtm} is bounded since C is bounded; hence it contains a conver-
gent subsequence {xtmk }, xtmk → x∗. Then x∗ ∈ C since C is closed due to (5.4),
(5.2). As

Atmkxtmk = b

holds for each k, taking k →∞ we obtain in view of (5.5), (5.6) that

Aτx
∗ = b.

But since Aτ is singular, there exists an x̃ 6= 0 with Aτ x̃ = 0; hence Aτ (x∗ + λx̃) = b
for each λ ∈ R1, which shows that C contains the unbounded set {x∗ + λx̃; λ ∈ R1},
a contradiction. Hence AI must be regular; this concludes the second part of the
proof.

The result shows that if AI is singular, then for each b ∈ Rn, all components of
X(AI , b) are unbounded; if AI is regular, then X(AI , b) has a single component which
is equal to X(AI , b).

It remains to show how to check unboundedness of a component C in the form
(5.4).

AN ALGORITHM FOR CHECKING REGULARITY 763

Theorem 5.4. A component

C =
⋃
z∈Y

Xz(A
I , b)

is unbounded if and only if the linear programming problem

max{zTx; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.7)

is unbounded for some z ∈ Y .
Proof. Obviously, C is unbounded if and only if Xz(A

I , b) is unbounded for some
z ∈ Y . If Xz(A

I , b) is unbounded, then the optimization problem

max{|xi|; (Ac −∆Tz)x ≤ b, (Ac + ∆Tz)x ≥ b, Tzx ≥ 0}(5.8)

is unbounded for some i, which implies that (5.7) is unbounded since

|xi| ≤
∑
j

|xj | = zTx

holds for each feasible solution x of (5.7), (5.8). Conversely, if (5.7) is unbounded,
then (5.8) must be unbounded for some i, which means that the set Xz(A

I , b) is
unbounded.

By comparing Theorems 4.3 and 5.4, we can see that the only (but essential)
distinction made by the introduction of the right-hand side b is the difference in
quantifiers “z ∈ Z” and “z ∈ Y,” where cardinality of Y is equal to the number of the
orthants intersected by the component C. Clearly, this number may be influenced by
an appropriate choice of b. We shall discuss this question in section 7, but first we
shall formulate an algorithm based on theoretical principles of this section.

6. The algorithm. The algorithm is based on Theorems 5.3 and 5.4 and con-
structs a component C of the form (5.4) implicitly in the following way. At the
starting point, a list L of z’s to be checked is initialized by setting z := sgn (A−1

c b).
In the current step of the algorithm, if for the current z ∈ L the problem (5.7) is
unbounded, then AI is proved singular and the algorithm terminates; otherwise, if
(5.7) is feasible, then we insert into L all the “neighboring” vectors from the set

N(z) = {(z1, . . . , zj−1,−zj , zj+1, . . . , zn)T ; 1 ≤ j ≤ n}

that have not been checked yet; to be able to recognize it, we also keep a list K of
vectors that have already passed the check. If L becomes empty at some stage, then
the component of X(AI , b) containing the vector A−1

c b has been proved to be bounded,
and AI is regular by Theorem 5.3. In the following we give a formal description of
the algorithm written in a pseudo-PASCAL code:
sing:=false;
if Ac is singular then sing:=true
else
L := ∅; K := ∅;
select b; solve Acx = b;
z := sgnx; insert z into L;
repeat

remove an item z from L;

764 CHRISTIAN JANSSON AND JIRI ROHN

insert z into K;
if (5.7) is unbounded then sing:=true
else if (5.7) is feasible then L := L ∪ (N(z)− (K ∪ L))

until (sing or L = ∅);
if sing then {AI is singular} else {AI is regular}.
In order to simplify the proof of the main theorem, we first formulate an auxiliary
result concerning the case when singularity was not detected during the algorithm.
Denote by C0 the component of X(AI , b) containing the point xc = A−1

c b and let
Y0 be the set of ±1-vectors that were inserted into L in the course of the algorithm.
Then Y0 has this property.

Lemma 6.1. If x ∈ C0 and Tz0x ≥ 0 for some z0 ∈ Y0, then each z ∈ Z with
Tzx ≥ 0 belongs to Y0.

Proof. For the purpose of the proof, denote the linear programming problem (5.7)
by P (z). Then x is a feasible solution of some P (z). Since Tz0x = |x| = Tzx, we can
see from the form of (5.7) that x is a feasible solution of P (z0). Let Tzx ≥ 0, z 6= z0.
Denote

J = {j; zj 6= (z0)j} = {j1, . . . , jm}.

Since Tz0x ≥ 0 and Tzx ≥ 0, it must be xj = 0 for each j ∈ J . Set z0 = z0 and define
vectors zk ∈ Z, k = 1, . . . ,m, in the following way:

(zk)j =

{
(zk−1)j if j 6= jk,
−(zk−1)j if j = jk

(6.1)

(k = 1, . . . ,m, j = 1, . . . , n). We shall prove by induction on k = 0, . . . ,m that
zk ∈ Y0 and x is a feasible solution of P (zk). This is obvious for k = 0. If the
assumption is true for some k − 1 ≥ 0, then zk−1 ∈ Y0 and P (zk−1) is feasible; hence
N(zk−1) − (K ∪ L) was added to L in the respective step. Since zk ∈ N(zk−1) by
(6.1), zk was either already present in K ∪ L, or newly added to L, in both cases
zk ∈ Y0. Furthermore, since x is a feasible solution of P (zk−1) and Tzk−1x = Tzkx
holds as xjk = 0, it is also a feasible solution of P (zk). This concludes the proof by
induction; since zm = z, we have z ∈ Y0.

As it can be seen, this detailed proof is a formalization of the following idea: if
we take a path from xc to x ∈ C0, then the only change of signs occurs when the
path passes through a point with one or more zero components; all the respective sign
vectors are added to L in the course of the algorithm; hence they belong to Y0.

Now we finally prove that the algorithm really performs the task for which it was
designed.

Theorem 6.2. For each n×n interval matrix AI and each b ∈ Rn, the algorithm
in a finite number of steps checks regularity or singularity of AI .

Proof. First, only elements of the finite set Z are being inserted into L and
no element may be reinserted; hence the algorithm terminates in a finite number of
steps. If some problem (5.7) is proved unbounded, then AI is singular by Theorem
5.4. Hence, we have only to prove that if AI has not been found singular and if the
list L becomes empty, then AI is regular.

The component C0 may be written in the form (5.4):

C0 =
⋃
z∈Y

Xz(A
I , b),

AN ALGORITHM FOR CHECKING REGULARITY 765

where Y may be chosen so that Xz(A
I , b) 6= ∅ for each z ∈ Y . We shall prove that

Y ⊆ Y0(6.2)

holds. Since L = ∅, this will imply that all Xz(A
I , b), z ∈ Y have been checked to be

bounded; hence AI is regular by Theorem 5.4.
To prove (6.2), take a z ∈ Y . Choose an x ∈ Xz(A

I , b), so that Tzx ≥ 0. Since
C0 is connected and contains xc = A−1

c b, there exists a path from xc to x contained
entirely in C0. In view of convexity of the sets Xz(A

I , b), z ∈ Z, the path may be
chosen in a piecewise linear form x0x1 . . . xm, where x0 = xc, x

m = x, and the segment
with endpoints xi, xi+1 is always a part of a single orthant (i = 0, . . . ,m − 1). We
shall prove by induction on i that for each i = 0, . . . ,m, if Tzx

i ≥ 0 for some z ∈ Z,
then z ∈ Y0. Since zc = sgnxc is inserted into L at the beginning of the main loop
and Tzcxc ≥ 0, the assertion for x0 = xc follows from Lemma 6.1. Let the assertion
be true for xi, i ≥ 0. Since the whole segment with endpoints xi and xi+1 is a part
of a single orthant, there exists a z̃ ∈ Z such that Tz̃x

i ≥ 0 and Tz̃x
i+1 ≥ 0. Then

z̃ ∈ Y0 by assumption concerning xi; hence from Tz̃x
i+1 ≥ 0, z̃ ∈ Y0 we obtain from

Lemma 6.1 that each z ∈ Z with Tzx
i+1 ≥ 0 belongs to Y0. This concludes the proof

by induction. Hence, since Tzx
m = Tzx ≥ 0, we have z ∈ Y0. This proves (6.2).

In the form presented above, the algorithm suffers a serious setback. If a linear
program (5.7) is found bounded (i.e., it has an optimal solution), then all the neigh-
boring vectors y ∈ N(z) are added to the list L (except those that have been already
included). But we can see from the proof of Lemma 6.1 that we need only N(z) to
contain all the neighboring vectors y satisfying Xy(AI , b) ∩ Xz(A

I , b) 6= ∅. Hence
vectors y with Xy(AI , b) ∩ Xz(A

I , b) = ∅ need not be included into N(z), without
affecting validity of Lemma 6.1 and of Theorem 6.2. In the next theorem we show how
such vectors may be identified using information gathered from the current problem.

Theorem 6.3. Let for some z ∈ Z the linear programming problem (5.7) have
an optimal solution x̂, and let Â ∈ AI be a nonsingular matrix satisfying Âx̂ = b.
Then we have

Xy(AI , b) ∩Xz(A
I , b) = ∅

for each

y = (z1, . . . , zj−1,−zj , zj+1, . . . , zn)T ∈ N(z)(6.3)

such that

2(zT x̂)(|Â−1|∆e)j < |x̂j |,(6.4)

where e is the vector of all ones.
Proof. Assume to the contrary that there exists an x ∈ Xy(AI , b) ∩ Xz(A

I , b).
Then in view of (6.3) it must be

xj = 0.(6.5)

Since x ∈ X(AI , b), there exists an A ∈ AI such that Ax = b. From the identity

Â(x− x̂) = (Â−A)x

we have

|x− x̂| = |Â−1(Â−A)x| ≤ 2|Â−1|∆|x|.(6.6)

766 CHRISTIAN JANSSON AND JIRI ROHN

But since x ∈ Xz(A
I , b), for each i ∈ {1, . . . , n} there holds

|xi| ≤
∑
k

|xk| = zTx ≤ zT x̂;

hence

|x| ≤ (zT x̂)e,

and from (6.6) we obtain

|x− x̂| ≤ 2(zT x̂)|Â−1|∆e.(6.7)

But from (6.4), (6.5), and (6.7) we have

|x̂j | = |xj − x̂j | ≤ 2(zT x̂)(|Â−1|∆e)j < |x̂j |,
which is a contradiction. Hence, Xy(AI , b) ∩Xz(A

I , b) = ∅.
This result shows that the algorithm will remain in force if we include into N(z)

only those vectors y of the form (6.3) which do not satisfy (6.4). A matrix Â satisfying
Âx̂ = b may be constructed by means of the proof of Theorem 4.1.

In the general description of the algorithm we did not specify the order in which
the items are to be removed from the list L. For an efficient implementation it is
recommended, once a problem (5.7) has been solved, that one check immediately all
the problems (5.7) with y of the form (6.3) for j’s not satisfying (6.4), since each
of these linear programming problems differs from the original one in one column
and one coefficient of the objective function only, so that the previously computed
simplex tableau may be easily updated for the new problem. Practical experience
shows that in this implementation the algorithm requires O(pn4) operations, where
p is the number of linear programming problems (5.7) solved in the course of the
algorithm.

7. The choice of b. It is obvious that the performance of the algorithm depends
heavily on the number of orthants intersected by the component C0. It is therefore a
natural idea to try to find a right-hand-side vector b such that C0 would be entirely
contained in a single orthant, preferably the nonnegative one. Unfortunately, it turns
out that this is generally not possible, even in the case of regular interval matrices.
The following example is due to Nedoma; we quote here the result only, referring an
interested reader to [12] for a proof.

Example. Let AI = [Ac −∆, Ac + ∆] with

Ac =

 0 2 2
2 0 4
1 1 1

 ,

∆ =

 0 3
2

3
2

3
2 0 0
0 0 0

 .

Then AI is regular and there does not exist a b ∈ R3 satisfying

X(AI , b) ⊂ (R3
+)0,

AN ALGORITHM FOR CHECKING REGULARITY 767

where (R3
+)0 is the interior of the nonnegative orthant in R3.

Hence we must set the goal differently: to find a b such that X(AI , b) intersects
a possibly small number of orthants. Let xc = A−1

c b as before and let x ∈ X(AI , b).
Then there exists a matrix A ∈ AI with Ax = b; hence

x = xc +A−1
c (Ac −A)x.(7.1)

We shall try to choose b such that |xc| = |A−1
c b| is componentwise as large as possible.

Then, in view of (7.1), xc and the perturbed solution x should stay in the same orthant,
or differ only in a few signs.

Because A−1
c (αb) = αA−1

c b, it follows that |A−1
c b| can be made arbitrarily large.

Therefore it is sufficient to look only at right-hand sides b ∈ Rn with ‖b‖∞ ≤ 1. This
leads to the optimization problem

max{γ; |A−1
c b| ≥ γe, −e ≤ b ≤ e}.(7.2)

This problem can be solved exactly by applying 2n linear programming calls. But
for construction of an appropriate right-hand side we need only a reasonably good
approximation of the optimal solution. Therefore, we proceed in the following way.
First, we look at the discrete problem

max{γ; |A−1
c b| ≥ γe, b ∈ Z}.(7.3)

The solution of (7.3) should be a good approximation of the solution of (7.2). Since
each component of |A−1

c b|must be greater than or equal to γ, we may assume that A−1
c

is row equilibrated, i.e., the ith row of A−1
c is multiplied by the factor 1/maxj |(Ac)−1

ij |,
i = 1, . . . , n. Row scaling does not change regularity or singularity of an interval
matrix AI .

In order to calculate an approximation of an optimal solution of (7.3), we use a
scheme which locally improves γ. We attempt to improve a current approximation b
by looking for a superior solution bnew in an appropriate neighborhood of b. In the
first step b, bnew ∈ Z are called neighbored if they differ in exactly one entry. The
neighbor bnew is accepted as a new approximation if the corresponding new objective
value γnew is better than the previous one. In the following we give a formal descrip-
tion (ei denotes the ith column of the unit matrix):
b := e; γ := minj |(A−1

c b)j |;
for k = 1, . . . , k1 do begin
i := kmod(n) + 1;
bnew := b− 2biei; γ

new := minj |(A−1
c bnew)j |;

if γnew > γ then begin b := bnew; γ := γnew end
end.
This algorithm starts with b = e, calculates k1 neighbors, and compares the corre-
sponding objective values. We have chosen k1 = n2. Because

A−1
c bnew = A−1

c b− 2biAc
−1ei,

the computational costs of the previous algorithm are O(n3) operations. Notice that
the statement bnew := b − 2biei simply changes the ith entry of b from −1 to 1 or
conversely.

In the second step we improve the previously calculated right-hand side b by
taking the same algorithm, but changing the neighborhood. Now b, bnew ∈ Z are

768 CHRISTIAN JANSSON AND JIRI ROHN

called neighbored if they differ in exactly two entries. The algorithm runs as follows:
for k = 1, . . . , k2 do
for l = 1, . . . , k2 do begin
i := kmod(n) + 1; h := lmod(n) + 1;
if i 6= h then begin
bnew := b− 2biei − 2bheh; γnew := minj |(A−1

c bnew)j |;
if γnew > γ then begin b := bnew; γ := γnew end

end
end.
We have chosen k2 = n, and a similar argument as above shows that this algorithm
needs O(n3) operations.

The last calculated b, γ in the previous algorithm, denoted by b̂, γ̂, serve as an
approximation of an optimal solution of the problem (7.3). Because we intended to
solve the problem (7.2), we solve in the third step the linear programming problem

max{γ; TzA
−1
c b ≥ γe, −e ≤ b ≤ e},

where z = sgn (A−1
c b̂). Since b̂, γ̂ is a feasible solution of this problem, it follows

immediately that its optimal solution b∗ satisfies

minj |(A−1
c b∗)j | ≥ minj |(A−1

c b̂)j |,

and we can use b∗ as the desired right-hand side for the main algorithm of section 6.

8. Numerical experiments. In this section results of some numerical exper-
iments are described. To demonstrate how the algorithm works and what the com-
putational costs of the method are, we have also added some examples which are
not typical, or where the algorithm does not behave well. The computational costs
are proportional to the number p of linear programming problems (5.7) solved in the
course of the algorithm. Therefore, we display in the following tables the number p.
The program of our algorithm is written in MATLAB and uses IEEE double floating
point arithmetic.

We compare our algorithm with two sufficient regularity conditions. The first one
(Beeck [3]) assures regularity of AI = [Ac −∆, Ac + ∆] if

% := %(|A−1
c |∆) < 1(8.1)

holds. The second one, by Rump [21], [22], states that AI is regular if

σ :=
σmax(∆)

σmin(Ac)
< 1,(8.2)

where σmax(∆), σmin(Ac) denote the maximal singular value of ∆ and the minimal
singular value of Ac, respectively. We shall see that in many cases both conditions
are not satisfied, but AI is regular. We shall also consider the radius of regularity of
an interval matrix AI = [Ac −∆, Ac + ∆] defined [16] by

r(AI) = inf{ε ≥ 0; [Ac − ε∆, Ac + ε∆] is singular}.

Hence AI is regular if and only if r(AI) > 1.
In what follows we present results of computations of eight examples. In all of

them Ac is fixed and ∆ is varied depending on a real parameter κ; in most cases

AN ALGORITHM FOR CHECKING REGULARITY 769

(Examples 2 and 4 through 7) we set ∆ = κ|Ac|. It can be seen from the tables that
p grows, or does not decrease, until the radius of regularity is reached. It is typical
for the method that singularity can be proved very fast (often with p = 1) for many
examples because singular matrices usually occur in almost all orthants. Nevertheless,
there exist also problems where p increases even in the singular case (Example 6).

Example 1. The following example can be viewed as a generalization of the two-
dimensional Example 3.2 in [17], to the multidimensional case. The center matrix Ac
has nonzero entries only in the main diagonal, and above and below the kth diagonals.
We have chosen n = 50, k = 48, and Ac of the form

(Ac)ij =

50 if i = j,

100 if j ≥ i+ 48,
−100 if i ≥ j + 48,

0 otherwise

(i, j = 1, . . . , 50). The radius matrix ∆ is defined as follows:

(∆)ij =

40 if i = j,
0.01 + κ if j ≥ i+ 48,
0.01 + κ if i ≥ j + 48,
0.01 otherwise

(i, j = 1, . . . , 50). Hence, AI has large intervals [10, 90] on the diagonal, above and
below the kth diagonals the widths of the intervals are very large (about 2κ), and for
the zero entries of Ac we have small intervals [−0.01, 0.01]. Table 1 shows behavior
of our algorithm and of the two sufficient regularity conditions for growing κ. We
use an additional variable reg which is set to 1 if AI is regular, and reg = 0 in case
of singularity. We observe that with exception of κ = 8 both sufficient regularity
conditions (8.1), (8.2) are not satisfied, but our algorithm proves regularity of AI up
to κ = 96, that is, the intervals above and below the kth diagonal are [3.99, 196.01]. In
this case % is about 3, σ is about 4, and p = 6. Change from regularity to singularity
occurs between κ = 96 and κ = 104. In this region we performed some additional
experiments with step size 0.5. For the values κ = 96.5, 97, 97.5, 98 our algorithm
proved regularity with p = 6; for κ = 99.5, 100, . . . , 103.5 singularity was proved
with p = 1, but for the values κ = 98.5 and κ = 99 the algorithm run was stopped
inconclusively after p reached 1000. For κ ≥ 104 singularity of AI was proved again
with p = 1 (cf. the remark at the end of section 4). This shows that in a small
region around κ = r(AI) the algorithm exhibits exponential behavior (which is a
consequence of the NP-hardness result of section 3), whereas outside this region the
computational costs indicated by p are very moderate, and much smaller in case of
singularity than in that of regularity. This typical behavior (confirmed by many other
experiments) constitutes the main advantage of our algorithm in contrast to necessary
and sufficient regularity conditions [17, Theorem 5.1] which are exponential in n in
each regularity case.

Example 2. Here the center matrix Ac is the Hilbert matrix of dimension n = 7.
The 2-norm condition number of this matrix is about 4.7 · 108. The radius matrix is
∆ = κ|Ac|, i.e., we consider relative perturbations. Table 2 shows that in all cases
p = 1 and % characterizes the radius of regularity r(AI) because the inverse Hilbert
matrix has a rank 1 sign pattern (see [23]), whereas σ underestimates this radius.

Example 3. This example is taken from [25, p. 442]. The center matrix is given

770 CHRISTIAN JANSSON AND JIRI ROHN

Table 1

κ reg % σ p
8 1 0.9290 1.0595 3
16 1 1.1141 1.3183 3
24 1 1.2979 1.5772 4
32 1 1.4809 1.8361 5
40 1 1.6634 2.0950 6
48 1 1.8454 2.3539 6
56 1 2.0271 2.6128 6
64 1 2.2085 2.8716 6
72 1 2.3897 3.1305 6
80 1 2.5708 3.3894 6
88 1 2.7518 3.6483 6
96 1 2.9327 3.9072 6
104 0 3.1135 4.1661 1
112 0 3.2942 4.4250 1
120 0 3.4748 4.6838 1
128 0 3.6554 4.9427 1
136 0 3.8360 5.2016 1
144 0 4.0165 5.4605 1
152 0 4.1970 5.7194 1
160 0 4.3774 5.9783 1

Table 2

κ reg % σ p
1.0e-09 1 0.1185 0.4754 1
2.0e-09 1 0.2369 0.9507 1
3.0e-09 1 0.3554 1.4261 1
4.0e-09 1 0.4738 1.9015 1
5.0e-09 1 0.5923 2.3768 1
6.0e-09 1 0.7108 2.8522 1
7.0e-09 1 0.8292 3.3276 1
8.0e-09 1 0.9477 3.8029 1
9.0e-09 0 1.0661 4.2783 1
1.0e-08 0 1.1846 4.7537 1
1.1e-08 0 1.3031 5.2290 1
1.2e-08 0 1.4215 5.7044 1
1.3e-08 0 1.5400 6.1798 1
1.4e-08 0 1.6585 6.6551 1
1.5e-08 0 1.7769 7.1305 1
1.6e-08 0 1.8954 7.6059 1
1.7e-08 0 2.0138 8.0812 1
1.8e-08 0 2.1323 8.5566 1

by

(Ac)ij =

 11− j if j ≥ i,
10− j if j = i− 1,
0 if j < i− 1

(i, j = 1, . . . , 10). The 2-norm condition number of Ac is about 2.8543 · 107. The
coefficients of the radius matrix ∆ are defined for all nonzero entries of Ac by ∆ij =
κ|(Ac)ij |, and are equal to 0.1 otherwise. Table 3 shows that in all cases p = 1, %
estimates very well the radius of regularity r(AI), whereas σ largely underestimates
this radius.

AN ALGORITHM FOR CHECKING REGULARITY 771

Table 3

κ reg % σ p
1.0e-08 1 0.1593 4.4539e+05 1
2.0e-08 1 0.2264 4.4539e+05 1
3.0e-08 1 0.2848 4.4539e+05 1
4.0e-08 1 0.3392 4.4539e+05 1
5.0e-08 1 0.3912 4.4539e+05 1
6.0e-08 1 0.4417 4.4539e+05 1
7.0e-08 1 0.4912 4.4539e+05 1
8.0e-08 1 0.5398 4.4539e+05 1
9.0e-08 1 0.5879 4.4539e+05 1
1.0e-07 1 0.6354 4.4539e+05 1
1.1e-07 1 0.6826 4.4539e+05 1
1.2e-07 1 0.7295 4.4539e+05 1
1.3e-07 1 0.7761 4.4539e+05 1
1.4e-07 1 0.8225 4.4539e+05 1
1.5e-07 1 0.8687 4.4539e+05 1
1.6e-07 1 0.9148 4.4539e+05 1
1.7e-07 1 0.9607 4.4539e+05 1
1.8e-07 0 1.0065 4.4539e+05 1
1.9e-07 0 1.0522 4.4539e+05 1
2.0e-07 0 1.0977 4.4539e+05 1

Example 4. This example is taken from [5, p. 41]. The ten-dimensional center
matrix is orthogonal and given by

(Ac)ij = (2/(n+ 1))1/2 sin(ijπ/(n+ 1)),

and the radius matrix is defined by

∆ = κ|Ac|.
In contrast to the previous two examples we see from Table 4 that σ estimates regu-
larity of AI very well, whereas % does not. (The reason for this behavior of % and σ
for orthogonal matrices is explained in Rump [21], [22].) The number p initially grows
up to 249, and then p rapidly decreases to one in the case of singularity. Moreover,
we see that comparing this matrix with the matrix of Example 3 yields types of ma-
trices where both sufficient regularity conditions largely underestimate the radius of
regularity, whereas our algorithm proves regularity or singularity of AI with moderate
computational costs.

Example 5. The following example is taken from [23]. The center matrix Ac is
defined by

(Ac)ij =

 1 if j = i or j = i− 1,
(−1)n+1 if i = 1 and j = n,
0 otherwise

(i, j = 1, . . . , n), and the radius matrix is given by

∆ = κ|Ac|;(8.3)

i.e., the coefficients of the center matrix are relatively perturbed. For this matrix
Rump [24] showed that % underestimates the radius of regularity of AI by a factor
which is equal to the dimension n. This is also demonstrated by Table 5, where n = 10.

772 CHRISTIAN JANSSON AND JIRI ROHN

Table 4

κ reg % σ p
0.025 1 0.2199 0.0741 1
0.050 1 0.4398 0.1483 1
0.075 1 0.6597 0.2224 1
0.100 1 0.8795 0.2966 1
0.125 1 1.0994 0.3707 10
0.150 1 1.3193 0.4449 10
0.175 1 1.5392 0.5190 10
0.200 1 1.7591 0.5931 35
0.225 1 1.9789 0.6673 45
0.250 1 2.1988 0.7414 74
0.275 1 2.4187 0.8156 113
0.300 1 2.6386 0.8897 145
0.325 1 2.8585 0.9639 202
0.350 1 3.0784 1.0380 249
0.375 0 3.2982 1.1121 15
0.400 0 3.5181 1.1863 2
0.425 0 3.7380 1.2604 1
0.450 0 3.9579 1.3346 1

Table 5

κ reg % σ p
0.1 1 1.000 0.639 5
0.2 1 2.000 1.279 53
0.3 1 3.000 1.918 61
0.4 1 4.000 2.557 118
0.5 1 5.000 3.196 118
0.6 1 6.000 3.836 118
0.7 1 7.000 4.475 118
0.8 1 8.000 5.114 118
0.9 1 9.000 5.753 118
1.0 0 10.000 6.393 2
1.1 0 11.000 7.032 1
1.2 0 12.000 7.671 1
1.3 0 13.000 8.310 1
1.4 0 14.000 8.949 1
1.5 0 15.000 9.589 1
1.6 0 16.000 10.228 1
1.7 0 17.000 10.867 1
1.8 0 18.000 11.506 1

Moreover, we see that σ also underestimates the radius of regularity. Here p grows
up to 118 which is about n2 in case of regularity, and p ≤ 2 in all cases of singularity.
Changing just one coefficient in the above example to (Ac)1n := n(−1)(n+1), and
defining ∆ again by (8.3), we can see from Table 6 that p ≤ 10 whereas both % and
σ underestimate the radius of regularity.

Example 6. The center matrix is the 10-dimensional matrix defined by

(Ac)ij =

{
1 if j ≥ i,
−1 if j < i,

and the radius matrix is

∆ = κ|Ac|.

AN ALGORITHM FOR CHECKING REGULARITY 773

Table 6

κ reg % σ p
0.1 1 0.714 5.437 4
0.2 1 1.428 10.873 8
0.3 1 2.141 16.310 9
0.4 1 2.855 21.746 10
0.5 1 3.569 27.183 10
0.6 1 4.283 32.619 10
0.7 1 4.997 38.056 10
0.8 1 5.710 43.492 10
0.9 1 6.424 48.929 10
1.0 0 7.138 54.365 1
1.1 0 7.852 59.802 1
1.2 0 8.566 65.238 1
1.3 0 9.279 70.675 1
1.4 0 9.993 76.111 1
1.5 0 10.707 81.548 1
1.6 0 11.421 86.984 1
1.7 0 12.135 92.421 1
1.8 0 12.848 97.857 1

Table 7

κ reg % σ p
0.02 1 0.2000 0.1975 1
0.04 1 0.4000 0.3951 1
0.06 1 0.6000 0.5926 1
0.08 1 0.8000 0.7902 1
0.10 1 1.0000 0.9877 55
0.12 0 1.2000 1.1852 123
0.14 0 1.4000 1.3828 124
0.16 0 1.6000 1.5803 69
0.18 0 1.8000 1.7778 81
0.20 0 2.0000 1.9754 20
0.22 0 2.2000 2.1729 20
0.24 0 2.4000 2.3705 20
0.26 0 2.6000 2.5680 21
0.28 0 2.8000 2.7655 21
0.30 0 3.0000 2.9631 21
0.32 0 3.2000 3.1606 21
0.34 0 3.4000 3.3581 2
0.36 0 3.6000 3.5557 2

This example is not typical and it shows a behavior which is contrary to most of our
observations. As shown in Table 7, p is maximal in case of singularity, and moreover,
in some singularity cases p increases for increasing κ.

Example 7. The following example is also not typical for most of our observations.
It shows how the computational costs may change dramatically by altering slowly the
dimension n. The center matrix is given by

(Ac)ij =

 10 if i < j,
1 if i = j,

−10 if i > j,

and the radius matrix is

∆ = κ|Ac|.

774 CHRISTIAN JANSSON AND JIRI ROHN

Table 8

κ reg % σ p
0.005 1 0.3050 0.3050 1
0.010 1 0.6100 0.6100 1
0.015 1 0.9150 0.9150 1
0.020 0 1.2200 1.2200 1
0.025 0 1.5250 1.5250 1
0.030 0 1.8300 1.8300 1
0.035 0 2.1350 2.1350 1
0.040 0 2.4400 2.4400 1
0.045 0 2.7450 2.7450 1
0.050 0 3.0500 3.0500 1
0.055 0 3.3550 3.3550 1
0.060 0 3.6600 3.6600 1
0.065 0 3.9650 3.9650 1
0.070 0 4.2700 4.2700 1
0.075 0 4.5750 4.5750 1
0.080 0 4.8800 4.8800 1
0.085 0 5.1850 5.1850 1
0.090 0 5.4900 5.4900 1

Table 9

κ reg % σ p
0.005 1 0.2231 0.1595 1
0.010 1 0.4461 0.3189 3
0.015 1 0.6692 0.4784 5
0.020 1 0.8923 0.6378 5
0.025 1 1.1154 0.7973 10
0.030 1 1.3384 0.9567 10
0.035 1 1.5615 1.1162 10
0.040 0 1.7846 1.2756 1
0.045 0 2.0076 1.4351 1
0.050 0 2.2307 1.5945 1
0.055 0 2.4538 1.7540 1
0.060 0 2.6769 1.9134 1
0.065 0 2.8999 2.0729 1
0.070 0 3.1230 2.2324 1
0.075 0 3.3461 2.3918 1
0.080 0 3.5691 2.5513 1
0.085 0 3.7922 2.7107 1
0.090 0 4.0153 2.8702 1

For n = 7 we get p = 1 and % = σ in all cases (Table 8). The results for n = 8 are
displayed in Table 9.

Example 8. This example shows, for varying dimension n, results for interval
matrices where the coefficients are normally distributed with mean 0 and variance
1. In detail, the center matrix is generated by Ac = randn(n), κ = 0.02 · randn(n),
and the radius matrix is given by ∆ = κ · randn(n). Here, rand(n) is the MATLAB
command for the normal random distribution, and for each test set the seed is set to
0. For dimension n = 20, we get the results in Table 10. Dimension n = 30 yields
the results in Table 11, and n = 40 yields the results in Table 12. We can see that
for most of these randomly generated examples p = 1, and in the worst cases p is
bounded by n2.

AN ALGORITHM FOR CHECKING REGULARITY 775

Table 10

κ reg % σ p
1.5000e-03 1 2.0127e-01 2.5422e-01 1
3.4675e-03 1 2.5216e-01 2.9794e-01 1
5.7830e-03 1 6.1268e-01 8.9690e-01 10
3.8228e-03 0 4.2597e+00 6.6856e+00 1
2.1062e-02 1 1.1923e+00 1.3357e+00 54
8.0028e-03 0 2.8315e+00 3.9616e+00 1
1.9898e-02 0 2.0265e+00 2.4730e+00 1
5.7956e-03 1 1.0729e+00 1.5084e+00 17
4.6480e-04 1 3.5748e-02 4.7923e-02 1
1.0293e-02 1 9.1469e-01 1.1683e+00 20

Table 11

κ reg % σ p
3.2528e-04 1 6.2265e-02 8.6597e-02 1
1.4271e-02 0 1.6529e+00 2.1586e+00 1
1.3444e-02 0 6.4642e+00 9.0395e+00 1
2.9834e-03 1 5.8821e-01 7.7027e-01 2
5.1537e-03 0 1.7320e+00 1.9743e+00 1
3.1523e-02 0 2.0272e+01 3.1276e+01 1
7.6462e-03 1 1.2505e+00 1.8812e+00 446
2.7498e-02 0 6.7397e+00 9.4327e+00 1
4.6382e-03 0 5.7781e+00 8.8484e+00 1
7.9532e-03 0 4.1317e+00 6.6051e+00 1

Table 12

κ reg % σ p
1.0966e-02 0 6.6685e+00 1.0145e+01 1
2.4906e-03 1 3.0435e-01 3.2999e-01 1
1.7104e-03 1 2.6830e-01 2.5902e-01 1
6.5490e-03 0 2.1063e+00 3.3164e+00 1
1.4050e-02 0 2.4355e+00 2.8584e+00 1
1.0242e-02 0 5.6521e+00 8.2005e+00 1
2.4428e-03 0 3.8025e+00 5.4907e+00 1
1.0429e-02 0 2.4616e+00 2.8986e+00 1
4.8682e-03 1 1.0540e+00 1.4246e+00 986
1.5887e-02 0 4.1782e+00 5.8441e+00 1

9. Concluding remarks. As seen from the examples presented in the last sec-
tion, the algorithm proved to be efficient, exhibiting very moderate numbers of calls
of the linear programming procedure on the average. This behavior is to be ascribed
to three features: (i) employing a new criterion of Theorem 5.3 which makes the al-
gorithm not a priori exponential, (ii) using a fast heuristic algorithm for choosing a
proper right-hand side b, and (iii) avoiding unnecessary calls of the linear program-
ming procedure (Theorem 6.3).

Nevertheless, the computational work is still large compared to checking simple
sufficient conditions (8.1) or (8.2). Therefore, for practical computations it is recom-
mended that one use a hybrid algorithm which would first try the sufficient regularity
conditions (8.1), (8.2), the sufficient singularity condition

max
ij

(|A−1
c |∆)ij(|A−1

c |∆)ji ≥ 1

776 CHRISTIAN JANSSON AND JIRI ROHN

[23, Theorem 6.5], and the algorithm for finding a singular matrix in an interval matrix
[18], and resort to the actual algorithm of this paper only if all the previous checks
fail. In this way the algorithm can be made even more efficient.

Acknowledgments. The authors wish to thank the two referees for a number of
constructive comments and suggestions that helped to improve the text of this paper.

REFERENCES

[1] B. R. Barmish, New tools for robustness analysis, in Proceedings of the 27th Conference on
Decision and Control, Austin, TX, 1988, pp. 1–6.

[2] I. Bar-On, B. Codenotti, and M. Leoncini, Checking robust nonsingularity of tridiagonal
matrices in linear time, BIT, 36 (1996), pp. 206–220.

[3] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in Interval
Mathematics, K. Nickel, ed., Lecture Notes in Comput. Sci. 29, Springer-Verlag, Berlin,
1975, pp. 150–159.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP–Completeness, Freeman, San Francisco, 1979.

[5] R. T. Gregory and D. L. Karney, Collection of Matrices for Testing Computational Algo-
rithms, John Wiley & Sons, New York, 1969.

[6] C. Jansson, On self-validating methods for optimization problems, in Topics in Validated
Computations, J. Herzberger, ed., North–Holland, Amsterdam, 1994, pp. 381–438.

[7] C. Jansson, Calculation of exact bounds for the solution set of linear interval systems, Linear
Algebra Appl., 251 (1997), pp. 321–340.

[8] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasi-
bility of Data Processing and Interval Computations, Kluwer, Dordrecht, The Netherlands,
1997.

[9] J. Lunze, Robust Multivariable Feedback Control, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[10] M. Mansour, Robust stability of interval matrices, in Proceedings of the 28th Conference on

Decision and Control, Tampa, FL, 1989, pp. 46–51.
[11] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann,

Berlin, 1988.
[12] J. Nedoma, Positively regular vague matrices, Linear Algebra Appl., to appear.
[13] A. Nemirovskii, Several NP-hard problems arising in robust stability analysis, Math. Control

Signals Systems, 6 (1993), pp. 99–105.
[14] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with

given error bounds for coefficients and right–hand sides, Numer. Math., 6 (1964), pp. 405–
409.

[15] S. Poljak and J. Rohn, Radius of Nonsingularity, Research report, KAM Series 88–117, Fac-
ulty of Mathematics and Physics, Charles University, Prague, Czechoslovakia, December
1988.

[16] S. Poljak and J. Rohn, Checking robust nonsingularity is NP–hard, Math. Control Signals
Systems, 6 (1993), pp. 1–9.

[17] J. Rohn, Systems of linear interval equations, Linear Algebra Appl., 126 (1989), pp. 39–78.
[18] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, J. Numer. Linear

Algebra Appl., 1 (1992), pp. 43–47.
[19] J. Rohn, Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl.,

15 (1994), pp. 175–184.
[20] J. Rohn and G. Rex, Interval P–matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 1020–

1024.
[21] S. M. Rump, Validated solution of large linear systems, in Computing Supplementum 9, R. Al-

brecht, G. Alefeld, and H. J. Stetter, eds., Springer-Verlag, Wien, 1993, pp. 191–212.
[22] S. M. Rump, Verification methods for dense and sparse systems of equations, in Topics in

Validated Computations, J. Herzberger, ed., North–Holland, Amsterdam, 1994, pp. 63–
135.

[23] S. M. Rump, Bounds for the componentwise distance to the nearest singular matrix, SIAM J.
Matrix Anal. Appl., 18 (1997), pp. 83–103.

[24] S. M. Rump, Almost sharp bounds for the componentwise distance to the nearest singular
matrix, Linear and Multilinear Algebra, 42 (1998), pp. 93–108.

[25] H. Rutishauser, Lectures on Numerical Analysis, Birkhäuser, Basel, Switzerland, 1990.

CAUCHY-LIKE PRECONDITIONERS FOR TWO-DIMENSIONAL
ILL-POSED PROBLEMS∗

MISHA E. KILMER†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 777–799

Abstract. Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arise
from the discretization of certain ill-posed problems in signal and image processing. We use a
preconditioned conjugate gradient algorithm to compute a regularized solution to this linear system
given noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to a unitary
transformation of the BTTB matrix. We show that the preconditioner has desirable properties when
the kernel of the ill-posed problem is smooth: the largest singular values of the preconditioned matrix
are clustered around one, the smallest singular values remain small, and the subspaces corresponding
to the largest and smallest singular values, respectively, remain unmixed. For a system involving np
variables, the preconditioned algorithm costs only O(np(lgn + lg p)) operations per iteration. We
demonstrate the effectiveness of the preconditioner on three examples.

Key words. regularization, ill-posed problems, Toeplitz, Cauchy-like, preconditioner, conjugate
gradient, normal equations, image processing, deblurring

AMS subject classifications. 65R20, 45L10, 94A12

PII. S0895479897319532

1. Introduction. The two-dimensional integral equation∫ αu

αl

∫ βu

βl

t(α, β, γ, δ)f̂(α, β)dαdβ = ĝ(γ, δ)

is often used to describe the process by which data in signal and image processing
applications is acquired. In optics, for example, t is called the point spread function
and describes the response of the system or measuring device to a single point of
light at coordinates (α, β) [13]. Thus if the values f̂(α, β) represent light intensities
reflected from a three-dimensional object, the integral equation might be used to
model the blurring of that object when its picture is taken using a camera with a
warped lens.

For simplicity, suppose quadrature is used to discretize the integral, and suppose
p is the number of grid points αj in the α direction and n is the number of grid points
βl in the β direction. The integral equation becomes a system of np linear equations
of the form

T f̂ = ĝ,(1)

where f̂ is np × 1 with entries f̂(αj , βl), 1 ≤ j ≤ p, 1 ≤ l ≤ n. We note that many
other discretization methods for the integral equation yield a system of np linear
equations in which p and n have analogous definitions.

A Toeplitz matrix Ti is one whose elements are constant along diagonals; that

is, the (k, j) entry in Ti is given by t
(i)
k−j . In applications, properties of the kernel,

∗Received by the editors April 4, 1997; accepted for publication (in revised form) by D. Calvetti
April 20, 1998; published electronically April 20, 1999. This work was supported by the National
Science Foundation under grant CCR 95-03126.

http://www.siam.org/journals/simax/20-3/31953.html
†Applied Mathematics Program, University of Maryland, College Park, MD 20742 (mkilmer@

ece.neu.edu). Current address: Electrical and Computer Engineering Department, Northeastern
University, Boston, MA 02115.

777

778 MISHA E. KILMER

discretization process, and a suitable ordering of unknowns can cause T to have a
block Toeplitz structure in which each p×p block is Toeplitz. This structure arises, for
example, by applying quadrature to a kernel t of the form t(α, β, γ, δ) = t(γ−α, δ−β),

ordering the unknowns f̂(αj , βl) first by increasing j, then by increasing l. In this

case, the (i, j) component in the (k, l) block is given by (Tkl)ij = t
(k−l)
i−j for 1 ≤ i, j ≤ p,

1 ≤ k, l ≤ n. We then say that T is a block Toeplitz, Toeplitz block (BTTB) matrix.1

For the remainder of the paper, we shall assume that n and p are powers of two, as
is often the case in image processing applications.

Given ĝ and T in (1), the discrete inverse problem is to recover f̂ . However, the
continuous problem is generally ill-posed in the sense that small changes in ĝ cause
arbitrarily large changes in f̂ . Consequently, the matrix T will be ill-conditioned.
Recovery of f̂ is then complicated by the fact that noise e is also present in the
measured data. That is, we have measured g rather than ĝ, where

Tf = ĝ + e = g.(2)

Given the ill-conditioning of T , the exact solution, f , to (2) is not a reasonable

approximation to f̂ . We instead seek an approximate solution f by solving a nearby,
more well-posed problem. This method of approximating f̂ is called regularization.
We use a preconditioned conjugate gradient algorithm to compute such a regularized
solution. A discussion of the methods of direct and iterative regularization techniques
can be found in [19].

Iterative methods like conjugate gradients can take advantage of the well-known
fact that matrix-vector products involving BTTB matrices with n blocks of size p
can be computed in O(np(lg p+ lg n)) operations [4]. Also, preconditioners for BTTB
matrices which are block circulant (BC), circulant block (CB), or block circulant with
circulant blocks (BCCB) have been found to be very efficient [4, 29, 1]. For example, if
the preconditioner is determined to be block Toeplitz with circulant blocks (BTCB),
applying the preconditioner can be reduced to solving p systems involving n × n
Toeplitz matrices [4]. The application of other preconditioners which approximate the
blocks by optimal fast transform-based matrices [4, 5, 26] can similarly be reduced
to this form. However, for indefinite and/or ill-conditioned systems, the O(n lg2 n)
and O(n2) factorization algorithms for Toeplitz matrices can be numerically unstable;
these algorithms can require as many asO(n3) operations in order to maintain stability
[31, 15, 7].

To overcome this difficulty, we make use of the fact that because of their displace-
ment structure (see [25, 9], for example), Toeplitz matrices are related to Cauchy-like
matrices by fast unitary transformations [21, 9, 14]. The particular Cauchy-like ma-
trices discussed in section 2 permit fast matrix-vector multiplication. An advantage
of Cauchy-like matrices is that their inverses are also Cauchy-like, unlike Toeplitz
matrices whose inverses are not generally Toeplitz. In addition, modified complete
pivoting can be incorporated in the LDU factorization of a Cauchy-like matrix for a
total cost of only O(n2).

In the course of this paper we develop a Cauchy-like preconditioner that can be
used to filter noise and accelerate convergence of the conjugate gradient iteration to
an approximate solution of (2) when T is BTTB. This preconditioner is the two-
dimensional generalization of the preconditioner for Toeplitz matrices discussed in

1Although we assume here that T is square, we note that the preconditioner can be adjusted to
the nonsquare case [27].

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 779

[28]. We begin with a discussion in section 2 of Cauchy-like matrices and some of
their important properties. We discuss the regularizing properties of conjugate gra-
dients and our choice of preconditioner in section 3. In section 4 we show that our
preconditioner has desirable properties. Computational issues are the focus of sec-
tion 5, where it is shown that each iteration can be completed in O(pn(lg p + lg n))
operations. Section 6 contains numerical results for several examples, and section 7
presents conclusions and future work.

2. Transformation from Toeplitz to Cauchy-like structure. A matrix C
having the form

C =

(
aTi bj
ωi − θj

)
1≤i,j≤n

(ai, bj ∈ C`×1;ωi, θj ∈ C;ωi 6= θj)(3)

is called a Cauchy-like, or generalized Cauchy, matrix. If ` = 1 and aTi bj = 1, then
the matrix is said to be Cauchy. The matrix C can also be identified as the unique
solution of the displacement equation

ΩC − CΘ = ABT ,(4)

where

Ω = diag(ω1, . . . , ωn),Θ = diag(θ1, . . . , θn), A = [a1, . . . , an]T , B = [b1, . . . , bn]T .

The matrices A and B are called the generators of C with respect to Ω and Θ,
and ` ≤ n is called the displacement rank. Notice that only the 2n` + 2n nonzero
entries of A,B,Ω,Θ need to be stored to completely specify the entries of the matrix.
Fortunately, certain properties of Cauchy-like matrices insure that LU factorizations
of Cauchy-like matrices may be computed using only the matrices Ω,Θ, and the
generators without ever forming the matrix C (see [9], for example).

One disadvantage of Toeplitz matrices is that permutations of Toeplitz matrices
are not necessarily Toeplitz, so that incorporating pivoting into fast factorization
schemes becomes difficult and expensive. However, because of (4), it is easy to show
the following (see [21, 14], for example).

Property 1. Row and column permutations of Cauchy-like matrices are Cauchy-
like, as are leading principal submatrices.

This property and the fact that Schur complements of Cauchy-like matrices are
Cauchy-like [9] lead to fast algorithms for factoring Cauchy-like matrices which can
pivot for stability [9, 14, 10, 11, 12]. We refer the reader to [12] for a detailed survey
of types and applications of pivoting for structured matrices. Partial pivoting is
usually sufficient to achieve stability for ill-conditioned matrices during factorization.
However, our goal is to develop a preconditioner which clusters only a specific part of
the spectrum (see section 3). We found in practice that we need a form of complete
pivoting to provide us with the necessary rank revealing information.

We use the factorization algorithm (2.1) for Cauchy-like matrices given in [10]
(see also [9, 11]) together with a pivoting scheme developed by Gu [14]. This form
of the algorithm performs a fast O(`n2) variation of LU decomposition with modified
complete pivoting. Recall that in complete pivoting, at every elimination step one
chooses the largest element in the current submatrix as the pivot in order to reduce
element growth. Gu proposes instead that one find an entry sufficiently large in mag-
nitude by considering the largest 2-norm column of one of the generators that remains

780 MISHA E. KILMER

to be factored at each step. This algorithm computes the pivoted LU factorization
(C = PLUQ, where P and Q are permutation matrices) [14, Alg. 2] using only the
generators, which are easy to determine and to update (see section 5), and Gu shows
that the algorithm, using his pivoting strategy, can be efficient and numerically stable.
Although the Cauchy-like matrices of interest to us are full, they have displacement
rank ` = 1 or 2, which makes them both efficient to store using relation (4) and
fast to factor. For our purposes it was convenient to set D = diag(u11, . . . , unn) and
U ← D−1U to obtain the equivalent factorization C = PLDUQ.

We also exploit the following property of Cauchy-like matrices [21].
Property 2. The inverse of a Cauchy-like matrix is Cauchy-like:

C−1 = −
(
xTi wj
θi − ωj

)
1≤i,j≤n

(xi, wj ∈ C`×1).(5)

The generators X and W can be determined from the relations [21]

CX = A, WTC = BT .(6)

Thus, given the LU factorization of C, solving for X and W requires only O(`n2)
operations and is stable when C is well-conditioned.

The third important property is that Toeplitz matrices also satisfy certain dis-
placement equations [25, 9, 26] which allow them to be transformed via fast Fourier
transforms into Cauchy-like matrices [21, 9].

Property 3. Every Toeplitz matrix T satisfies an equation of the form

R1T − TR−1 = ABT ,(7)

where A ∈ Cn×`, B ∈ Cn×`, 1 ≤ ` ≤ 2, and

Rδ =

0 0 . . . 0 δ
1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0

 .

The Toeplitz matrix T is unitarily related to a Cauchy-like matrix

C = FTS∗0F
∗

that satisfies the displacement equation

S1C − CS−1 = (FA)(BTS∗0F
∗) ,(8)

where

S1 = diag(1, e
2πi
n , . . . , e

2πi
n (n−1)),

S−1 = diag(e
πi
n , . . . , e

(2n−1)πi
n),

S0 = diag(1, e
πi
n , . . . , e

πi
n (n−1)),

and F is the normalized inverse discrete Fourier transform matrix defined by

F =
1√
n

[
exp

(
2πi

n
(j − 1)(k − 1)

)]
1≤j,k≤n

.

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 781

We note that Toeplitz matrices are unitarily related to Cauchy-like matrices
through other fast transformations as well [14]. However, the particular relation in
Property 3 can be exploited to determine an O(n lg n) stable algorithm for multipli-
cation by the inverse of the Cauchy-like matrix [28].

Now suppose that T is Toeplitz block. Then the (k, l) block of T satisfies (7) with
A ≡ Akl, B ≡ Bkl. Thus each block of T is unitarily related to a Cauchy-like matrix
as defined by Property 3 above. Therefore, T satisfies

(I ⊗ F)T (I ⊗ S∗0F ∗) = C,

where ⊗ denotes the Kronecker tensor product and C has Cauchy-like blocks Ckl with
respective generators FAkl, (B

T
klS
∗
0F
∗)T . Let G denote the rank ≤ 2p matrix with

blocks AklB
T
kl, and note that G can be written as the outer product of two N × 2p

matrices. Then C is itself Cauchy-like with displacement rank ` ≤ 2p since it is the
unique solution to the displacement equation (compare to (4))

(I ⊗ S1)C − C(I ⊗ S−1) = (I ⊗ F)G(I ⊗ S∗0F ∗).(9)

Factorization algorithms which rely on C having small displacement rank will become
expensive if p is large, requiring O(p(np)2) operations. Instead, we seek an approxima-
tion to C which will be block diagonal with Cauchy-like blocks. This approximation
will still be a Cauchy-like matrix in the sense that it will solve (9) for a particular
rank ≤ 2p matrix G; however, by considering the Cauchy-like blocks separately, we
observe (refer to section 3.2) that a full factorization of the block diagonal matrix can
be obtained stably in only O(pn2) operations.

3. Regularization and preconditioning. If we were to solve the linear system
(2) exactly, possibly by transforming the BTTB matrix T to a Cauchy-like matrix
and factoring, the solution we would compute in this manner would be hopelessly con-
taminated with noise, as we now discuss. The analysis will be based on the following
four assumptions:

1. The matrix T has been normalized so that its largest singular value is O(1).
2. The uncontaminated data vector ĝ satisfies the discrete Picard condition; i.e.,

the spectral coefficients of ĝ decay in absolute value faster than the singular
values [33, 18].

3. The additive noise is zero-mean white Gaussian. In this case, the components
of the error e are independent random variables normally distributed with
mean zero and variance ε2.

4. The noise level, ‖e‖2‖ĝ‖2 , is strictly less than one.

Let T = UΣV T be the singular value decomposition of T and let f be the exact
solution to the noisy system (2). The spectral coefficients of the exact solution ĝ and
noise e are ζ = UT ĝ and η = UT e, respectively. For the remainder of the paper we
will assume that N = pn is the dimension of T . Using (2), we observe that

f =

N∑
i=1

ζi + ηi
σi

vi,(10)

where vi denotes the ith column of V and σi denotes the ith diagonal element of the
diagonal matrix Σ.

Under the white noise assumption, the coefficients ηi are roughly constant in size,
while the discrete Picard condition tells us that the ζi go to zero at least as fast as

782 MISHA E. KILMER

the singular values σi. Thus, components for which ζi is of the same order as ηi are
obscured by noise.

By assumptions 2 and 4, there exists m̄ > 0 such that for all i > m̄, the ζi are
indeed indistinguishable from the ηi. Further, there exists 0 < m∗ ≤ m̄ such that
for i > m∗ it is never the case that |ζi| � |ηi|. We therefore choose to partition the
columns of V into bases for the upper, lower, and transition subspaces as follows.
We say that the upper subspace is the space spanned by the first m∗ columns of V .
Hence, the upper subspace corresponds to the largest m∗ singular values. The lower
subspace is the space spanned by the last N − m̄ columns for V , i.e., those columns of
V corresponding to the smallest singular values. Finally, the transition subspace is the
space spanned by the remaining m̄−m∗ columns of V . Since these columns correspond
to the midrange singular values, the transition subspace is generally difficult to resolve
unless there is a gap in the singular value spectrum.

Comparing the exact solution f̂ of (1) to f in (10), we see that the greatest
difference is in the magnitude of the components in the lower subspace. Thus we
choose to use an iterative method called conjugate gradient for least squares (CGLS)
which at early iterations produces a regularized solution with small components in
the lower subspace and which resembles f̂ in the upper subspace. An appropriate
preconditioner will speed convergence to this approximate solution without adding
components in the lower subspace.

3.1. Regularization by preconditioned conjugate gradients. The stan-
dard conjugate gradient (CG) method [22] is an iterative method for solving systems
of linear equations for which the matrix is symmetric positive definite. If the matrix
is not symmetric positive definite, one can use the CGLS algorithm [22], a variant
of standard CG that solves the normal equations in factored form. If the discrete
Picard condition holds, then CGLS acts as an iterative regularization method with
the iteration index taking the role of the regularization parameter [8, 17, 19]. The
spread and clustering of the singular values govern the speed and convergence of the
algorithm [32]. Preconditioning is therefore often applied in an effort to cluster the
singular values and thus to speed convergence.

When one wishes to solve a linear system exactly, it is desirable to choose the
preconditioner to cluster the entire spectrum around some number > 0. Many pre-
conditioners for systems involving matrices with Toeplitz and BTTB structure have
been proposed in the literature (see [26, 4]) which provably cluster the spectrum under
certain conditions; the interested reader is referred to the recent survey in [5] for an
overview of these types of preconditioners. However, according to (10), we desire that
the preconditioner cluster only the large singular values for which |ζi| � |ηi|. Unfor-
tunately, the indices for which this holds are difficult, if not impossible, to determine
in advance. However, as we show in section 4, it is possible to choose a preconditioner
that clusters most of the largest m∗ singular values while leaving the small singular
values, and with them, the lower subspace, relatively unchanged. Hence, the first few
iterations of CGLS will quickly capture the solution lying within the upper subspace.
Ideally, a modest number of subsequent iterations will provide some improvement over
the transition subspace without significant contamination from the noise contained in
the lower subspace.

3.2. The preconditioner. The (i, j) block of the given BTTB matrix T is the
Toeplitz matrix Ti−j , and the (k, l) element of the (i, j) block is given by (Ti−j)kl =

t
(i−j)
k−l . For each Ti, let us define Hi to be its T. Chan circulant approximation [6], so

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 783

that the diagonals of Hi are given by

h
(i)
j =

{
(n−j)t(i)

j
+jt

(i)
j−n

n , 0 ≤ j < n,

h
(i)
n+j , 0 < −j < n.

The matrix Hi is the closest circulant matrix in the Frobenius norm to Ti [6]. Finally,
we define H to be the BTCB matrix whose (i, j) block is the circulant matrix Hi−j .
It was shown in [4] that H is the closest BTCB matrix to T in the Frobenius norm.
The goal is to develop a preconditioner from an appropriately transformed version of
the matrix H.

We define the matrices F and S0 as in Property 3, with the dimension being either
p or n as is appropriate in context. Since the matrices T and H are block Toeplitz,
the matrices (I ⊗ F)T (I ⊗ F ∗) and (I ⊗ F)H(I ⊗ F ∗) with their (i, j) blocks given
by FTi−jF ∗ and FHi−jF ∗, respectively, are also block Toeplitz.

Now since the Hi are circulant, they can be diagonalized by the matrix F [4];
therefore, for each (i, j), FHi−jF ∗ is diagonal. In section 1 we assumed that the
unknowns are ordered first in the increasing α direction, then in order of increasing
β. Let P̂ be the N × N permutation matrix which reorders the unknowns in the
increasing β direction first. Then

T̃ = P̂ (I ⊗ F)T (I ⊗ F ∗)P̂T(11)

is a block matrix with Toeplitz n× n blocks while

H̃ = P̂ (I ⊗ F)H(I ⊗ F ∗)P̂T(12)

is a block diagonal matrix with n× n Toeplitz blocks.
Since T̃ has size n Toeplitz blocks, T̃ is related to a Cauchy-like matrix C̃ as

mentioned at the end of section 2:

C̃ = (I ⊗ F)T̃ (I ⊗ S∗0F ∗),(13)

where F and S0 now have dimension n. Each block of C̃ is Cauchy-like. Likewise, H̃
is related to a Cauchy-like matrix with Cauchy-like blocks:

K̃ = (I ⊗ F)H̃(I ⊗ S∗0F ∗).(14)

Since H̃ is block diagonal with Toeplitz blocks, K̃ is block diagonal with Cauchy-like
blocks. Finally, we observe that solving Tf = g must be equivalent to solving C̃f̃ = g̃,
where f̃ = (I ⊗ FS0)P̂ (I ⊗ F)f , g̃ = (I ⊗ F)P̂ (I ⊗ F)g.

As mentioned previously, since C̃ is Cauchy-like, we could apply Gu’s factorization
algorithm directly to it; however, the cost of a full factorization would be O(p(np)2)
operations. Fortunately, since each of the p blocks K̃ii is an n×n Cauchy-like matrix
of displacement rank 2, to completely factor K̃, our approximation to C̃, requires only
O(pn2) operations.

A factorization of K̃ii using a modified complete pivoting strategy may lead to
an interchange of rows (specified by a permutation matrix Pi) and columns (specified
by a permutation matrix Qi). Let P = diag(P1, . . . , Pp) and Q = diag(Q1, . . . , Qp).

We will use an appropriate piece of the matrix PT K̃QT , to be defined shortly, to
precondition the matrix PT C̃QT . First, we summarize the following sequence of
transformations which leads to the development of the preconditioner:

784 MISHA E. KILMER

1. Transform the matrices T and H to the Toeplitz block matrices T̃ and H̃ (cf.
(11) and (12)). Note that H̃ is also block diagonal.

2. Transform the matrices T̃ and H̃ to Cauchy-like matrices with Cauchy-like
blocks C̃ij , K̃ij , respectively (cf. (13) and (14)).

3. Permute the matrices C̃ and K̃ using the block diagonal permutation matrices
P and Q:

C = PT C̃QT ,

K = PT K̃QT .

Note that since all the transformations are accomplished with unitary matrices,
C and T have the same singular values, as do K and H.

Hence, setting y = Qf̃ and z = PT g̃, we wish to solve the problem

Cy = z.(15)

We choose a left preconditioner M , determined from K, so that M−1Cy = M−1z,
and use CGLS to solve the corresponding normal equations

(M−1C)∗(M−1C)y = (M−1C)∗M−1z.(16)

Recall from section 3.1 that we wish to design a preconditioner that clusters the
largest m∗ singular values while leaving the small singular values unchanged. Notice
also that the singular values of K, our approximation to C, are simply the union of
the singular values of the Kii = PTi K̃iiQ

T
i . Let Γ be the set of the largest m∗ singular

values of K. Then precisely mi singular values of Kii are in Γ, with m∗ =
∑p
i=1mi.

As a result of pivoting using Gu’s pivoting scheme, the mi×mi leading submatrix of
Kii corresponds to the well-conditioned part of K while the rest contributes to the
ill-conditioned part. Let Kii = LiiDiiUii and write this equation in block form, where
the upper left blocks are mi ×mi:[

K
(1)
ii K

(2)
ii

K
(3)
ii K

(4)
ii

]
=

[
L

(1)
ii 0

L
(2)
ii L

(3)
ii

][
D

(1)
ii 0

0 D
(2)
ii

][
U

(1)
ii U

(2)
ii

0 U
(3)
ii

]
.(17)

Here L
(1)
ii , L

(3)
ii are lower triangular, U

(1)
ii , U

(3)
ii are upper triangular, and D

(1)
ii and

D
(2)
ii are diagonal. Then we define

Mi =

[
L

(1)
ii 0
0 I

] [
D

(1)
ii 0
0 I

] [
U

(1)
ii 0
0 I

]
=

[
K

(1)
ii 0
0 I

]
.

Finally, we choose as our preconditioner the matrix

M = diag(M1, . . . ,Mp).

Since leading principal submatrices of Cauchy-like matrices are Cauchy-like, M is
a block diagonal matrix with Cauchy-like blocks each augmented by an identity of
appropriate (possibly zero) dimension.

Let us compare our preconditioning scheme with the preconditioning method
given in [17] (see also [16]) for the BTTB matrices of discrete ill-posed problems.
In [17] the preconditioner is determined by forming the T. Chan BCCB approxi-
mant to T , computing its eigenvalues via two-dimensional fast Fourier transforms,

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 785

and then replacing all the eigenvalues below a tolerance with ones. Therefore, our
method is similar to their BCCB-based preconditioner in that we also rely on a rank
revealing factorization to determine the appropriate cutoff which is used to form the
preconditioner. We choose our cutoff tolerance in a manner similar to that given in
[17]. However, our preconditioner is formed from a BTCB approximant to T , which
requires approximating T only on one level, unlike the BCCB approximant, which
requires approximating T on two levels.

The most notable difference is that we rely on a transformation to Cauchy-like
matrices; therefore we may use a fast pivoted factorization scheme, rather than two-
dimensional Fourier transforms, to generate the necessary rank revealing information.
While the preconditioner in [17] requires O(pn(lg p+lg n)) operations to precompute,
our preconditioner requires, in the worst case, O(pbw lg p+pn lg n+nm∗) operations to
precompute, where bw denotes the maximum block bandwidth of the matrix. However,
in applications bw is sometimes small compared to n, and when the blocks of T are
symmetric, the number of operations required to initialize our preconditioner can be

reduced to O(pn lg n+ bwp lg p+ms), where ms = n(m1 +mp/2 +
∑p/2
i=1mi) when p is

even. In some cases (when the dimension of the upper subspace is small, for example)
we have observed that ms is small relative to pn lg p, which implies our preconditioner
can be almost as cheap to precompute. Our preconditioner is competitive with the
BCCB matrix in that it is stable to compute and can be applied in at most O(pn lg n),
rather than O(pn(lg n + lg p)), operations. In the next section, we show that our
preconditioner is just as effective as the one in [17] in clustering the large singular
values around one. Further, we show that the small singular values remain small and
that the upper and lower subspaces remain unmixed.

4. Properties of the preconditioner. In this section we give theoretical re-
sults which show how successful our preconditioner is in filtering noise and accelerating
convergence to a regularized solution.

4.1. Clustering. Under the assumptions in section 3 for an ill-conditioned ma-
trix C, in order for the first few iterations of CGLS to capture the solution correspond-
ing to the largest m∗ singular values, the preconditioner must cluster the majority
of the m∗ singular values while leaving the small singular values and lower subspace
essentially unchanged. We show that the question of how well our preconditioner M
clusters the singular values can be reduced to the question of how well K approximates
C, or, equivalently, how well H approximates T .

We argue as follows. We first note that to show that the largest m∗ singular
values of M−1C cluster around one, it suffices to show that the smallest m∗ singular
values of I −M−1C cluster around zero. We denote the kth largest singular value of
a matrix Z by σk(Z) and the kth largest eigenvalue by λk(Z).

Let K − C = R. Now K = M + S, where S is block diagonal with blocks

Si =

[
0 K

(2)
ii

K
(3)
ii K

(4)
ii − I

]
.

Thus, M − C = R− S. We therefore obtain the equality

I −M−1C = M−1(R− S) = M−1(K − C)−M−1S.(18)

Now let

Yi =

[
0 0

K
(3)
ii K

(4)
ii

]
and Zi =

[
0 K

(1)−1
ii K

(2)
ii

0 −I
]
.

786 MISHA E. KILMER

Define ES and EM to be the block diagonal matrices

ES = diag(Y1, . . . , Yp) and EM = diag(Z1, . . . , Zp).

Then M−1S = ES + EM , where ES and EM each have rank N − m∗. From [23,
Thm. 3.3.16, part a],

σk+N−m∗(M−1S) ≤ σk(ES), k = 1, . . . ,m∗.

Applying [23, Thm. 3.3.16, parts a and d] to (18) with 2 ≤ i + j ≤ N + 1 for
N −m∗ + 1 ≤ j ≤ N, we have

σi+j−1(I −M−1C) ≤ σi(M
−1(K − C)) + σj(M

−1S)
≤ σ1(M−1)σi(K − C) + σj(M

−1S)
≤ σ1(M−1)σi(H − T) + σj+m∗−N (ES).

In particular,

σi+N−m∗(I −M−1C) ≤ σi(H − T)

σN (M)
+ σ1(ES), i = 1, . . . ,m∗.(19)

Hence, under the assumptions that the preconditioner is well-conditioned and that
the matrix ES has sufficiently small elements, the clustering of the singular values of
I −M−1C around zero depends on the clustering of the first m∗ singular values of
H − T around zero. We now discuss two special cases for which H − T has singular
values clustered around zero. First, we will need the following lemma from [4].

Lemma 4.1 (R. Chan and Q. Jin). Assume that the BTTB matrix T is symmet-

ric. Let the entries of block Ti be denoted t
(i)
jk = t

(i)
|j−k| for 1 ≤ j, k ≤ p, 1 ≤ i ≤ n.

Assume that the generating sequence of T is absolutely summable, i.e.,

∞∑
i=0

∞∑
j=0

|t(i)j | ≤ J <∞.

Then for all ε > 0, there exist j∗, k∗ > 0 such that for all p > k∗ and n > 0, at most
nj∗ eigenvalues of H − T have absolute values exceeding ε.

Since H − T is symmetric for symmetric BTTB matrices T , combining (19) with
Lemma 4.1, we obtain the following.

Theorem 4.2. Assume T is a symmetric BTTB matrix with an absolutely
summable generating sequence. Then for all ε > 0, there exists a k∗ > 0 such that
for all p > k∗ and n > 0, at most nj∗ +N −m∗ singular values of I −M−1C exceed

ε
σN (M) + σ1(ES).

In other words, at least m∗ − nj∗ singular values of I −M−1C are less than or
equal to ε

σN (M) + σ1(ES), as desired.

Let us consider another special case for which we are guaranteed clustering. Let
C2π denote the Banach space of all 2π-periodic, continuous, complex-valued functions
equipped with the norm ‖ · ‖∞ . This class of functions contains the Wiener class [2].
For all h ∈ C2π, let the Fourier coefficients of h be defined by

t̄k =
1

2π

∫ π

−π
h(θ)eikθdθ, k = 0,±1,±2, . . . ,

where i =
√−1. Let T̄ be the p × p complex Toeplitz matrix whose diagonals are

given by t̄k, and let H̄ be its T. Chan circulant approximation. Finally, let the BTTB

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 787

matrix T be given as T = R̄ ⊗ T̄ , where R̄ is a nonsingular n × n matrix. A lemma
proved by R. Chan and M. Yeung [3] will be useful.

Lemma 4.3 (R. Chan and M. Yeung). Let h ∈ C2π. Then for all ε > 0, there
exist k∗ and j∗ > 0, such that for all p > k∗,

T̄ − H̄ = Ū + V̄ ,

where

rank(Ū) ≤ j∗ and ‖V̄ ‖2 ≤ ε.

Applying this lemma to T, we obtain the following result.
Lemma 4.4. Given ε > 0, let k∗, j∗, Ū , and V̄ be defined as in Lemma 4.3 with

h ∈ C2π. Then

σi(T −H) ≤ ‖R̄‖2ε, nj∗ + 1 ≤ i ≤ N.

Proof. Using [23, Lems. 3.3.16 and 4.2.15],

σi(T −H) ≤ σi(R̄⊗ Ū) + σ1(R̄⊗ V̄) ≤ σi(R̄⊗ Ū) + ‖R̄‖2ε, i = 1, . . . , N.

However, since Ū has rank j∗, the rank of R̄⊗ Ū is nj∗, so that

σi(T −H) ≤ ‖R̄‖2ε, nj∗ + 1 ≤ i ≤ N.
We use Lemma 4.4 and (19) to deduce the following.
Theorem 4.5. Let the BTTB matrix T be defined as T = R̄ ⊗ T̄ for a given

n × n nonsingular matrix R̄, and let the entries of the p × p matrix T̄ be given by
t̄k−j defined above with h ∈ C2π. Then for all ε > 0, there exist k∗ and j∗ > 0,
such that for all p > k∗, at most nj∗ +N −m∗ singular values of I −M−1C exceed
‖R̄‖2ε
σN (M) + σ1(ES).

In both the aforementioned cases, assuming the values mi were chosen appropri-
ately, the preconditioner will cluster most of the m∗ singular values of the precondi-
tioned matrix around one when a sufficient number of the singular values of T − H
are small. As these special cases illustrate, a proof that our preconditioner is effective
at clustering the large singular values is reduced to a proof that many of the singular
values of T −H are small for the given BTTB matrix T .

4.2. Unmixing results. Recall that the transformation from the problem in-
volving T to one involving C was accomplished using a sequence of unitary transforms.
Thus, the singular values of T and C are the same, as is our definition of the upper,
lower, and transition spaces in section 3. That is, we have changed the bases for the
respective spaces, but we have not mixed them.

For the approximate solution generated by CGLS in early iterates to be essentially
unaffected by noisy components in the lower subspace, we require that the precondi-
tioner not mix the upper and lower subspaces. The following theorem tells the extent
to which preconditioning by M mixes these subspaces.

Theorem 4.6. Let k be the dimension of the subspace corresponding to the
smallest k singular values and let

C = [Q1Q2Q3]

 Σ1 0 0
0 Σ2 0
0 0 Σ3

 V ∗1
V ∗2
V ∗3

 ,

788 MISHA E. KILMER

M−1C =
[
Q̂1 Q̂2 Q̂3

] Σ̂1 0 0

0 Σ̂2 0

0 0 Σ̂3

 V̂ ∗1
V̂ ∗2
V̂ ∗3

be singular value decompositions with V3, V̂3 ∈ CN×k and V1, V̂1 ∈ CN×m∗ . Then

‖V ∗1 V̂3‖2 ≤ σ̂N−k+1

σm∗
(max{1,max

i
‖K(1)

ii ‖2}).

Proof. Using the decompositions, we have

V ∗1 V̂3 = (V ∗1 C
−1)M(M−1CV̂3)

= Σ−1
1 Q∗1MQ̂3Σ̂3.

Since Q∗1 has orthonormal columns, as does Q̂3, it follows that

‖V ∗1 V̂3‖2 ≤ σ̂N−k+1

σm∗
‖M‖2 =

σ̂N−k+1

σm∗
(max{1,max

i
‖K(1)

ii ‖2}).

We note that if the preconditioner developed in [17] for their right preconditioning
scheme is applied to the left rather than the right, a similar result can be obtained.

Next we show that σ̂j ≈ σj for σj corresponding to the last N − m∗ singular
values, and thus σ̂N−k+1 is small. Hence, if M is well-conditioned, we are guaranteed
that the upper and lower subspaces remain unmixed.

For given values of mi, we first rewrite C in block form:

C =

C

(1)
11 C

(2)
11 . . . C

(2)
1n

C
(3)
11 C

(4)
11 . . . C

(4)
1n

...
...

...
...

C
(1)
n1 C

(2)
n1 . . . C

(2)
nn

C
(3)
n1 C

(4)
n1 . . . C

(4)
nn

 ,

where C
(1)
ii is mi ×mi and C

(4)
ii is n−mi × n−mi. Likewise, we rewrite M−1C:

M−1C =

K

(1)−1
11 C

(1)
11 K

(1)−1
11 C

(2)
11 . . . K

(1)−1
11 C

(2)
1n

C
(3)
11 C

(4)
11 . . . C

(4)
1n

...
...

...
...

K
(1)−1
nn C

(1)
n1 K

(1)−1
nn C

(2)
n1 . . . K

(1)−1
nn C

(2)
nn

C
(3)
n1 C

(4)
n1 . . . C

(4)
nn

 .

Define the m∗ × N matrices EM1
, EC1

to contain the odd row-blocks of C and
M−1C, respectively, and let E1 be the N − m∗ × N matrix containing the even
row-blocks of C (or M−1C).

Under this partitioning, it easy to verify the relations

(M−1C)∗(M−1C) = EM + E,
C∗C = EC + E,

(20)

where EM = E∗M1
EM1

, EC = E∗C1
EC1

, and E = E∗1E1. Since EM and EC have rank
m∗ and E has rank N −m∗, we obtain the following.

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 789

Theorem 4.7. The (m∗ + i)th singular value of each of the matrices C and
M−1C lies in the interval [0, σi(E)] for i = 1, . . . , N −m∗.

Proof. Since the matrices in (20) are all Hermitian, we may apply Corollary IV.4.9
and problem 4, page 211, of [30] to obtain

λN (E) + λm∗+i(EM) ≤ λm∗+i((M−1C)∗(M−1C)) ≤ λm∗+1(EM) + λi(E)

and

λN (E) + λm∗+i(EC) ≤ λm∗+i(C∗C) ≤ λm∗+1(EC) + λi(E).

However, λN (E) = 0 and λm∗+1(EM) = 0 = λm∗+1(EC), and thus

0 ≤ λm∗+i((M−1C)∗(M−1C)) ≤ λm∗+1(EM) + λi(E) = λi(E)

and

0 ≤ λm∗+i(C∗C) ≤ λm∗+1(EC) + λi(E) = λi(E).

The proof is completed by taking square roots.

4.3. Properties of the factorization. The theorems in section 4.1 and section
4.2 show that the preconditioner will be effective under two restrictions. First, M ,

and hence each K
(1)
ii , must be well-conditioned. Second, the entries in E and ES

are required to be small. We now discuss to what extent these conditions hold for
integral equation discretizations. It was discovered in [28] that if T satisfies the
following property, then we expect these two conditions to hold. We refer the reader
to [28] for details.

Property 4. Suppose T is the BTTB matrix which results from the discretization
of a smooth kernel t, normalized so the maximum element is one. For l = 1, . . . , p, let
K̃ll = FH̃lS

∗
0F
∗, where H̃l is an n× n Toeplitz matrix from the block diagonal of the

matrix H̃ defined in section 3.2. Then for n sufficiently large, there exists an ε � 1
and ml � n such that all the elements of K̃ll are less than ε in magnitude except for
those located in the four corner blocks of total dimension ml ×ml.

Consequently, each Cauchy-like block of K̃ can be permuted to contain the large
elements in its upper left block. We have observed that when Gu’s algorithm is applied

to K̃ll described in Property 4, his pivoting strategy is such that K
(1)
ll will contain

the four corner blocks. Any pivoting strategy that yields this type of permutation
will give a reasonable preconditioner for our scheme. We refer the interested reader
to [14] for details of Gu’s modified, complete pivoting strategy.

Thus, the components of the matrix ES in section 4.1 are small, and therefore our
preconditioner has the property that the largest singular values of the preconditioned
matrix are clustered, provided that the singular values of K − C are small. But if
the singular values of K − C are small, then the matrix E in section 4.2 necessarily
has small singular values. Hence, the invariant subspace corresponding to the small
singular values of C is not much perturbed by preconditioning. We therefore expect
that the initial iterations of CGLS applied to the preconditioned system will produce
a solution that is a good approximation to the noise-free solution f̂ .

790 MISHA E. KILMER

5. Algorithmic issues. Our algorithm is as follows:

ALGORITHM 1. SOLVING Tf = g
1. Compute the generators for each submatrix Kii (see section 5.3).
2. For each i, determine the size mi of the partial factorization and

factor Kii = PiLiiDiiUiiQi.
3. Set P = diag(P1, . . . , Pp), Q = diag(Q1, . . . , Qp), z = PTF g̃.
4. For i = 1, . . . , n, determine the generators of the mi ×mi leading

submatrix, K
(1)
ii , of Kii and let Mi = [K

(1)
ii

0

0 I
] (see section 5.3.).

5. Set M = diag(M1, . . . ,Mp) and compute M−1 as in section 5.3.
6. Compute an approximate solution ỹ to M−1Cy = M−1z using a

few steps of CGLS where matrix-vector products involving C =
PT C̃QT are formed without forming C itself (see section 5.2).

7. The approximate solution in the original coordinate system is
f = S∗0F

∗QT ỹ.

A few comments about the algorithm are in order. First, the submatricesK
(1)
ii and

the matrix M are never actually formed; with only the easily determined generators of

K
(1)
ii and its factors, we can compute matrix-vector products with M−1 in O(pn lg n)

operations (see section 5.4). Second, when to stop the CGLS iteration in order to get
the best approximate solution is a well-studied but open question (for instance, see
[20] and the references therein). We do not solve this problem, but we consider other
algorithmic issues in the following subsections.

5.1. Determining the size of the K
(1)
ii . As shown in section 4, the choices of

the parameters mi determine the number of clustered singular values in the precon-
ditioned system. Since p partial factorizations of size mi need to be computed, they
influence the number of initialization operations. Most importantly, as Theorem 4.6
indicates, m∗ =

∑p
i=1mi influences the mixing of upper and lower subspaces. We use

a simple heuristic in our numerical experiments. Given the noisy right-hand-side vec-
tor g, let G be the n× p matrix with entries given by Gkj = g(k−1)n+j for 1 ≤ k ≤ n,

1 ≤ j ≤ p, and let G̃ be its two-dimensional, normalized, inverse discrete Fourier
transform. Then it is easy to show that the right-hand-side g̃ defined in section 3.2
results from stacking G̃ by columns. We sort the absolute values of g̃ and determine
m∗ to be the index of the value, ctol, for which the Fourier coefficients start to level
off. This is presumed to be the noise level. Since G̃ requires O(np(lg p + lg n)) op-
erations to compute, the cost involved in determining m∗ is also O(np(lg p + lg n))
operations.

We choose the values mi using two slightly different methods, which we now
describe, and we compare the results in section 6. In the first approach, each value
mi is defined as the number of elements in the ith column of G̃ which are larger than
ctol. We call this method of computing the values mi the Fourier coefficient method.
In the second approach, a full factorization is performed on each block K̃ii so that all
the entries of each diagonal matrix Dii are known. We set d to be the N -length vector
comprised of the diagonals of the Dii, sort the elements in decreasing magnitude, and
set dtol to be the m∗th largest magnitude element. The value mi is then defined to be
the number of diagonal entries in Dii which have magnitude greater than dtol. This
is the d-selection method for computing the values mi.

The latter approach appears to be the more expensive of the two, requiring O(pn2)

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 791

operations to compute all values mi. However, we found that the entries of Dii decay
nearly monotonically so that the values mi could be similarly obtained by performing
the steps of the factorization of each block in parallel. That is, the first step of the
factorization is performed on all the blocks sequentially, then the second step on all
the blocks, and so forth, up to step j. Block K̃ii ceases to be factored after step
j when |(Dii)jj | is determined to be too small. Hence, with careful administration,
all values mi can be computed from the diagonal entries in Dii as they accumulate
in O(n

∑p
i=1mi) operations, where the values mi are almost identical to the values

obtained in our second approach.

5.2. Matrix-vector products with C. Recall that C is related to the origi-
nal BTTB matrix T through a sequence of fast unitary transforms and permutation
matrices described in section 3.2. Since matrix-vector products involving T can be
computed in O(np(lg n + lg p)) operations, matrix-vector products involving C can
also be computed in O(np(lg n+lg p)) operations without ever having to compute the
entries of C.

5.3. Computing the preconditioner. Since the entries of K̃ can be written in
terms of the generators of each block, it is necessary to discuss how these generators are
obtained. Because each block ofH is circulant, the nonzero entries of (I⊗F)H(I⊗F ∗),
which lie on the diagonals of each of its blocks, are the eigenvalues of each block of

H. Let λ
(l)
k for 1 ≤ k ≤ p, 1 − n ≤ l ≤ n − 1 denote the kth eigenvalue of block Hl.

It is well known that the eigenvalues of a p× p circulant matrix can be computed by
means of an FFT in O(p lg p) operations. Since there are at most 2n distinct Hl, all

the λ
(l)
k can be computed in at most O(np lg p) operations. The matrix P̂ permutes

these eigenvalues so that H̃ = P̂ (I ⊗ F)H(I ⊗ F ∗)P̂T is a block diagonal matrix
with p, n× n Toeplitz matrices H̃i on its diagonal. The diagonals of H̃i are given by

t̃
(i)
j = λji , 1− n ≤ j ≤ n− 1, i = 1, . . . , p.

Now H̃i is Toeplitz, so it satisfies (7) with A = Ai and B = Bi. Examination of
(7) shows that the entries of the n× l matrices Ai and Bi are easily determined. The
first column of Ai is the first unit vector, and the second column is given by

[0, t̃
(i)
n−1, t̃

(i)
n−2, . . . , t̃

(i)
p−1, . . . , t̃

(i)
1]T + [t̃

(i)
0 , t̃

(i)
−1, t̃

(i)
−2, . . . , t̃

(i)
−(q−1), . . . , t̃

(i)
−(n−1)]

T .(21)

The first column of Bi is

[t̃
(i)
−(n−1), t̃

(i)
−(n−2), . . . , t̃

(i)
−(q−1), . . . , t̃

(i)
−1, t̃

(i)
0]T − [t̃

(i)
1 , t̃

(i)
2 , . . . , t̃

(i)
p−1, . . . , t̃

(i)
n−1, 0]T(22)

and the second column is the last unit vector. The generators for K̃ii are then Ãi ≡
FAi and B̃i ≡ conj(FS0)Bi, where conj(·) denotes complex conjugation, with F and
S0 as described in Property 3. Since Ãi and B̃i can be computed by means of the
inverse fast Fourier transform of size n, computing all p generator pairs requires a
total of O(np lg n) operations.

By Property 3, K̃ii satisfies the displacement (4) with Ω = S1 and Θ = S−1.

Therefore, using Property 1 K
(1)
ii satisfies

Ω1K
(1)
ii −K(1)

ii Θ1 = A
(1)
i B

(1)T
i ,

where Ω1 and Θ1 are the leading principal submatrices of PTi ΩPi and QiΘQ
T
i , respec-

tively, and A
(1)
i and B

(1)
i contain the first mi rows of PTi Ãi and QTi B̃i, respectively.

792 MISHA E. KILMER

From Property 5, the expression for the entries of K
(1)−1
ii is

K
(1)−1
ii = −

(
x

(i)T
j w

(i)
k

θ̃j − ω̃k

)
1≤j,k≤n

,(23)

where θ̃j and ω̃k are the elements of Θ and Ω that appear in Θ1 and Ω1, respectively,

and, from (6), the vectors x
(i)
j and w

(i)
k are rows of X

(1)
i and W

(1)
i defined as

K
(1)
ii X

(1)
i = A

(1)
i , W

(1)T
i K

(1)
ii = B

(1)T
i .

Computing X
(1)
i and W

(1)
i costs O(m2

i) operations, given the factorization of K
(1)
ii and

the matrices A
(1)
i and B

(1)
i . Since M−1 = diag(M−1

1 , . . . ,M−1
p), it takes O(

∑p
i=1m

2
i)

operations to precompute M−1 given the matrices Ãi, B̃i for i = 1, . . . , p. As discussed
at the beginning of this section, finding Ãi and B̃i requires O(bwp lg p + pn lg n)
operations to precompute. The cost of computing the permutation matrices Pi and

Qi necessary to determine A
(1)
i and B

(1)
i is O(nmi) operations. Thus, the cost for

precomputing M−1 is O(bwp lg p+ pn lg n+ +n
∑n
i=1mi) operations.

5.4. Applying the preconditioner. Since M−1 is block diagonal, to compute

M−1r requires the p computations K
(1)−1
ii ri where ri is the length mi subvector of

r beginning at index ip + 1. Using Algorithm 2 of [28], we compute each K
(1)−1
ii ri

stably in O(n lg n) operations. Thus each application of the preconditioner costs at
most O(pn lg n) operations. (If pm < p of the values mi are nonzero, as we often
found in practice, the cost reduces to O(pmn lg n) operations.) Since matrix-vector
products involving C can be computed in O(np(lg p+lg n)) operations, each iteration
of CGLS costs O(np(lg p+ lg n)) operations.

6. Numerical results. In this section we summarize results of our algorithm
on two test problems using Matlab and IEEE floating point double precision arith-
metic. Our measure of success in filtering noise is the relative error, the 2-norm of the
difference between the computed estimate f and the vector f̂ corresponding to zero
noise, divided by the 2-norm of f̂ . In each case, we apply the CGLS iteration with
block Cauchy-like preconditioner with m∗ =

∑p
i=1mi. The value m∗ = 0 corresponds

to no preconditioning.

6.1. Example 1. As mentioned in the introduction, BTTB matrices often arise
in two-dimensional image processing problems. As an example, we consider the BTTB
matrix T = T0⊗T0, where T0 is the 32× 32 Toeplitz matrix with diagonals (see [24])

hk =

 c
sin(k

BL
)

k
BL

2

, 0 ≤ |k| ≤ Bw,
0 otherwise,

where c is a normalization constant; BL = 2; and Bw, the bandwidth of T0, is set to
5. The condition number of T is approximately 1.6× 108.

We then generate f̂ by forming the image shown in Figure 1 and stacking it in
columns. The image itself was created by truncating to radius 8 a two-dimensional
Gaussian with standard deviation 30 centered at row 20, column 19, and multiplying
the values by 40. A 3× 3 spike of height 40 with upper-left corner at row 13, column
10, was also added. Next, we set g = T f̂+e, where e is a normally distributed random

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 793

0

10

20

30

0

10

20

30

0

10

20

30

40

rowcol

valu
e

Fig. 1. Original image, Example 1.

100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

index

val
ue

Fig. 2. Solid line shows two-dimensional Fourier coefficients of the noisy data sorted in order
of decreasing magnitude. Dashed line shows diagonal entries obtained during factorization, sorted
in order of decreasing magnitude, Example 1.

vector, generated with the Matlab randn function, scaled so that the noise level was
10−2. The sorted absolute two-dimensional Fourier coefficients of G (cf. section 5.1)
together with the vector d are shown in Figure 2.

The solid line in Figure 3 shows the convergence of CGLS in relative error for
Example 2. With no preconditioning (i.e., m∗ = 0) CGLS required 49 iterations to
achieve its minimum relative error value of 2.54× 10−1. The dashed line in Figure 3
depicts the convergence of CGLS on the left-preconditioned system using our precon-
ditioner with m∗ = 122 and where the d-method for selecting the mi is used. After
seven iterations, a value of 2.59 × 10−1 was achieved. The dotted line in the figure
shows the convergence behavior on the left-preconditioned system when m∗ = 109
using the Fourier coefficient method of determining mi. After six iterations, the min-
imum relative error of 2.66× 10−1 was reached. In comparison, the dash-dotted line
illustrates the optimal convergence behavior of the right-preconditioned scheme in
[17], where the cutoff was determined to be 116 eigenvalues. This method achieves a
minimum relative error value of 2.53× 10−1 in seven iterations.

In fact, we note that the matrix in Example 1 is a special example of BTTB
matrices arising from tensor products of Toeplitz matrices. In the case where T =
T1⊗T2, T1 6= T2, it is easy to show that the cost of precomputing our preconditioner
is reduced to O(nm1 + p lg p+ n lg n) operations. Likewise, the cost of precomputing
the preconditioner in [17] reduces to O(p lg p+n lg n) operations. (These costs do not
include the cost of determining the cutoffs.)

794 MISHA E. KILMER

0 10 20 30 40 50 60
10

−1

10
0

iteration

rela
tive

 er
ror

Fig. 3. Relative error in computed solutions for Example 1. Solid line shows convergence for
m∗ = 0; dashed line shows convergence for preconditioner with m∗ = 122 using d-selection method;
dotted line shows convergence when m∗ = 109 using Fourier coefficient selection method; dash-dotted
line shows convergence for the preconditioning scheme [17] with cutoff at 116 eigenvalues.

6.2. Example 2. In Example 1, the matrix T was symmetric and its block
bandwidth was small relative to the number p of blocks. Since unsymmetry and larger
bandwidth can be encountered in practice, we consider the nonsymmetric matrix with

a larger block bandwidth as follows. We set t
(1)
j and t

(2)
j to be the length 32 vectors

with entries given by

t
(1)
j = c1e

(−.1(1−j)2) if j ≤ 6 and 0 otherwise,

t
(2)
j = c2e

(−.2(1−j)2) if j ≤ 11 and 0 otherwise,

where c1 and c2 were normalization constants, and we set T̄ to be the Toeplitz matrix
with first column t1 and first row t2 using the Matlab command T̄ = toep(t(1), t(2)).
We then generate a matrix H as shown in Example 1 with BL = 1 and Bw = 12.
Finally, we form T by tensor products: T = H ⊗ T̄ . The condition number is 109.

For this example we took the exact solution f̂ to be same as in Example 2. Next,
we set g = T f̂ + e, where e is a normally distributed random vector scaled so that
the noise level was 10−3. The sorted absolute two-dimensional Fourier coefficients of
G and the vector d are shown in Figure 4.

The relative error plot in Figure 5 shows that with no preconditioning, CGLS
reaches its minimum relative error value of 1.05 × 10−1 at 121 iterations. However,
using our preconditioner with m∗ = 576 and the d-selection method for determining
the mi, a relative error value of 1.06 × 10−1 was reached in only eight iterations.
When m∗ = 435 and the Fourier coefficient selection method is used to determine our
preconditioner, a relative error value of 1.44 × 10−1 was reached in nine iterations;
after 30 iterations, the relative error was improved to 1.18 × 10−1. In contrast, the
preconditioned iterative scheme in [17] could do no better than 1.24 × 10−1 after 17
iterations (achieved when the cutoff was 574 eigenvalues).

6.3. Example 3. Finally, we consider an example for which T is not a tensor
product of Toeplitz matrices. The entries of the 1024 × 1024 BTTB matrix T are
given by

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 795

100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

index

val
ue

Fig. 4. Solid line shows two-dimensional Fourier coefficients of the noisy data sorted in order
of decreasing magnitude. Dashed line shows diagonal entries obtained during factorization, sorted
in order of decreasing magnitude, Example 2.

0 50 100 150
10

−1

10
0

iteration

rela
tive

 er
ror

Fig. 5. Relative error in computed solutions for Example 2. Solid line shows convergence for
m∗ = 0; dashed line shows convergence for preconditioner with m∗ = 576 using d-selection method;
dotted line shows convergence when m∗ = 435 using Fourier coefficient selection method; dash-dotted
line shows convergence for the preconditioning scheme [17] with cutoff at 574 eigenvalues.

(Tij)kl =

{
exp(−.05(|i− j|+ |k − l|)2), |i− j| < 9 and |k − l| < 9,
0 otherwise.

The condition number of this matrix was 2.62× 105.
Again, we took the same exact solution f̂ as in the previous two examples. The

noise level for this problem was 10−3. In Figure 6 we plot both the sorted absolute
two-dimensional Fourier coefficients ofG and the sorted absolute values of the vector d.

With no preconditioning, CGLS requires 168 iterations to reach its minimum
relative error of 1.137×10−1, as illustrated in Figure 7. In comparison, we found that
the preconditioned iterative scheme in [17] could not achieve a smaller relative error
than 1.280 × 10−1 for any cutoff value in fewer than 180 iterations; this particular
relative error was achieved in 54 iterations when the cutoff was 319 eigenvalues (see
Figure 7). Setting m∗ = 307 and using the d-selection method of determining the mi

gave the overall best relative error; a minimum relative error value of 1.136 × 10−1

was reached in 48 iterations. However, for m∗ = 224, a minimum relative error value
of 1.138×10−1 was reached in only 38 iterations (see Figure 7). In fact, we found that

796 MISHA E. KILMER

100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Fig. 6. Solid line shows two-dimensional Fourier coefficients of the noisy data sorted in order
of decreasing magnitude. Dashed line shows diagonal entries obtained during factorization, sorted
in order of decreasing magnitude, Example 3.

0 20 40 60 80 100 120 140 160 180
10

−1

10
0

Iteration

rela
tive

 er
ror

Fig. 7. Relative error in computed solutions for Example 3. Solid line shows convergence for
m∗ = 0; dashed line shows convergence for preconditioner with m∗ = 224 using d-selection method;
dotted line shows convergence when m∗ = 165 using Fourier coefficient selection method; dash-dotted
line shows convergence for the preconditioning scheme [17] with cutoff at 319 eigenvalues.

there was a large range of values for m∗ (150 to 347) for which our preconditioned
CGLS scheme (with the d-selection method of choosing mi) gave solutions having
near-minimal (< 1.15) relative error in 35 to 60 iterations. Using the Fourier selection
method for choosing the mi, our preconditioned iterative scheme took 64 iterations to
reach a minimum relative error value of 1.139×10−1 when m∗ = 165. For this selection
scheme, we also found a large range of values m∗ for which this preconditioner gave
comparable relative error minima in 58 to 70 iterations.

6.4. Results summary. We conducted several other experiments comparing
the effectiveness of our preconditioner with the effectiveness of the preconditioner
found in [17] (see also [16]). The experiments, which we now summarize, were con-
ducted using matrices of different sizes and structure, different original images, and
various noise levels. First, we found that in cases where the dimension of the transition
subspace was large relative to the dimension of the problem, while both precondition-
ers could be successful in speeding convergence in the first few iterations (i.e., the
cutoffs could be chosen to cluster the largest singular values), it was unlikely that

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 797

either preconditioned scheme could, within fewer iterations, produce solutions whose
relative errors were comparable to those generated by unpreconditioned CGLS. We
attribute this phenomena to the fact that both preconditioners mixed too much noise
into early iterates by clustering too many singular values without being able to re-
construct some important components of the solution lying in the transition space.

As the ratio of block bandwidth to block size was increased, we found the BTCB
approximation to T did a much better job than the BCCB approximation to T of
approximating the midrange and small singular values of the matrix. We also found
this to be true when the matrix was blockwise unsymmetric. Consequently, our
preconditioner can show significant improvement for these types of problems over the
preconditioner in [17] when the cutoff, determined by the noise level, is small enough
to include some midrange singular values, as evidenced in Example 2. For larger noise
levels, there was no consistent or significant advantage to using one preconditioner
over the other. We therefore particularly recommend our preconditioner when T is
block unsymmetric, has a ratio of block bandwidth to block size larger than, say, 1/8,
and in other such cases when we expect that the T. Chan BCCB matrix approximation
to T will fail to approximate T well on the block level.

Example 1 shows that when the block bandwidth is small relative to block size,
the matrix is symmetric, and the dimension of the upper subspace is small relative
to N , the optimal preconditioner in [17] can produce solutions with slightly smaller
relative error in somewhat fewer iterations than our optimal preconditioner. It is
important to remember that both preconditioners were sensitive to the choice of
cutoff, so finding the optimal preconditioner is difficult in practice. Also, the cost
to initialize our preconditioner in Examples 1 and 2 is of the same order of magnitude
as the initialization cost of the preconditioner in [17].

In short, our preconditioner never performs much worse than the preconditioner
in [17] and can perform much better in some cases.

7. Conclusions. We have developed an efficient algorithm for computing regu-
larized solutions to discrete ill-posed problems involving BTTB matrices. Our algo-
rithm uses a unitary transform to transform the BTTB matrix and its BTCB approx-
imant to Cauchy-like matrices whose blocks are Cauchy-like. It then iterates using
the CGLS algorithm on the left-preconditioned system, where the preconditioner was
determined using size mi partial factorizations with pivoting on each of the p blocks
of the transformed BTCB matrix. By exploiting properties of the transformation, we
showed each iteration of CGLS costs O(np(lg n + lg p)) operations for a Cauchy-like
system with p blocks of size n.

The theory developed in section 4 predicts that for many types of BTTB matrices,
the preconditioner determined in the course of Gu’s fast, modified, complete pivoting
algorithm can be expected to cluster the largest singular values around one and to
keep the small singular values small while leaving the upper and lower subspaces
unmixed. Thus, CGLS produces a good approximation to the noise-free solution
within a small number of iterations. Our results indicate that the algorithm is both
efficient and practical with the truncation parameters mi chosen using our second
heuristic. Finally, the results show that our preconditioned method is competitive
with the preconditioned method of [17] in terms of both the number of iterations
required to reach a reasonable regularized solution and the amount of work performed
per iteration.

We note that this preconditioner can also be applied in situations where the matrix
T is only block Toeplitz and the blocks are not necessarily Toeplitz. In this case the

798 MISHA E. KILMER

diagonals of block Hi of the BTCB matrix H will be the T. Chan approximation to
block Ti given by the formula (see [5], for instance)

h
(i)
l =

1

p

∑
j−k=l(mod n)

T
(i)
jk , l = 0, . . . , p− 1.

Acknowledgments. I would like to thank Dianne O’Leary for her helpful com-
ments and guidance during the preparation of this paper. I am also grateful to Jim
Nagy and a referee for providing suggestions on numerical examples and to both
referees for their insightful remarks.

REFERENCES

[1] R. Chan, J. Nagy, and R. Plemmons, FFT-based preconditioners for Toeplitz-block least
squares problems, SIAM J. Numer. Anal., 30 (1993), pp. 1740–1768.

[2] R. Chan, J. Nagy, and R. Plemmons, Circulant preconditioned Toeplitz least squares itera-
tions, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 80–97.

[3] R. Chan and M. Yeung, Circulant preconditioners for Toeplitz matrices with positive contin-
uous generating functions, Math. Comp., 58 (1992), pp. 233–240.

[4] R. H. Chan and X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci.
Stat. Comput., 13 (1992), pp. 1218–1235.

[5] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[6] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Com-
put., 9 (1988), pp. 766–771.

[7] T. F. Chan and P. C. Hansen, A lookahead Levinson algorithm for general Toeplitz systems,
IEEE Proc. Signal Processing, 40 (1992), pp. 1079–1090. Cited by [14].

[8] H. E. Fleming, Equivalence of regularization and truncated iteration in the solution of ill-posed
problems, Linear Algebra Appl., 130 (1990), pp. 133–150.

[9] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting
of matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[10] I. Gohberg and V. Olshevsky, Fast algorithm for matrix Nehari problem, in Proceedings of
MTNS-93, Systems and Networks: Mathematical Theory and Applications, Invited and
Contributed Papers, R. M. U. Helmke and J. Saures, eds., Vol. 2, Academy Verlag, 1994,
pp. 687–690.

[11] I. Gohberg and V. Olshevsky, Fast state space algorithms for matrix Nehari and Nehari-
Takagi interpolation problems, Integral Equations Operator Theory, 20 (1994), pp. 44–83.

[12] G. Golub and V. Olshevsky, Pivoting for Structured Matrices, with Applications,
http://www-isl.stanford.edu/olshevsk (1997).

[13] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, Reading, MA,
1992.

[14] M. Gu, Stable and Efficient Algorithms for Structured Systems of Linear Equations, Tech. rep.
LBL-37690, Lawrence Berkeley Laboratory, Berkeley, CA, 1995.

[15] M. H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur Algorithms for Non-
Hermitian Toeplitz Systems, Tech. rep. IPS 93-11, IPS Supercomputing, ETH-Zurich,
Switzerland, 1993.

[16] M. Hanke and J. Nagy, Restoration of atmospherically blurred images by symmetric indefinite
conjugate gradient techniques, Inverse Problems, 12 (1996), pp. 157–173.

[17] M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posed
problems, in Numerical Linear Algebra and Sci. Computing, L. Reichel, A. Ruttan, and R.
S. Varga, eds., de Gruyter, Berlin, 1993, pp. 141–163.

[18] P. C. Hansen, The discrete Picard condition for discrete ill-posed problems, BIT, 30 (1990),
pp. 658–672.

[19] P. C. Hansen, Rank Deficient and Discrete Ill-Posed Problems, Ph.D. thesis, Technical Uni-
versity of Denmark, Odense, Denmark, 1995, UNIC Report UNIC-95-07.

[20] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.

[21] G. Heinig, Inversion of generalized cauchy matrices and other classes of structured matrices,
in Linear Algebra in Signal Processing, IMA Vol. Math. Appl. 69, Springer-Verlag, New
York, 1994, pp. 95–114.

TWO-DIMENSIONAL CAUCHY-LIKE PRECONDITIONERS 799

[22] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Bur. Standards, 49 (1952), pp. 409–436.

[23] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

[24] A. K. Jain, An operator factorization method for restoration of blurred images, IEEE Trans.
Comput., C-26 (1977), pp. 1061–1071.

[25] T. Kailath, S. Kung, and M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl., 78 (1979), pp. 395–407.

[26] T. Kailath and V. Olshevsky, Displacement structure approach to discrete-trigonometric-
transform based preconditioners of the G.Strang and T.Chan types, Calcolo, 33 (1996),
pp. 191–208.

[27] M. E. Kilmer, Regularization of Ill-Posed Problems, Ph.D. thesis, University of Maryland,
College Park, MD, 1997.

[28] M. E. Kilmer and D. P. O’Leary, Pivoted Cauchy-like preconditioners for regularized solution
of ill-posed problems, SIAM J. Sci. Comput., to appear.

[29] T. Ku and C.-C. J. Kuo, On the spectrum of a family of preconditioned block Toeplitz matrices,
SIAM J. Sci. Statist. Comput., 13 (1992), pp. 948–966.

[30] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA,
1990.

[31] D. R. Sweet, The use of pivoting to improve the numerical performance of Toeplitz matrix
algorithms, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 468–493.

[32] A. van der Sluis and H. van der Vorst, The rate of convergence of conjugate gradients,
Numer. Math., 48 (1986), pp. 543–560.

[33] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 164–176.

ON SMOOTH DECOMPOSITIONS OF MATRICES∗

LUCA DIECI† AND TIMO EIROLA‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 800–819

Abstract. In this paper we consider smooth orthonormal decompositions of smooth time varying
matrices. Among others, we consider QR-, Schur-, and singular value decompositions, and their
block-analogues. Sufficient conditions for existence of such decompositions are given and differential
equations for the factors are derived. Also generic smoothness of these factors is discussed.

Key words. smooth orthonormal factorizations, QR factorization, Schur-decomposition, singu-
lar value decomposition, polar decomposition

AMS subject classifications. 15A, 65F, 65L

PII. S0895479897330182

1. Introduction. For very good reasons, orthogonal matrices (unitary in the
complex case) are the backbone of modern matrix computation. They can be com-
puted stably, and they provide some of the most successful algorithmic procedures
for a number of familiar tasks: finding orthonormal bases, solving least squares prob-
lems, eigenvalues and singular values computations, for example. The purpose of this
work is to consider orthogonal decompositions for matrices depending on a real pa-
rameter. Thus we consider k times continuously differentiable matrix functions, i.e.,
A ∈ Ck(R,Cm×n), k ≥ 0.

We consider a number of basic tasks, such as the QR-, Schur-, and singular
value decomposition (SVD) of A, and their block-analogues. Of course, in general,
the matrix A(t) will have, say, an SVD at each given t, but we are interested in
conditions and procedures guaranteeing that the factors involved are smooth. This is
desirable in several situations, such as in updating techniques, perturbation theory, or
continuations processes, or to compute moving frames, e.g., to an invariant curve in
space (see [4], [13], [9], [14]). A key motivation for us was provided by techniques for
computing Lyapunov exponents (e.g., see [2] or [5]), in which case A is a solution of a
linear system; in particular, it is full rank for all t. (This turns out to be a convenient
sufficient condition for some of the factorizations considered below.)

Fundamental theoretical results on decompositions of parameter dependent ma-
trices A are given in the book by Kato [12]. There, the strongest results are obtained
in case A is real analytic and Hermitian; then, for example, it has an analytic Schur-
decomposition. Similarly, Bunse–Gerstner et alia have shown that a real analytic A
admits an analytic SVD [3]. A different technique is used by Gingold and Hsieh in
[6] to show that a real analytic (not necessarily Hermitian) matrix with only real
eigenvalues admits an analytic Schur-decomposition (triangularization). However, we
do not want to require analyticity of A; many of the problems which motivated our
work arise from linearization of a differential equation around a computed trajectory,
and A may represent either the fundamental solution of the linearized problem or the

∗Received by the editors November 14, 1997; accepted for publication (in revised form) by V.
Mehrmann August 11, 1998; published electronically April 27, 1999. This work was supported in
part under NSF grant DMS-9625813 and Academy of Finland grant 26341.

http://www.siam.org/journals/simax/20-3/33018.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 (dieci@math.

gatech.edu).
‡Department of Mathematics, Joensuu University, FIN-80101, Joensuu, Finland (teirola@cc.

joensuu.fi).

800

ON SMOOTH DECOMPOSITIONS OF MATRICES 801

Jacobian matrix of the vector field. Thus we are interested in the case of A being
a Ck-matrix. Unfortunately, smoothness of A does not suffice for the existence of
smooth decompositions for it. For example, in the case of a Hermitian matrix, it is
well understood that a smooth Schur-decomposition, in general, does not exist.

In this paper, we first give some (strong) sufficient conditions for smooth decom-
positions to exist. Differential equations for the factors will be given in such cases.
Seemingly, these conditions appear very restrictive. For example, for the QR factor-
ization of a matrix A, one would need full rank of A; for the Schur factorization of a
symmetric matrix or the SVD of a full rank matrix, one would need simple eigenval-
ues or singular values. We take three approaches to weaken our assumptions. First,
we consider block-analogues of the standard decompositions. Also in this case dif-
ferential equations are given. Second, we take a closer look at the type of singular
behavior which can occur when, for example, A loses rank, or eigenvalues coalesce;
this provides weaker sufficient conditions to guarantee the existence of smooth de-
compositions, usually with some loss of smoothness. Third, we consider what can be
expected in the generic case.

Genericity considerations are common in the study of dynamical systems. In our
context, they are a way to rigorously classify which properties of matrices depending
on a real parameter are typical. The starting point is to consider the space of one-
parameter functions of matrices. One then endows this space with a suitable topology
and calls a property of the topological space generic if it holds for a set which is of
the second Baire category. We refer to [1] and to [11] for the necessary background
on the topic. A generic property implies that we can perturb a given function not
satisfying this property into one which does satisfy it. A generic statement will provide
a convenient starting point for computational approaches. For example, we will show
that, generically, Hermitian matrix functions of one variable have simple eigenvalues.
Therefore, an appropriate starting point for computational procedures to find smooth
eigendecompositions of Hermitian matrices is to assume simple eigenvalues: this gives
the differential equations of section 2. Likewise, the genericity results of section 4
will legitimate the differential equations’ models put forward in section 2 also for QR
factorization and SVD decompositions. We believe that a merit of this paper is to
provide a general framework for the relevant decompositions based on the differential
equations models. However, it is premature to say whether or not numerical solutions
of these differential or differential-algebraic equations (DAEs) will lead to efficient
algorithms of solutions for the problems under study.

This paper is organized as follows. In section 2 we consider QR-, Schur-, and
block Schur factorizations, and SVD and block SVD decompositions. In this section,
differential equations are derived for the decompositions under some nondegenericity
assumptions.

In section 3 we extend existence results for smooth decompositions to the case
in which some singular behavior is encountered. We consider QR factorizations
for rank deficient matrices and Schur/SVD decompositions in the case of coalescing
eigen/singular values.

In section 4 we study how smooth the factors can be expected to be in generic
cases.

2. Smooth decompositions. In this section we consider A ∈ Ck(R,Cm×n),
k ≥ 1, and we give differential equations for the decompositions of interest. The
differential equations for the QR factorization of a full rank matrix have been given
before (e.g., see [5]); the differential equations for the SVD have already appeared

802 LUCA DIECI AND TIMO EIROLA

elsewhere. (The earliest references of which we are aware are [8] and [16], with the
former reference only for the case of a fundamental solution matrix.)

Remark 2.1. In 1965, Sibuya [15, Theorem 3 and Remark 3] established that a Ck
(k ≥ 0) matrix with disjoint groups of eigenvalues admits a Ck block-diagonalization;
this result is the content of Remark 2.6 below. It seems possible to build on this
result of Sibuya to establish some of the other results we give in section 2. However,
the approach in [15] is not constructive and it seems hard to exploit it for devicing
computational procedures. In contrast, the differential equations models are better
for obtaining computational procedures (but, of course, one needs k ≥ 1).

We will use the following simple results.
Lemma 2.1. Assume that in the linear system of equations B(t)x(t) = b(t), B(t)

is invertible for all t and that B, b ∈ Ck. Then, also x ∈ Ck.
Proof. This follows from repeated differentiation of x(t) = B−1(t)b(t), recalling

that d
dtB

−1 = −B−1ḂB−1.
Lemma 2.2. Let Q0 ∈ Cm×n be orthonormal.1 Consider the differential equation

Q̇ = S(Q, t) Q, Q(0) = Q0,(2.1)

where S is an m×m-matrix function, locally Lipschitzian in Q and continuous in t,
such that

Q∗
[
S(Q, t) + S(Q, t)∗

]
Q = 0

for every t and every orthonormal Q. Then (2.1) has a unique solution Q and Q(t)
is orthonormal for all t.

Proof. Existence and uniqueness are standard results. (Note that the set of
orthonormal matrices is compact.) If Q is the solution of (2.1), then Q∗Q̇ + Q̇∗Q =
Q∗(S + S∗)Q = 0, i.e., Q∗Q is constant.

Remark 2.2. Quite often, we will use Lemma 2.2 in the case m = n with Q
satisfying Q̇ = Q H(Q, t), where H is a skew-Hermitian n × n matrix function (i.e.,
H∗(Q, t) = −H(Q, t)).

2.1. QR factorization. We begin by giving differential equations for the QR
factorization of a full rank matrix A ∈ Ck(R,Cm×n), m ≥ n. Suppose that A(0) =
Q(0)R(0) is a given QR factorization (i.e., Q(0) ∈ Cm×n is orthonormal, and R(0) ∈
Cn×n is upper triangular). We want to find, if possible, orthonormal Q and upper
triangular R, both in Ck, such that A(t) = Q(t)R(t). Therefore, if feasible, differen-
tiating A = QR and Q∗Q = I we get

Ȧ = Q̇R+QṘ and Q̇∗Q+Q∗Q̇ = 0.(2.2)

Hence H := Q∗Q̇ is skew-Hermitian and from the first of (2.2) we get

Ṙ = Q∗Ȧ−Q∗Q̇R = Q∗Ȧ−HR,
(2.3)

Q̇ = ȦR−1 −QṘR−1 = (I −QQ∗)ȦR−1 +QH.

Since Ṙ has to be upper triangular, we require

(Q∗Ȧ)i,1 = Hi,1R1,1, i ≥ 2,

(Q∗Ȧ)i,2 = Hi,1R1,2 +Hi,2R2,2, i ≥ 3,
(2.4)

...

(Q∗Ȧ)n,n−1 = Hn,1R1,n−1 +Hn,2R2,n−1 + · · ·+Hn,n−1Rn−1,n−1.

1We call Q ∈ Cm×n orthonormal, if Q∗Q = I, and unitary, if further m = n.

ON SMOOTH DECOMPOSITIONS OF MATRICES 803

These are clearly solvable for Hi,j , i > j, assuming that R1,1, . . . , Rn−1,n−1 are
nonzero. Then the skew-Hermitian property defines the part above the diagonal.
Diagonal entries of H we set to purely imaginary values in such a way that the diag-
onal of Q∗Ȧ−HR becomes real.2 This defines H as a smooth function of Q and R.
Rewriting the differential equation for Q as

Q̇ = [(I −QQ∗)ȦR−1Q∗ +QHQ∗]Q := S(Q, t)Q,

since Q∗(S + S∗)Q = 0, (2.3) and Lemmas 2.1 and 2.2 give the desired result as long
as R stays invertible. On the other hand, if matrices Q and R satisfy the differential
equations (2.3) and the initial condition Q(0)R(0) = A(0), then they provide a QR
factorization of A. Thus we get the following proposition.

Proposition 2.3. Any full column rank Ck-matrix has a Ck QR-decomposition.
Remark 2.3. The case in which A is a solution of a linear system, Ȧ(t) = B(t)A(t),

leads to some simplifications in formulas (2.3). In fact, Ȧ = BQR gives

Ṙ = (Q∗BQ−H)R,
(2.5)

Q̇ = (I −QQ∗)BQ+QH.

2.2. Schur-decompositions. Next, we consider differential equations for Schur-
decomposition. We begin with the case of a Hermitian matrix.

(a) Diagonalization of a Hermitian matrix. Denote by Cn×nH the set of
Hermitian n×n matrices. Let A ∈ Ck(R,Cn×nH). Suppose that a Schur-decomposition
A(0) = Q(0)D(0)Q(0)∗ is given, i.e., Q(0) is unitary and D(0) is diagonal. We
want to find, if possible, Q,D ∈ Ck unitary and diagonal, respectively, such that
Q∗(t)A(t)Q(t) = D(t) for all t. Here we write D = diag(d1, . . . , dn). If feasible, we
must have

Ḋ = Q∗ȦQ+DQ∗Q̇+ Q̇∗QD,

or by letting H = Q∗Q̇ and noticing that H is skew-Hermitian, H∗ = −H, we get the
following system for D and Q:

Ḋ = Q∗ȦQ+DH −HD,
(2.6)

Q̇ = QH.

From this we then obtain ḋi = (Q∗ȦQ)ii. Notice that (2.6) is really a system of DAEs,
and we wish to use the algebraic equations (the part relative to the off diagonal entries
in Ḋ) to determine H. Because of skewness, Hii’s have to be purely imaginary, but
otherwise arbitrary, e.g., zero. If the eigenvalues of A are distinct, then we get

Hij =
(Q∗ȦQ)ij
dj − di , i 6= j.(2.7)

Thus from (2.6) and (2.7) we get the smooth Schur factorization of A if all eigenvalues
of A(t) are distinct for all t.

Proposition 2.4. Any Hermitian Ck-matrix with simple eigenvalues is diago-
nalizable with a unitary Ck-matrix .

2With this choice of the diagonal of H we get the diagonal elements of R real if they are such
for R(0).

804 LUCA DIECI AND TIMO EIROLA

Under the previous assumptions, an obvious consequence of the Schur-decomposition
of a positive definite matrix is that we can very simply obtain smooth square roots
of the matrix, once the decomposition A = QDQ∗ is at hand. It suffices to consider
square roots of the eigenvalues di.

Remark 2.4. A construction similar to the one above can be done for the eigen-
decomposition of a general matrix A ∈ Ck(R,Cn×n) with distinct eigenvalues. Now
we seek (given appropriate initial conditions V (0) and D(0)) a smooth decomposition
A(t) = V (t)D(t)V (t)−1. By letting P = V −1V̇ , we have

ḋi = (V −1ȦV)ii, i = 1, . . . , n,
(2.8)

V̇ = V P, Pij =
(V −1ȦV)ij
dj − di , i 6= j.

The diagonal entries Pii are not uniquely determined, and we may set them to 0.
Another choice is to require the columns of V to have constant norms, which means
Re(v∗i v̇i) = 0 giving the condition

Re(v∗i viPii) = −
∑
j 6=i

Re(v∗i vj Pji).

Again, the factors V and D are as smooth as A.
(b) Schur-decomposition of a general matrix. Let A ∈ Ck(R,Cn×n). For

given U(0) and R(0), respectively, unitary and upper triangular, such that R(0) =
U∗(0)A(0)U(0), we seek unitary U and triangular R as smooth as A, such that R(t) =
U∗(t)A(t)U(t) for all t. If feasible, we then must have

Ṙ = U∗ȦU + U̇∗AU + U∗AU̇ = U∗ȦU + (U̇∗U)U∗AU + U∗AU(U∗U̇).

Again we set H := U∗U̇ and obtain the system

Ṙ = U∗ȦU +RH −HR,
(2.9)

U̇ = UH.

Conditions that R is upper triangular and H∗ = −H bring this to a DAE system.
We use the strictly lower triangular part in the first equation of (2.9) to determine H
(except for its diagonal). This can be done by first finding the vector (H21, . . . , Hn1)∗,
then (H32, . . . , Hn2)∗, etc., up to Hn,n−1. To find these vectors one needs to solve
triangular systems which are easily seen to be nonsingular if Rii(t) 6= Rjj(t), i 6= j.
Then, by solving (2.9), we get R and U as smooth as A. The entries Hii(t) are
undetermined; we may set them to 0 (in any case, they must be purely imaginary).

Together with Remark 2.4 we get the following.
Proposition 2.5. Any Ck-matrix with simple eigenvalues has a Ck–Schur-decom-

position and is diagonalizable with a Ck-matrix.
Clearly, the differential equation model above breaks down if some of the eigen-

values of A(t) coalesce. Besides, also for simple eigenvalues, numerical difficulties can
be expected in case two or more eigenvalues become close. In such cases, it may be
better to compute the invariant subspaces relative to a cluster of eigenvalues.

(c) Block-Schur-decomposition. Consider A ∈ Ck(R,Cn×n). We want to find
unitary Q and block upper triangular S, as smooth as A, such that Q∗(t)A(t)Q(t) =
S(t), where S is partitioned as

S =

[
S11 S12

0 S22

]
.

ON SMOOTH DECOMPOSITIONS OF MATRICES 805

We start with a given decomposition A(0) = Q(0)S(0)Q(0)∗. Assume that λ1(t), . . . ,
λn(t) ∈ Λ(A(t)) are continuous, such that Λ1(t) = {λ1(t), . . . , λm(t)} and Λ2(t) =
{λm+1(t), . . . , λn(t)} are disjoint for all t and Λ(Sjj(0)) = Λj(0), j = 1, 2.

Differentiating the relation S = Q∗AQ and letting H := Q∗Q̇ we obtain the
system of DAEs

Ṡ = Q∗ȦQ+ SH −HS,
Q̇ = QH,(2.10)

S21 = 0, H∗ = −H.
This can be reduced to a system of differential equations (DEs) by eliminating the
algebraic part. By rewriting the first equation of (2.10) in block form[

Ṡ11 Ṡ12

0 Ṡ22

]
=

[
(Q∗ȦQ)11 (Q∗ȦQ)12

(Q∗ȦQ)21 (Q∗ȦQ)22

]
+

[
S11 S12

0 S22

] [
H11 H12

−H∗12 H22

]
−
[
H11 H12

−H∗12 H22

] [
S11 S12

0 S22

]
,

we realize that we must have

S22H
∗
12 −H∗12S11 = (Q∗ȦQ)21.(2.11)

Thus, H12 ∈ Cm×(n−m) is the unique solution of (2.11), since S11 and S22 have no com-
mon eigenvalue (e.g., see [7]). The blocks H11 and H22 are not uniquely determined,
and we may set them both to 0 (in any case, they must be skew-Hermitian). Thus,

taking H =
[

0
−H12

−H∗12
0

]
and the differential equations (2.10) for Q,S11, S12, S22, we

obtain the desired result.
The above procedure immediately generalizes to a block-Schur factorization in p

blocks. That is, one seeks the factorization where S is partitioned as

S =

S11 S12 . . . S1p

0 S22 . . . S2p

. . .
...

0 0 Spp

(2.12)

and each diagonal block is a square matrix. With obvious notation, block-partitioning
H = Q∗Q̇ conformally to S, and assuming that Λ(Sii(t))∩Λ(Sjj(t)) = ∅ for all t and
i 6= j, we obtain H by solving the system for the Hji:

p∑
k=i

SikH
∗
jk −

j∑
k=1

H∗kiSkj = (Q∗ȦQ)ij ,

(2.13)
j = 1, . . . , p− 1, i = j + 1, . . . , p.

The blocks Hii are not uniquely determined and we may set them to 0. In summary,
we have the following proposition.

Proposition 2.6. Any Ck-matrix with disjoint groups of eigenvalues has a Ck-
block Schur-decomposition, the blocks corresponding to these groups.

Remark 2.5. From a practical point of view, the strongest assumption we made
is that the initial decomposition determines a correct blocking for all t.

In case A is Hermitian, the above block-Schur-decomposition gives a block diag-
onal form. Then (2.13) becomes SiiH

∗
ji − H∗jiSjj = (Q∗ȦQ)ij , i 6= j. Here, since

806 LUCA DIECI AND TIMO EIROLA

the initial conditions for Sii are Hermitian, we will have Sii(t) Hermitian for all t, for
every skew-Hermitian Hii, because Ṡii = (Q∗ȦQ)ii + SiiHii −HiiSii.

Remark 2.6. Of course, a block diagonalization of general matrices can also be
envisioned similarly to our previous remark, Remark 2.4 (see also [15]). That is, if
feasible, we now seek block-diagonal

D =

D1

. . .

Dp

and invertible V , both as smooth as A, such that A(t) = V (t)D(t)V −1(t). Differen-
tiating this, letting P = V −1V̇ , and partitioning P conformally to D, we get

Ḋi = (V −1ȦV)ii +DiPii − PiiDi, i = 1, . . . , p,

0 = (V −1ȦV)ij +DiPij − PijDj , i 6= j,(2.14)

V̇ = V P .

If Λ(Di(t))∩Λ(Dj(t)) = ∅, i 6= j, the second of these equations can be solved for the
Pij . Pii are not uniquely determined, and we may set them to 0, or require V ∗i Vi to
be constant, where [V1 . . . Vp] is the partitioning of V in column blocks. This amounts
to

PiiV
∗
i Vi + V ∗i ViPii = −

∑
i 6=j

(P ∗jiV
∗
j Vi + V ∗i VjPji),

which is uniquely solvable for Pii, since Vi has full rank.

2.3. Singular value decompositions. Next we consider the SVD of a matrix.
Again, we also consider block analogs.

(a) Smooth SVD. This has been recently considered in [3] and [16] in the
analytic case. We have a matrix A ∈ Ck(R,Cm×n), m ≥ n, and look for Ck unitary
U and V , and real “diagonal” Σ such that A(t) = U(t)Σ(t)V ∗(t). Here Σ =

[
S
0

]
,

S = diag(σ1, . . . , σn). We assume that 0 6= σi(t) 6= σj(t), i 6= j for all t. Let an
initial SVD, A(0) = U(0)Σ(0)V ∗(0), be given. Differential equations for the factors
are derived as follows. From A = UΣV ∗, we get

U∗ȦV = (U∗U̇)Σ + Σ̇ + Σ(V̇ ∗V).

Let us set

H := U∗U̇ ∈ Cm×m, K := V ∗V̇ ∈ Cn×n,
both of which are skew-Hermitian. Therefore, we obtain the system of DAEs

Σ̇ = U∗ȦV −HΣ + ΣK,

U̇ = UH,(2.15)

V̇ = V K

with the requirement that Σ is real and diagonal. We proceed to eliminate the alge-
braic part, thereby reducing the above to a system of DEs. First we notice that the
equations for the singular values are all decoupled as follows:

σ̇i = (U∗ȦV)ii −Hiiσi + σiKii, i = 1, . . . , n.

ON SMOOTH DECOMPOSITIONS OF MATRICES 807

Next, consider the algebraic part of the first equation in (2.15). For i 6= j, i, j =
1, . . . , n, we must have

0 = (U∗ȦV)ij −Hijσj + σiKij ,

0 = (U∗ȦV)ji −Hjiσi + σjKji,

from which, using skewness of H and K, we get

Hij =
σj(U

∗ȦV)ij + σi(U
∗ȦV)ji

σ2
j − σ2

i

,

Kij =
σj(U

∗ȦV)ji + σi(U
∗ȦV)ij

σ2
j − σ2

i

,

where i, j = 1, . . . , n, i 6= j. Also, it is easy to obtain

Hij = −H̄ji =
(U∗ȦV)ij

σj
, i = n+ 1, . . . ,m, j = 1, . . . , n.(2.16)

For σ̇i to be real, the diagonal elements of H and K need to satisfy

(Hii −Kii) = Im((U∗ȦV)ii)/σi.

We can choose, e.g., Kii = 0, which then determines Hii.
Finally, the bottom right (m − n) × (m − n) block of H is not determined; one

may thus set it to 0 (or any other skew matrix). These give the desired result in the
following proposition.

Proposition 2.7. Any full column rank Ck-matrix with distinct singular values
has a Ck singular value decomposition.

In case A is the solution of a linear system: Ȧ(t) = B(t)A(t) with A(0) full rank,
the above formulas simplify by Ȧ = BUΣV ∗. The details are easy and one obtains

σ̇i = (U∗BU)iiσi −Hiiσi + σiKii, i = 1, . . . , n,

Hij =
σ2
j (U∗BU)ij + σ2

i (U∗BU)ji

σ2
j − σ2

i

, i, j = 1, . . . , n, i 6= j,

Hij = (U∗BU)ij , i = n+ 1, . . . ,m, j = 1, . . . , n,

Kij = σiσj
(U∗BU)ji + (U∗BU)ij

σ2
j − σ2

i

, i, j = 1, . . . , n, i 6= j.

It should be noticed that the matrix V does not need to be computed if only infor-
mation on the singular values is desired.

Remark 2.7. It should be clear that the U and V factors of the SVD of A are
nothing but unitary Schur factors of the positive semidefinite matrices AA∗ and A∗A,
respectively. As usual, we can think of the square part of the Σ matrix as a square
root of the block diagonal matrix V ∗(A∗A)V .

(b) Block-SVD decomposition. Consider next a full rank matrix
A ∈ Ck(R,Cm×n). We want to find unitary U, V , and “block-diagonal” Σ, as smooth
as A, such that U∗(t)A(t)V (t) = Σ(t). Here Σ(t) is partitioned as

Σ =

S1 0
0 S2

0 0

 ,

808 LUCA DIECI AND TIMO EIROLA

where S1, S2 are Hermitian positive definite matrices. We assume that the (positive)
singular values of A can be arranged into two disjoint groups, like the eigenvalues
in the block Schur-decomposition above, and that initial conditions U(0),Σ(0), V (0)
are given. We proceed as usual, by differentiating the relation U∗AV = Σ. Denoting
the skew-Hermitian matrices H = U∗U̇ and K = V ∗V̇ we end up with the following
equations Ṡ1 0

0 Ṡ2

0 0

 =

 (U∗ȦV)11 (U∗ȦV)12

(U∗ȦV)21 (U∗ȦV)22

(U∗ȦV)31 (U∗ȦV)32

+

S1 0
0 S2

0 0

 [K11 K12

−K∗12 K22

]

−
 H11 H12 H13

−H∗12 H22 H23

−H∗13 −H∗23 H33

 S1 0
0 S2

0 0

 .
From the algebraic part in these equations we obtain

−H∗13S1 = (U∗ȦV)31,

−H∗23S2 = (U∗ȦV)32,

and [
H12

K12

]
S2 −

[
0 S1

S1 0

] [
H12

K12

]
=

[
(U∗ȦV)12

((U∗ȦV)21)∗

]
,

and thus we can uniquely determine H13 and H23 if 0 /∈ Λ(S1), 0 /∈ Λ(S2), and
H12,K12 if Λ(S1) ∩ Λ(S2) = ∅. Note that in this full rank case we can consider the
“standard” block SVD with S1 and S2 positive definite, since singular values do not
become 0. H33 is an arbitrary skew-Hermitian matrix, and we may set it to 0. For
blocks Hii,Kii, i = 1, 2, we can reason as follows. The differential equations for S1

and S2 are

Ṡi = (U∗ȦV)ii −HiiSi + SiKii, i = 1, 2,

and we want S1 and S2 to be Hermitian. Thus, we must have

Si(Hii −Kii) + (Hii −Kii)Si = (U∗ȦV)ii − (U∗ȦV)∗ii, i = 1, 2,

and hence Hii − Kii, i = 1, 2 is uniquely determined and skew-Hermitian if 0 /∈
Λ(Si) (for example, can take K11 = K22 = 0). In summary, we obtain the desired
smoothness for the block SVD, as long as A is full rank and the blocks S1 and S2

have disjoint spectra. Hence the following proposition.
Proposition 2.8. Any full column rank Ck-matrix with disjoint groups of sin-

gular values has a Ck-block singular value decomposition.
If a square A satisfies a linear system Ȧ = BA, the above relations simplify to

(U∗BU)12S2 = H12S2 − S1K12,
(2.17)

S1(U∗BU)∗21 = K12S2 − S1H12;

and for i = 1, 2,

Ṡi = (U∗BU)iiSi −HiiSi + SiKii
(2.18)

Si(Hii −Kii) + (Hii −Kii)Si = (U∗BU)iiSi − Si(U∗BU)∗ii.

The V factor need not be computed if only the blocks S1 and S2 are desired.

ON SMOOTH DECOMPOSITIONS OF MATRICES 809

(c) Polar factorization. With similar notation as above, we now consider
differential equations for the polar factorization of a full rank A ∈ Ck(R,Cm×n). That
is, we want to write A(t) = Q(t)P (t), where Q is orthonormal, P is Hermitian positive
definite, and Q,P are as smooth as A. Differentiating A = QP , using orthonormality
of Q, and letting as usual H = Q∗Q̇, we obtain

Q̇ = QH,
(2.19)

Ṗ = Q∗Ȧ−HP.
Since we need P = P ∗, we then must have

PH +HP = Q∗Ȧ− Ȧ∗Q.(2.20)

Since P is positive definite, (2.20) has a unique solution, H. Thus, we obtain the
desired result since H satisfying (2.20) is skew-Hermitian.

Remark 2.8. Using (2.19) and (2.20) to obtain a smooth polar factorization of
A, in contrast to passing through the smooth SVD, is not hampered by the need of
noncoalescing singular values.

3. Extensions. In this section, we extend the smooth factorizations to the case
in which some singular behavior is encountered, such as rank deficiency, or eigenvalues
coalescing.

3.1. Rank deficient QR. We begin with the case of the QR-factorization of a
matrix A ∈ Ck(R,Cm×n). As we saw in section 2, if A has full rank, then it admits a
QR-factorization where the Q and R factors are also Ck. Next, we show that, under
appropriate assumptions, A admits a QR factorization also in case it is rank deficient;
however, some loss of differentiability may take place. Then we show that analytic
(denoting Cω) matrices have analytic QR factorizations.

Our proof is based on a careful analysis of the Gram–Schmidt orthogonalization
process. The idea behind the proof is that in order for the function A to have a QR
factorization (with some degree of smoothness), then, at points where loss of rank
occurs, the matrix obtained by differentiating the columns of A (possibly, derivatives
of different orders for different columns) must have full rank.

For the Ck case, the following example is helpful in understanding what we should
expect.

Example 3.1. Let A =
[
tk|t|
td

]
, d, k ∈ N. Then A is k times continuously differen-

tiable. Depending whether d ≤ k or d = k + 1 we have the QR-decompositions

A(t) =

[
tk−d |t| /

√
1 + t2(k−d+1)

1/
√

1 + t2(k−d+1)

]
td
√

1 + t2(k−d+1), A(t) =

[
sgn(t)/

√
2

1/
√

2

]
td
√

2,

respectively. In the first case Q is in Ck−d, while in the latter it is not (and cannot
be taken) continuous. Note that in the first case A(t)TA(t) = t2d (t2(k−d+1) + 1); in
particular, limt→0

1
t2d
A(t)TA(t) = 1 > 0.

Theorem 3.1. Let A ∈ Ck(R,Cm×n), m ≥ n, and assume d ≤ k is such that3

lim sup
τ→0

1

τ2d
det(A∗A)(t+ τ) > 0(3.1)

for every t. Given any QR-factorization A(t0) = Q(t0)R(t0) at a point t0 where A has
full rank, there exists a Ck−d QR-factorization of A satisfying this initial condition.

3This means that the limsup is either positive or +∞.

810 LUCA DIECI AND TIMO EIROLA

If R(t0) has real diagonal, this QR-factorization becomes unique, if we require the
diagonal of R to be real.

Proof. Write A(t) = [a1(t) . . . an(t)]. If A has full rank at t, then Q = [q1 · · · qn]
necessarily satisfies

q1(t) =
η1(t)

|a1(t)| a1(t), P1 = I − q1q
∗
1 ,

q2(t) =
η2(t)

|P1(t)a2(t)| P1(t)a2(t), P2 = P1 − q2q
∗
2 ,

...

qj(t) =
ηj(t)

|Pj−1(t)aj(t)| Pj−1(t)aj(t), Pj = Pj−1 − qjq∗j .

Here ηj ’s have to satisfy |ηj(t)| = 1 for all j; otherwise they can be chosen freely.
Taking them smooth on intervals of full rank gives us Q and R = Q∗A both Ck on
these intervals. Furthermore, real ηj is equivalent to real Rj,j there.

Our assumption implies that the points where A does not have full rank are
isolated.

The details of the proof for the case in which there is some possible loss of smooth-
ness are based on the following claim.

Claim. If t̂ and j ∈ {0, 1, . . . , k − 1} are such that lim supτ→0
det(A∗A)(t̂+τ)

τ2j = 0,

then limτ→0
det(A∗A)(t̂+τ)

τ2(j+1) exists and is finite.

Proof of the claim. Case j = 0: we can assume t̂ = 0, so that det(A(0)∗A(0)) = 0.
Applying a permutation to the columns of A, we may also assume that A(0) =
[a0

1 A0
2...n] , where a0

1 = A0
2...nβ for some β ∈ Cn−1. Then

A(t) = [A0
2...nβ + t a∆

1 (t) A0
2...n + t A∆

2...n(t)] ,

where [a∆
1 (t) A∆

2...n(t)] = 1
t (A(t)−A(0)). Then

det(A(t)∗A(t)) = det

([
1 −β∗
0 I

] [
β∗A0

2...n
∗

+ t a∆
1 (t)∗

A0
2...n

∗
+ t A∆

2...n(t)∗

]

[A0
2...nβ + t a∆

1 (t) A0
2...n + t A∆

2...n(t)]

[
1 0
−β I

])

= det

([
t (a∆

1 (t)∗ − β∗A∆
2...n(t)∗)

A0
2...n

∗
+ t A∆

2...n(t)∗

]
[t (a∆

1 (t)−A∆
2...n(t)β) A0

2...n + t A∆
2...n(t)]

)
= t2 det(Ã(t)∗Ã(t)),

where Ã(t) = [a∆
1 (t)−A∆

2...n(t)β A2...n(t)]. Hence the claim for j = 0 follows.
Since4 Ã ∈ Ck−1 the proof for general j is completed by obvious induction.

Let t̂ be a point where A does not have full rank, and let d̂ be the smallest integer
for which

lim sup
τ→0

1

τ2d̂
det(A∗A)(t̂+ τ) > 0.

4Generally, if f ∈ Ck and f(t) = f(0) + t f ′(0) + · · · + td−1

(d−1)!
f (d−1)(0) + td

d!
g(t), d ≤ k, then

g(t) = d
∫ 1

0
(1− s)d−1 f (d)(ts) ds, which shows that g ∈ Ck−d.

ON SMOOTH DECOMPOSITIONS OF MATRICES 811

Denote Aj(t) = [a1(t) . . . aj(t)]. Using Fischer’s inequality,

det([B1 B2]
∗

[B1 B2]) ≤ det(B∗1B1) det(B∗2B2),

and the claim above, we find for every j = 1, . . . , n a dj ≤ d̂ such that

lim
τ→0

1

τ2dj
det(A∗jAj)(t̂+ τ)

is finite and positive. Also dj ≤ dj+1. Set e1 = d1, ej = dj − dj−1, j > 1.
Expand the first column of A:

a1(t̂+ τ) = â1 + τ â
(1)
1 +

τ2

2!
â

(2)
1 + · · ·+ τk−1

(k − 1)!
â

(k−1)
1 +

τk

k!
ã

(k)
1 ,

where â
(i)
1 = di

dti a1(t)∣∣t=t̂ and the entries of ã
(k)
1 are the kth derivatives of elements of

a1 at some points between t̂ and t̂+ τ .

Now, since limτ→0
1

τ2d1

∣∣a1(t̂+ τ)
∣∣2 is positive, we have â1 = â

(1)
1 = · · · = â

(d1−1)
1 =

0 and â
(d1)
1 6= 0, and

q1(t) = η1(t̂+ τ)
τd1

d1! â
(d1)
1 + · · ·+ τk

k! ã
(k)
1∣∣∣ τd1

d1! â
(d1)
1 + · · ·+ τk

k! ã
(k)
1

∣∣∣
= η1(t̂+ τ) sgn(τ)d1

1
d1! â

(d1)
1 + · · ·+ τk−d1

k! ã
(k)
1∣∣∣ 1

d1! â
(d1)
1 + · · ·+ τk−d1

k! ã
(k)
1

∣∣∣ .
Choosing η1(t̂ + τ) sgn(τ)d1 smooth, i.e., changing the sign of η1 at t̂ whenever d1 is
odd, we have q1 in Ck−d1 in a neighborhood of t̂.

For j ≥ 2 note first that I − Pj−1(t) is the orthogonal projection onto the range
of Aj−1(t) so that

det([Aj−1 aj]
∗

[Aj−1 aj])

= det([(I − Pj−1)Aj−1 Pj−1aj]
∗

[(I − Pj−1)Aj−1 Pj−1aj])

= det

([
A∗j−1Aj−1 0

0 (Pj−1aj)
∗Pj−1aj

])
= det(A∗j−1Aj−1) ‖Pj−1aj‖2

and limτ→0
1
τej

∥∥(Pj−1aj)(t̂+ τ)
∥∥ is finite and positive. Since Pj−1aj ∈ Ck−dj−1 , it

follows that

(Pj−1aj)(t̂+ τ) = τej b̂j +O(τej+1)

with b̂j 6= 0. Hence,

qj(t̂+ τ) = ηj(t̂+ τ) sgn(τ)ej
b̂j +O(τ)

|b̂j +O(τ)| .

Again changing the sign of ηj at t̂ whenever ej is odd, we have qj and consequently
also Pj = Pj−1 − qjq∗j in Ck−dj , in a neighborhood of t̂.

This way we get the whole Q and hence also R in Ck−d.
The uniqueness follows from the fact that the sign changes in ηj ’s are also neces-

sary for smoothness.

812 LUCA DIECI AND TIMO EIROLA

Remark 3.1. If m = n, then in the previous theorem it suffices that the ma-
trix An−1 satisfies the assumptions. This is because the nth column of Q is then
determined (up to ηn with |ηn| = 1) by the previous columns.

Remark 3.2. The matrix A =
[
tk|t|
td

1
0

]
, d ≤ k + 1, (see Example 3.1) shows that

no extra smoothness can be generally expected for the R factor.
In the case of a real analytic matrix we do not need any extra assumptions.

(A different proof of this result is found in [6].)
Theorem 3.2. Any A ∈ Cω(R,Rm×n),m ≥ n, has a Cω QR-decomposition. This

is similar for A ∈ Cω(R,Cm×n).
Proof. The proof is by induction with respect to n. Assume n = 1. If A ≡ 0,

set Q = e1, R = 0. Else all the zeroes of A∗A are of finite order and the proof of
Theorem 3.1 gives us an analytic QR-decomposition. Assume the assertion is true for
all m× n matrices with m > n. Then for analytic A = [An an+1] take an analytic
QR-decomposition An = QnRn and set r = Q∗nan+1, b = an+1 −Qnr. If b ≡ 0, take

an analytic unit qn+1 such that Q∗nqn+1 ≡ 0 and set Q = [Qn qn+1],R =
[
Rn
0
r
0

]
.

Else take qn+1 to be the analytic unit vector in the direction of b as in the proof of
Theorem 3.1.

3.2. Schur-decomposition of a Hermitian matrix with multiple eigen-
values. Consider again the Schur-decomposition of A ∈ Ck(R,Cn×nH). As we saw
in section 2.2, if the eigenvalues of A are simple, then A admits a smooth Schur-
decomposition. Under reasonable assumptions, we show next that A admits a Schur-
decomposition with some possible loss of smoothness also in case some of its eigen-
values coalesce.

From the book of Kato [12] we know that Hermitian real analytic matrices have
analytic eigendecompositions. Also, it is true (a theorem of Rellich, see [13]) that C1

Hermitian matrices have C1 eigenvalues. Generally, however, even C∞ Hermitian ma-
trices don’t have C2 eigenvalues or continuous Schur-decompositions, as the following
example shows.

Example 3.2 (see [17]). Let α, β > 0 and

A(t) =

[
e−(α+β)/|t| e−β/|t| sin(1/t)

e−β/|t| sin(1/t) −e−(α+β)/|t|

]
.

Then A ∈ C∞. The eigenvalues are

λ±(t) = ±e−β/|t| (e−2α/|t| + sin2(1/t)
) 1

2 .

These are in C1 but not in C2, if α ≥ β. Notice that λ+(t)− λ−(t) = o(|t|d)for all d.
Here we show that the unitary diagonalization can be made smooth, provided

that the order of coalescing of the eigenvalues is not more than k.
Denote by We the class of matrices depending on a real parameter, for which the

eigenvalues do not have contacts of order higher than e. More precisely, if an n × n
matrix A ∈ We and λ1(t), . . . , λn(t) are the continuous eigenvalues of A(t), then for
any t and i 6= j we have

lim inf
τ→0

|λi(t+ τ)− λj(t+ τ)|
|τe| ∈ (0,∞].(3.2)

Theorem 3.3. Any Hermitian matrix A ∈ Ck ∩We, e ≤ k, has a Ck−e Schur-
decomposition.

ON SMOOTH DECOMPOSITIONS OF MATRICES 813

Proof. The proof is by induction on e. Proposition 2.4 gives the theorem for e = 0
(i.e., for distinct eigenvalues).

Assume now that the assertion is true for We−1 matrices and let A ∈ Ck ∩We.
We show first that A has a Ck−e-decomposition in a neighborhood of any t̂. We may
assume that t̂ = 0. Let λ0 be a p-fold eigenvalue of A(0) and let Q0 be a Ck orthonor-
mal n× p matrix obtained as one column block of a block–Schur-decomposition (see
Prop. 2.6) corresponding to the eigenvalues close to λ0. Thus Q0 is defined in a
neighborhood of 0, such that

Q0(t)∗A(t)Q0(t) = λ0 I + t S1(t),

where S1 ∈ Ck−1. The eigenvalues of A(t) near λ0 are of the form λ0 + t µ(t), where
µ(t) is an eigenvalue of S1(t). If µ̃(t) is another eigenvalue of S1(t), we have

|µ(t)− µ̃(t)|
|te−1| =

|λ(t)− λ̃(t)|
|te| ,

where λ(t), λ̃(t) are eigenvalues of A(t). Hence S1 ∈ Ck−1∩We−1, so that by induction
hypothesis it has a Ck−1−(e−1) = Ck−e Schur-decomposition. This is true for all blocks
corresponding to different eigenvalues of A(0) and hence for A.

The assumption implies that the points where A(t) has multiple eigenvalues are
isolated. Cover R with a countable set of intervals Ij = (αj , βj) such that on each of
these A has a Ck−e Schur-decomposition A(t) = Uj(t)Λj(t)Uj(t)

∗, Ij−1 ∩ Ij+1 = ∅ for
all j ∈ Z, and A has simple eigenvalues on each (αj , βj−1).

Set U = U0, Λ = Λ0, on [β−1, α1], and Π0 = I. For j = 1, 2, . . . let τj =
1
2 (αj + βj−1). Since A(τj) has simple eigenvalues, there exists a permutation matrix
Πj such that

ΠT
j Λj(τj)Πj = ΠT

j−1Λj−1(τj)Πj−1.

Take Dj ∈ Ck−e((αj , αj+1],Cn×n), such that Dj(t) is diagonal and unitary for all t,
and

Dj(t) =

{
ΠT
j Uj(t)

∗Uj−1(t)Πj−1 on (αj ,
2
3αj + 1

3βj−1),

I on (1
3αj + 2

3βj−1, αj+1] .

Then UjΠjDj is smooth and equal to Uj−1Πj−1 on the beginning part and UjΠj on
the final part of (αj , αj+1]. Set U = UjΠjDj and Λ = ΠjΛjΠj on this interval. This
gives U and Λ smooth on [β−1, αj+1].

Similarly continue for j = −1,−2,
Our next task is to prove that in the situation of the previous theorem the eigen-

values are in fact Ck functions. For this we need to take a closer look at the functions
involved in the Taylor remainder terms.

For a function f ∈ C0([−T, T]) set me(f)(t) = tef(t).
For k ≥ e denote by Cke the set of f ∈ C0([−T, T]) for which me(f) ∈ Ck([−T, T]).

With the norm

‖f‖k,e = max
0≤j≤e

0≤l≤k−e+j

∥∥∥mj(f)(l)
∥∥∥
∞
,

Cke becomes a Banach space.
Proposition 3.4. If f, g ∈ Cke , then

i) fg ∈ Cke , ii) f(t) 6= 0∀t =⇒ 1/f ∈ Cke , iii) f(t) > 0∀t =⇒
√
f ∈ Cke .

814 LUCA DIECI AND TIMO EIROLA

Furthermore, the operations i)–iii) are continuous.
Proof. Clearly Ck+1

e+1 ⊂ Cke with ‖f‖k,e ≤ ‖f‖k+1,e+1.

For f ∈ Ck+1
e+1 , 0 ≤ d ≤ e, set hd(f)(t) = t−dmd+1(f)′(t). We show first that hd

is continuous Ck+1
e+1 → Cke . Take 0 ≤ j ≤ e and 0 ≤ l ≤ k − e + j. If j < d, then by

footnote 4∣∣∣mj(hd(f))(l)(t)
∣∣∣ =

∣∣∣∣dldtl (tj−dmd+1(f)′(t)
)∣∣∣∣

=

∣∣∣∣dldtl 1

(d− j − 1)!

∫ 1

0

(1− s)d−j−1md+1(f)(d−j+1)(ts) ds

∣∣∣∣
≤ C

∥∥∥md+1(f)(d−j+1+l)
∥∥∥
∞
≤ C ‖f‖k+1,e+1

since d+ 1 ≤ e+ 1 and d− j + 1 + l ≤ k + 1− (e+ 1) + d+ 1. If j ≥ d, then∣∣∣mj(hd(f))(l)(t)
∣∣∣ =

∣∣∣∣dldtlmj−d
(
md+1(f)′

)
(t)

∣∣∣∣
=

∣∣∣∣dldtl (mj+1(f)′(t)− (j − d)mj(f)(t)
)∣∣∣∣

=
∣∣∣mj+1(f)(l+1)(t)− (j − d)mj(f)(l)(t)

∣∣∣ ≤ C ‖f‖k+1,e+1

since j+1 ≤ e+1 and l+1 ≤ k+1−(e+1)+d+1. Hence ‖hj(f)‖k,e ≤ C ‖f‖k+1,e+1 ,
for some constant C depending only on T , k, and e.

If f, g ∈ Ck+1
e+1 and 0 ≤ j ≤ e, then

mj+1(fg)′(t) =
d

dt

(
t−j−1mj+1(f)(t)mj+1(g)(t)

)
= (hj(f)mj(g))(t) + (mj(f)hj(g))(t)(3.3)

−(j + 1)t−j(mj(f)mj(g))(t)

=
(
mj(hj(f)g) +mj(fhj(g))− (j + 1)mj(fg)

)
(t) .

Now, i) is trivially true for any k if e = 0. Assume it is true for k and e. Then (3.3)
with j = e shows that me+1(fg)′ ∈ Ck, i.e., fg ∈ Ck+1

e+1 .

This is similar for ii) and iii). If they are true for k, e, and if f ∈ Ck+1
e+1 vanishes

nowhere, then

me+1(1/f)′(t) =
d

dt
(t2e+2/me+1(f)) =

(
(2e+ 2)me(1/f)−me

(
he(f)

1

f

1

f

))
(t).

So, by i) we get me+1(1/f)′ ∈ Ck and 1/f ∈ Ck+1
e+1 . Further, if f is positive, then

differentiating me+1(
√
f)(t)2 = te+1me+1(f)(t) gives

me+1(
√
f)′ =

e+ 1

2
me(

√
f) +

1

2
me(he(f) 1/

√
f)

in Ck and
√
f ∈ Ck+1

e+1 .
Next, we prove continuity of the multiplication. We show inductively that

‖fg‖k,e ≤ C ‖f‖k,e ‖g‖k,e ,(3.4)

ON SMOOTH DECOMPOSITIONS OF MATRICES 815

which is trivially true for any k if e = 0. Assume it is true for k and e and let
f, g ∈ Ck+1

e+1 . From (3.3) we get for j + 1 ≤ e+ 1, l + 1 ≤ k + 1− (e+ 1) + j + 1∥∥∥mj+1(fg)(l+1)
∥∥∥
∞
≤
∥∥∥mj(hj(f)g)(l)

∥∥∥
∞

+
∥∥∥mj(fhj(g))(l)

∥∥∥
∞

+ (j + 1)
∥∥∥mj(fg)(l)

∥∥∥
∞

≤ C(‖hj(f)‖k,e ‖g‖k,e + ‖f‖k,e ‖hj(g)‖k,e + (j + 1) ‖f‖k,e ‖g‖k,e
)

≤ C ‖f‖k+1,e+1 ‖g‖k+1,e+1 .

Thus, continuity of the multiplication follows from (3.4) by∥∥∥f̃ g̃ − fg∥∥∥
k,e
≤
∥∥∥(f̃ − f)g̃

∥∥∥
k,e

+ ‖f(g̃ − g)‖k,e .

Proofs of continuity of f → 1/f and f → √f are similar to that of multiplication
and hence are omitted.

With these tools we can show the following theorem.
Theorem 3.5. Under the assumptions of Theorem 3.3, the eigenvalues can be

taken to be Ck functions.
Proof. From the proof of Theorem 3.3 we get that the eigenvalues of A(t) are of

the form λ0 + t µ1(t), where µ1(t) is an eigenvalue of S1(t) and S1 ∈ Ck1 . If µ1(0) is
a q-fold eigenvalue of S1(0), let P1(t) be the eigenprojector corresponding to the q
eigenvalues of S1(t) close to µ1(0). Then (see [12])

P1(t) = − 1

2πi

∫
Γ

(S1(t)− ζI)−1dζ,

where Γ is the boundary of a small disk containing only these eigenvalues. By i)
and ii) of Proposition 3.4 ζ → (S1(·) − ζI)−1 defines a continuous function Γ →
Ck1 ([−T, T],Cq×q) so that also P1 ∈ Ck1 . Take Q1(0), the columns of which form an
orthonormal basis for the range of P1(0), and let Q1(t)R1(t) = P1(t)Q1(0) be a QR-
decomposition which, again by Proposition 3.4, is in Ck1 . The columns of Q1(t) form
an orthonormal basis for the S1(t)-invariant subspace corresponding to the eigenvalues
close to µ1(0). Hence,

Q∗1(t)S1(t)Q1(t) = µ1(0) I + t S2(t),

where S2 ∈ Ck2 . Thus the eigenvalues of A(t) are of the form λ0 + t µ1(0) + t2 µ2(t),
where µ2 is an eigenvalue of S2. Continuing this way, we get that the eigenvalues of
A(t) are of the form

λ(t) = λ0 + t µ1(0) + t2 µ2(0) + · · ·+ teµe(t) ,

where µe is an eigenvalue of Se ∈ Cke . By assumption, it is a simple eigenvalue.
Then, as above, the corresponding eigenvector Qe is in Cke and the same holds for
µe(t) = Qe(t)

∗Se(t)Qe(t). Hence me(µe) and, consequently, also λ are in Ck.

3.3. SVD in the rank deficient case and with multiple singular values.
Here we consider a smooth singular value decomposition of A ∈ Ck(R,Cm×n),m ≥ n,
allowing now multiple singular values and/or loss of rank at some points. Parallel
to sections 3.1 and 3.2, we assume that at any point the order of coalescing of the
squares of the singular values is at most e ≤ k (as in (3.2))

lim inf
τ→0

∣∣σ2
i (t+ τ)− σ2

j (t+ τ)
∣∣

|τe| ∈ (0,∞]for all t,

816 LUCA DIECI AND TIMO EIROLA

and that for every t

lim sup
τ→0

1

τ2d
det(A∗A)(t+ τ) > 0.(3.5)

We also assume that only one of the singular values can become zero, i.e., the rank
of A is always at least n− 1.

To get smooth decomposition one has to allow sign changes in the singular values
as in the analytic case of [3]. The result might be more properly called a signed SVD.

Theorem 3.6. With the above assumptions there exists a Ck−max(d,e)-singular
value decomposition of A. Moreover, the singular values can be taken to be Ck func-
tions.

Proof. According to Theorem 3.3, we get that the Hermitian positive semidefinite
matrix A∗A has a Ck−e–Schur-decomposition

A∗A = Ṽ Σ2Ṽ ∗ , Σ2 =

σ
2
1

. . .

σ2
n

 .
Let t̂ be a point where A loses rank. We can assume that σ2

n is the smallest eigenvalue
near t̂. Then, by the smooth block Schur result (Proposition 2.6) we can write Ṽ =

[Ṽ1 ṽn] , where ṽn ∈ Ck. Write also Σ2 =
[

Σ2
1
σ2
n

]
. Similarly, we can make the

decomposition

AA∗ = [U1 Ũ2]

[
Σ2

1

B∗B

]
[U1 Ũ2]

∗
,

where U1 ∈ Ck−e, Ũ2 ∈ Ck, and B = A∗Ũ2 ∈ Ck.

Since w = Aṽn is in Ck and
∥∥w(t̂+ τ)

∥∥ ≥ c |τ |d̂ for some c > 0, d̂ ≤ d, we

get w(t̂ + τ) = τ d̂w0(τ), where w0 ∈ Ckd̂ and w0(0) 6= 0. So, by Proposition 3.4,

s(τ) = ‖w0(τ)‖ is in Ck
d̂
. Hence, σn = md̂(s) ∈ Ck. In Σ1 we can take the square roots

of σ2
1 , . . . , σ

2
n−1 with any combination of signs, keeping them constant until a possible

sign change of one that becomes zero.
Since ‖B‖2 = σ2

n, we have

B(t̂+ τ) = τ d̂B̂(τ),

where B̂ ∈ Ck−d̂ and B̂(0) has rank one. Then we have the Ck−d̂ block Schur-
decomposition:

WB̂∗B̂W ∗ =

[
s2 0
0 0

]
.

Set U = [U1 Ũ2W] = [U1 un U0] ∈ Ck−max(d̂,e). Then we want to find a matrix

V such that A = U
[

Σ
0

]
V ∗. We look for it in the form: V = Ṽ D, where D =

diag(d1, . . . , dn) satisfies |dj | = 1 for all j. We need[
U∗1
u∗n

]
A [Ṽ1 ṽn] =

[
Σ1

σn

]
D̄,

ON SMOOTH DECOMPOSITIONS OF MATRICES 817

from which diag(d̄1, . . . , d̄n−1) = Σ−1
1 U∗1AṼ1 ∈ Ck−e. Finally, from σnd̄n = u∗nw we

get dn ∈ Ck−max(d̂,e) by

d̄n(t̂+ τ) =
un(t̂+ τ)∗w0(τ)

s(τ)
.

Hence Σ ∈ Ck and U, V ∈ Ck−max(d,e).
Remark 3.3. If in the previous theorem A ∈ Ck(R,Rn×n), then condition (3.5) is

not needed and we get a Ck−e SVD. This is because U1 and V1 are in Ck−e and they
determine (up to sign) uniquely the last columns un, vn ∈ Ck−e.

4. Genericity of smooth factorizations. In this section we discuss how
smooth factors of a generic one-parameter family of matrices are. For example, we
show that, generically, Ck matrices have Ck QR-decomposition and Ck singular value
decomposition.

In what follows, for Ck(R,Cm×n) we take the Whitney topology (see [11]; it is
called the “fine” topology in [1]). Also, recall that a generic property is one that holds
for a set that contains a countable intersection of open and dense sets.

4.1. QR-decomposition. Here we show that the QR-decomposition is, gener-
ically, as smooth as the family.

Theorem 4.1. A generic A ∈ Ck(R,Rm×n), k ≥ 1, m ≥ n, has a Ck QR-
decomposition. This is similar for generic A ∈ Ck(R,Cm×n).

Proof. The set V of m×n real matrices having rank r < n is a stratified manifold,
where each stratum has codimension (m − r)(n − r) (see [11]). So, for m > n, the
codimension is at least 2, and by the weak transversality theorem a generic one-
parameter family does not meet this set (again, see [11]). So, it has full rank for
all t. In the case m = n, for generic A ∈ Ck(R,Rn×n) we have that [a1 . . . an−1]
is of full rank for all t, and by Remark 3.1 A has a Ck QR-decomposition. In the
complex case, each stratum has (real) codimension 2(m − r)(n − r), and hence a
generic one-parameter family has full rank for all t.

4.2. Schur-decomposition. For a generic matrix A ∈ Ck(R,Cn×n), the eigen-
values are simple and we have a Ck Schur-decomposition (and Ck eigendecomposition).
On the other hand, not even for a generic family of analytic real matrices we can expect
smooth eigenvalues. For example, any smooth real perturbation of

A(t) =

[
0 1
t 0

]
will have a defective eigenvalue and nondifferentiable eigenvalues at some t near 0.

More interesting is the case of Hermitian matrices. For the Ck case, the next
theorem shows that generically there is no loss of smoothness.

Theorem 4.2. A generic A ∈ Ck(R,Rn×nH), k ≥ 1 (or complex Hermitian) has
a Ck Schur-decomposition.

Proof. We show that a generic one-parameter family of real symmetric matrices
has simple eigenvalues for every t. The set W0 of symmetric matrices with a double
eigenvalue is the image of the map (U,D) → UDUT , where U is orthogonal and D
is diagonal with d11 = d22. This map is real analytic and proper (compact sets have
compact preimages). Hence by [10], W0 has a Whitney stratification. The dimension

of the set of n × n orthogonal matrices is n(n − 1)/2. If Ũ = U
[c
−s

s
c

I

]
, where

818 LUCA DIECI AND TIMO EIROLA

c2 + s2 = 1, then ŨDŨT = UDUT . Hence the maximum dimension of the strata of
W0 is

n(n− 1)/2− 1 + n− 1 = n(n+ 1)/2− 2.

Thus W0 has codimension two and by the weak transversality theorem a generic one-
parameter family does not meet W0. Similarly, now let W0 be the set of complex
Hermitian matrices with a double eigenvalue. This is the image of the map (U,D)→
UDU∗, with U unitary, and D real diagonal with d11 = d22. By viewing this as the
equivalent real map ψ : (Ur, Ui, D)→ (UrDU

T
r +UiDU

T
i , UiDU

T
r −UrDUTi), where

U = Ur+iUTi , similarly to the previous case one infers that W0 admits a stratification.
Now, the (real) dimension of the set of n × n unitary matrices is n2. If we let Ũ =

U
[
V
0

0
Φ

]
= Ũr + iŨi, where V ∈ C2×2 is unitary, and Φ = diag(η1, . . . , ηn−2), |ηj | = 1,

then ψ(Ũr, Ũi, D) = ψ(Ur, Ui, D). Hence the maximum dimension of the strata of
W0 is

n2 + (n− 1)− 4− (n− 2) = n2 − 3,

and since the set of Hermitian matrices has real dimension n2 we see that W0 has
codimension 3 and generically a one-parameter family does not meet it.

Example 4.1. Let A(t) =
[
t
0

0
0

]
. The perturbation Aε(t) =

[
t
ε
ε
0

]
has simple eigen-

values 1
2 (t±√t2 + 4ε2) for every t. This example also shows that analytic symmetric

matrices of two parameters do not necessarily have smooth eigenvalues.

4.3. Singular value decomposition. Here we show, in the Ck case, that gener-
ically the singular value decomposition is as smooth as the family.

Theorem 4.3. A generic A ∈ Ck(R,Rm×n), k ≥ 1 (or complex valued) has a Ck
singular value decomposition.

Proof. We can assume that m ≥ n; otherwise apply the following to AT . We
show first that generically a one-parameter family of real matrices has simple singular
values for every t, i.e., we have e = 0 in Theorem 3.6.

Similarly to the previous proof, the set V0 of real m × n matrices with a double
singular value is the image of the proper analytic map (U,Σ, V) → UΣV T , where
U ∈ Rm×n is orthonormal, Σ is diagonal with σ11 = σ22, and V is orthogonal. As
above,

U

[
c s
−s c

I

]
Σ

[
c −s
s c

I

]
V T = UΣV T

so that the dimensions of the strata of V0 do not exceed

mn− n(n+ 1)/2 + n− 1 + n(n− 1)/2− 1 = mn− 2.

Hence a generic one-parameter family does not intersect V0. The complex case is
handled similarly to Theorem 4.2.

If m > n, then as in the proof of Theorem 4.1 we generically get d = 0 for
Theorem 3.6. This is also true for complex n × n matrices. For real n × n matrices
we get the result by Remark 3.3.

Acknowledgment. The authors are grateful to J. Guckenheimer for suggesting
the study of generic smoothness of the factors.

ON SMOOTH DECOMPOSITIONS OF MATRICES 819

REFERENCES

[1] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd
ed., Springer-Verlag, New York, 1988.

[2] G. Benettin, G. Galgani, L. Giorgilli, and J. M. Strelcyn, Lyapunov exponents for
smooth dynamical systems and for Hamiltonian systems; a method for computing all of
them; Part I: Theory, Part II: Numerical applications, Meccanica, 15 (1980), pp. 9–20,
21–30.

[3] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation
of an analytic singular value decomposition by a matrix valued function, Numer. Math.,
60 (1991), pp. 1–40.

[4] T. F. Coleman and D. C. Sorensen, A note on the computation of and orthonormal basis
for the null space of a matrix, Math. Programming, 29 (1984), pp. 234–242.

[5] L. Dieci, R. D. Russell, and E. S. Van Vleck, On the computation of Lyapunov exponents
for continuous dynamical systems, SIAM J. Numer. Anal., 34 (1997), pp. 402–423.

[6] H. Gingold and P. F. Hsieh, Globally analytic triangularization of a matrix function, Linear
Algebra Appl., 169 (1992), pp. 75–101.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[8] J. M. Greene and J-S. Kim, The calculation of Lyapunov spectra, Physica D, 24 (1987),
pp. 213–225.

[9] J. K. Hale, Ordinary Differential Equations, Krieger Publishing Co., Huntington, NY, 1980.
[10] R. M. Hardt, Stratification of real analytic mappings and images, Inventiones Math., 28

(1975), pp. 193–208.
[11] M. W. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.
[12] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976.
[13] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, New York,

1969.
[14] W. Rheinboldt, On the computation of multi-dimensional solution manifolds of parametrized

equations, Numer. Math., 53 (1988), pp. 165–181.
[15] Y. Sibuya, Some global properties of matrices of functions of one variable, Math. Ann., 161

(1965), pp. 67–77.
[16] K. Wright, Differential equations for the analytical singular value decomposition of a matrix,

Numer. Math., 63 (1992), p. 283.
[17] W. Wasow, On the spectrum of Hermitian matrix-valued functions, Resultate der Math., 2

(1979), pp. 206–214.

DECAY RATES OF THE INVERSE OF NONSYMMETRIC
TRIDIAGONAL AND BAND MATRICES∗

REINHARD NABBEN†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 820–837

Abstract. It is well known that the inverse C = [ci,j] of an irreducible nonsingular symmetric
tridiagonal matrix is given by two sequences of real numbers, {ui} and {vi}, such that ci,j = uivj
for i ≤ j. A similar result holds for nonsymmetric matrices A. There the inverse can be described by
four sequences {ui}, {vi}, {xi}, and {yi} with uivi = xiyi. Here we characterize certain properties
of A, i.e., being an M -matrix or positive definite, in terms of the ui, vi, xi, and yi. We also establish
a relation of zero row sums and zero column sums of A and pairwise constant ui, vi, xi, and yi.
Moreover, we consider decay rates for the entries of the inverse of tridiagonal and block tridiagonal
(banded) matrices. For diagonally dominant matrices we show that the entries of the inverse strictly
decay along a row or column. We give a sharp decay result for tridiagonal irreducible M -matrices and
tridiagonal positive definite matrices. We also give a decay rate for arbitrary banded M -matrices.

Key words. decay rates, tridiagonal matrices, inverses of tridiagonal matrices

AMS subject classifications. 15A48, 15A57, 65F10

PII. S0895479897317259

1. Introduction. In many mathematical problems which give rise to a linear
system of equations the system matrix is tridiagonal or block tridiagonal. For example,
the numerical solution of partial differential equations often leads to tridiagonal (one-
dimensional problems) and block tridiagonal (higher dimensional problems) matrices.
Therefore, these classes of matrices have been extensively studied. A review of this
topic is given by Meurant [Meu] for symmetric matrices. One of the most important
results is established by Gantmacher and Krein [GK2], who proved that the inverse of
a symmetric irreducible tridiagonal matrix is given by two sequences, {ui} and {vi},
of real numbers. A similar result holds for the inverse of a nonsymmetric irreducible
tridiagonal matrix. There the inverse can be described elegantly by four sequences
{ui}, {vi}, {xi}, {yi}, which satisfy uivi = xiyi.

Considering (block) tridiagonal matrices and their inverses there are different
kinds of problems. On one hand, one wants to find explicit formulas for the inverses
of (block) tridiagonal matrices, and on the other hand, one wants to characterize ma-
trices whose inverses are (block) tridiagonal. Here we continue considering tridiagonal
matrices and their inverses. We characterize tridiagonal M -matrices and tridiagonal
symmetric positive definite matrices in terms of the {ui}, {vi}, {xi}, and {yi}. More-
over, we explain the connection of zero row sums and zero columns of a tridiagonal
matrix and pairwise constant ui, vi, xi, and yi.

It has been observed that for large classes of banded matrices the entries of the
inverse tend to zero as |i − j| becomes larger. The rate of decay is important to
construct sparse approximations of the inverse as preconditioners. In [D] and [DMS]
it is shown that the entries of the inverse of a symmetric positive matrix are bounded
in an exponentially decaying manner along a row or column. For nonsymmetric tridi-
agonal M -matrices, which are strictly diagonally dominant by rows and by columns,

∗Received by the editors January 23, 1997; accepted for publication (in revised form) by G. Golub
March 18, 1998; published electronically May 7, 1999.

http://www.siam.org/journals/simax/20-3/31725.html
†Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33 501 Bielefeld, Federal Re-

public of Germany (nabben@mathematik.uni-bielefeld.de).

820

DECAY RATES 821

we establish that the entries of the inverse indeed decay along each row and column
away from the diagonal. We also give a bound for this decay. This result generalizes
a result by Concus, Golub, and Meurant [CGM] for symmetric matrices.

For arbitrary tridiagonal M -matrices or positive definite matrices the entries of
the inverse do not strictly decay along a row in general. However, here we establish
a sharp decay result related to two diagonal entries for the inverses of tridiagonal
matrices. This result can be proved easily and continues the number of elegant results
on tridiagonal matrices. For symmetric matrices the result is related to a result due to
Vassilevski [Vas], who used Cauchy–Bunyakowski–Schwarz constants to describe the
decay. Therefore, we establish a new proof of Vassilevski’s theorem and obtain a new
way to compute or estimate Cauchy–Bunyakowski–Schwarz constants for tridiagonal
matrices. Moreover, we establish a decay rate for the inverses of banded M -matrices.

2. Inverses of tridiagonal matrices. One of the most important results on
symmetric tridiagonal matrices is the result by Gantmacher and Krein [GK2] which
describes the structure of the inverse of these matrices.

Theorem 2.1. Let A ∈ Rn,n be symmetric, irreducible, and nonsingular. Then
A is tridiagonal if and only if C = [ci,j] is given by two sequences {ui}ni=1, {vi}ni=1 of
numbers such that

C =

u1v1 u1v2 · · · u1vn
u1v2 u2v2 · · · u2vn

...
...

. . .
...

u1vn u2vn · · · unvn

 or ci,j =

{
uivj i ≤ j,
ujvi i ≥ j.(2.1)

Matrices of the form (2.1) can be described more elegantly as the Hadamard product
(elementwise product) of a so-called type D and a flipped type D matrix (see [Mar]
and [MNNST]), i.e.,

C =

u1 u1 · · · u1

u1 u2 · · · u2

...
...

. . .
...

u1 u2 · · · un

 ◦

v1 v2 · · · vn
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

 .(2.2)

Since Gantmacher and Krein introduced matrices of the form (2.1) in 1937 [GK1]
many names have been given to them. Originally, Gantmacher and Krein called
them matrices à un couple while later on they were called matrices factorisables by
Baranger and Duc-Jacquet in [BD]. In the Russian edition of [GK2] (1941) they are
named odnoparnyeh, which means one pair(ed). In the German edition of [GK2]
(1960) they are called einpaarig. Karlin named them Green’s matrices in [K], which
is also used by Barrett in [Ba], while Markham called them matrices of a couple in
[Mar]. Ròzsa used in [R] the names one-pair-matrices and separable matrices.

In the study of inverses of band matrices Asplund [As] defined in 1958 a square
matrix A = [ai,j] to be a Green’s matrix of order p if all submatrices have rank ≤ p
if their elements belong to the part of [ai,j] for which j + p > i. Later on Ròzsa
generalized this concept in [R] by introducing Green’s matrices of grade {p, q} which
are Green’s matrices of order p whose transposes are Green’s matrices of order q.
Obviously, a symmetric Green’s matrix of grade {1, 1} is a matrix of the form (2.1)
and vice versa.

822 REINHARD NABBEN

For nonsymmetric tridiagonal matrices A ∈ Rn,n with

A =

a1 b1
c1 a2 b2

. . .
. . .

. . .

cn−2 an−1 bn−1

cn−1 an

 ,(2.3)

Capovani [C1], [C2] proved the following theorem.
Theorem 2.2. Let A ∈ Rn,n be irreducible and nonsingular. Then A is tridiag-

onal if and only if there exist four sequences {ui}, {vi}, {xi}, {yi}, where uivi = xiyi
for all i, such that A−1 =: C = [ci,j] is given by

ci,j =

{
uivj i ≤ j,
xiyj i ≥ j.(2.4)

As in the symmetric case matrices of the form (2.4) can be written nicely as the
Hadamard product of two matrices:

C =

u1 u1 · · · · · · u1

x1 u2 · · · · · · u2

x1 x2 u3 · · · u3

...
...

. . .
...

x1 x2 · · · · · · un

 ◦

v1 v2 · · · · · · vn
y2 v2 · · · · · · vn
y3 y3 v3 · · · vn
...

...
. . .

...
yn yn · · · · · · vn

 .(2.5)

Matrices of the form (2.4) are Green’s matrices of grade {1, 1} and they are also
called {1, 1} semiseparable by Rozsa in [R] if, in addition, uivj−xiyj 6= 0 for |i−j| = 1.

Here we should note that the inverse of an irreducible tridiagonal matrix is given
by three vectors, since uivi = xiyi for all i. Moreover, one can choose u1 = x1 = 1;
thus the inverse of a tridiagonal matrix is given by 3n − 2 parameters. However, to
give a better illustration of the structure of the inverse we will use and consider four
sequences.

Capovani [C1], [C2] also established equations for certain minors of matrices of
the form (2.4) which we state here again in a different way. For A ∈ Rn,n let Aij
denote the (n− 1)× (n− 1) matrix obtained from A by deleting the ith row and the
jth column. Moreover, for a matrix of the form (2.4) define

di,j := xiyj − viuj , hi,j := uivj − yixj .(2.6)

Then one can show the following theorem.
Theorem 2.3. Let C ∈ Rn,n be a nonsingular matrix of the form (2.4). Then

detC = x1yn

n−1∏
i=1

di+1,i = u1vn

n−1∏
i=1

hi+1,i,(2.7)

detCi,i+1 =
detC

di+1,i
detCi+1,i =

detC

hi+1,i
,(2.8)

detCi,j = 0 for |i− j| > 1.(2.9)

Here we should mention that Barrett gives in [Ba] another characterization of
tridiagonal matrices.

DECAY RATES 823

Theorem 2.4. Let C = [ci,j] ∈ Rn,n with nonzero entries c2,2, . . . , cn−1,n−1.
Then C−1 is tridiagonal if and only if C has the triangle property, i.e.,

ci,j =
ci,kck,j
ck,k

for all i < k < j, i > k > j.

Note that none of these theorems includes the other. In Theorem 2.2 there is a
restriction on irreducibility while in Theorem 2.4 there is a restriction of the diagonal
entries of the inverse.

In the following we complete this section with some new results. We will character-
ize nonsingular tridiagonal M -matrices. A matrix A = [ai,j] is called a (nonsingular)
M -matrix if ai,j ≤ 0 for i 6= j and A−1 is a nonnegative matrix. We characterize
nonsingular tridiagonal M -matrices in terms of the sequences {ui}, {vi}, {xi}, and
{yi} which give A−1. To do so we define for i = 1, . . . , n− 1

αi :=
uivi+1

ui+1vi
, βi :=

xiyi+1

xi+1yi
.(2.10)

Theorem 2.5. Let A ∈ Rn,n be irreducible and nonsingular. Then the following
are equivalent:

1. A is a tridiagonal M -matrix,
2. A−1 is a matrix of the form (2.4), where all ui, vi, xi, and yi have the same

sign and

αiβi < 1 for all i.

Proof. A = [ai,j] is given by

ai,j = (−1)i+j
detA−1

j,i

detA−1
.

Thus Theorem 2.3 yields

ai,i+1 = − 1

ui+1vi − xiyi+1
, ai+1,i = − 1

xi+1yi − uivi+1
.

If A is an M -matrix we have

xi+1yi − uivi+1 > 0 and ui+1vi − xiyi+1 > 0.

Therefore,

uivi+1

xi+1yi
< 1 and

xiyi+1

ui+1vi
< 1.

Hence αiβi < 1.
If αiβi < 1 we have

uivi+1

xi+1yi

xiyi+1

ui+1vi
< 1.

Since uivi = xiyi for all i, i.e.,

xi
vi

=
ui
yi
, and

yi+1

ui+1
=
vi+1

xi+1
,

824 REINHARD NABBEN

we obtain

uivi+1

xi+1yi
=
xiyi+1

ui+1vi
.

Therefore,

xi+1yi − uivi+1 > 0 and ui+1vi − xiyi+1 > 0.

Since A−1 is a nonnegative matrix we then obtain that A is an M -matrix.
Corollary 2.6. Let A ∈ Rn,n be symmetric irreducible and nonsingular. Then

the following are equivalent:
1. A is a tridiagonal M -matrix,
2. A−1 is a matrix of the form (2.4) given by the sequences {ui} and {vi} where

all ui, vi and have the same sign and

u1

v1
< · · · < un

vn
.

In [MNNST] another characterization of tridiagonal M -matrices is given. There it
is used that for each nonsymmetric irreducible tridiagonal M -matrix A there exists a
diagonal matrixD such thatDA is symmetric. Here we can avoid this symmetrization.

For symmetric positive definite matrices we immediately obtain the following
characterization.

Corollary 2.7. Let A ∈ Rn,n be a nonsingular symmetric tridiagonal matrix. A
is positive definite if and only if there exists a diagonal matrix D = [dij] with |dii| = 1
such that

(DAD)−1 =

u1 u1 · · · u1

u1 u2 · · · u2

...
...

. . .
...

u1 u2 · · · un

 ◦

v1 v2 · · · vn
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

 ,(2.11)

where all ui and vi in (2.11) have the same sign and

0 <
u1

v1
<
u2

v2
< · · · < un

vn
.

Proof. Since A is symmetric tridiagonal there exists a diagonal matrix D = [di,j]
with |di,i| = 1 such that DAD is a Z-matrix, i.e., all off-diagonal entries of DAD are
nonpositive. Hence, with Theorem 2.5, DAD is a symmetric M -matrix, thus positive
definite, if and only if (2.11) holds.

These characterizations of tridiagonal M -matrices and tridiagonal positive defi-
nite matrices will be useful in the next section.

3. Decay rates. In this section we consider the decay of the elements of the
inverse of tridiagonal and banded matrices. Several papers already established results
on this topic. In [D] and [DMS] it is shown that the entries of the inverse of a banded
symmetric positive matrix are bounded in an exponentially decaying manner along
a row or column. In [EP] decay rates of inverses of certain M -matrices, i.e., those
matrices whose factors in an LDU -factorization are bounded by diagonally dominant
Toeplitz matrices, are given. As shown in [EP] this class of M -matrices contains the
diagonally dominant M -matrices which are Toeplitz matrices.

DECAY RATES 825

Here we will give some decay results for arbitrary tridiagonal and banded M -
matrices and we will show that the entries of a nonsymmetric tridiagonal diagonally
dominant matrix indeed decay along a row and column.

A matrix B = [bi,j] is diagonally dominant by columns if

bi,i ≥
∑
j 6=i
|bj,i| for all i.

If

bi,i ≥
∑
j 6=i
|bi,j | for all i,

then B is called diagonally dominant by rows. If the above inequalities are strict,
then B is called strictly diagonally dominant by columns or by rows, respectively.

For A as in (2.3) being a symmetric tridiagonal M -matrix which is diagonally
dominant by columns (with a1 > b1 and an > bn−1) Concus, Golub, and Meurant
proved in [CGM] that the sequence {ui} is strictly increasing while {vi} is strictly
decreasing. Thus the entries of A−1 indeed strictly decay along each row or column.
Moreover, they proved that

(A−1)ij ≤ (A−1)iiρ
|i−j|,(3.1)

where 1/ρ = mink≥2((ak + bk−1)/bk)). Since A is diagonally dominant one has ρ < 1.
We will generalize this result to the nonsymmetric case. In the following we also

assume for simplicity that A is a tridiagonal Z-matrix, i.e.,

A =

a1 −b1
−c1 a2 −b2

. . .
. . .

. . .

−cn−2 an−1 −bn−1

−cn−1 an

 bi, ci ≥ 0.(3.2)

The entries of the sequences {ui}, {vi}, {xi}, and {yi}, which give A−1, can be
computed as follows.

Lemma 3.1. Let A ∈ Rn,n be an irreducible tridiagonal Z-matrix. Then

u1 = 1, u2 =
a1

b1
,

ui =
ai−1ui−1 − ci−2ui−2

bi−1
, i = 3, . . . , n,

x1 = 1, x2 =
a1

c1
,

xi =
ai−1xi−1 − bi−2xi−2

ci−1
, i = 3, . . . , n,

vn =
1

anun − cn−1un−1
,

yi =
uivi
xi

, i = n, . . . , 1,

vi =
1 + bixiyi+1

aiui − ci−1ui−1
, i = n− 1, . . . , 1.

826 REINHARD NABBEN

Proof. Multiplying the (i − 1)th row of A with the ith column of A−1 gives ui.
Multiplying the ith row of A−1 with the (i− 1)th column of A gives xi. Multiplying
the ith row of A with the ith column of A−1 gives vi. Moreover, we use that
uivi = xiyi.

Similar recurrence formulas for the entries of A−1 as in Lemma 3.1 can be found
in [Be], [BC]. For the next theorem we define

1

ρ1
:= min

i≥2

ai − ci−1

bi
,

1

ρ2
:= min

i≥2

ai − bi
ci−1

,

1

ρ3
:= min

i≥2

ai − ci
bi−1

,
1

ρ4
:= min

i≥2

ai − bi−1

ci
.

Theorem 3.2. Let A ∈ Rn,n be an irreducible tridiagonal M -matrix. If A is
diagonally dominant by rows and if a1 > b1 and an > cn−1, then {ui} is strictly
increasing while {yi} is strictly decreasing. Moreover,

(A−1)i,j ≤ ρj−i1 (A−1)j,j for i < j,

(A−1)i,j ≤ ρi−j2 (A−1)j,j for i > j.

If A is diagonally dominant by columns and if a1 > c1 and an > bn−1, then {xi} is
strictly increasing while {vi} is strictly decreasing. Moreover,

(A−1)i,j ≤ ρj−i3 (A−1)i,i for i < j,

(A−1)i,j ≤ ρi−j4 (A−1)i,i for i > j.

Proof. First assume that A is diagonally dominant by rows and a1 > b1, an >
bn−1. It is clear that u2 > u1. By the induction hypothesis and Lemma 3.1 we get

ui =
ai−1ui−1 − ci−2ui−2

bi−1
>
ai−1 − ci−2

bi−1
ui−1 > ui−1.

To obtain the desired result for the yi we have to establish a recursive formula.
Multiplying the ith row of A−1 with the ith column of A gives

yi =
1 + ciuivi+1

aixi − bi−1xi−1
.

Multiplying the (i+ 1)th row of A−1 with the ith column of A gives

−bi−1xi−1 + aixi − cixi+1 = 0.

Multiplying the (i+ 1)th row of A with the (i+ 1)th column of A−1 gives

−ciuivi+1 + ai+1xi+1yi+1 − bi+1xi+1yi+2 = 1.

Hence

yi =
ai+1xi+1yi+1 − bi+1xi+1yi+2

cixi+1
=
ai+1

ci
yi+1 − bi+1

ci
yi+2

and

yn−1 =
an
cn−1

yn.

DECAY RATES 827

We then have yn−1 > yn and by induction yi > yi+1. The decay rates follow im-
mediately from the recursive formulas for the ui and yi and the special structure of
A−1.

If A is diagonally dominant by columns, a1 > c1 and an > bn−1 we can obtain
the desired results by considering AT as above.

For matrices which are not M -matrices but satisfy the other assumptions of The-
orem 3.2 we obtain that the sequences of the absolute values strictly increase or
decrease, respectively.

Example 3.1. Let A be

A =

2 −1 0 0 0
−3 7 −3 0 0

0 −7 17 −8 0
0 0 −2 6 −3
0 0 0 −1 2

 .
The inverse of A is given by

A−1 =

0.6905 0.1270 0.0283 0.0504 0.0756
0.3809 0.2539 0.0567 0.1007 0.1511
0.1983 0.1322 0.1039 0.1847 0.2770
0.0881 0.0588 0.0462 0.3043 0.4565
0.0441 0.0294 0.0231 0.1522 0.7282

 .
A is diagonally dominant by rows but not by columns. We obtain for the vectors

(or sequences) u, v, x, y:

u = [1, 2, 3.6667, 6.0417, 9.6389]T ,

v = [0.6905, 0.1270, 0.0283, 0.0504, 0.0756]T ,

x = [1, 0.6667, 0.5238, 3.4524, 16.5238]T ,

y = [0.6905, 0.3809, 0.1983, 0.0881, 0.0441]T .

As stated in Theorem 3.2 the ui are strictly increasing while the yi are strictly de-
creasing. Thus the entries of A−1 strictly decay along a column, but not along a row,
away from the diagonal. Moreover, ρ1 = 0.8, while ρ2 = 7/9.

Example 3.2. Let A be

A = toeplitz(−0.9, 5,−1.1) ∈ R15,15.

Here we compare our decay rate with the rate given in [EP]. As mentioned above
the rates in [EP] are established under some additional assumptions on A. The ex-
amples given there are all strictly diagonally dominant M -matrices which are Toeplitz
matrices. The matrix A above is the matrix (2) in [EP].

If one considers the inverse C = [ci,j] of A, given in [EP], the almost exact decay
rate to the right along a row is 0.2295. The almost exact rate to the left along a row
is, however, 0.1878. The estimates given in [EP] are 0.2295 for the right and 0.1877
to the left. A short calculation gives ρ3 = 0.2683 and ρ4 = 0.2308. Thus the greater
restriction in the class of matrices for which decay rates are estimated yields here the
better decay estimates.

Theorem 3.2 generalizes the result for symmetric tridiagonal matrices by Concus,
Golub, and Meurant [CGM]. In the following we specify the above result. First we will

828 REINHARD NABBEN

explain what happens if the assumptions a1 > b1 and an > cn−1, etc., are not fulfilled.
Then we will establish results for matrices which are not diagonally dominant.

In the following we will explain the connection of zero row and column sums of A
and some pairwise constant ui, vi, xi, and yi. Let for A = [aij] ∈ Rn,n and i = 1, . . . , n

ri =
n∑
j=1

aij ci =
n∑
j=1

aj,i.

Then we have the following.
Theorem 3.3. Let A be an irreducible nonsingular tridiagonal matrix. Then

there exist indices s, t ∈ {0, 1, . . . , n+ 1} such that

ri = 0 for i = 1, . . . , s,

ri = 0 for i = n− t, . . . , n
if and only if

ui = ui+1 for i = 1, . . . , s,

yi−1 = yi for i = n− t, . . . , n.
Moreover, there exist indices s̃, t̃ ∈ {0, 1, . . . , n+ 1} such that

ci = 0 for i = 1, . . . , s̃,

ci = 0 for i = n− t̃, . . . , n
if and only if

xi = xi+1 for i = 1, . . . , s̃,

vi−1 = vi for i = n− t̃, . . . , n.
Proof. The proof follows immediately from similar formulas for the ui, vi, xi, and

yi as derived in Lemma 3.1 and in the proof of Theorem 3.2.
Note that in Theorem 3.3 we do not assume A to be diagonally dominant or

positive definite or to be a Z-matrix. For symmetric matrices Theorem 3.3 says that
the first and last pairwise constant ui and vi gives zero row sums for the first and
last rows in A and vice versa. Moreover, if ri = 0 for i = 1, . . . , s and ri = 0 for
i = n− t, . . . , n, then the inverse of A can be partitioned as

A−1 = C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,(3.3)

where C11 ∈ Rs,s and C33 ∈ Rt+1,t+1. Here C11 is a flipped type D matrix while C33

is a type D matrix. C31 and C13 are flat matrices, i.e., all entries of these blocks are
equal. Hence, there can be no strict decay away from the diagonal in these blocks.
Moreover, the rows of C12 and the columns of C23 are flat. This structure is illustrated
in the next example.

Example 3.3.

A =

2 −2 0 0 0 0
−2 2 1 0 0 0

0 1 4 −2 0 0
0 0 −2 2 −1 0
0 0 0 −1 4 −1
0 0 0 0 −1 1

 .

DECAY RATES 829

Here we have s = t = 1. Thus all blocks Ci,j are 2× 2 blocks and the blocks C1,3

and C3,1 are flat:

10A−1 =

−11 −16 10 12 4 4
−16 −16 10 12 4 4

10 10 0 0 0 0
12 12 0 6 2 2
4 4 0 2 4 4
4 4 0 2 4 14

 .

Combining Theorem 3.3 with Theorem 3.2 we get the following.
Corollary 3.4. Let A be an irreducible tridiagonal M -matrix. If ri = 0 for

i = 1, . . . , s and ri = 0 for i = n − t, . . . , n for s, t ∈ {0, 1, . . . , n − 1}, then the
sequences {ui} and {yi} satisfy

ui = ui+1 for i = 1, . . . , s,

ui < ui+1 else,

yi−1 = yi for i = n− t, . . . , n,
yi−1 > yi else.

If ci = 0 for i = 1, . . . , s̃ and ci = 0 for i = n − t̃, . . . , n for s̃, t̃ ∈ {0, 1, . . . , n − 1}.
Then the sequences {xi} and {vi} satisfy

xi = xi+1 for i = 1, . . . , s̃,

xi < xi+1 else,

vi−1 = vi for i = n− t̃, . . . , n,
vi−1 > vi else.

Example 3.4. Consider the one-dimensional Laplacian with Dirichlet and Neu-
mann boundary conditions:

A =

2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

. . .

−1 2 −1
−1 1

.

Here s = 0 but t = n− 1. So we obtain a type D matrix as A−1.

A−1 =

1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
...

...
...

. . .

1 2 3 n− 1 n− 1
1 2 3 n− 1 n

.

Hence, the entries do not decay away from the diagonal to the right along a row
but to the left. This happens since the sequence {ui} is strictly increasing while the
sequence {vi} is vanishing.

830 REINHARD NABBEN

For M -matrices or symmetric positive definite tridiagonal or banded matrices,
which are not diagonally dominant, the elements of A−1 do not decrease in general
along a row or column. This can be seen in the following example.

Example 3.5.

A =

8 −4 0 0
−4 5 −1 0

0 −1 1 −1
0 0 −1 4

 10A−1 =

2.75 3 4 1

3 6 8 2
4 8 24 6
1 2 6 4

 .
However, we will establish a decay result for tridiagonal M -matrices and symmetric
positive definite matrices in the following. These results are based on the characteri-
zations of these matrices given in Theorem 2.5 and Corollary 2.7.

Theorem 3.5. Let A ∈ Rn,n be a nonsingular irreducible tridiagonal matrix. Let
A−1 = C = [cij]. Then for k > 0

ci,i+k =

 k∏
j=1

α
1
2
i+j

 (ci,ici+k,i+k)
1
2 ,(3.4)

ci+k,i =

 k∏
j=1

β
1
2
i+j

 (ci,ici+k,i+k)
1
2 ,(3.5)

where the αi and βi are as in (2.10).
Proof. Obviously, cii, ci+k,i+k and ci,i+k are given by

cii = uivi, ci+k,i+k = ui+kvi+k, ci,i+k = uivi+k.

Moreover,

ui
vi

=

 k∏
j=1

αi+j

 ui+k
vi+k

.

Hence,

ci,i+k = uivi+k

= (uiviui+kvi+k)
1
2

(
uivi+k
viui+k

) 1
2

=

 k∏
j=1

α
1
2
i+j

 (ci,ici+k,i+k)
1
2 .

Similarly, we obtain (3.5).
In general one cannot say anything about the αi and βi in (3.4) and (3.5). But for

M -matrices and for symmetric positive definite matrices we have the following decay
results.

Corollary 3.6. Let A ∈ Rn,n be an irreducible tridiagonal M -matrix. Then for
A−1 = C = [cij] we have

ci,i+kci+k,i =

 k∏
j=1

(αi+jβi+j)
1
2

 (ci,ici+k,i+k),(3.6)

DECAY RATES 831

where αiβi < 1 for all i.
Proof. The proof follows immediately from Theorem 2.5 and Theorem 3.5.
Corollary 3.7. Let A ∈ Rn,n be an irreducible tridiagonal matrix which is

symmetric positive definite. Then for A−1 = C = [cij] we have

ci,i+k =

 k∏
j=1

α
1
2
i+j

 (ci,ici+k,i+k)
1
2 ,(3.7)

where αi < 1 for all i.
Proof. With Theorem 2.7 we have for a symmetric positive definite tridiagonal

matrix A that there exists a diagonal matrix D such that DA−1D is given by (2.11)
with

0 <
u1

v1
<
u2

v2
< · · · < un

vn
.

Thus we have αi < 1 for all i. Since (3.4) of Theorem 3.5 is independent of multiplying
A from the left and right with the same diagonal matrix, we obtain (3.7).

Note that Corollary 3.7 also includes the symmetric M -matrices. Since for M -
matrices αiβi < 1 for all i and αi < 1 for symmetric positive definite matrices, (3.6)
and (3.7) give a sharp decay result for the entries of the inverse of tridiagonal matrices.
Moreover, this result can be proved easily. The decay rates are given in terms of A−1.
However, the next lemma and the next theorem will show the relation of the αi and
βi to some values determined directly from A.

For k = 1, . . . , n− 1 partition A as

A =

[
A11 A12

A21 A22

]
,(3.8)

where A11 ∈ Rk,k and A22 ∈ Rn−k,n−k, and split A into A = Dk −Nk, where Dk is
the block diagonal of A. If Dk is nonsingular we define

ρk = ρ(D−1
k Nk).(3.9)

We then have the following lemma.
Lemma 3.8. Let A ∈ Rn,n be tridiagonal and nonsingular. For k = 1, . . . , n− 1

let A = Dk −Nk be as in (3.8). Moreover, for A−1 = C = [cij] let

D̃k =

[
ck,k 0
0 ck+1,k+1

]
, Ñk = −

[
0 ck,k+1

ck+1,k 0

]
.(3.10)

If Dk and D̃k are nonsingular, then with J = [jst] := D−1
k Nk and

Ĵk =

[
0 jk,k+1

jk+1,k 0

]
we have

Ĵk = −(D̃−1
k Ñk)T(3.11)

and

σ(D−1
k Nk) = σ(Ĵk) ∪ {0} = σ(D̃−1

k Ñk) ∪ {0}.(3.12)

832 REINHARD NABBEN

Here σ(T) denotes the spectrum of the matrix T .
Proof. We immediately get for Ĵk

Ĵk =

[
0 −(A−1

11)kkak,k+1

−(A−1
22)11ak+1,k 0

]
.

Now consider A partitioned as in (3.8). A−1 is given by

A−1 =

[
(A/A22)−1 −A−1

11 A12(A/A11)−1

−(A/A11)−1A21A
−1
11 (A/A11)−1

]
.

Here (A/A11) denotes the Schur complement of A, i.e., (A/A11) = A22−A12A
−1
11 A21.

We have

−A21A
−1
11 = −ak+1,k

[
(A11)−Tk , 0, . . . , 0

]T
,

where (A11)−1
k is the last row of A−1

11 . Hence,

ck+1,k =
[−(A/A11)−1A21A

−1
11

]
1,k

= −(A/A11)−1
1,1 ∗ (A−1

11)k,k ∗ ak,k+1.

Thus

− ck+1,k

ck+1,k+1
= (A−1

11)k,kak,k+1 = −jk,k+1.

Similarly, we show that

−ck,k+1

ck,k
= (A−1

22)1,1ak+1,k = −jk+1,k.

Thus

Ĵk = −(D̃−1Ñk)T .

Equation (3.12) follows from (3.11) and the special structure of J = D−1
k Nk.

We then obtain the following theorem.
Theorem 3.9. Let A ∈ Rn,n be an irreducible tridiagonal M -matrix and let

A−1 = C = [cij]. For s = 1, . . . , n− 1 let ρs be as in (3.9). Then

ci,i+kci+k,i =

(
k−1∏
l=0

ρ2
i+l

)
(ci,ici+k,i+k).

Proof. For all s (3.10) gives

D̃s =

[
usvs 0

0 us+1vs+1

]
=

[
xsys 0

0 xs+1ys+1

]
,

Ñk = −
[

0 usvs+1

xsys+1 0

]
;

thus

(ρ(D̃−1
s Ñk))4 =

usvs+1xsys+1

usvsus+1vs+1

xsys+1usvs+1

xsysxs+1ys+1
= αsβs.

DECAY RATES 833

Hence with Lemma 3.8 we obtain

(αsβs)
1
2 = ρ2

s.

Moreover, for symmetric positive definite matrices we obtain the following corol-
lary.

Corollary 3.10. Let A ∈ Rn,n be tridiagonal symmetric positive definite and
let A−1 = C = [cij]. Then

ci,i+k =

(
k−1∏
l=0

ρi+l

)
(ci,ici+k,i+k)

1
2 .

A similar result is proved by Vassilevski [Vas] (see also [Ax, p. 368]). Vassilevski
proved for tridiagonal symmetric positive definite matrices A and their inverses C =
[cij] that

ci,i+k =

(
k−1∏
l=0

γi+l

)
(ci,ici+k,i+k)

1
2 ,(3.13)

where

γs = sup
v∈Rs,s,w∈Rn−s,n−s

vTA12w

(vTA11vwTA22w)
1
2

(3.14)

and A is partitioned as in (3.8) for all s. The constants γs are known as the Cauchy–
Bunyakowski–Schwarz constants. Since A is positive definite, γs < 1. Originally in
[Vas] the result (3.13) is obtained from a more general result for symmetric positive
definite block tridiagonal matrices. There norms of the blocks are compared and the
equality in (3.13) becomes an inequality (≤).

The proof given in [Vas] is very long and technical. However, it is easy to prove
that the ρs in Corollary 3.10 and the γs in (3.14) are the same. Thus, our approach
for the nonsymmetric case gives even for the symmetric matrices a much simpler proof
of Vassilevski’s result.

Moreover, Theorem 3.10 and Lemma 3.8 give another way to compute or estimate
the Cauchy–Bunyakowski–Schwarz constants.

Using comparison theorems for regular splittings we obtain from Theorem 3.10
and Theorem 3.9 the following corollary.

Corollary 3.11. Let A ∈ Rn,n be tridiagonal and irreducible. Let A−1 = C =
[cij]. Let A = D − N , where D = diag(A), and let ρ = ρ(D−1N). If A is an
M -matrix, then

ci,i+kci+k,i ≤ ρ2kci,ici+k,i+k.(3.15)

If A is symmetric positive definite, then

ci,i+k ≤ ρk(ci,ici+k,i+k)
1
2 .(3.16)

Proof. The splittings A = Dk − Nk of (3.8) are regular splittings, i.e., D−1
k and

Nk are nonnegative matrices. The same holds for the splitting A = D−N . Moreover,
we have

Nk ≤ N for all k,

834 REINHARD NABBEN

With Varga’s comparison theorem for regular splittings [Var, p. 90] we obtain

γk = ρ(D−1
k Nk) ≤ ρ.

Since (3.16) is independent of scaling we obtain the result easily for symmetric positive
definite matrices.

Note that in both cases ρ < 1. Thus the spectral radius of the Jacobi iteration
matrix is an upper bound for the decay of the entries of the inverse of a tridiagonal
M -matrix or symmetric positive definite matrix.

Example 3.6. Consider the matrix A with

A =

4 −2 0 0 0

−1.5 3 −1.5 0 0
0 −4 8 −4 0
0 0 −2.5 5 −2.5
0 0 0 −6 5

 ,

A−1 = C =

1 2 1 2 1

1.5 4 2 4 2
2 5.3333 3 6 3

2.5 6.6667 3.75 8 4
3 8 4.5 9.6 5

 .
The vectors u, v, x, y are as follows:

u = [1, 2, 3, 4, 5], v = [1, 2, 1, 2, 1],

x = [1, 2.6667, 1.5, 3.2, 1.6667], y = [1, 1.5, 2, 2.5, 3].

For the vectors α = [αi] and β = [βi] we get

α = [1, 0.3333, 0.6666, 0.4], β = [0.5625, 2.3704, 0.5859, 2.3040].

Thus one can verify Theorem 3.5. To illustrate Corollary 3.11 we compare the matrices
C̃ = C ◦ CT with the matrix built by the right-hand sides of (3.15), where ρ = 0.99:

C̃ =

1.0000 3.0000 2.0000 5.0000 3.0000
3.0000 16.0000 10.6667 26.6667 16.0000
2.0000 10.6667 9.0000 22.5000 13.5000
5.0000 26.6667 22.5000 64.0000 38.4000
3.0000 16.0000 13.5000 38.4000 25.0000

≤

1.0000 3.9204 2.8818 7.5318 4.6137
3.9204 16.0000 11.7612 30.7391 18.8296
2.8818 11.7612 9.0000 23.5224 14.4089
7.5318 30.7391 23.5224 64.0000 39.2040
4.6137 18.8296 14.4089 39.2040 25.0000

 .
The decay rate of Corollary 3.11 seems to be too pessimistic. However, the bounds

on the entries reflect the oscillation of the entries of C and C̃ along a row.
We have seen that the spectral radius of the Jacobi iteration matrix is an upper

bound for the decay of the entries of the inverse of a tridiagonal M -matrix or sym-
metric positive definite matrix. In the following we will see that this is also true for

DECAY RATES 835

banded M -matrices. A matrix A = [ai,j] is called a 2p+ 1 banded matrix if ai,j = 0
for |i− j| > p.

For nonnegative matrices the spectral radius is an eigenvalue and the related
eigenvector is positive. So, if we split the M -matrix A into

A = D −N, where D = diag(A) and N = D −A,

then D−1N is a nonnegative matrix. Thus, there exists a positive vector u with
D−1Nu = ρ(D−1N)u and a nonsingular diagonal matrix ∆ = diag(δi) with

∆e = u such that ∆−1D−1N∆e = ρ(D−1N)e,(3.17)

where e is the vector of all ones. We then have the theorem below.
Theorem 3.12. Let A be a 2p+1 banded M -matrix. Let A−1 = C = [cs,t]. Then

for any s, t with s ∈ {(i− 1)p+ 2, . . . , ip+ 1} and t ∈ {(j− 1)p+ 2, . . . , jp+ 1} (i = 1
if s = 1, j = 1 if t = 1) with i 6= j

δ−1
s cs,tδt ≤ ρ|i−j|ct,t,
δ−1
s cs,tδt ≤ ρ|i−j|cs,s;

here ρ = ρ(D−1N) with D = diag(A) and N = D −A.
Proof. First we split ∆−1A∆ into ∆−1A∆ = ∆−1D∆−∆−1N∆. We obtain

∆−1D−1N∆e = ρ(D−1N)e.(3.18)

We first assume that s > t. To find the tth column of ∆−1C∆ we have to solve
∆−1A∆x = et, where et is the zero vector except the tth entry which is 1. To do so
we consider with J := ∆−1D−1N∆

x(k) = Jx(k−1) + ∆−1D−1∆ej , x(0) = 0.(3.19)

If we define ε(k) = x− x(k) we get

ε(k) = Jε(k−1) = Jkε(0) = Jkx.

Thus

||ε(k)||∞ ≤ ||Jk||∞||x||∞ ≤ ||J ||k∞||x||∞ = ρ(J)kctt.

The last equality follows from (3.18) and ||x||∞ = ctt (see [FP]). With (3.19) we
obtain for p 6= 1

x
(i−j)
l = 0 for l ≥ (i− 1)p+ 2

and for p = 1

x
(i−j)
l = 0 for l ≥ i.

Now let

ε(k) =

[
ε̃(k)

ε̂(k)

]
,

836 REINHARD NABBEN

where ε̃(k) ∈ R(i−1)p+2. Similarly, we partition x(k) and x. Then

||ε(i−j)||∞ ≥ ||ε̂(i−j)||∞ = ||x̂− x̂(i−j)||∞ ≥ ||x̂||∞ − ||x̂(i−j)||∞ = ||x̂||∞.
Thus

δ−1
s cs,tδt ≤ ||x̂||∞ ≤ ρ(J)(i−j)ct,t.

Similarly, we obtain by solving xT∆−1A∆ = es

δ−1
s cs,tδt ≤ ρ(J)(i−j)cs,s.

Similarly, we prove the case s < t.
Theorem 3.12 can be extended easily to H-matrices A, i.e., matrices for which

the comparison matrix M(A) with (M(A))ii = |aii|, (M(A))i,j = −|ai,j | for i 6= j,
is an M -matrix. The decay rate is then the spectral radius of the Jacobi matrix of
M(A). Moreover, Theorem 3.12 also can be formulated for sparse matrices, not only
banded matrices, using the notation used by Meurant in [Meu].

We immediately get from Theorem 3.12 the following corollary.
Corollary 3.13. Let A be a 2p + 1 banded M -matrix. Let A−1 = C = [cs,t].

Then for any s, t with s ∈ {(i− 1)p+ 2, . . . , ip+ 1} and t ∈ {(j − 1)p+ 2, . . . , jp+ 1}
(i = 1 if s = 1, j = 1 if t = 1) with i 6= j

cs,tct,s ≤ ρ2|i−j|(cs,sct,t),

cs,tct,s ≤ ρ2|i−j|c2s,s,

cs,tct,s ≤ ρ2|i−j|c2t,t.

Corollary 3.14. Let A be a 2p+1 banded symmetric M -matrix. Let A−1 = C =
[cs,t]. Then for any s, t with s ∈ {(i−1)p+2, . . . , ip+1} and t ∈ {(j−1)p+2, . . . , jp+1}
(i = 1 if s = 1, j = 1 if t = 1) with i 6= j

cs,t ≤ ρ|i−j|(cs,sct,t) 1
2 ,

cs,t ≤ ρ|i−j|cs,s,
cs,t ≤ ρ|i−j|ct,t.

The advantage of Corollaries 3.13 and 3.14 compared with a theorem by Meurant’s
[Meu, Theorem 4.13] is that we just need ρ and diagonal entries of A−1 to estimate
the decay.

Acknowledgments. The author wishes to thank Ludwig Elsner and Shmuel
Friedland as well as the referees for helpful comments.

REFERENCES

[As] E. Asplund, Inverse of matrices {ai,j} which satisfy aij = for j > i+p, Math. Scand.,
7 (1959), pp. 57–60.

[Ax] O. Axelsson, Iterative Solution Methods, Cambridge University Press, London, 1994.
[Ba] W. W. Barrett, A theorem on inverses of tridiagonal matrices, Linear Algebra Appl.,

27 (1979), pp. 211–217.
[Be] R. Bevilacqua, Structural and computational properties of band matrices, in Complex-

ity of Structured Computational Problems, R. Bevilacqua, D. Bini, M. Capovani,
G. Capriz, B. Codenotti, M. Leoncini, G. Resta, and P. Zellini, eds., Appl. Math.
Monographs, Consiglio Nazionale delle Ricerche, Giardini Editori e Stampatori in
Pisa, 1991, pp. 131–188.

DECAY RATES 837

[BC] R. Bevilacqua and M. Capovani, Prorietà delle matrici a banda ad elementi e a
blocchi, Boll. Un. Mat. Ital., 13B (1976), pp. 844–861.

[BD] J. Baranger and M. Duc-Jacquet, Matrices tridiagonales symétriques et matrices
factorisables, RIRO Ser. R-3, 5 (1971), pp. 61–66.

[C1] M. Capovani, Sulla determinazione della inversa delle matrici tridiagonali a blocchi,
Calcolo, 7 (1970), pp. 295–303.

[C2] M. Capovani, Su alcune proprietà delle matrici tridiagonali e pentadiagonali, Calcolo,
8 (1971), pp. 149–159.

[CGM] C. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate
gradient method, SIAM J. Sci. Statist. Comp., 6 (1985), pp. 220–252.

[D] S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM
J. Numer. Anal., 14 (1977), pp. 616–619.

[DMS] S. Demko, W. F. Moss, P. W. Smith, Decay rates for inverses of band matrices, Math.
Comp., 43 (1984), pp. 491–499.

[EP] V. Eijkhout and B. Polman, Decay rates of inverses of banded M-matrices that are
near to Toeplitz matrices, Linear Algebra Appl., 109 (1988), pp. 247–277.

[FP] M. Fiedler and V. Pták, Diagonally dominant matrices, Czechoslovak Math. J., 47
(1967), pp. 420–433.

[GK1] F. R. Gantmacher and M. G. Krein, Sur les matrices complètement non négatives
et oscillatoires, Compositio Math., 4 (1937), pp. 445–470.

[GK2] F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und
kleine Schwingungen mechanischer Systeme, Akademie Verlag, Berlin, 1960 (in
Russian); first edition, 1941.

[K] S. Karlin, Total Positivity, Stanford University Press, Stanford, CA, 1968.
[Mar] T. L. Markham, Nonnegative matrices whose inverses are M-matrices, Proc. Amer.

Math. Soc., 36 (1972), pp. 326–330.
[Meu] G. Meurant, A Review on the inverse of symmetric tridiagonal and block tridiagonal

matrices, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 707–728.
[MNNST] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider, and M. Tsatsomeros,

Inverse tridiagonal Z-matrices, Linear and Multilinear Algebra, to appear.
[R] P. Rózsa, On the inverse of band matrices, Integral Equations Operator Theory, 10

(1987), pp. 82–95.
[Var] R. S. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[Vas] P. S. Vassilevski, On some ways of approximating inverses of banded matrices in

connection with deriving preconditioners based on incomplete block factorizations,
Computing, 43 (1990), pp. 277–296.

AN EFFICIENT ALGORITHM FOR A BOUNDED
ERRORS-IN-VARIABLES MODEL∗

S. CHANDRASEKARAN† , G. H. GOLUB‡ , M. GU§ , AND A. H. SAYED¶

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 839–859

Abstract. We pose and solve a parameter estimation problem in the presence of bounded data
uncertainties. The problem involves a minimization step and admits a closed form solution in terms
of the positive root of a secular equation.

Key words. least-squares estimation, total least-squares, modeling errors, secular equation

AMS subject classifications. 15A06, 65F05, 65F10, 65F35, 65K10, 93C41, 93E10, 93E24

PII. S0895479896304678

1. Introduction. Parameter estimation in the presence of data uncertainties is
a problem of considerable practical importance, and many estimators have been pro-
posed in the literature with the intent of handling modeling errors and measurement
noise. Among the most notable is the total least-squares (TLS) method [1, 2, 3, 4],
also known as orthogonal regression or errors-in-variables method in statistics and
system identification [5]. In contrast to the standard least-squares problem, the TLS
formulation allows for errors in the data matrix. Its performance may degrade in
some situations where the effect of noise and uncertainties can be unnecessarily over-
emphasized. This may lead to overly conservative results.

Assume A ∈ Rm×n is a given full rank matrix with m ≥ n, b ∈ Rm is a given
vector, and consider the problem of solving the inconsistent linear system Ax̂ ≈ b
in the least-squares sense. The TLS solution assumes data uncertainties in A and
proceeds to correct A and b by replacing them by their projections, Â and b̂, onto a
specific subspace, and by solving the consistent linear system of equations Âx̂ = b̂.
The spectral norm of the correction (A − Â) in the TLS solution is bounded by the
smallest singular value of

[
A b

]
. While this norm might be small for vectors b that

are close enough to the range space of A, it need not always be so. In other words,
the TLS solution may lead to situations in which the correction in A is unnecessarily
large. Consider, for example, a situation in which the uncertainties in A are very
small and, say, A is almost known exactly. Assume further that b is far from the
range space of A. In this case, it is not difficult to visualize that the TLS solution will
need to modify (A, b) into (Â, b̂) and may therefore end up with an overly corrected
approximant for A, despite the fact that A is almost exact.

These facts motivate us to introduce a new parameter estimation formulation
with a bound on the size of the allowable correction to A. The solution of the new

∗Received by the editors June 3, 1996; accepted for publication (in revised form) by S. Van Huffel
July 22, 1998; published electronically July 9, 1999. The work of the first and fourth authors was
supported in part by the National Science Foundation under award numbers MIP-9796147, CCR-
9732376, and CCR-9734290, respectively.

http://www.siam.org/journals/simax/20-4/30467.html
†Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106 (shiv@ece.ucsb.edu).
‡Department of Computer Science, Stanford University, Stanford, CA 94305 (golub@sccon.

stanford.edu).
§Department of Mathematics, University of California, Los Angeles, CA 90095 (mgu@math.

ucla.edu).
¶Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (sayed@

ee.ucla.edu).

839

840 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

formulation turns out to involve the minimization of a cost function in an “indefinite”
metric, in a way that is similar to more recent works on robust (or H∞) estimation
and filtering (e.g., [6, 7, 8, 9]). However, the cost function considered in our work is
more complex and, contrary to robust estimation where no prior bounds are imposed
on the size of the disturbances, the problem of this paper shows how to solve the
resulting optimization problem in the presence of such constraints. A “closed” form
solution to the new optimization problem is obtained in terms of the positive root of
a secular equation.

The solution method proposed in this paper proceeds by first providing a geomet-
ric interpretation of the new optimization problem, followed by an algebraic derivation
that establishes that the optimal solution can in fact be obtained by solving a related
“indefinite” regularized problem. The regression parameter of the regularization step
is further shown to be obtained from the positive root of a secular equation. The solu-
tion involves an SVD step and its computational complexity amounts to O(mn2 +n3),
where n is the smaller matrix dimension. A summary of the problem and its solution
is provided in section 4.7.

2. Problem statement. Let A ∈ Rm×n be a given matrix with m ≥ n and let
b ∈ Rm be a given nonzero vector, which are assumed to be linearly related via an
unknown vector of parameters x ∈ Rn,

b = Ax+ v .(2.1)

The vector v ∈ Rm explains the mismatch between Ax and the given vector (or
observation) b.

We assume that the “true” coefficient matrix is A + δA and that we know only
an upper bound on the perturbation δA:

‖δA‖2 ≤ η,(2.2)

with η being known and where the notation ‖ · ‖2 denotes the 2-induced norm of a
matrix argument (i.e., its maximum singular value) or the Euclidean norm of a vector
argument. We pose the following optimization problem.

Problem 1. Given A ∈ Rm×n, with m ≥ n, b ∈ Rm, and a nonnegative real
number η, determine, if possible, an x̂ that solves

min
x̂

min
{‖ (A+ δA) x̂− b‖2 : ‖δA‖2 ≤ η

}
.(2.3)

It turns out that the existence of a unique solution to this problem will require a
fundamental condition on the data (A, b, η), which we describe in Lemma 3.1. When
the condition is violated, the problem will become degenerate. In fact, such existence
and uniqueness conditions also arise in other formulations of estimation problems
(such as the TLS and H∞ problems, which will be shown later to have some relation
to the above optimization problem). In the H∞ context, for instance, similar funda-
mental conditions arise, which when violated indicate that the problem does not have
a meaningful solution (see, e.g., [6, 7, 8, 9]).

2.1. Intuition and explanation. Before discussing the solution of the opti-
mization problem we formulated above, it will be helpful to gain some intuition into
its significance.

BOUNDED ERRORS-IN-VARIABLES MODEL 841

‖residual‖2

(A+ δA)

x̂1

x̂2

Fig. 2.1. Two illustrative residual-norm curves.

Intuitively, the above formulation corresponds to “choosing” a perturbation δA,
within the bounded region, that would allow us to best predict the right-hand side b
from the column span of (A+δA). Comparing with the TLS formulation, we see that
in TLS there is not an a priori bound on the size of the allowable perturbation δA.
Still, the TLS solution finds the “smallest” δA (in a Frobenius norm sense) that would
allow to estimate b from the column span of (A + δA), viz., it solves the following
problem [3]:

min
δA,x̂

∥∥[δA (A+ δA)x̂− b]∥∥
F
.

Nevertheless, although small in a certain sense, the resulting correction δA need not
satisfy an a priori bound on its size. The problem we formulated above explicitly
incorporates a bound on the size of the allowable perturbations. We may further add
that we have addressed a related estimation problem in the earlier work [10], where
we have posed and solved a min-max optimization problem; it allows us to guarantee
optimal performance in a worst-case scenario. Further discussion, from a geometric
point of view, of this related problem and others, along with examples of applications
in image processing, communications, and control, can be found in [11].

Returning to (2.3), we depict the situation in Figure 2.1. Any particular choice
for x̂ would lead to many residual norms,

‖ (A+ δA) x̂− b‖2 ,
one for each possible choice of δA. A second choice for x̂ would lead to other residual
norms, the minimum value of which need not be the same as the first choice. We
want to choose an estimate x̂ that minimizes the minimum possible residual norm.

2.2. A geometric interpretation. The optimization problem (2.3) admits an
interesting geometric formulation that highlights some of the issues involved in its
solution. We explain this by considering a scalar example. For the vector case, see
[11].

Assume that we have a unit-norm vector b, ‖b‖2 = 1, and that A is simply a
column vector, say a, with η 6= 0. Now problem (2.3) becomes

min
x̂

(
min
‖δa‖2≤η

‖ (a+ δa) x̂− b‖2
)
.(2.4)

This situation is depicted in Figure 2.2. The vectors a and b are indicated in thick
black lines. The vector a is shown in the horizontal direction and a circle of radius η
around its vertex indicates the set of all possible vertices for a+ δa.

842 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

a
η

b

θ1

θ2

r2 r3

r1

Fig. 2.2. Geometric construction of the solution for a simple example.

For any x̂ that we pick, the set {(a+δa)x̂} describes a disc of center ax̂ and radius
ηx̂. This is indicated in the figure by the largest rightmost circle, which corresponds
to a choice of a positive x̂ that is larger than one. The vector in {(a + δa)x̂} that
is the closest to b is the one obtained by drawing a line from b through the center
of the rightmost circle. The intersection of this line with the circle defines a residual
vector r3 whose norm is the smallest among all possible residual vectors in the set
{(a+ δa)x̂}.

Likewise, if we draw a line from b that passes through the vertex of a (which is
the center of the leftmost circle), it will intersect the circle at a point that defines a
residual vector r1. This residual will have the smallest norm among all residuals that
correspond to the particular choice x̂ = 1.

More generally, for any x̂ that we pick, it will determine a circle and the corre-
sponding smallest residual is obtained by finding the closest point on the circle to b.
This is the point where the line that passes through b and the center of the circle
intersects the circle on the side closer to b.

We need to pick an x̂ that minimizes the smallest residual norm. The claim is that
we need to proceed as follows: we drop a perpendicular from b to the upper tangent
line denoted by θ2. This perpendicular intersects the horizontal line in a point where
we draw a new circle (the middle circle) that is tangent to both θ1 and θ2. This circle
corresponds to a choice of x̂ such that the closest point on it to b is the foot of the
perpendicular from b to θ2. The residual indicated by r2 is the desired solution; it
has the minimum norm among the smallest residuals.

3. An equivalent minimization problem. To solve (2.3), we start by showing
how to reduce it to an equivalent problem. For this purpose, we note that

‖ (A+ δA) x̂− b‖2 ≥ | ‖Ax̂− b‖2 − ‖δAx̂‖2 | .(3.1)

The lower bound on the right-hand side of the above inequality is a nonnegative
quantity and, therefore, the least it can get is zero. This will in turn depend on how
big or how small the value of ‖δA‖2 can be.

For example, if it happens that for all vectors x̂ we always have

η‖x̂‖2 < ‖Ax̂− b‖2,(3.2)

BOUNDED ERRORS-IN-VARIABLES MODEL 843

then we conclude, using the triangle inequality of norms, that

‖δAx̂‖2 ≤ ‖δA‖2‖x̂‖2 ≤ η‖x̂‖2 < ‖Ax̂− b‖2 .

It then follows from (3.1) that, under assumption (3.2), we obtain

‖ (A+ δA) x̂− b‖2 ≥ ‖Ax̂− b‖2 − ‖δAx̂‖2
≥ ‖Ax̂− b‖2 − ‖δA‖2‖x̂‖2
≥ ‖Ax̂− b‖2 − η‖x̂‖2 .

It turns out that condition (3.2) is the main (and only) case of interest in this paper,
especially since we shall argue later that a degenerate problem arises when it is vio-
lated. For this reason, we shall proceed for now with our analysis under assumption
(3.2) and shall postpone our discussion of what happens when it is violated until later
in this section.

Now the lower bound in (3.1) is in fact achievable. That is, there exists a δA for
which

‖ (A+ δA) x̂− b)‖2 = ‖Ax̂− b‖2 − η‖x̂‖2 .

To see that this is indeed the case, choose δA as the rank-1 matrix

δAo = − (Ax̂− b)
‖Ax̂− b‖2

x̂T

‖x̂‖2 η .

This leads to a vector δAox̂ that is collinear with the vector (Ax̂− b). (Note that x̂ in
the above definition for δAo cannot be zero since otherwise (3.2) cannot be satisfied.
Likewise, Ax̂− b cannot be zero. Hence, δAo is well defined.)

We are therefore reduced to the solution of the following optimization problem.
Problem 2. Consider a matrix A ∈ Rm×n, with m ≥ n, a vector b ∈ Rm, and

a nonnegative real number η, and assume that for all vectors x̂ it holds that

η‖x̂‖2 < ‖Ax̂− b‖2 (fundamental assumption).(3.3)

Determine, if possible, an x̂ that solves

min
x̂

(‖Ax̂− b‖2 − η‖x̂‖2) .(3.4)

3.1. Connections to TLS and H∞-problems. Before solving problem (3.4),
we elaborate on its connections with other formulations in the literature that also
attempt, in one way or another, to take into consideration uncertainties and pertur-
bations in the data.

First, cost functions similar to (3.4) but with squared distances, say

min
x̂

(‖Ax̂− b‖22 − γ‖x̂‖22)(3.5)

for some γ > 0, often arise in the study of indefinite quadratic cost functions in
robust or H∞ estimation (see, e.g., the developments in [8, 9]). The major distinction
between this cost and the one posed in (3.4) is that the latter involves distance terms

844 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

and it will be shown to provide an automatic procedure for selecting a “regularization”
factor that plays the role of γ in (3.5).

Likewise, the TLS problem seeks a matrix δA and a vector x̂ that minimize the
following Frobenius norm:

min
δA,x̂

∥∥[δA (A+ δA)x̂− b]∥∥2

F
.(3.6)

The solution of the above TLS problem is well known and is given by the following
construction [4, p. 36]. Let {σ1, . . . , σn} denote the singular values of A, with σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0. Let also {σ̄1, . . . , σ̄n, σ̄n+1} denote the singular values of the
extended matrix

[
A b

]
, with σ̄i ≥ 0. If σ̄n+1 < σn, then a unique solution x̂ of

(3.6) exists and is given by

x̂ = (ATA− σ̄2
n+1I)−1AT b.(3.7)

For our purposes, it is more interesting to consider the following interpretation of
the TLS solution (see, e.g., [9]). Note that the condition σ̄n+1 < σn ensures that
(ATA − σ̄2

n+1I) is a positive-definite matrix, since σ2
n is the smallest eigenvalue of

ATA. Therefore, we can regard (3.7) as the solution of the following optimization
problem, with an indefinite cost function:

min
x̂

(‖Ax̂− b‖22 − σ̄2
n+1‖x̂‖22

)
.

This is a special form of (3.5) with a particular choice for γ. It again involves squared
distances, while (3.4) involves distance terms and it will provide another choice of a γ-
like parameter. In particular, compare (3.7) with the expression (4.4) derived further
ahead for the solution of (3.4). We see that the new problem replaces σ̄2

n+1 with a
new parameter α that will be obtained from the positive root of a secular (nonlinear)
equation.

3.2. Significance of the fundamental assumption. We shall solve (3.4) in
the next section. Here, we elaborate on the significance of the condition (3.3). Assume
(3.3) is violated at some nonzero point x̂(1), namely1

η‖x̂(1)‖2 ≥ ‖Ax̂(1) − b‖2,(3.8)

and define the perturbation

δA(1) = (Ax̂(1) − b) (x̂(1))T

‖x̂(1)‖22
.(3.9)

It is clear that δA(1) is a valid perturbation since, in view of (3.8), we have ‖δA(1)‖2 ≤
η. But this particular perturbation leads to∥∥∥(A+ δA(1)

)
x̂(1) − b

∥∥∥
2
≥

∣∣∣ ‖Ax̂(1) − b‖2 − ‖δA(1)x̂(1)‖2
∣∣∣

≥ ‖Ax̂(1) − b‖2 − ‖Ax̂(1) − b‖2 = 0.

That is, the lower limit of zero is achieved for (δA(1), x(1)) and x(1) can be taken as a
solution to (2.3). In fact, there are many possible solutions in this case. For example,

1If violation occurs for some zero x̂(1) this means that we must necessarily have b = 0, which
contradicts our assumption of a nonzero vector b.

BOUNDED ERRORS-IN-VARIABLES MODEL 845

once one such x(1) has been found, an infinite number of others can be constructed
from it. To verify this claim, assume x(1) is a vector that satisfies (3.8), viz., it satisfies

η‖x̂(1)‖2 = ‖Ax̂(1) − b‖2 + ε,(3.10)

for some ε ≥ 0. Now assume we replace x(1) by x(2) = (x(1) + δ) for some vector δ to
be determined so as to violate condition (3.3) and, therefore, also satisfy a relation of
the form

η‖x̂(2)‖2 ≥ ‖Ax̂(2) − b‖2 .(3.11)

If such an x(2) can be found, then constructing the corresponding δA(2) as in (3.9)
would also lead to a solution (δA(2), x(2)).

Condition (3.11) requires a choice for the vector δ such that

η‖x̂(1) + δ‖2 ≥ ‖A(x̂(1) + δ)− b‖2.(3.12)

But this can be satisfied by imposing the sufficient condition

η‖x(1)‖2 − η‖δ‖2 ≥ ‖Ax̂(1) − b‖2 + ‖A‖2‖δ‖2,
where the left-hand side is the smallest η‖x̂(1) +δ‖2 can get, while the right-hand side
is the largest ‖A(x̂(1) + δ) − b‖2 can get. Solving for ‖δ‖2 we see that any vector δ
that satisfies

‖δ‖2 ≤ ε

η + ‖A‖2
will lead to a new vector x̂(2) that also violates (3.3). Consequently, given any single
nonzero violation x̂(1), many others can be obtained by suitably perturbing it.

We shall not treat the degenerate case in this paper (nor the case when (3.8) is
violated only with equality). We shall instead assume throughout that the fundamen-
tal condition (3.3) holds. Under this assumption, the problem will turn out to always
have a unique solution.

3.3. The fundamental condition for nondegeneracy. The fundamental con-
dition (3.3) needs to be satisfied for all vectors x̂. This can be restated in terms of
conditions on the data (A, b, η) alone. To see this, note that (3.3) implies, by squaring,
that we must have

J(x̂)
∆
= x̂T (η2I −ATA)x̂+ 2x̂TAT b− bT b < 0 for all x̂.(3.13)

That is, the quadratic form J(x̂) that is defined on the left-hand side of (3.13) must
be negative for any value of the independent variable x̂. This is possible only if

(i) the quadratic form J(x̂) has a maximum with respect to x̂, and
(ii) the value of J(x̂) at its maximum is negative.
The necessary condition for the existence of a unique maximum (since we have a

quadratic cost function) is

(η2I −ATA) < 0,(3.14)

which means that η should satisfy

η < σmin(A).(3.15)

846 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

Under this condition, the expression for the maximum point x̂max of J(x̂) is

x̂max = (ATA− η2I)−1AT b.

Evaluating J(x̂) at x̂ = x̂max we obtain

J(x̂max) = bT
[
A(ATA− η2I)−1AT − I

]
b.

Therefore, the requirement that J(x̂max) be negative corresponds to

bT
[
I − A(ATA− η2I)−1AT

]
b > 0.(3.16)

Lemma 3.1. Necessary and sufficient conditions in terms of (A, b, η) for the
fundamental relation (3.3) to hold are the following:

(η2I −ATA) < 0 ⇐⇒ η < σmin(A),(3.17)

and

bT
[
I − A(ATA− η2I)−1AT

]
b > 0.(3.18)

Note that for a well-defined problem of the form (2.3) we need to assume η > 0
which, in view of (3.17), means that A should be full rank so that σmin(A) > 0. We
therefore assume, from now on, that

A is full rank.

We further introduce the SVD of A:

A = U

[
Σ
0

]
V T ,(3.19)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ = diag(σ1, . . . , σn) is diagonal,
with

σ1 ≥ σ2 ≥ · · · ≥ σn−1 ≥ σn > 0

being the singular values of A. We further partition the vector UT b into[
b1
b2

]
= UT b,(3.20)

where b1 ∈ Rn and b2 ∈ Rm−n.
While solving the minimization problem (3.4), we shall first assume that the two

smallest singular values of A are distinct and, hence, satisfy

σn < σn−1.

Later, in section 4.6, we consider the case in which multiple singular values can occur.

BOUNDED ERRORS-IN-VARIABLES MODEL 847

4. Solving the minimization problem. To solve (3.4), we define the non-
convex cost function

L(x̂) = ‖Ax̂− b‖2 − η‖x̂‖2,
which is continuous in x̂ and bounded from below by zero in view of (3.3). A mini-
mum point for L(x̂) can occur only at ∞, at points where L(x̂) is not differentiable,
or at points where its gradient, 5L(x̂), is 0. In particular, note that L(x̂) is not
differentiable only at x̂ = 0 and at any x̂ that satisfies Ax̂ − b = 0. But points x̂
satisfying Ax̂− b = 0 are excluded by the fundamental condition (3.3). Also, we can
rule out x̂ =∞ since

lim
‖x̂‖2→∞

L(x̂) = lim
‖x̂‖2→∞

‖Ax̂‖2 − η‖x̂‖2 ≥ (σn − η)‖x̂‖2 → +∞.

Now at points where L(x̂) is differentiable, the gradient of L is given by

5L(x̂) =
1

‖Ax̂− b‖2A
T (Ax̂− b)− η

‖x̂‖2 x̂

=
1

‖Ax̂− b‖2
((
ATA− αI) x̂−AT b) ,

where we have introduced the positive real number

α =
η‖Ax̂− b‖2
‖x̂‖2 .(4.1)

In view of the fundamental condition (3.3) we see that the value of α is necessarily
larger than η2,

α > η2.(4.2)

Likewise, the Hessian of L is given by

∆L(x̂) =
ATA

‖Ax̂− b‖2 −
η

‖x‖2 I −
AT (Ax̂− b)(Ax̂− b)TA

‖Ax̂− b‖32
+ η

xxT

‖x‖32
.(4.3)

The critical points of L(x̂) (where the gradient is singular) satisfy

AT (Ax̂− b)− αx̂ = 0

or, equivalently, (
ATA− αI) x̂ = AT b.(4.4)

Equations (4.1) and (4.4) completely specify the stationary points of L(x̂). They
provide two equations in the unknowns (α, x̂). We can use (4.4) to eliminate x̂ from
(4.1) and, hence, obtain an equation in α. Once we solve for α, we can then use
(4.4) to determine the solution x̂. The equation we obtain for α will in general be a
nonlinear equation and the desired α will be a root of it. The purpose of the discussion
in what follows is to show where the root α that corresponds to the global minimizer
of L lies and how to find it.

We know from (4.2) that α > η2. We shall soon show that we need only to look
for the solution α in the interval (η2, σ2

n−1]—see (4.5). (Further analysis later in the

848 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

paper will in fact show that α lies within the smaller interval (η2, σ2
n].) Hence, the

coefficient matrix (ATA − αI) in (4.4) is always nonsingular except for α = σ2
n−1 or

α = σ2
n.

In summary, we see that the candidate solutions x̂ to our minimization problem
are the following:

1. x̂ = 0, which is a point at which L is not differentiable. We shall show that
x̂ = 0 cannot be a global minimizer of L.

2. Solution(s) (α, x̂) to (4.1) and (4.4) when (ATA − αI) is invertible. In this
case, we will see that α can lie only in the open interval (η2, σ2

n).
3. Solutions (α, x̂) to (4.1) and (4.4) when (ATA− αI) is singular. We will see

that this can happen only for the choices α = σ2
n−1 or α = σ2

n.
The purpose of the analysis in the sequel is to rule out all the possibilities except

for one as a global minimum for L. In loose terms, we shall show that in general a
unique global minimizer (α, x̂) exists and that the corresponding α lies in the open
interval (η2, σ2

n). Only in a degenerate case, the solution is obtained by taking α = σ2
n

and by solving (4.4) for x̂. In other words, the global minimum will be obtained from
the stationary points of L, which is why we continue to focus on them.

The final statement of the solution is summarized in section 4.7.

4.1. Positivity of the Hessian matrix. We are of course interested only in
those critical points of L that are candidates for local minima. Hence, the Hessian
matrix at these points must be positive semidefinite.

Since AT (Ax̂− b) = αx̂ at a critical point, we conclude from (4.3) that

∆L(x̂) =
1

‖Ax̂− b‖2
(
ATA− αI)+

(
− α2

‖Ax̂− b‖32
+

η

‖x̂‖32

)
x̂x̂T

=
1

‖Ax̂− b‖2
(
ATA− αI)+

1

‖Ax̂− b‖32

(
−α2 +

α3

η2

)
x̂x̂T

=
1

‖Ax̂− b‖2
(
ATA− αI)+

α2

‖Ax̂− b‖32η2
(α− η2)x̂x̂T .

Now observe that the second term is a symmetric rank-1 matrix that is also positive-
semidefinite since α > η2. Hence, in view of the Cauchy interlacing theorem [3]
the smallest eigenvalue of ∆L(x̂) will lie between the two smallest eigenvalues of the
matrix 1

‖Ax̂−b‖2
(
ATA− αI). This shows that the value of α cannot exceed σ2

n−1

since otherwise the two smallest eigenvalues of
(
ATA− αI) will be nonpositive and

the Hessian matrix will have a nonpositive eigenvalue.
The above argument explains why we need only to look for α in the interval

η2 < α ≤ σ2
n−1.(4.5)

4.2. Solving for x̂ and the secular equation. Given that we need only con-
sider values of α in the interval (η2, σ2

n−1], we can now solve for x̂ using (4.1) and (4.4).
Two cases should be considered since the coefficient matrix (ATA− αI) may be sin-
gular for α = σ2

n or α = σ2
n−1.

I. The case α 6∈ {σ2
n, σ

2
n−1}. From (4.4) we see that among the α’s in the

interval (4.5), as long as α is not equal to either σ2
n or σ2

n−1, the critical point x̂
associated with α is given uniquely by

x̂ = (ATA− αI)−1AT b for α ∈ (η2, σ2
n−1] and α 6= σ2

n, σ
2
n−1.

BOUNDED ERRORS-IN-VARIABLES MODEL 849

Moreover, from (4.1) and (4.4) we see that

G(α)
∆
= ‖x̂‖22 −

η2‖Ax̂− b‖22
α2

= 0.

Substituting for x̂ and using the SVD of A to simplify we obtain the equivalent
expressions for x̂ and G(α):

x̂ = V (Σ2 − αI)−1Σb1,(4.6)

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 − αI)−2

b1 − η2‖b2‖22
α2

.(4.7)

Clearly the roots of G(α) that lie in the interval (η2, σ2
n−1] will correspond to critical

points that are candidates for local minima. Therefore we will later investigate the
roots of G(α).

II. The case α = σ2
n or α = σ2

n−1. From (4.4) we see that α = σ2
n or

α = σ2
n−1 can correspond to a critical point x̂ only if either uTn b = 0 (for α = σ2

n) or
uTn−1b = 0 (for α = σ2

n−1). Here, {un, un−1} denote the columns of U that correspond
to {σn, σn−1}, i.e., the last two columns of U .

Here we show only how to solve for x̂ when α = σ2
n. The technique for α = σ2

n−1

is similar.
From (4.4) it is clear that α = σ2

n is a candidate for a critical point if and only
if uTn b = 0. In this case the associated x̂’s (there may be more than one) satisfy the
equations

(ATA− σ2
nI)x̂ = AT b(4.8)

and

σ2
n = η

√
‖b2‖22 + ‖ΣV T x̂− b1‖22

‖x̂‖2 .(4.9)

Now we define y
∆
= V T x̂ and consider the following partitionings:

y =

[
ȳ
yn

]
, b1 =

[
b̄1
0

]
, Σ =

[
Σ̄ 0
0 σn

]
.

The quantities x̂ and y define each other uniquely and ‖y‖2 = ‖x̂‖2.
It follows from (4.8) that

ȳ =
(
Σ̄2 − σ2

nI
)−1

Σ̄b̄1.(4.10)

Substituting this into (4.9) we have

σ4
n = η2 ‖b2‖22 + ‖Σ̄2

(
Σ̄2 − σ2

nI
)−1

b̄1 − b̄1‖22 + σ2
ny

2
n

‖ȳ‖22 + y2
n

.

Solving for y2
n we obtain

y2
n = −σ2

n

b̄T1
(
Σ̄2 − η2I

) (
Σ̄2 − σ2

nI
)−2

b̄1 − ‖b2‖22η2σ−4
n

σ2
n − η2

= − σ2
n

σ2
n − η2

Ḡ(σ2
n),

850 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

where we introduced the function

Ḡ(α)
∆
= b̄T1

(
Σ̄2 − η2I

) (
Σ̄2 − αI)−2

b̄1 − η2‖b2‖22
α2

.(4.11)

Comparing with the definition (4.7) for G(α) we see that

Ḡ(α) = G(α)− (uTn b)
2 σ2

n − η2

(σ2
n − α)2

.(4.12)

Note that G(α) = Ḡ(α) if uTn b = 0, which is the case when α = σ2
n is a possibility.

Therefore the possible values of yn are

yn =
σn√
σ2
n − η2

(
±
√
−Ḡ(σ2

n)

)
.(4.13)

It follows that

uTn b = 0 and Ḡ(σ2
n) ≤ 0(4.14)

are the necessary conditions for α = σ2
n to correspond to a stationary double point at

x̂ = V

(
Σ̄2 − σ2

nI
)−1

Σ̄b̄1

σn√
σ2
n−η2

(
±
√
−Ḡ(σ2

n)
)
 .(4.15)

The global minimum. The purpose of the analysis in the following sections is
to show that in general the global minimum is given by (4.6) with the corresponding
α lying in the interval (η2, σ2

n). When a root of the secular equation G(α) in (4.7) does
not exist in the open interval (η2, σ2

n), we shall then show that the global minimum
is given by (4.15).

4.3. The roots of the secular equation. We have argued earlier in (4.5)
that the roots α of G(α) that may lead to global minimizers x̂ can lie in the interval
(η2, σ2

n−1]. We now determine how many roots can exist in this interval and later show
that only the root lying in the subinterval (η2, σ2

n) corresponds to a global minimum
when it exists. Otherwise, we have to use (4.15). The details are given below.

To begin with, we establish some properties of G(α). From the nondegeneracy
assumption (3.3) on the data it follows that G(η2) < 0. Moreover, from the expression
(4.7) for G(α) we see that it has a pole at σ2

n provided that uTn b is not equal to zero,
in which case

lim
α→σ2

n

G(α) = +∞.(4.16)

Now observe from the expression for the derivative of G(α),

G′(α) = 2
(
bT1
(
Σ2 − η2I

) (
Σ2 − αI)−3

b1

)
+
η2‖b2‖22
α3

,(4.17)

that G′(α) > 0 for 0 < α < σ2
n. We conclude from these facts that G(α) has exactly

one root in the open interval (η2, σ2
n). Actually, also since

lim
α→0+

G(α) = −∞,

BOUNDED ERRORS-IN-VARIABLES MODEL 851

we conclude that when uTn b 6= 0, G(α) has exactly one root in the interval (0, σ2
n) and

that this root lies in the subinterval (η2, σ2
n).

When uTn b = 0, the function G(α) does not have a pole at σ2
n and, hence, (4.16)

does not hold. However, by using the still-valid fact that limα→0+ G(α) = −∞ and
that G′(α) > 0 over the larger interval (0, σ2

n−1), we conclude the following:
1. If uTn−1b 6= 0 then limα→σ2

n−1
G(α) = +∞ and, hence, G(α) has a unique root

in the interval (0, σ2
n−1).

2. If we also have uTn−1b = 0, then G(α) can have at most one root in the interval
(0, σ2

n−1). The root may or may not exist.
What about the interval (σ2

n, σ
2
n−1) when uTn b 6= 0? We now establish that G(α)

can have at most two roots in this interval. For this purpose, we first observe that
both G(α) and α2G(α) have the same number of roots in (σ2

n, σ
2
n−1) (since we added

only a double root at 0). Next we compute the first derivative of α2G(α), obtaining

d

dα

(
α2G(α)

)
= 2αbT1

(
Σ2 − η2I

)
Σ2
(
Σ2 − αI)−3

b1.

Using this we compute the second derivative obtaining

d2

dα2

(
α2G(α)

)
= 2bT1

(
Σ2 − η2I

)
Σ2
(
Σ2 + 2αI

) (
Σ2 − αI)−4

b1.

It is clear that the second derivative is strictly positive for nonnegative α. From this
we can conclude that α2G(α) and, hence, G(α) have at most two zeros in (σ2

n, σ
2
n−1).

We have therefore established the following result.
Lemma 4.1. The following properties hold for the function G(α) defined in (4.7):
1. When uTn b 6= 0, the function G(α) has a single root in the interval (η2, σ2

n)
and at most two roots in the interval (σ2

n, σ
2
n−1). We label them as

η2 < α1 < σ2
n < α2 ≤ α3 < σ2

n−1.

2. When uTn b = 0 and uTn−1b 6= 0, the function G(α) has a unique root in the
interval (η2, σ2

n−1).
3. When uTn b = 0 and uTn−1b = 0, the function G(α) has at most one root in the

interval (η2, σ2
n−1).

It is essential to remember that the roots α2 and α3 may not exist, though they
must occur as a pair (counting multiplicity) if they exist.

We now show that α3 cannot correspond to a local minimum if α2 < α3, i.e., if
the two roots in the interval (σ2

n, σ
2
n−1) are distinct. Indeed, assume α2 and α3 exist.

Then from the last lemma it must hold that uTn b 6= 0 and α1 must also exist. Hence,
we must have G′(α2) < 0 and G′(α3) > 0.

If we assume α2 < α3, we shall use the fact that G′(α3) > 0 to show that α3

cannot correspond to a local minimum solution x̂. This will be achieved by showing
that the determinant of the Hessian of L(x̂) at α3 is negative. For this we note that

det (∆L(x̂)) =
det(ATA− αI)

‖Ax̂− b‖n2

(
1 +

α2(α− η2)

‖Ax̂− b‖22η2
x̂T
(
ATA− αI)−1

x̂

)
=

det(ATA− αI)

‖Ax̂− b‖n+2
2 η2

(‖Ax̂− b‖22η2 + α2(α− η2)x̂T (ATA− αI)−1x̂
)
.

We introduce for convenience the shorthand notation

ξ
∆
=

det(ATA− αI)

‖Ax̂− b‖n+2
2 η2

.

852 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

Then, using the SVD of A,

det (∆L(x̂)) = ξ
(
η2‖b2‖22 + α3bT1

(
Σ2 − η2I

) (
Σ2 − αI)−3

b1

)
= ξ

α3

2
G′(α).

Evaluating at α = α3, and noting that det(ATA − α3I) < 0 and G′(α3) > 0, we
conclude that det(L) at the x̂ corresponding to α3 is negative. Hence, α3 cannot
correspond to a local minimum.

4.4. Candidates for minima. We can now be more explicit about the candi-
dates for global minimizers of L, which we mentioned just prior to section 4.1:

1. x̂ = 0, which corresponds to a point where L is not differentiable.
2. If α1 exists, then the corresponding x̂ is a candidate. Recall that α is guar-

anteed to exist if uTn b 6= 0. It may or may not exist otherwise.
3. If uTn b 6= 0 and α2 exists, then the corresponding x̂ is a candidate.
4. If uTn b = 0, then the x̂ associated with α = σ2

n is a candidate.
5. If uTn−1b = 0, then the x̂ associated with α = σ2

n−1 is a candidate.
We shall show that item 2 is the global minimizer when α1 exists. Otherwise, item 4
is the global minimizer.

We start by showing that x̂ = 0 cannot be the global minimizer of L. We divide
our argument into two cases: b1 = 0 and b1 6= 0. When b1 6= 0, we necessarily have
uTi b 6= 0 for some i between 1 and n. Let z = (uTi b/σi)V ei. Then L(0) = ‖b‖2, and

L(z) = ‖b− (uTi b)ui‖ −
η

σi
|uTi b|.

The term b− (uTi b)ui is the error vector due to projecting b onto ui. Hence,

‖b− (uTi b)ui‖2 = ‖b‖2 − (uTi b)
2,

and we obtain

L(z) =
√
‖b‖22 − (uTi b)

2 − η

σi
|uTi b|.

We conclude that L(0) > L(z), and x̂ = 0 cannot correspond to a global minimum
when b1 6= 0.

Now we consider the case when b1 = 0. Note that by the nondegeneracy assump-
tion we must have b2 6= 0. Now define again y = V T x̂. Then we can simplify L(x̂) to
obtain

L(x̂) =
√
‖b2‖22 + ‖Σy‖22 − η‖y‖2.

Choose x̂ = γV en, where 0 < γ < 2‖b2‖2η
σ2
n−η2 . The following sequence of inequalities then

holds:

γ <
2‖b2‖2η
σ2
n − η2

⇒ (σ2
n − η2)γ2 < 2‖b2‖2ηγ

⇒ ‖b2‖22 + σ2
nγ

2 < ‖b2‖22 + η2γ2 + 2‖b2‖2ηγ
⇒
√
‖b2‖22 + ‖Σγen‖2< ‖b2‖2 + ηγ

⇒ L(γV en) < L(0).

BOUNDED ERRORS-IN-VARIABLES MODEL 853

Therefore x̂ = 0 can never be the global minimum.

4.5. Continuation argument. We are now ready to show that if α1 exists,
then the corresponding x̂ in (4.6) gives the global minimum. Otherwise, the x̂ in
(4.15) that corresponds α = σ2

n gives a double global minimum. The proof will be by

continuation on the parameter β
∆
= |uTn b|2.

We use (4.12) to write

G(α) = Ḡ(α) + β
σ2
n − η2

(σ2
n − α)2

.(4.18)

We also recall from the definition of Ḡ in (4.11) that it has a similar expression to
that of G in (4.7), except that the pole of G at σ2

n has been extracted (as shown by
(4.18)). Hence, the derivative of Ḡ has a form similar to that of the derivative of G in
(4.17) and we can conclude that Ḡ′(α) > 0 over (0, σ2

n−1).
We continue our argument by considering separately the three cases: Ḡ(σ2

n) > 0,
Ḡ(σ2

n) = 0, and Ḡ(σ2
n) < 0.

I. Ḡ(σ2
n) > 0. In this case, and because of (4.14), α = σ2

n cannot correspond
to a global minimum. By further noting that Ḡ′(α) > 0 over (σ2

n, σ
2
n−1) we conclude

that Ḡ(α) > 0 over (σ2
n, σ

2
n−1). Hence, using (4.18) we also have that G(α) > 0 over

(σ2
n, σ

2
n−1). Moreover, σ2

n is either a pole of G(α) (when uTn b 6= 0) or G(σ2
n) = Ḡ(σ2

n) >
0 (when uTn b = 0). Now since G(η2) < 0 and G′(α) > 0 over (η2, σ2

n), we conclude
that G has a unique root in (η2, σ2

n).
In this case the only contenders for global minima over (0, σ2

n−1] are α = α1 and
α = σ2

n−1. By an analysis similar to the one in section 4.2 for α = σ2
n it can be shown

that a necessary condition for α = σ2
n−1 to correspond to a global minimum is that

uTn−1b = 0, G(σ2
n−1)− (uTn−1b)

2 σ2
n−1 − η2

(σ2
n−1 − α)2

≤ 0.(4.19)

These two conditions imply that we must have G(σ2
n−1) ≤ 0. This result is compatible

with the fact that G(α) > 0 over (σ2
n, σ

2
n−1) only if G(σ2

n−1) = 0. This in turn implies
from (4.18) that we must have Ḡ(σ2

n−1) ≤ 0. This is inconsistent with the facts
Ḡ(σ2

n) > 0 and Ḡ′(α) > 0 over (σ2
n, σ

2
n−1).

Therefore, α = σ2
n−1 cannot correspond to a global minimum and we conclude

that the only critical point we need to consider corresponds to the one associated with
the unique root of G(α) in (η2, σ2

n), which must naturally correspond to the global
minimum.

In summary, the solution x̂ in (4.6) that corresponds to α1 is the global minimum
in this case.

II. Ḡ(σ2
n) = 0. In this case, and because of (4.14), α = σ2

n can correspond
to a global minimum only if β = 0, in which case we also deduce from (4.18) that
G(σ2

n) = 0 since G = Ḡ. Hence, σ2
n is a root of G. By using G(η2) < 0 and G′(α) > 0

over (η2, σ2
n−1) we conclude that G does not have any other root in (η2, σ2

n−1).
Therefore, when β = 0, the only contenders for global minima over (0, σ2

n−1)
are α = σ2

n and α = σ2
n−1. For α = σ2

n−1 to correspond to a global minimum we
saw above that we must necessarily have G(σ2

n−1) ≤ 0. This is inconsistent with
G(σ2

n) > 0 and G′(α) > 0 over (η2, σ2
n−1). We thus obtain that the solution x̂ in (4.15)

that corresponds to σ2
n is the global minimizer.

What about the case β 6= 0? In this case, and because of (4.14), α = σ2
n cannot

correspond to a global minimum. By further noting that Ḡ′(α) > 0 over (σ2
n, σ

2
n−1)

854 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

we conclude that Ḡ(α) > 0 over (σ2
n, σ

2
n−1). Hence, using (4.18) we also have that

G(α) > 0 over (σ2
n, σ

2
n−1). Moreover, σ2

n is now a pole of G(α) and since G(η2) < 0
and G′(α) > 0 over (η2, σ2

n) we conclude that G has a unique root in (η2, σ2
n). In this

case the only contenders for global minima over (0, σ2
n−1) are α = α1 and α = σ2

n−1.
By an analysis similar to the one in case I, we can rule out σ2

n−1.
In summary, we showed the following when Ḡ(σ2

n) ≥ 0:
1. When uTn b 6= 0, the solution x̂ in (4.6) that corresponds to α1 is the global

minimum.
2. When uTn b = 0, the solution x̂ in (4.15) that corresponds to σ2

n is the global
minimum.

III. Ḡ(σ2
n) < 0. This is the most complex situation. Let ω be the largest number

such that σ2
n < ω ≤ ∞ and G(ω) =∞ if ω <∞ and G(α) has no poles in the interval

(σ2
n, ω).

By the given conditions it is obvious from the form of G(α) that it has two roots
in (σ2

n, ω] for sufficiently small β. Now we find the largest number δ such that for
all β in the interval (0, δ] the function G(α) has two roots (counting multiplicity) in
(σ2
n, ω]. We claim that for β > δ there are no roots of G(α) in (σ2

n, ω]. To see this we
replace β in G(α) by β = δ + ν, obtaining

G(α) = Ḡ(α) + δ
σ2
n − η2

(σ2
n − α)2

+ ν
σ2
n − η2

(σ2
n − α)2

,

and observe that the term involving ν is strictly positive in the interval (σ2
n, ω], for

strictly positive ν.
We continue our analysis by considering separately two cases: β = 0 and β 6= 0.
IIIA. β = 0. We will show that at β = 0 (uTn b = 0), the function L has a double

global minimum at α = σ2
n, and that as β is increased this double root at α = σ2

n

bifurcates into the two roots α1 and α2, and that L(α1) < L(α2) when 0 < β ≤ δ.
When Ḡ(σ2

n) < 0, the function Ḡ(α) has exactly one root in (0, ω]. This is because
Ḡ(0)→ −∞ and Ḡ′(α) > 0 in (0, ω]. By using the same proof that we used earlier to
show that α3 cannot correspond to a local minimum we can establish that this root
also cannot correspond to minimum. This leaves us with the double stationary points
that we computed in (4.15) and which corresponded to α = σ2

n. It is an easy matter
to verify, using the formula L(x̂)η = (α − η2)‖x̂‖2, that both the stationary points
yield the same value for L.

IIIB. 0 < β ≤ δ. We now allow β to increase. Let y(β) denote the station-
ary point x̂ corresponding to α1(β). Also, let z(β) denote the stationary point x̂
corresponding to α2(β). It is easy to see from the form of G(α) that

lim
β→0+

α1(β) = σ2
n = lim

β→0+
α2(β)

whenever Ḡ(σ2
n) < 0. Now we will show that

lim
β→0+

|yi(β)| = |yi(0)| = |zi(0)| = lim
β→0+

|zi(β)|, 1 ≤ i ≤ n.

First we observe that the result is true for i 6= n directly from formulas (4.4)
and (4.10). Next we note that Ḡ(α) is continuous at α = σ2

n. Therefore

lim
β→0+

σ2
n − η2

(σ2
n − α1(β))2

β + Ḡ(σ2
n) = lim

β→0+

(
σ2
n − η2

(σ2
n − α1(β))2

β + Ḡ(α1(β))

)

BOUNDED ERRORS-IN-VARIABLES MODEL 855

= 0

= lim
β→0+

σ2
n − η2

(σ2
n − α2(β))2

β + Ḡ(σ2
n).

Now using formula (4.13) it can be verified that

lim
β→0+

|yn(β)| = |yn(0)| = |zn(0)| = lim
β→0+

|zn(β)|.

Therefore L(y(β)) and L(z(β)) are continuous on the interval [0,∞), with L(y(0)) =
L(z(0)). We now compute the derivative of L with respect to β at a stationary point.
We have already observed that at a stationary point x̂, corresponding to some α,
the objective function L can be simplified L(x̂)η = (α − η2)‖x̂‖2. To simplify the
derivation we actually take the derivative of η2L2, which can be expressed as

η2L2(x̂) = (α− η2)2bT1 Σ2
(
Σ2 − αI)−2

b1

for α ∈ (σn, σn−1). Now we differentiate, obtaining

d

dβ

(
η2L2(x̂(β))

)
=
dα

dβ

(
α− η2

)
bT1 Σ2

(
Σ2 − αI)−3 (

Σ2 − η2I
)
b1 +

(
α− η2

)2
(σ2
n − α)

2 σ
2
n.

Now we obtain an expression for dα/dβ by differentiating α2G(α(β)) = 0 with respect
to β. Doing so we obtain

2αbT1 Σ2
(
Σ2 − η2I

) (
Σ2 − αI)−3

b1
dα

dβ
+ α2 σ2

n − η2

(σ2
n − α)

2 = 0.

Solving this equation for the term involving dα/dβ and substituting it into the above
equation for d

dβ

(
η2L2(x(β))

)
we obtain

d

dβ

(
η2L2(x̂(β))

)
= −α (α− η2

) σ2
n − η2

(σ2
n − α)

2 + σ2
n

(
α− η2

)2
(σ2
n − α)

2

=
α− η2

(σ2
n − α)

2

(
σ2
n

(
α− η2

)− α (σ2
n − η2

))
=

α− η2

(σ2
n − α)

2

(
αη2 − σ2

nη
2
)

=
α− η2

α− σ2
n

η2.(4.20)

From this expression we can immediately conclude that the smaller root α1(β)
decreases the objective function L(y(β)), as β increases from 0, and the larger root
α2(β) increases the value of the objective function L(z(β)), as β increases. Since
L(y(0)) = L(z(0)), we can now conclude that L(y(β)) ≤ L(z(β)) for all nonnegative
β such that α2(β) < σ2

n−1.
Therefore the choice for global minimum is between y(β) and the critical points,

if any, corresponding to α = σ2
n−1. As mentioned before, α = σ2

n−1 can correspond
to a critical point only if condition (4.19) holds.

From the arguments in section 4.3 we know that G(α) has at most two roots in
(σ2
n, ω). Therefore it follows that under condition (4.19), ω > σ2

n−1. This in turn
implies that α2(β0) = σ2

n−1 for some β0 ∈ (0, δ].

856 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

Using condition (4.19) and carrying out an analysis similar to that of (4.15), we
can compute the critical point associated with α = σ2

n−1. From that it is easy to
verify that

lim
β→β0−

|zi(β)| = |zi(β0)|, 1 ≤ i ≤ n,

where z(β0) denotes the critical point associated with α = σ2
n−1.

Now from the continuation argument for L it follows that L(y(β)) ≤ L(y(0)) =
L(z(0)) ≤ L(z(β0)). Therefore we do not need to consider α = σ2

n−1 as a possibility
for the global minimum.

Furthermore, when β > δ we argued earlier that there are no roots of G(α) in
the interval (σ2

n, ω]. Also, from the above argument it follows that α = σ2
n−1 cannot

correspond to a global minimum.
In summary, the x̂ in (4.6) that corresponds to α1 is the global minimizer.

4.6. Multiple singular values. So far in the analysis we have implicitly ignored
the possibility that σn = σn−1. We now discuss how to take care of this possibility.
We need only to consider critical points α situated in the interval (0, σ2

n].
Let Un denote a matrix with orthonormal columns that span the left singular

subspace associated with the smallest singular value of A. If ‖UTn b‖2 > 0, then it
follows from (4.4) that α = σ2

n is not a possibility for a critical point. Furthermore
G(α) has a single root in (η2, σ2

n) and this must give the global minimum.
If ‖UTn b‖2 = 0, then either there exists a root of G(α) in the interval (η2, σ2

n), which
corresponds to the global minimum, or there is no such root and α = σ2

n will give
rise to multiple global minima, all of which can be calculated by the technique that
led to (4.15). The only difference is that ȳ in (4.10) will now denote the components
of y associated with the right singular vectors perpendicular to the range space of
Vn, where Vn is a matrix with orthonormal columns that span the right singular
subspace of A corresponding to σn. The proofs of these statements are similar to the
nonmultiple singular value case.

4.7. Statement of the solution of the optimization problem. We collect
in the form of a theorem the conclusions of our earlier analysis.

Theorem 4.2. Given A ∈ Rm×n, with m ≥ n and A full rank, a nonzero
b ∈ Rm, and a positive real number η satisfying η < σmin(A), assume further that

bT
[
I − A(ATA− η2I)−1AT

]
b > 0.

The solution of the optimization problem,

min
x̂

(
min

‖δA‖2≤η
‖ (A+ δA) x̂− b‖2

)
,(4.21)

can be constructed as follows:
• Introduce the SVD of A,

A = U

[
Σ
0

]
V T ,(4.22)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . , σn)
is diagonal, with

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

being the singular values of A.

BOUNDED ERRORS-IN-VARIABLES MODEL 857

• Partition the vector UT b into [
b1
b2

]
= UT b,(4.23)

where b1 ∈ Rn and b2 ∈ Rm−n.
• Introduce the secular function

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 − αI)−2

b1 − η2

α2
‖b2‖22.(4.24)

• Determine the unique positive root α̂ of G(α) that lies in the interval (η2, σ2
n).

If it does not exist, then set α̂ = σ2
n.

• Then
1. If α̂ < σ2

n, the solution x̂ is unique and is given by (4.6) or, equivalently,

x̂ = (ATA− α̂I)−1AT b.

2. If α̂ = σ2
n and σn < σn−1, then two solutions exist that are given by

(4.15). Otherwise, if A has multiple singular values at σn, then multiple
solutions exist and we can use the same technique that led to (4.15) to
determine x̂ as explained in the above section on multiple singular values.

We can be more explicit about the uniqueness of solutions. Assume A has multiple
singular values at σn and let Un denote the matrix with singular vectors that spans
the left singular subspace of A associated with these singular values:

1. When ‖UTn b‖ 6= 0, the solution x̂ is unique and it corresponds to a root α̂ < σ2
n

as shown above.
2. When ‖UTn b‖ = 0, then either an α̂1 < σ2

n exists and the solution x̂ is unique.
Otherwise, α̂ = σ2

n and multiple solutions x̂ exist.

5. Restricted perturbations. We have so far considered the case in which all
the columns of the A matrix are subject to perturbations. It may happen in practice,
however, that only selected columns are uncertain, while the remaining columns are
known precisely. This situation can be handled by the approach of this paper as we
now clarify.

Given A ∈ Rm×n, we partition it into block columns,

A =
[
A1 A2

]
,

and assume, without loss of generality, that only the columns of A2 are subject to
perturbations while the columns of A1 are known exactly. We then pose the following
problem.

Given A ∈ Rm×n, with m ≥ n and A full rank, b ∈ Rm, and a nonnegative real
number η2, determine x̂ such that

min
x̂

min
{‖ [A1 A2 + δA2

]
x̂− b‖2 : ‖δA2‖2 ≤ η2

}
.(5.1)

If we partition x̂ accordingly with A1 and A2, say,

x̂ =

[
x̂1

x̂2

]
,

then we can write

‖ [A1 A2 + δA2

]
x̂− b‖2 = ‖(A2 + δA2)x̂2 − (b−A1x̂1)‖2.

858 S. CHANDRASEKARAN, G. H. GOLUB, M. GU, AND A. H. SAYED

Assuming, for any vector (x̂1, x̂2), the fundamental condition

η2 ‖x̂2‖2 < ‖A2x̂2 − (b−A1x̂1)‖2 = ‖Ax− b‖2,
we can follow the argument at the beginning of section 3 to conclude that the minimum
over δA2 is achievable and is equal to

‖A2x̂2 − (b−A1x̂1)‖2 − η2‖x̂2‖2.
In this way, statement (5.1) reduces to the minimization problem

min
x̂1,x̂2

(∥∥∥∥[A1 A2

] [x̂1

x̂2

]
− b
∥∥∥∥

2

− η2‖x̂2‖2
)
.(5.2)

This statement can be further reduced to the problem treated in Theorem 4.2 as
follows. Introduce the QR decomposition of A, say

A = QR = Q

 R11 R12

0 R22

0 0

 ,
where we have partitioned R accordingly with the sizes of A1 and A2. Define b̄1A

b̄2A
b̄2

 = QT b.

Then (5.2) is equivalent to

min
x̂1,x̂2

∥∥∥∥∥∥
 R11 R12

0 R22

0 0

[x̂1

x̂2

]
−
 b̄1A
b̄2A
b̄2

∥∥∥∥∥∥
2

− η2‖x̂2‖2
 ,(5.3)

which can be further rewritten as

min
x̂1,x̂2

∥∥∥∥∥∥
 R11x̂1 +R12x̂2 − b̄1A

R22x̂2 − b̄2A
b̄2

∥∥∥∥∥∥
2

− η2‖x̂2‖2
 .(5.4)

This shows that once the optimal x̂2 has been determined, the optimal choice for x̂1

is necessarily the one that annihilates the entry R11x̂1 +R12x̂2 − b̄1A. That is,

x̂1 = R−1
11

[
b̄1A −R12x̂2

]
.(5.5)

The optimal x̂2 is the solution of

min
x̂2

(∥∥∥∥[R22

0

]
x̂2 −

[
b̄2A
b̄2

]∥∥∥∥
2

− η2‖x̂2‖2
)
.(5.6)

This optimization is of the same form as the problem stated earlier in (3.4) with x̂

replaced by x̂2, η replaced by η2, A replaced by [
R22

0
], and b replaced by [

b̄2A
b̄2

].

Therefore, the optimal x̂2 can be obtained by applying the result of Theorem 4.2.
Once x̂2 has been determined, the corresponding x̂1 follows from (5.5).

BOUNDED ERRORS-IN-VARIABLES MODEL 859

6. Conclusion. In this paper we have proposed and solved a new optimization
problem for parameter estimation in the presence of data uncertainties. The problem
incorporates a priori bounds on the size of the perturbations. It has a “closed” form
solution that is obtained by solving an “indefinite” regularized least-squares problem
with a regression parameter that is determined from the positive root of a secular
equation.

Several extensions are possible. For example, weighted versions with uncertain-
ties in the weight matrices are useful in several applications, as well as cases with
multiplicative uncertainties and applications to filtering theory. Some of these cases,
in addition to more discussion on estimation and control problems with bounded
uncertainties, can be found in [11, 12, 13, 14].

Acknowledgment. The authors would like to thank one of the anonymous re-
viewers for pointing out a mistake in an earlier version of the paper.

REFERENCES

[1] G. H. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–344.
[2] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J.

Numer. Anal., 17 (1980), pp. 883–893.
[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-

versity Press, Baltimore, MD, 1996.
[4] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects

and Analysis, SIAM, Philadelphia, PA, 1991.
[5] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press,

Cambridge, MA, 1983.
[6] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis, State-space solutions to stan-

dard H2 and H∞ control problems, IEEE Trans. Automat. Control, 34 (1989), pp. 831–847.
[7] P. Khargonekar and K. M. Nagpal, Filtering and smoothing in an H∞− setting, IEEE

Trans. Automat. Control, AC-36 (1991), pp. 151–166.
[8] B. Hassibi, A. H. Sayed, and T. Kailath, Recursive linear estimation in Krein spaces—Part

I: Theory, IEEE Trans. Automat. Control, 41 (1996), pp. 18–33.
[9] A. H. Sayed, B. Hassibi, and T. Kailath, Inertia conditions for the minimization of quadratic

forms in indefinite metric spaces, in Recent Developments in Operator Theory and Its
Applications, Oper. Theory Adv. Appl. 87, I. Gohberg, P. Lancaster, and P. N. Shivakumar,
eds., Birkhauser, Basel, Switzerland, 1996, pp. 309–347.

[10] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, Parameter estimation in
the presence of bounded data uncertainties, SIAM J. Matrix Anal. Appl., 19 (1998), pp.
235–252.

[11] A. H. Sayed, V. H. Nascimento, and S. Chandrasekaran, Estimation and control in the
presence of bounded data uncertainties, Linear Algebra Appl., 284 (1998), pp. 259–306.

[12] S. Chandrasekaran, G. Golub, M. Gu, and A. H. Sayed, Parameter estimation in the
presence of bounded modeling errors, IEEE Signal Processing Lett., 4 (1997), pp. 195–197.

[13] A. H. Sayed and S. Chandrasekaran, Estimation in the presence of multiple sources of
uncertainties with applications, in Proceedings of the Asilomar Conference, Pacific Grove,
CA, 1998, pp. 1811–1815.

[14] A. H. Sayed and V. H. Nascimento, Design criteria for uncertain models with structured
and unstructured uncertainties, Robustness in Identification and Control, A. Garulli, A.
Tesi, and A. Vicino, eds., Springer-Verlag, to appear.

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES FOR
RANDOM WALKS ON GRAPHS∗

STEPHEN J. KIRKLAND† AND MICHAEL NEUMANN‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 860–870

Abstract. One approach to the computations for Markov chains, due to Meyer, is to break a
problem down into corresponding computations for several related chains involving a smaller number
of states. In this spirit, we focus on the mean first passage matrix associated with a random walk on
a connected graph, and consider the problem of transforming the computation of that matrix into
smaller tasks. We show that this is possible when there is a cutpoint in the graph and provide an
explicit formula for the mean first passage matrix when this is the case.

Key words. Markov chains, first passage times, random walks, cutpoint graphs

AMS subject classifications. 15A51, 60J15, 15A48

PII. S0895479897318800

1. Introduction. For a regular Markov chain, it is well known that the sta-
tionary distribution vector provides the long-term probability of the chain being in
a particular state. However, for understanding the short-term behavior of the chain,
a better and more meaningful measurement can be the mean first passage time from
state i to state j, ei,j , which is the expected number of steps taken to arrive for the
first time in state j, given that the chain was initially in state i.

In this paper we consider random walks on a connected, undirected graph and
discuss the problem of computing the corresponding mean first passage matrix E,
that is, the matrix whose (i, j)th entry is ei,j . We comment that random walks on
undirected graphs occur in such applications as Markov chains on hypercubes, which
are a type of nearest-neighbor random walk, and we refer to Karlin, Lindqvist, and
Yao [7] and the references cited therein for quite a comprehensive description of such
walks. Here we show that for such Markov chains the presence of cutpoints in the
graph can be exploited to simplify the computation of the mean first passage matrix.
This leads to a divide-and-conquer approach to the computation of the matrix in the
case that the underlying graph is a tree. In this case, the computation of E can be
broken into many smaller tasks of the same type which can be computed in parallel.

Suppose T ∈ Rn,n is nonnegative, irreducible, and row stochastic so that it is the
transition matrix of an ergodic Markov chain. Let Q = I−T and let w = (w1 . . . wn)T

be the stationary distribution vector for the chain, viz., wTT = wT and
∑n
i=1 wi = 1.

Then, according to Meyer [11], the mean first passage matrix E is given by

E =
[
I −Q# + JQ#

d

]
W−1,(1.1)

where Q# is the group (generalized) inverse of Q, J is the n × n matrix of all ones,
where for Y ∈ Rn,n, Yd denotes the n × n diagonal matrix whose diagonal entries
are the corresponding diagonal entries of Y , and where W is the diagonal matrix

∗Received by the editors March 17, 1997; accepted for publication (in revised form) by C. Meyer
May 15, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31880.html
†Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada S4S 0A2.

The research of this author was supported by NSERC grant OGP0138251.
‡Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009 (neumann@

math.uconn.edu). The research of this author was supported by NSF grant DMS–9306357.

860

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES 861

whose diagonal entries are the corresponding entries of w. Considering (1.1), the two
expensive items which are necessary to compute E are Q# and w. (For methods for
computing Q# see Anstreicher and Rothblum [1] and Hartwig [6].)

The expense involved in the computation of w and Q# serves in part as the
motivation for our work here as we seek ways of reducing the cost of obtaining E.
Our approach is similar in spirit to, and inspired by, the work of Meyer [12], who
showed that the process of Perron complementation leads to the uncoupling of the
chain so that the computation of w can be done by aggregating stationary distribution
vectors of smaller chains.

To further introduce our results we need some terminology for undirected graphs.
Suppose G is an undirected, loopless, connected graph on n vertices conveniently la-
beled 1, . . . , n. Let A = A(G) be its adjacency matrix and let D = D(G) be the
diagonal matrix whose diagonal entries d1, . . . , dn are the corresponding vertex de-
grees, where by the degree of a vertex we mean the number of edges incident to it.
The matrix L = L(G) = D−A is known as the Laplacian of G. Note that L has zero
row sums and nonpositive off-diagonal entries. It follows from Berman and Plemmons
[3, Chap. 6] that L is a singular and irreducible M-matrix and that its proper prin-
cipal submatrices of all orders are nonsingular. Letting A(i, i) denote the principal
submatrix of A of order n − 1, obtained by deleting the ith row and column of A,
we call (A(i, i))−1 the bottleneck matrix of G based at vertex i. In the case that G is
a tree, so that there is only one path between any two vertices, the (k, `)th entry of
(A(i, i))−1 is the number of edges jointly on the path from k to i and on the path
from ` to i (see [10] for a proof).

Consider now an undirected graph on vertices 1, . . . , n. We can associate a random
walk with G by specifying that the probability of staying at vertex i is θi (which we
always assume to be strictly less than 1), while the probability of moving to any of
the vertices adjacent to i is (1−θi)/di. Letting P = diag(θ1, . . . , θn), we find that the
transition matrix for the random walk is given by

T = P + (I − P)D−1A.(1.2)

Observe that

I − T = (I − P)D−1(D −A),

in which D−A is the Laplacian matrix of the unweighted graph G. In an earlier paper,
[10] (but see also [9]), a formula for the group inverse of a Laplacian was developed in
terms of the bottleneck matrix for a graph. Bottleneck matrices will also be a basic
tool in the development of the results in this paper.

The plan of our paper is as follows. In section 2 we shall obtain several results in
which the mean first passage matrix is computed for a random walk induced by an
undirected connected graph which has a cutpoint. The cutpoint leads us to consider
connected subgraphs associated with the connected components at the cutpoint. The
portion of E corresponding to the states in each of the connected components can
then proceed independently on each of these connected components, provided only
that we adjust the probability of staying at the cutpoint. We find formulas for these
modified probabilities and show how all of E can be computed from the connected
components.

We devote section 3 to an example of obtaining the mean first passage matrix for a
random walk associated with a tree on eight vertices. We illustrate how our results of
section 2 can be exploited to reduce the number of computations necessary to obtain

862 STEPHEN KIRKLAND AND MICHAEL NEUMANN

the matrix. We close the section with some suggestions on ways to implement the
computation in parallel.

It follows from (1.1) that the mean first passage time from a state to itself is given
by the reciprocal of the corresponding entry of the stationary distribution vector.
Thus, our results in section 2 are directed toward computing the mean first passage
times between different states. However, if one does wish to obtain the mean first
passage between states and themselves, we exhibit in (2.3) that for random walks on
graphs this task is straightforward.

2. Mean first passage times for a graph with a cutpoint. Recall that a
vertex v of a connected graph G is a cutpoint if the graph G \ v, obtained by deleting
v and all edges incident with v, has two or more connected components. In this
section we consider simplifications in computing the mean first passage matrix for a
graph with a cutpoint. For such a graph, we have the following lemma concerning the
bottleneck matrix.

Lemma 2.1. Let G be a connected graph and partition its vertex set as S1 ∪ S2

with |S1| = k and |S2| = n− k > 1. Label the vertices of S2 as i1, . . . , in−k. Let j be
the number of edges from i1 to S1, say i1 is adjacent to `1, . . . , `j ∈ S1, and suppose
that any path from S1 to S2 goes through i1: viz.

Let B be the bottleneck matrix for G with destination vertex in−k. Then B can be
written as

B =

M1 +

(
eT1 M2e1

)
J 1eT1 M2

M2e11
T M2

 ,(2.1)

where M2 is the bottleneck matrix for the subgraph induced by S2 with destination
vertex in−k and where

M1 =

(
L1 +

j∑
m=1

e`me
T
`m

)−1

(2.2)

with L1 as the Laplacian for the graph induced by S1.

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES 863

Proof. We know that B is the inverse of the Laplacian of G with row in−k and
column in−k deleted. That is,

B−1 =

L1 +

∑j
m=1 e`me

T
`m

−
(∑j

m=1 e`m

)
eT1

−e1

(∑j
m=1 e`m

)T
M−1

2 + je1e
T
1

 .

From the fact that

M−1
1 1 =

j∑
m=1

e`m ,

we find that

M1

j∑
m=1

e`m = 1.

Using this last relation, a straightforward computation now shows that the product
of the matrix in (2.1) and B−1 is, in fact, the identity.

We next show how the bottleneck matrix can be used to obtain a formula for the
first n−1 entries of the last column of the mean first passage matrix. This formula, in
turn, will help facilitate much of our subsequent work. Consider a random walk on a
graph G on vertices 1, . . . , n, with probability θj of staying at vertex j, for 1 ≤ j ≤ n.
We are interested in the mean first passage times to a vertex i which we shall take,
without loss of generality, to be vertex n. Let η be given by

∑n
i=1 di/(1− θi) and let

yT = (1/η)(d1/(1− θ1) . . . dn/(1− θn)), where di is the degree of vertex i. Then note
that

yTT = 1
η1TD(I − P)−1T = 1

η (1TD(I − P)−1P + 1TD)

= 1
η1TD(I − P)−1 = yT .

(2.3)

Also note yT1 = 1, showing that y is the Perron vector of T normalized so that
its entries sum to 1. Thus, from the formula for the mean first passage matrix E in
terms of (I − T)# given in (1.1) and the partitioned formula for (I − T)# given in
[10, Proposition 2.2], it follows that the last column of E is given by M1

1/yn

 ,

where M is the inverse of the principal submatrix of I −T formed from its first n− 1
rows and columns. It follows that M = (D̄− Ā)−1D̄(Ī− P̄)−1, where the bar denotes
truncation of the last row and column of an n×n matrix. Consequently, we find that

M1 = (D̄ − Ā)−1D̄(Ī − P̄)−11 = B

 d1/(1− θ1)
...

dn−1/(1− θn−1)

 ,(2.4)

864 STEPHEN KIRKLAND AND MICHAEL NEUMANN

where B is the bottleneck matrix for the graph G based at vertex n.

With the graph in the above lemma and its associated random walk, we now
show that the mean first passage times from vertices in S1 to vertices in S2 admit an
additive representation, with the terms in the summation being largely determined
by one of the major parts of the graph.

Theorem 2.2. Let G be as in the statement of Lemma 2.1. For 1 ≤ i ≤ n, let θi
be the probability of staying at vertex i and consider the corresponding random walk
on G. If ` ∈ S1, then the mean first passage time from ` to in−k is the sum of the
mean first passage time from ` to i1 and the mean first passage time from i1 to in−k.

Proof. Let u be the (n− 1)-vector whose entries are the mean first passage times
from vertex v 6= in−k to vertex in−k. Then, by (2.4), u can be written as

u = B

δ1/(1− θ1)
...

δk/(1− θk)
di1/(1− θi1)

...
din−k−1

/(1− θin−k−1
)

,(2.5)

where δi is the degree of vertex i ∈ S1 and dim is the degree of vertex im ∈ S2. From
Lemma 2.1 we further see that u is given by

M1

[
δ1/(1− θ1)

.

.

.
δk/(1− θk)

]
+
(
eT1 M2e1

) [∑k

i=1
δi/(1− θi)

]
1 + 1eT1 M2

 di1/(1− θi1)

.

.

.
din−k−1

/(1− θin−k−1
)

∑k

i=1
δi/(1− θi)M2e1 +M2

 di1/(1− θi1)

.

.

.
din−k−1

/(1− θin−k−1
)

.

In particular, we see that the mean first passage time from i1 to in−k is equal to

(
eT1 M2e1

) [k∑
i=1

δi/(1− θi)
]

+ eT1 M2

 di1/(1− θi1)
...

din−k−1
/(1− θin−k−1

)

 .(2.6)

Furthermore, the column û of the mean first passage times from vertices v 6= i1 to
vertex i1 can be written as

B̂

δ1/(1− θ1)
...

δk/(1− θk)
di2/(1− θi2)

...
din−k/(1− θin−k)

,

where B̂ is the bottleneck matrix for G with destination vertex i1. From this it follows

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES 865

that

û =

M1

 δ1/(1− θ1)
...

δk/(1− θk)

x

for some vector x, so that the mean first passage time from ` to i1 is given by

eT` M1

 δ1/(1− θ1)
...

δk/(1− θk)

 .
The result now follows.

In view of the above theorem, it is natural to ask whether we can compute the
mean first passage times for any vertex in S2 (other than in−k) to in−k just by
considering S2 alone. It turns out that with a modification of the probability of
staying at vertex i1, this is indeed the case, as is shown in our next theorem.

Theorem 2.3. Let G be as in Lemma 2.1. If ij ∈ S2 and j 6= n − k, then the
mean first passage time from ij to in−k is the same as that in the random walk on
the subgraph of G induced by S2, where the probability of staying at vertex ij is θij ,
2 ≤ j ≤ n− k, and the probability of staying at vertex i1 is

θ̂i1 =

∑k
i=1 δi/(1− θi) + θi1di1/(1− θi1) + (di1 − σi1)∑k

i=1 δi/(1− θi) + di1/(1− θi1)
,(2.7)

where σi1 is the degree of i1 in the subgraph induced by S2.
Proof. From Lemma 2.1, for 1 ≤ j < n − k, the mean first passage time from ij

to in−k is the corresponding entry of (2.6). Now in the modified random walk on the
subgraph induced by S2, our mean first passage times are the elements of

M2

σi1/(1− θ̂i1)
di2/(1− θi2)

...
din−k−1

/(1− θin−k−1
)

 .
Observing that

σi1/(1− θ̂i1)
di2/(1− θi2)

...
din−k−1

/(1− θin−k−1
)

 =

 di1/(1− θi1)
...

din−k−1
/(1− θin−k−1

)

+

[
k∑
i=1

δi/(1− θi)
]
e1

now yields the result.
Since in−k represented an arbitrary vertex in vertex in S2 \ i1, we now have the

following corollary.
Corollary 2.4. The principal submatrix of the mean first passage matrix for

G corresponding to the vertices in S2 has the same off-diagonal parts as the mean

866 STEPHEN KIRKLAND AND MICHAEL NEUMANN

first passage matrix for the random walk on the subgraph of G induced by S2, with the
probability θ̂i1 of staying at vertex i1.

For a random walk on a graph G with a cutpoint v, our next result shows how
to express the mean first passage times for G in terms of mean first passage times for
related random walks on the connected components of G \ v.

Theorem 2.5. Suppose that G is a graph with vertex v as a cutpoint. Let Si,
1 ≤ i ≤ k denote subsets of vertices which induce the connected components of G \ v,
viz.

Let dj denote the degree of vertex j and let θj be the probability of staying at vertex j
for each j ∈ G. Then the off-diagonal entries of the mean first passage matrix for G
agree with the corresponding entries of

A1 a11
T + 1bT2 · · · · · · a11

T + 1bTk a1

a21
T + 1bT1 A2 · · · · · · a21

T + 1bTk a2

...
...

. . .
...

...

ak1
T + 1bT1 ak1

T + 1bT2 · · · · · · Ak ak

bt1 bT2 · · · · · · bTk ∗

,(2.8)

where
Ai ai

bTi ∗

(2.9)

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES 867

is the mean first passage matrix for the random walk on the subgraph induced by
Si ∪ {v} with the probability

θ̂v(i) =

∑
j 6∈Si∪{v} dj/(1− θj) + θvdv/(1− θv) + (dv − τi)∑

j 6∈Si∪{v} dj/(1− θj) + dv/(1− θv)(2.10)

of staying at vertex v, where τi is the degree of v in the subgraph induced by Si∪{v}.
Proof. The formula for (2.9) follows from Corollary 2.4 when it is applied to

Si ∪ {v}. If `1 ∈ Si and `2 ∈ Sj , i 6= j, then the mean first passage time from `1
to `2 is equal to the sum of the mean first passage time from `1 to v and the mean
first passage time from v to `2, yielding the formula for the off-diagonal blocks of the
mean first passage matrix.

3. An example and computational remarks. As an example to illustrate
our results in section 2, consider the following tree G on 8 vertices:

Taking the probabilities of staying at each vertex to be 0, we find that G induces a
random walk whose transition matrix is given by

T =

0 1 0 0 0 0 0 0

1/3 0 1/3 0 0 0 1/3 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 1/3 0 0 0 1/3 0 1/3

0 0 0 1/3 1/3 0 1/3 0

.

868 STEPHEN KIRKLAND AND MICHAEL NEUMANN

On computing E using Meyer’s formula in (1.1) we find that

E =

14 1 14 28 28 19 6 15
13 4 2

3 13 27 27 18 5 14
14 1 14 28 28 19 6 15
28 15 28 14 14 19 6 1
28 15 28 14 14 19 6 1
23 10 23 23 23 14 1 10
22 9 22 22 22 13 4 2

3 9
27 14 27 13 13 18 5 4 2

3

.(3.1)

Applying Theorem 2.3, let us now partition the vertex set into two subsets, S1 =
{1, 2, 3} and S2 = {4, 5, 6, 7, 8}, and regard i1 = 7 and i5 = 8. It is easily checked
that formula (2.9) gives that

θ̂1 =
5 + 1

5 + 3
=

3

4
.

Thus the transition matrix for the random walk on the subgraph of G induced by S2

is given by

TS2 =

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

0 0 1
8

3
4

1
8

1
3

1
3 0 1

3 0

.

Using Meyer’s formula in (1.1) once again (but now to compute the mean first passage
matrix for the random walk whose transition matrix is given by TS2

), we obtain:

ES2 =

14 14 19 6 1

14 14 19 6 1

23 23 14 1 10

22 22 13 13
4 9

13 13 18 5 4 2
3

.(3.2)

Using the flops (floating point operations) counter in MATLAB, we have found
that it takes 23,737 flops to compute E, but only 5,900 to compute ES2 . This is a
clear computational advantage if we are only interested in the mean first passage times
within the states represented by S2. We should mention that in computing (3.1) and
(3.2) we did not compute the group inverse of a matrix by the most efficient method,
as required in Meyer’s formula, (1.1), as we were merely interested in the comparison
of the number of flops for obtaining the two matrices.

Actually, let us perform a much more efficient computation of the entries of E
by using (2.4) to compute entries 4–7 in the last column of E. This means having
to solve a linear system where the coefficient matrix is the inverse of the appropriate
bottleneck matrix. If we obtain these entries as a part of computing the entire column
but the last entry, then the number of flops required is 980, whereas if we modify the

CUTPOINT DECOUPLING AND FIRST PASSAGE TIMES 869

probability of staying at vertex 7 from 0 to the ratio given by (2.7) and then compute
the entire final column except the last entry of the mean first passage for the random
walk of the subgraph of G induced by the vertex set S2, then the number of flops
drops to 210. We see that the ratio of the number of flops required to compute these
last 4 entries did not deteriorate compared to the previous experiment in which we
used Meyer’s formula, but instead improved.

As an illustration of the utility of Theorem 2.5, we also computed E of (3.1) using
the following procedure: We considered the branches at vertex 7 and used (1.1) to
compute the mean first passage matrices for the modified random walks induced by
the vertex sets {1, 2, 3, 7}, {4, 5, 8, 7}, and {6, 7}. We then applied Theorem 2.5 to
compute E. The entire procedure used 6,405 flops, a significant improvement on the
23,737 flops necessary to compute E directly from (1.1).

We now discuss some strategies for computing E for a random walk on a tree.
In order to make the computations efficient, we should look for an advantageous
vertex in the tree and break the tree into branches at that vertex. For example, if
we choose a vertex of high degree and then compute the mean first passage matrix
for the modified random walk associated with each of its branches as described in
Theorem 2.3, we can then compute all other off-diagonal entries of the mean first
passage matrix using, for example, Theorem 2.5. Actually, once we have found a
good vertex to partition the tree into branches, we may then continue the process of
breaking the tree into small branches by seeking “good” vertices within each branch to
split the branches themselves until we have reduced the problem to that of computing
mean first passage matrices for small branches. Evidently much of the computation
can proceed in parallel with this approach.

Another strategy for breaking up the tree might be to begin by searching for a
centroid of the tree. This is a vertex v such that each branch at v contains at most n/2
vertices; there are at most two centroids in a tree, and if there are indeed two, they
are necessarily adjacent. Having found a centroid, we can then break the branches
away from the centroid and repeat the process within each branch until the initial tree
has been split into sufficiently small branches. Computation of the mean first passage
matrix can then be built up from the corresponding matrices on the small branches.
We will investigate the computational efficiency of this and other suggestions in a
separate report.

Acknowledgments. The authors would like to thank the referees for their care-
ful reading of the original manuscript and for their suggestions.

REFERENCES

[1] K. M. Anstreicher and U. G. Rothblum, Using Gauss–Jordan elimination to compute
the index, generalized nullspace, and Drazin inverses, Linear Algebra Appl., 85 (1987),
pp. 221–239.

[2] A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and Applications, Academic
Press, New York, 1973.

[3] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
Philadelphia, 1994.

[4] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations,
Dover Publications, New York, 1991.

[5] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, 2nd ed., John
Wiley & Sons, New York, 1959.

[6] R. E. Hartwig, A method for computing Ad, Math. Japon., 26 (1981), pp. 37–43.
[7] S. Karlin, B. Lindqvist, and Y. Yao, Markov chains on hypercubes: Spectral representation

and several majorization relations, Random Structures Algorithms, 4 (1993), pp. 1–36.

870 STEPHEN KIRKLAND AND MICHAEL NEUMANN

[8] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand, Princeton, NJ, 1959.
[9] S. J. Kirkland, M. Neumann, and B. Shader, Bounds on the subdominant eigenvalue in-

volving group inverses with applications to graphs, Czech. Math. J., 48 (1998), pp. 1–20.
[10] S. J. Kirkland, M. Neumann, and B. Shader, Distances in weighted trees and group inverses

of Laplacian matrices, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 827–841.
[11] C. D. Meyer, Jr., The role of the group generalized inverse in the theory of finite Markov

chains, SIAM Rev., 17 (1975), pp. 443–464.
[12] C. D. Meyer, Jr., Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114/115

(1989), pp. 69–94.
[13] J. W. Moon, Random walks on random trees, J. Austral. Math. Soc., 15 (1973), pp. 42–53.

PARTIAL ORDERS AND THE MATRIX R
IN MATRIX ANALYTIC METHODS∗

QI-MING HE†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 871–885

Abstract. This paper studies the matrix R, which is the minimal nonnegative solution to a
nonlinear matrix equation, raised in matrix analytic methods. Based on some partial orders defined
on the transition matrix of Markov chains of GI/M/1 type, the monotonicity of the corresponding
matrix R and its Perron–Frobenius eigenvalue is investigated. The results are useful in estimating
tail probabilities of stationary distributions of Markov chains of GI/M/1 type and constructing upper
bounds for the matrix R. Applications to the GI/MAP/1 queue are discussed as well.

Key words. matrix analytic methods, queueing theory, partial order, GI/MAP/1 queue, non-
negative matrix

AMS subject classifications. 60K25, 15A24

PII. S0895479897311214

1. Introduction. Let {An, n ≥ 0} be a sequence of m×m nonnegative matrices
whose summation matrix A is substochastic or stochastic. {An, n ≥ 0} is called a
substochastic or stochastic sequence accordingly. Let R, an m × m matrix, be the
minimal nonnegative solution to the equation

X =

∞∑
n=0

XnAn.(1.1)

Based on some partial orders defined on the set of all substochastic and stochastic
sequences, this paper presents some characterizations of the matrix R. Applications
to Markov chain theory, matrix analytic methods, and the GI/MAP/1 queue are
explored.

The interest in the minimal nonnegative solution to (1.1) comes from the study
of Markov chains of GI/M/1 type (see (2.1)), which often arise in the modeling of
stochastic systems. A classical example is the GI/M/1 queue in which the embedded
Markov chain for the queue length at arrival epochs has the GI/M/1-type structure.
More complicated examples are Markov chains of GI/M/1 type with matrix transition
blocks ({An, n ≥ 0}) raised in the study of the GI/PH/1 and GI/MAP/1 queues
(Neuts [16]). The matrix R is important since the stationary distribution of a Markov
chain of GI/M/1 type, when it exists, has a matrix–geometric solution which can be
expressed in terms of R and another constant vector. Early papers (see Purdue [20])
studied (1.1) and its minimal nonnegative solution. It has been proved that, under
some conditions, the Perron–Frobenius eigenvalue (the eigenvalue with the largest
real part) of R is less than one so that the stationary distribution of the Markov chain
exists and is unique. More recently, Gail, Hantler, and Taylor [6] found all power
bounded solutions of (1.1). Their work greatly extended our understanding of the
solutions to (1.1). Although previous studies gained some insights into the minimal
nonnegative solution of (1.1), there are still some important issues that need to be
explored (see Neuts [19]). This paper addresses two of those issues.

∗Received by the editors October 7, 1997; accepted for publication (in revised form) by M. Chu
June 10, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31121.html
†Department of Industrial Engineering, DalTech, Dalhousie University, Halifax, NS, Canada, B3J

2X4 (Qi-Ming.He@dal.ca).

871

872 QI-MING HE

The first issue is related to the comparison of the stationary distributions of
Markov chains of GI/M/1 type. Similar to stochastic comparison of Markov chains
(see Daley [5] and Keilson and Kester [9]), some partial orders shall be defined on
the transition blocks ({An, n ≥ 0}) of Markov chains of GI/M/1 type. When the
transition blocks of two Markov chains of GI/M/1 type are partially ordered, the
relationship between their corresponding matrix R shall be investigated. Since the
stationary distributions of the two Markov chains of GI/M/1 type can be expressed
in terms of their matrix R, the relationship between the two stationary distributions
can be investigated accordingly. For example, by introducing the stochastically larger
order, a general inequality for the matrix R under this partial order shall be proved.
Implications of the results, especially to the stationary distribution, are then discussed
(see section 4).

The second issue is related to the computation of the matrix R. Some algorithms
have been developed for computing R (see Neuts [16], Latouche and Ramaswami [10],
Ramaswami [21], and Ramaswami and Taylor [22]). Essentially, these algorithms
generate a sequence of matrices which, usually nondecreasing, converges to R. That
is, the resulting sequence converges to R from “below.” An interesting problem is to
find an algorithm which generates a sequence converging to R from “above.” In this
paper, some upper bounds of R and some schemes for computing R are presented.
The proposed schemes generate sequences of matrices that have a Perron–Frobenius
eigenvalue larger than that of R, and the sequence converges to R under certain con-
ditions. The resulting sequence may not be decreasing, but its matrices are “above”
the limiting matrix R in the sense of the Perron–Frobenius eigenvalue.

In this paper, the focus is on the matrix R. It is worthwhile to mention that the
approach used in this paper can be used to study a dual problem of (1.1) raised from
the study of Markov chains of M/G/1 type, i.e., the minimal nonnegative solution G
to the equation

X =

∞∑
n=0

AnX
n.(1.2)

The reason is that there is a one-on-one mapping between the minimal nonnegative
solutions of (1.1) and (1.2) according to Asmussen and Ramaswami [2]. More studies
of the matrix G can be found in Akar and Sohraby [1], Bini and Meini [4], Latouche
and Stewart [11], and Lucantoni [13], where different algorithms for computing the
matrix G are proposed and analyzed.

The rest of this paper is organized as follows. In section 2, some definitions and
some classical results are presented. In section 3, a partial order defined on the set
of substochastic and stochastic sequences is introduced. Section 4 focuses on the
stochastically larger order and some applications to Markov chains of GI/M/1 type.
Section 5 presents some inequalities of R and suggests a scheme for computing R.
A few numerical examples are presented in section 5 as well. Section 6 discusses
the moment generating order, functional monotonicity, and functional dominance.
Section 7 is devoted to the GI/MAP/1 queue.

2. Preliminaries. In this section, a discrete Markov chain of GI/M/1 type, a
simple algorithm for computing R, and some classical results on nonnegative matrices
are introduced.

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 873

Markov chains of GI/M/1 type. A Markov chain P is of GI/M/1 type if it
has a transition matrix

P =

A0 A0

A1 A1 A0

A2 A2 A1 A0

...
. . .

. . .
. . .

. . .

 ,(2.1)

where all the blocks in P are m ×m matrices. The state space of P is {(n, j), n ≥
0, 1 ≤ j ≤ m}. The state set {(n, j), 1 ≤ j ≤ m} is called the level n. One of
the major features of the Markov chain P is that, for each transition, the first index
n can increase at most by one. This feature determines a special structure of the
stationary distribution of P . Let π = (π0,π1,π2, . . .) be the stationary distribution
of P , where πn is an m-dimensional vector for n ≥ 0. When P is irreducible and
positive recurrent, it has been found (see Neuts [16, Chapter 1]) that πn = π0R

n,
n ≥ 0, where the vector π0 is the unique nonnegative solution to the equations

x = x

∞∑
n=0

RnAn and x(I−R)−1e = 1,(2.2)

where e is the column vector with all components one, and I is the unit matrix. The
solution π is called the matrix–geometric solution. Such a solution exists for (irre-
ducible and positive recurrent) Markov chains of GI/M/1 type with more complicated
boundary statues. In the context of the Markov chain P , Rij (1 ≤ i, j ≤ m) is in-
terpreted as the mean total number of visits to state (n + 1, j) before returning to
level n, given that the Markov chain started in state (n, i). It is clear from the special
structure of P that Rij is the same for all positive n.

Continuous-time Markov chains of GI/M/1 type are defined similarly. The in-
finitesimal generator of a continuous-time Markov chain of GI/M/1 type has a similar
structure to that of the matrix P in (2.1). It is worth mentioning that the results
obtained in this paper also hold for Markov processes of GI/M/1 type with minor
changes.

An algorithm for computing R. A simple algorithm for computing the matrix
R is as follows. Let R[0] = 0 and

R[k + 1] =

∞∑
n=0

(R[k])nAn, k ≥ 0.(2.3)

It is easy to see that {R[k], k ≥ 0} is nondecreasing and converges to R from
below, when R is unique. Although there are other algorithms proposed for computing
R for some special cases (see Latouche and Ramaswami [10] and Ramaswami and
Taylor [22]), this algorithm is easy to use when {An, n ≥ 0} are known. In this paper,
(2.3) will be used repeatedly in proving properties about the matrix R.

Nonnegative matrices. In this paper, some results of nonnegative matrices
are used repeatedly. For convenience, those results are summarized here (see Gant-
macher [7]). Assume that X is an irreducible nonnegative matrix. Let sp(X) denote
the Perron–Frobenius eigenvalue of X. Then sp(X) is positive and its corresponding
eigenvector has positive elements as well. sp(X) is strictly increasing with respect to
each element of X. For any two constants c1 and c2, if uc1 ≤ uX ≤ uc2, where u is a

874 QI-MING HE

nonzero nonnegative vector, then c1 ≤ sp(X) ≤ c2. For a stochastic or substochastic
sequence {An, n ≥ 0}, define

A∗(z) =
∞∑
n=0

znAn, z ∈ [0, 1).(2.4)

If A, the summation matrix of {An, n ≥ 0}, is irreducible, A∗(z) is irreducible for all
0 < z < 1. Denote by θ(z) the eigenvector corresponding to sp(A∗(z)) with θ(z)e = 1.
θ(z) is unique and positive. Also, log(sp(A∗(e−s))) is convex with respect to s(> 0)
(see Neuts [16, Chapter 1]). This last property implies that sp(A∗(z)), as a function
of z, has at most one intersection with the linear function z in [0, 1). This further
implies that the eigenvector of sp(R), denoted by θ(sp(R)) with θ(sp(R))e = 1, is
unique and positive.

3. A partial order and the matrix R. Partial ordering is an important tool
in characterizing stochastic systems in applied probability (see Marshall and Olkin
[14] as well as Shaked and Shanthikumar [24]). Various partial orders have been
introduced and studied. For example, the majorization of vectors and matrices is
discussed in Marshall and Olkin [14]. In Ridder [23], functional monotonicity and
functional dominance are introduced with applications to matrix analytic methods.

Let Mm be the set of all sequences {An, n ≥ 0} of dimension m whose summation
is an irreducible substochastic or stochastic matrix. In this section, a partial order is
defined on Mm in order to study the monotonicity of the matrix R. The partial order
is defined in such a way that the Perron–Frobenius eigenvalue of the matrix R can
play an important role. Relationships between the matrix R and its corresponding
eigenvalues of partially ordered sequences shall be derived.

Define a function φ (from [0, 1) to (0,∞)) as

φ(x) =

∞∑
n=0

φnx
n,(3.1)

where {φn, n ≥ 0} are nonnegative and finite, φ0 = 1, and the summation converges
for all x in [0, 1).

Definition 3.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, if

n∑
i=0

φn−iAi ≥
n∑
i=0

φn−iBi for all n ≥ 0,(3.2)

then {An, n ≥ 0} is called smaller than {Bn, n ≥ 0} with respect to φ, denoted as
{An, n ≥ 0} ≤φ {Bn, n ≥ 0}. It can be verified that (3.2) indeed defines a partial
order on Mm with transitivity and reflective properties. The following result shows
why the partial order ≤φ is useful in the study of the matrix R.

Lemma 3.1. Consider {An, n ≥ 0} and {Bn, n ≥ 0} in Mm satisfying {An, n ≥
0} ≤φ {Bn, n ≥ 0}. Let Ra and Rb be the minimal nonnegative solutions to (1.1)
corresponding to {An, n ≥ 0} and {Bn, n ≥ 0}, respectively. (Indexes “a” and “b”
shall be used to distinguish variables corresponding to the two sequences.) Assuming
that sp(Ra) ≤ 1, φ(Ra), and φ(Rb) are well defined, then

φ(Ra)Rna ≥ φ(Ra)Rnb and φ(Rb)R
n
a ≥ φ(Rb)R

n
b , for n ≥ 1,(3.3)

and sp(Ra) ≥ sp(Rb). Furthermore, denote by θa = θ(sp(Ra)) and θb = θ(sp(Rb)),
for n ≥ 1,

θaR
n
a = (sp(Ra))nθa ≥ θaRnb and θbR

n
a ≥ θbRnb = (sp(Rb))

nθb.(3.4)

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 875

Proof. To prove the first inequality in (3.3), the fact that the nondecreasing
sequence generated by (2.3) converges to Rb of {Bn, n ≥ 0} shall be used. First, it
has

φ(Ra)Ra = φ(Ra)
∞∑
n=0

RnaAn ≥ φ(Ra)A0 ≥ φ(Ra)B0 = φ(Ra)Rb[1],(3.5)

where A0 ≥ B0 = Rb[1] by definition (see (2.3) and (3.2)). The commutativity of
φ(Ra) and Ra yields, for n ≥ 1,

φ(Ra)Rna = Rn−1
a φ(Ra)Ra ≥ Rn−1

a φ(Ra)Rb[1] ≥ · · · ≥ φ(Ra)(Rb[1])n.(3.6)

Suppose that (3.6) is true for k. For k + 1, by induction, it has

φ(Ra)Ra = φ(Ra)
∞∑
n=0

RnaAn =
∞∑
n=0

(∞∑
i=0

φiR
i
a

)
RnaAn =

∞∑
n=0

Rna

(
n∑
i=0

φiAn−i

)

≥
∞∑
n=0

Rna

(
n∑
i=0

φiBn−i

)
=
∞∑
n=0

φ(Ra)RnaBn ≥
∞∑
n=0

φ(Ra)(Rb[k])nBn(3.7)

= φ(Ra)
∞∑
n=0

(Rb[k])nBn = φ(Ra)Rb[k + 1].

The exchange of the summations in (3.7) is valid since the coefficients {φn, n ≥
0} and matrices involved are nonnegative. Similar to (3.6), it can be proved that
φ(Ra)Rna ≥ φ(Ra)(Rb[k + 1])n for n ≥ 1. Thus, φ(Ra)Rna ≥ φ(Ra)(Rb[k])n holds for
n ≥ 1 and k ≥ 1. Since Rb[k] converges to Rb monotonically, the first inequality in
(3.3) is obtained. Multiplying θa on both sides of the first inequality in (3.3) yields

θaφ(Ra)Rna = φ(sp(Ra))θa(sp(Ra))n ≥ φ(sp(Ra))θaR
n
b .(3.8)

Since φ(x) is positive, θasp(Ra) ≥ θaRb, which implies that sp(Ra) ≥ sp(Rb) and the
first inequality of (3.4) holds.

To prove the second inequalities in (3.3) and (3.4), define the following sequence:

Ra[1] =
∞∑
n=0

RnbAn and Ra[k + 1] =
∞∑
n=0

(Ra[k])nAn, k ≥ 1.(3.9)

It can be proved that, for n ≥ 1,

φ(Rb)R
n
b ≤ φ(Rb)(Ra[1])n and φ(Rb)R

n
b ≤ φ(Rb)(Ra[k])n, k ≥ 1.(3.10)

Then it is only needed to prove that the sequence {Ra[k], k ≥ 1} converges to Ra.
By definition and induction,

θaRa[1] =
∞∑
n=0

θaR
n
bAn ≤ θa

∞∑
n=0

(sp(Ra))nAn = sp(Ra)θa,

θa(Ra[1])n ≤ (sp(Ra))nθa,
(3.11)

θaRa[k + 1] =
∞∑
n=0

θa(Ra[k])nAn ≤ θa
∞∑
n=0

(sp(Ra))nAn = sp(Ra)θa,

θa(Ra[k + 1])n ≤ (sp(Ra))nθa, n ≥ 1.

876 QI-MING HE

On the other hand, by (2.3) and (3.9), Ra[1] ≥ A0 = Ra[1]. By induction, it can be
proved that Ra[k] ≥ Ra[k] for k ≥ 1.

Since the sum of {An, n ≥ 0} is an irreducible matrix, θa is positive. By (3.11),
the sequence {Ra[k], k ≥ 1} is uniformly bounded. Denote by Ra the limit matrix
of a converging subsequence of {Ra[k], k ≥ 1}. Then Ra ≤ Ra and sp(Ra)θa ≤
θaRa ≤ sp(Ra)θa. Thus, sp(Ra)θa = θaRa, which implies that sp(Ra) = sp(Ra). If
Ra < Ra, Ra − Ra is nonzero and nonnegative. Then θa(Ra − Ra) is nonzero and
nonnegative since θa is positive. This is a contradiction. Thus, Ra = Ra. Since this is
true for any converging subsequence of {Ra[k], k ≥ 1}, it concludes that the sequence
{Ra[k], k ≥ 1} converges to Ra.

There is a variety of selections of the function φ(x). For applications to Markov
chains of GI/M/1 type and queueing theory, functions of the form (1− x)−k, k ≥ 0,
are of interest, especially when k = 0 and 1. When k = 0, φ(x) = 1. {An, n ≥
0} ≤φ {Bn, n ≥ 0} implies that An ≥ Bn for all n. Lemma 3.1 implies that Ra ≥
Rb. This result is useful, but the condition is too strong to be held by any two
different stochastic sequences. Therefore, the focus of the next two sections will be
on the case φ(x) = (1 − x)−1. The partial order ≤φ with φ(x) = (1 − x)−1, in some
sense, bears some analogy to the classical stochastically larger order (see Shaked and
Shanthikumar [24]) and it is relatively easy to check whether or not two sequences in
Mm are partially ordered.

4. Stochastically larger order and the matrix R. In this section, the focus
is on the “stochastically smaller (larger)” order defined by φ(x) = (1 − x)−1, and
denoted by ≤st (≥st). This partial order is important not only because it has a scale
case counterpart (see Shaked and Shanthikumar [24]) but also because it induces
some useful results for the stationary distribution of Markov chains of GI/M/1 type.
Furthermore, it suggests some schemes for computing R (see section 5).

For the stochastically smaller order, φn = 1 for all n. If {An, n ≥ 0} ≤st
{Bn, n ≥ 0}, (3.2) becomes A0+A1+· · ·+An ≥ B0+B1+· · ·+Bn for all n ≥ 0. When
n goes to infinity, it leads to A ≥ B, where A and B are the sums of {An, n ≥ 0} and
{Bn, n ≥ 0}, respectively. Lemma 3.1 leads to the following results of the matrix R.

Theorem 4.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, assume that
{An, n ≥ 0} ≤st {Bn, n ≥ 0}. Then sp(Ra)θa ≥ θaRb,θbRa ≥ sp(Rb)θb, sp(Ra) ≥
sp(Rb), and

(1) if sp(Ra) < 1, then (I − Ra)−1Ra ≥ (I − Ra)−1Rb and (I − Rb)
−1Ra ≥

(I−Rb)−1Rb;
(2) if sp(Rb) < 1, then (I−Rb)−1Ra ≥ (I−Rb)−1Rb.
Proof. Consider {tAn, n ≥ 0} and {tBn, n ≥ 0} for 0 < t < 1. Their minimal

nonnegative solutions to (1.1) are Ra(t) and Rb(t), respectively. It is clear that Ra(t),
Rb(t), sp(Rb(t)), and sp(Ra(t)) are nondecreasing in t and upper bounded by Ra,
Rb, sp(Rb), and sp(Ra), respectively. It can be proved that Ra(t), Rb(t), sp(Rb(t)),
and sp(Ra(t)) are continuous with respect to t when sp(Ra) < 1, sp(Rb) < 1, and
0 ≤ t ≤ 1 (see He [8]). Matrices (I−Ra(t))−1 and (I−Rb(t))−1 are well defined since
sp(Rb(t)) ≤ sp(Ra(t)) < 1. Therefore, all conclusions in Lemma 3.1 hold for t < 1.
Taking t to 1, the results are obtained.

Results given in Theorem 4.1 have many applications. Two examples are shown
next. First, recall that Ra(Rb) is the mean number (in matrix form) of visits of
the Markov chain Pa(Pb) (see (2.1) for definition) to level k + 1 before returning to
level k, given that the process started in level k. Intuitively, when {An, n ≥ 0} is
stochastically smaller than {Bn, n ≥ 0}, Markov chain Pa is more likely to stay in

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 877

level k+ 1 and higher. Therefore, the mean number of visits to level k+ 1 and higher
should be larger. This intuition leads to the following corollary.

Corollary 4.2. Assume that {An, n ≥ 0} ≤st {Bn, n ≥ 0} and sp(Ra) < 1.
Then (I − Ra)−1Ra ≥ (I − Rb)−1Rb, where (I − Ra)−1Ra (or (I − Rb)−1Rb) is the
mean total number of visits to level k+ 1 and higher before returning to level k, given
that the Markov chain started in level k.

Proof. By Theorem 4.1, (I−Ra)−1Ra ≥ (I−Ra)−1Rb. Then, for all n ≥ 1,

(I−Ra)−1Rb = [I + (I−Ra)−1Ra]Rb ≥ Rb + (I−Ra)−1R2
b

≥ Rb +R2
b + · · ·+Rnb + (I−Ra)−1Rn+1

b .
(4.1)

Since sp(Rb) ≤ sp(Ra) < 1, Rnb converges to zero. This implies that (I − Ra)−1Rnb
converges to zero, which leads to the result.

The probabilistic interpretation for (I−Ra)−1Ra (and (I−Rb)−1Rb) comes from
the fact that Rn is the mean number of visits to level k + n before returning to level
k, given that the Markov chain started in level k (see Neuts [16, Chapter 1]).

Note. When sp(Ra) = 1, the Markov chain Pa is transient. The mean number of
visits to level k + 1 and higher before returning to level k is infinity, given that the
Markov chain started in level k.

Corollary 4.2 shows that the mean number of visits to all higher levels before the
Markov chain returns to its current level is monotone with respect to the stochastically
larger order. It is natural to ask if it is also true for a higher level ; i.e., when {An, n ≥
0} ≤st {Bn, n ≥ 0}, is it true that Ra ≥ Rb? The answer to this question is negative.
A counterexample is given as follows.

Example 4.1. Define {An, n ≥ 0} as follows: An = 0, n ≥ 3,

A0 =

 0 0.1 0.1

0.1 0 0.1

0 0 0.1

, A1 =

 0.1 0.05 0

0.1 0 0

0.1 0 0

, A2 =

 0.2 0.2 0.25

0 0.5 0.2

0.15 0.55 0.1

 .

(4.2)

{Bn, n ≥ 0} is the same as {An, n ≥ 0} except (B0)1,2 = 0 and (B1)1,2 = 0.15.
Apparently, {An, n ≥ 0} ≤st {Bn, n ≥ 0}. However, Ra ≥ Rb is not true since

Ra =

 0.0356 0.1269 0.1099

0.1347 0.0352 0.1097

0.0156 0.0106 0.1029

 and Rb =

 0.0155 0.0112 0.1025

0.1341 0.0399 0.1060

0.0155 0.0112 0.1025

 .

(4.3)
Another application of Theorem 4.1 is the comparison of tail probabilities of

stationary distributions of Markov chains Pa and Pb of GI/M/1 type. When sp(Ra) <
1, for instance, there is an approximation (see Neuts [17])

Rna = (sp(Ra))nvθa + o((sp(Ra))n) as n→∞,(4.4)

where v and θa are the right and left eigenvectors of Ra corresponding to sp(Ra) and
normalized by θae = θav = 1. Equation (4.4) implies that the stationary distribu-
tion π = (π0,π1,π2, . . .) of Markov chain Pa has the following approximation (see
section 2 for the definition):

πn = (sp(Ra))n(π0v)θa + o((sp(Ra))n) as n→∞.(4.5)

878 QI-MING HE

Therefore, when {An, n ≥ 0} ≤st {Bn, n ≥ 0}, sp(Ra) ≥ sp(Rb) and the tail
probabilities of Pa are larger than that of Pb. Again, this implies that Pa is more
likely to be in higher levels than Pb, although the probabilities of such events are
small.

Note. For any partial order ≤φ defined by (3.1) and (3.2), sp(Ra) ≥ sp(Rb)
if {An, n ≥ 0} ≤φ {Bn, n ≥ 0}. This implies that the same conclusion for tail
probabilities holds for the partial order φ. Cases of interest include φ(x) = (1− x)−k

for k ≥ 0. It is clear that the condition in (3.2) is weaker for large k than for small
k, but they all imply the monotonicity of the Perron–Frobenius eigenvalue of the
minimal nonnegative solution to (1.1).

5. Upper bounds of the matrix R and related issues. As was mentioned
in section 1, upper bounds for the matrix R are useful, and it is even more interesting
to develop algorithms generating sequences which converge to R from above. To
address these issues, the stochastically larger order is explored further in this section.
Although algorithms generating sequences which converge to R from above are not
developed in this paper, some upper bounds are found and a scheme is developed.
The scheme generates a sequence, whose matrices have Perron–Frobenius eigenvalues
larger than sp(R), converging to R under some conditions.

Consider {An, n ≥ 0} and {Bn, n ≥ 0} in Mm. Define the following sequence
for Rb:

R̂b[1] =
∞∑
n=0

RnaBn, R̂b[k + 1] =
∞∑
n=0

(R̂b[k])nBn for k ≥ 1.(5.1)

When {An, n ≥ 0} ≤st {Bn, n ≥ 0}, the sequence generated by using (5.1) is
expected to converge to Rb monotonically. The sequence indeed converges to Rb
under some conditions but, unfortunately, it is not always a monotone sequence.

Property 5.1. Assume that {An, n ≥ 0} ≤st {Bn, n ≥ 0} and sp(Ra) < 1. Then

R̂b[k] ≥ Rb[k] and sp(Rb) ≤ sp(R̂b[k]) ≤ sp(Ra), k ≥ 1.(5.2)

If the sequence generated by using (5.1) converges, it converges to Rb.
Proof. The first inequality in (5.2) is proved as follows:

R̂b[1] ≥ B0 = Rb[1], by induction, R̂b[k] ≥ Rb[k].(5.3)

To prove the second part, the following inequalities are proved first, for n, k ≥ 1,

(I−Rb)−1Rnb ≤ (I−Rb)−1(R̂b[k])n and (I−Ra)−1(R̂b[k])n ≤ (I−Ra)−1Rna .(5.4)

By Theorem 4.1, it has

(I−Rb)−1Rb =
∞∑
n=0

(I−Rb)−1RnbBn ≤
∞∑
n=0

(I−Rb)−1RnaBn ≤ (I−Rb)−1R̂b[1],

(I−Rb)−1Rnb = Rn−1
b (I−Rb)−1Rb

≤ Rn−1
b (I−Rb)−1R̂b[1] ≤ · · · ≤ (I−Rb)−1(R̂b[1])n.

(5.5)

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 879

By induction, the first part of (5.4) is proved. To prove the second part, first notice

(I−Ra)−1Ra =
∞∑
n=0

Rna

(
n∑
i=0

Ai

)
≥
∞∑
n=0

Rna

(
n∑
i=0

Bi

)

= (I−Ra)−1
∞∑
n=0

RnaBn = (I−Ra)−1R̂b[1],

(I−Ra)−1Rna ≥ (I−Ra)−1(R̂b[1])n, n ≥ 0.

(5.6)

Using (5.1), the second part of (5.4) can be proved by induction. By (5.4), it is
easy to see that the Perron–Frobenius eigenvalues of the matrices in the sequence
generated by (5.1) are between sp(Ra) and sp(Rb). When the sequence generated
by (5.1) converges, it converges to a nonnegative solution of (1.1) associated with
the sequence {Bn, n ≥ 0}. Since the minimal nonnegative solution of (1.1) with the
largest eigenvalue less than one is unique (see Neuts [16, Theorem 1.3.3]), the sequence
generated by (5.1) converges to the matrix Rb.

The above result shows that the Perron–Frobenius eigenvalue plays an important
role in generating new sequences which converge to R from “above,” since the most
important feature of the initial matrix for (5.1) is that its Perron–Frobenius eigenvalue
is larger than that of the matrix Rb. Following this idea, another sequence can be
constructed as follows, for 0 < s < 1:

R̂b[1] =
∞∑
n=0

snBn = B∗(s), R̂b[k + 1] =
∞∑
n=0

(R̂b[k])nBn, k ≥ 1.(5.7)

Property 5.2. Assume that 1 > s > sp(Rb). For the sequence generated by (5.7),

R̂b[k] ≥ Rb[k], sp(Rb) ≤ sp(R̂b[k]) ≤ sp(B∗(s)) ≤ s.(5.8)

If the sequence converges, it converges to Rb.
Proof. By definition, it has

R̂b[1] = B∗(s) ≥ Rb[1] = B0 and R̂b[k] ≥ Rb[k], k ≥ 1.(5.9)

Recall that θ(s) is the eigenvector of B∗(s) corresponding to its Perron–Frobenius
eigenvalue and s ≥ sp(B∗(s)). Then

θ(s)R̂[1] = θ(s)B∗(s) = θ(s)sp(B∗(s)) ≤ θ(s)s,

θ(s)(R̂[1])n ≤ θ(s)sn, n ≥ 0.
(5.10)

By induction, it can be proved that

θ(s)(R̂[k])n ≤ θ(s)(sp(B∗(s)))n ≤ θ(s)sn, k, n ≥ 1,

sp(R̂[k]) ≤ sp(B∗(s)) ≤ s.(5.11)

Replacing θ(s) by θb and s by sp(Rb) and changing the direction of inequalities in
(5.10) and (5.11), the other inequality in (5.8) can be proved.

Using the same argument as in Property 5.1, when the sequence generated by
(5.7) converges, it converges to Rb.

Properties 5.1 and 5.2 show that all the matrices in the sequence generated by
(5.1) or (5.7) have their largest eigenvalues in [sp(Rb), sp(Ra)] or [sp(Rb), s) with

880 QI-MING HE

sp(Ra) < 1 and s < 1. This suggests that the generated sequence should converge to
Rb so that the convergence condition in Properties 5.1 and 5.2 can be dropped out.
This conjecture is supported by numerical examples as well. However, the generated
sequence may not be monotone, and a rigorous proof of its convergence is difficult to
obtain. In fact, such a proof may involve the theory of multiple dimension contraction
mappings and is beyond the scope of this paper. This is why it is assumed in Prop-
erties 5.1 and 5.2 that the generated sequence converges. The issue of convergence is
left as an open problem.

The following property shows that an extra condition guarantees the monotonicity
and convergence of a generated sequence.

Property 5.3. For a nonnegative matrix X with 0 < sp(X) < 1, define X[0] =
X, X[k + 1] = B0 + X[k]B1 + · · · for k ≥ 0. If X[0] ≥ X[1], then X[k] ≥ X[k + 1],
k ≥ 0, and {X[k], k ≥ 0} converges to Rb.

Proof. If X[0] ≥ X[1], then (X[0])n ≥ (X[1])n. Therefore, X[1] ≥ X[2] by
definition. The rest of the proof is completed by induction and by using Theorem 1.3.3
in Neuts [16].

Usually, to calculate the matrix R associated with a sequence {An, n ≥ 0} in
Mm, a sequence {Bn, n ≥ 0} in Mm is not given to facilitate the computation of
R. One has to construct new sequences in Mm from {An, n ≥ 0} for such purposes.
Thus, let us focus on a single sequence {An, n ≥ 0} in Mm. The issues of interest are
(1) to find some upper bounds of Ra and (2) to find some initial matrices or values
for the algorithms defined by (5.1) and (5.7), respectively. The idea is to consider a
truncated sequence {A0, A1, . . . , AN−1, AN +AN+1 + · · ·} for a given N(> 0). Denote
the minimal nonnegative solution to (1.1) corresponding to the truncated sequence
by R(N). It is easy to verify that the truncated sequence is stochastically smaller
than {An, n ≥ 0}. The computation of R(N) could be much easier than that of
Ra, especially when N is small. For instance, when N = 2, an efficient algorithm was
proposed in Latouche and Ramaswami [10] for computing R(2). Also, R(N) is expected
to be an upper bound of Ra. Unfortunately, this is not true in general. A simple
counterexample is obtained when sp(Ra) = 1 (which implies that sp(R(N)) = 1). In
fact, numerical results show that no upper bound can be easily found for Ra. However,
if sp(R(N)) < 1 for a small N(≥ 2), a sequence converging to Ra from “above” in
terms of the Perron–Frobenius eigenvalue can usually be generated.

Upper bounds. Consider N = 2; a simple upper bound for Ra is suggested.
Let θ(2) be the eigenvector of sp(R(2)), and θA = θ and θe = 1. By Theorem 4.1,
sp(R(2))θ(2) ≥ θ(2)Ra. It is easy to prove that θRa ≤ θ. Combining the two inequal-
ities yields

(Ra)i,j ≤ min

{
sp(R(2))

(θ(2))j

(θ(2))i
,

(θ)j
(θ)i

}
.(5.12)

Notice that when sp(R(2)) = 1, θ(2) = θ. The upper bounds provided by (5.12) are
useful for some state i where (θ)i (or (θ(2))i) is small compared with other compo-
nents. Another immediate result is that sp(R(2)) ≥ sp(Ra).

A computational scheme. Using the idea of truncation, first find the smallest
N for which sp(R(N)) < 1. This is equivalent to finding the minimal number Nmin
such that

θ

[
N−1∑
n=0

nAn +N

(∞∑
n=N

An

)]
e > 1.(5.13)

This condition is given in Neuts [16, Chapter 1].

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 881

When Nmin is small, RNmin can be computed efficiently using some existing al-
gorithms. With RNmin, (5.1) can be used to generate a sequence which may converge
to R from “above.” Although the generated sequence is not always monotone, numer-
ical results show that it is a decreasing sequence in most of the cases. The sequence
generated by using (5.1) can be compared with the nondecreasing sequence generated
by using (2.3) to determine when the iteration process for R should be stopped.

It is interesting to know whether or not R(N) is an upper bound of Ra when
sp(R(N)) < 1 or sp(Ra) < 1. The following two examples show that R(N) ≥ Ra is
generally untrue.

Example 5.1. Define the following stochastic sequence:

A0 =

0 0.2 0 0

0.1 0 0.1 0

0 0 0.5 0.1

0.1 0 0.1 0.5

 , A1 =

0.1 0 0.2 0

0 0.2 0.1 0

0 0 0 0

0 0 0.1 0

 ,

A2 =

0 0 0 0

0 0 0 0

0 0 0 0

0.1 0 0 0

 , A3 =

0.2 0 0.3 0

0 0.2 0.3 0

0 0 0 0.4

0.1 0 0 0

 .

(5.14)

The matrix R for {A0, A1, A2 + A3} is denoted as R(2), and R(3) for {A0, A1,
A2, A3}. It is found that sp(R(2)) = 1 > sp(R(3)) = 0.8988, but R(2) > R(3) is not
true. This example shows that even when the transition matrix sequence is truncated
to N = 2, the elements of the matrix R do not necessarily become larger. Therefore,
R(2) may not be an upper bound of Ra in general.

Example 5.2. Define a stochastic sequence:

A0 =

0 0.1 0 0.2

0.1 0.1 0.1 0

0 0 0 0.1

0.1 0 0.1 0

 , A1 =

0.05 0 0.05 0

0 0.2 0.05 0

0 0 0 0

0 0 0.05 0

 ,

A2 =

0 0.05 0.05 0

0 0.1 0.05 0

0 0 0 0

0 0 0.05 0

 , A3 =

0 0.2 0.3 0

0 0.1 0.2 0

0 0 0 0.4

0.1 0 0 0

 ,

(5.15)

A4 =

0 0 0 0

0 0 0 0

0 0 0.5 0

0.1 0 0 0.5

 .

The matrix R for {A0, A1, A2, A3 + A4} is denoted as R(3), and R(4) for
{A0, A1, A2, A3, A4}. sp(R(3)) = 0.258442 > sp(R(4)) = 0.25555, but R(3) > R(4)

is not true.

882 QI-MING HE

6. Discussions of other partial orders. In sections 4 and 5, the focus was on
the stochastically larger order. It has been shown that the Perron–Frobenius eigen-
value of the minimal nonnegative solution to (1.1) is monotone with the stochastically
larger order but the matrix R itself is generally not. It is interesting to find out (1) are
there weaker conditions which guarantee the monotonicity of the Perron–Frobenius
eigenvalue and (2) what conditions guarantee the monotonicity of R with respect to
some partial order? A thorough discussion of these two issues is beyond the scope of
this paper. Only two examples are shown below.

Example 6.1. The moment generating order.
Definition 6.1. {An, n ≥ 0} is smaller than {Bn, n ≥ 0} with respect to the

moment generating order if A∗(z) ≥ B∗(z) for z ∈ [0, 1). Denote this order as
{An, n ≥ 0} ≤m {Bn, n ≥ 0}. The moment generating order is weaker than the “≤φ”
order introduced in section 3 since φ(x)A∗(x) ≥ φ(x)B∗(x) implies A∗(x) ≥ B∗(x)
for x ∈ [0, 1) as φ(x) > 0. If {An, n ≥ 0} ≤m {Bn, n ≥ 0},

θasp(Ra) = θaRa = θaA
∗(sp(Ra)) ≥ θaB∗(sp(Ra)).(6.1)

This implies that sp(Ra) ≥ sp(B∗(sp(Ra))). By the convexity of function
log(sp(B∗(e−s))), sp(Ra) ≥ sp(Rb). Therefore, the moment generating order implies
the monotonicity of the Perron–Frobenius eigenvalue of the matrix R.

Example 6.2. Functional monotone and functional dominance.
Let J be the matrix with all diagonal and underdiagonal elements 1 and all

others zero. For vectors u and v, if uJ ≤ vJ , then u is J-dominated by v, denoted by
u ≤J v. A matrix X is J-dominated by Y is XJ ≤ Y J , denoted by X ≤J Y . For a
matrix X with m row vectors {xi}, if x1 ≤J x2 ≤J · · · ≤J xm, then X is J-monotone
(see Ridder [23] for more details about monotone and dominance orders).

Definition 6.2. A sequence {An, n ≥ 0} is J-dominated by {Bn, n ≥ 0} if
An ≤J Bn, for all n, denoted by {An, n ≥ 0} ≤J {Bn, n ≥ 0}.

Property 6.1. For {An, n ≥ 0} and {Bn, n ≥ 0} in Mm, if An and Bn and
J-monotone for all n ≥ 0, then Ra and Rb are J-monotone. Furthermore, if
{An, n ≥ 0} ≤J {Bn, n ≥ 0}, then Ra ≤J Rb.

Proof. In Ridder [23], it has been proved that the J-monotone and J-dominance
are closed under matrix multiplication and summation. The results are true for the
sequences generated by using (2.3). Since Ra and Rb are limits of those sequences,
the results follow.

Note. The condition for J-domination is very strong since it imposes J-monotone
on every pair of matrices {An, Bn} of the two sequences. Nonetheless, J-domination
is a partial order which guarantees the monotonicity of the matrix R. In addition,
Property 6.1 finds a nice application in the GI/MAP/1 queue which shall be shown
in the next section.

7. Applications to the GI/MAP/1 queue. This section considers a sin-
gle server queueing system with a Markov arrival process (MAP) as its service pro-
cess, general independent interarrival times, and a “first-come-first-served” service
discipline. The MAP was first introduced in Neuts [15] (also see Lucantoni, Meier-
Hellstern, and Neuts [12], and Neuts [18]) as a generalization of the phase-type renewal
process. The MAP is defined on a finite irreducible Markov process (called the under-
lying Markov process) with m states and an irreducible infinitesimal generator D. In
the MAP, the sojourn time in state i is exponentially distributed with parameter Dii.
At the end of the sojourn time in state i, a transition occurs to state j, 1 ≤ j ≤ m,
where the transition may or may not represent an arrival. Let D0 be the (matrix) rate

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 883

of transitions without an arrival and D1 be the rate of transitions with an arrival. D0

and D1 are m×m matrices where D0 has negative diagonal elements and nonnegative
off-diagonal elements, and D1 is a nonnegative matrix. Then D = D0 +D1. Using θ
to denote the stationary probability vector of the Markov process with the generator
D, θ satisfies θD = 0 and θe = 1. The stationary service rate of the Markov arrival
process is then λ = θD1e. The interarrival time between two consecutive customers
is random with finite mean and variance. Let F (t) be the distribution function of the
interarrival time and denote the Laplace–Stieltjes transform (LST) of F (t) by f∗(s).

Consider the embedded Markov chain (qn, Jn) at the nth arrival epoch, where qn
is the queue length just before the arrival and Jn is the phase of the service process
at the arrival epoch. This embedded Markov chain (qn, Jn) is of GI/M/1 type, since
the increase of the queue length is at most one at a time. The one-step transition
matrix of (qn, Jn) is similar to P given in (2.1). Transition blocks {An, n ≥ 0} are
defined in terms of D0, D1, and F (t). The matrix R is then defined as the minimal
nonnegative solution to (1.1) (see Neuts [19]). It can be proved that the matrix R is
also the minimal nonnegative solution to the following exponential-form equation:

X =

∫ ∞
0

exp{t(D0 +XD1)}dF (t).(7.1)

Next, the results obtained in previous sections are applied to obtain some inter-
esting results about the matrix R and the GI/MAP/1 queue. For convenience, the
following analysis of R begins with (7.1) instead of (1.1). The discussion consists of
two parts. The first part includes the results obtained by assuming the stochastically
larger order on the interarrival times, and the second part consists of results obtained
by imposing a special structure on the matrix representation (D0, D1) of the service
process.

First, define a new matrix Q from R. Let ξ > max{1, |(D0)i,j |}. By (7.1), it has

R =

∫ ∞
0

exp{t(−ξI + ξI +D0 +RD1)}dF (t)

=
∞∑
n=0

∫ ∞
0

e−ξt(ξt)n

n!
dF (t)

[
I +

D0 +RD1

ξ

]n
≡ a∗(Q),

(7.2)

where Q = I + (D0 +RD1)/ξ and

a∗(z) =
∞∑
n=0

znan, where an =

∫ ∞
0

e−ξt(ξt)n

n!
dF (t) and

∞∑
n=0

an = 1.(7.3)

For the matrix Q, it has

Q = K0 + a∗(Q)K1, where K0 = I +
D0

ξ
and K1 =

D1

ξ
.(7.4)

Thus, the matrix Q is the minimal nonnegative solution to (7.4), or, equivalently,
Q is the minimal nonnegative solution to (1.1) with a sequence {K0 + a0K1, a1K1,
a2K1, . . .}, which has a special structure in the sense that only two matrices K0 and
K1 are involved. Let K = K0 + K1. K is an irreducible stochastic matrix. It is
sometimes more convenient to deal with (7.4) than (7.1). The following relationship
between R and Q ensures the equivalence of the studies of (7.1) and (7.4).

884 QI-MING HE

Lemma 7.1. The minimal nonnegative solutions to (7.1) and (7.4) are R and Q,
respectively. Let η(s) be the largest eigenvalue of K(s) = K0 + sK1. Then η(s) is
increasing in s and

sp(R) =

∫ ∞
0

exp{−tsp(Q)}dF (t) = f∗(sp(Q)) and sp(Q) = η(sp(R)).(7.5)

Proof. The one-on-one relationship between R and Q is clear from (7.1), (7.2),
and (7.3). The results of the Perron–Frobenius eigenvalues are then obtained easily
from (7.2) and (7.4). sp(R) < 1 if and only if sp(Q) < 1 since f∗(s) and η(s) are
strictly increasing.

Now, the focus shifts from R and (7.1) to Q, (7.4), a∗(s), and K(s). The problem
becomes simpler since only a function a∗(s) and a linear matrix function K(s) are
involved. It is now easy to apply results obtained in sections 4, 5, and 6 to (7.4).

Theorem 7.2. Consider two GI/MAP/1 queueing systems, labeled “a” and “b,”
respectively, with the same service process. If the interarrival times satisfy Fa(x) ≤st
Fb(x) (the usual stochastic order, i.e., Fa(x) ≥ Fb(x) for all x ≥ 0; see Shaked and
Shanthikumar [24]), then

sp(Ra) ≥ sp(Rb) and − (D0 +RaD1)−1 ≥ −(D0 +RbD1)−1.(7.6)

Proof. If Fa(x) ≤st Fb(x), then {an} ≤st {bn}. By Definition 3.1, {K0 +
a0K1, a1K1, . . .} ≤st {K0 + b0K1, b1K1, . . .}. By Theorem 4.1, sp(Qa) ≥ sp(Qb).
Since η(s) is increasing, sp(Ra) ≥ sp(Rb). By Corollary 4.2, (I−Qa)−1 ≥ (I−Qb)−1,
which implies (7.6).

Intuitively, Theorem 7.2 shows that systems with stochastically smaller interar-
rival times (shorter interarrival times), are more likely to have a long queue since
sp(Ra) ≥ sp(Rb) (recall the discussion in section 4). The matrix D0 + RaD1 is the
infinitesimal generator of the waiting time process in the queueing system (see As-
mussen and Perry [3]). Theorem 7.2 shows that the mean waiting time is longer for
the system with a stochastically smaller interarrival time.

The following theorem shows the monotonicity of the matrix R under the J-
monotone order. It further implies the monotonicity of the corresponding stationary
distribution of the queue length in the queueing system of interest.

Theorem 7.3. Consider two GI/MAP/1 queues, labeled “a” and “b,” respec-
tively, with the same interarrival times. Their service processes have matrix represen-
tations (D0, D1) and (C0, C1), respectively. If D0, D1, C0, and C1 are J-monotone,
D0 ≤J C0 and D1 ≤J C1, then Ra and Rb are J-monotone, and Ra ≤J Rb.

Proof. The theorem is proved by Property 6.1.
Finally, a scheme for computing Q and R is proposed. The idea is to find an

upper bound for sp(Q) so that a sequence whose matrices have a Perron–Frobenius
eigenvalue larger than sp(Q) can be generated (see (5.7) and (7.4)). Another non-
decreasing sequence can be generated by using (2.3). Compare the two sequences to
determine when the iteration process for Q should be stopped. An upper bound for
sp(Q) can be found as follows: Let t0 = 0.5.

(i) sn = a∗(tn) = f∗(ξ(1− tn)).
(ii) If sp(K(sn)) ≥ tn, STOP; if sp(K(sn)) < tn, go to (iii).

(iii) tn+1 = (1 + tn)/2, go to (i).
Then tn gives an upper bound of sp(Q). The matrix R can be obtained accordingly.

This scheme is feasible when f∗(t) can be evaluated numerically. The Perron–
Frobenius eigenvalue of the matrix K(s) can be found without much difficulty since

PARTIAL ORDERS AND THE MATRIX R IN MATRIX ANALYTIC METHODS 885

it is a linear function of s. This scheme might be useful in improving the accuracy for
computing Q and R.

Acknowledgments. The author would like to thank two referees for their valu-
able comments and suggestions, and especially for pointing out a serious error in an
earlier version of this paper. The author would also like to thank Dr. Yiqiang Zhao
for proofreading this paper.

REFERENCES

[1] N. Akar and K. Sohraby, An invariant subspace approach in M/G/1 and G/M/1 type
Markov chains, Comm. Statist. Stochastic Models, 13 (1997), pp. 381–416.

[2] S. Asmussen and V. Ramaswami, Probabilistic interpretations of some duality results for the
matrix paradigms in queueing theory, Comm. Statist. Stochastic Models, 6 (1990), pp.
715–734.

[3] S. Asmussen and D. Perry, On cycle maxima, first passage problems and extreme value theory
for queues, Comm. Statist. Stochastic Models, 8 (1992), pp. 421–458.

[4] D. Bini and B. Meini, On the solution of a nonlinear matrix equation arising in queueing
problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 906–926.

[5] D. J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitstheorieund Verw.
Gebiete, 10 (1968), pp. 305–317.

[6] H. R. Gail, S. L. Hantler, and B. A. Taylor, Solutions of the basic matrix equation for
M/G/1 and G/M/1 type Markov chains, Comm. Statist. Stochastic Models, 10 (1994), pp.
1–43.

[7] F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[8] Q.-M. He, Differentiability of the matrices R and G in the matrix analytic methods, Comm.

Statist. Stochastic Models, 11 (1995), pp. 123–132.
[9] J. Keilson and A. Kester, Monotone matrices and monotone Markov processes, Stochastic

Process. Appl., 5 (1977), pp. 231–241.
[10] G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-and-death

processes, J. Appl. Probab., 30 (1993), pp. 650–674.
[11] G. Latouche and G. W. Stewart, Numerical methods for M/G/1 type queues, in Computa-

tions with Markov Chains, W. J. Stewart, ed., Kluwer Academic Publishers, Norwell, MA,
1996, pp. 571–581.

[12] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F. Neuts, A single server queue with
server vacations and a class of non-renewal arrival processes, Adv. Appl. Prob., 22 (1990),
pp. 676–705.

[13] D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival
process, Comm. Statist. Stochastic Models, 7 (1991), pp. 1–46.

[14] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,
Academic Press, New York, 1979.

[15] M. F. Neuts, A versatile Markovian point process, J. Appl. Probab., 16 (1979), pp. 764–779.
[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,

The Johns Hopkins University Press, Baltimore, MD, 1981.
[17] M. F. Neuts, The caudal characteristic curve of queues, Adv. Appl. Prob., 18 (1986), pp.

221–254.
[18] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel

Dekker, New York, 1989.
[19] M. F. Neuts, Matrix analytic methods in queueing theory, in Advances in Queueing, Probab.

Stochastics Ser., CRC Press, Boca Raton, FL, 1995.
[20] P. Purdue, Non-linear matrix integral equation of Volterra type in queueing theory, J. Appl.

Probab., 10 (1973), pp. 644–651.
[21] V. Ramaswami, Nonlinear matrix equations in applied probability—solution techniques and

open problems, SIAM Rev., 30 (1988), pp. 256–263.
[22] V. Ramaswami and P. G. Taylor, Some properties of the rate operators in level depen-

dent quasi-birth-and-death processes with a countable number of phases, Comm. Statist.
Stochastic Models, 12 (1996), pp. 143–164.

[23] A. Ridder, Stochastic ordering of conditional steady-state probabilities, Comm. Statist.
Stochastic Models, 4 (1988), pp. 373–385.

[24] M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic
Press, New York, 1994.

SPECIAL SECTION ON SPARSE AND STRUCTURED MATRICES
AND THEIR APPLICATIONS

The field of sparse matrices is a broad and important area of the computational
sciences that includes structured matrices and those with seemingly little or no struc-
ture. The relevance of the field is highlighted by the wide range of application areas
that require the exploitation of matrix sparsity and structure in order to achieve a
solution given real-world constraints on computing resources and/or time. Applica-
tions in which sparse matrices appear include structural analysis, computational fluid
dynamics, economic modeling, financial analysis, numerical optimization, statistical
modeling, power network analysis, electromagnetics, meteorology, medical imaging,
data mining, and many more.

A number of significant advancements in sparse matrix computations have been
made in recent years. These advances have led to new challenges as multidisciplinary
problems are now ambitiously posed, and they symbolize the growth in the area and
demonstrate the dependence of the future of many fields on sparse matrix methods.
Moreover, they give rise to a host of new problems that have yet to be addressed by
the sparse matrix community.

The Second SIAM Conference on Sparse Matrices, which was held in Coeur
d’Alene, Idaho, October 9–11, 1996, was organized specifically to address some of
the challenging issues in sparse matrix computations. This special issue of SIAM
Journal on Matrix Analysis and Applications consists of some of the outstanding pa-
pers that were presented at the Sparse Matrix conference. Because of an error in
scheduling, the paper titled “Using Generalized Cayley Transformations within an
Inexact Rational Krylov Sequence Method” by Richard Lehoucq, which should have
appeared in this section, was published in SIAM Journal on Matrix Analysis and
Applications, volume 20, number 1.

We are grateful to Paul van Dooren, the Editor-in-Chief of SIAM Journal on
Matrix Analysis and Applications, and the SIAM office for agreeing to publish a special
section on sparse matrices. We would like to thank Roland Freund, Anne Greenbaum,
Joseph Liu, and Zdenek Strakoš for serving on the Guest Editorial Board; their effort
and cooperation in handling the papers were much appreciated. Finally, we would
like to express thanks to all the authors who have submitted papers to the special
section; it would not have become a reality without their support.

Esmond G. Ng
Lawrence Berkeley National Laboratory

Daniel J. Pierce
The Boeing Company

887

THE DESIGN AND USE OF ALGORITHMS FOR PERMUTING
LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES∗

IAIN S. DUFF† AND JACKO KOSTER‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 889–901

Abstract. We consider techniques for permuting a sparse matrix so that the diagonal of the
permuted matrix has entries of large absolute value. We discuss various criteria for this and consider
their implementation as computer codes. We then indicate several cases where such a permutation
can be useful. These include the solution of sparse equations by a direct method and by an iterative
technique. We also consider its use in generating a preconditioner for an iterative method. We see
that the effect of these reorderings can be dramatic although the best a priori strategy is by no means
clear.

Key words. sparse matrices, maximum transversal, direct methods, iterative methods, precon-
ditioning

AMS subject classifications. 65F05, 65F50

PII. S0895479897317661

1. Introduction. We study algorithms for the permutation of a square unsym-
metric sparse matrix A of order n so that the diagonal of the permuted matrix has
large entries. This can be useful in several ways. If we wish to solve the system

Ax = b,(1.1)

where A is a nonsingular square matrix of order n and x and b are vectors of length
n, then a preordering to place large entries on the diagonal can be useful whether
direct or iterative methods are used for solution.

For direct methods, putting large entries on the diagonal suggests that pivoting
down the diagonal might be more stable. There is, of course, nothing rigorous in this
and indeed stability is not guaranteed. However, if we have a solution scheme like the
multifrontal method of Duff and Reid [10], where a symbolic phase chooses the initial
pivotal sequence and the subsequent factorization phase then modifies this sequence
for stability, the modification required may be less than if the permutation were not
applied.

For iterative methods, simple techniques like Jacobi or Gauss–Seidel converge
more quickly if the diagonal entry is large relative to the off-diagonals in its row or
column and techniques like block iterative methods can benefit if the entries in the
diagonal blocks are large. Additionally, for preconditioning techniques, for example,
for diagonal preconditioning or incomplete LU preconditioning, it is intuitively evident
that large diagonals should be beneficial.

We consider more precisely what we mean by such permutations in section 2, and
we discuss algorithms for performing them and implementation issues in section 3.
We consider the effect of these permutations when using direct methods of solution in
section 4 and their use with iterative methods in sections 5 and 6, discussing the effect

∗Received by the editors February 28, 1997; accepted for publication (in revised form) by J. Liu
January 9, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31766.html
†Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK (isd@rl.ac.uk).
‡CERFACS, 42 Ave. G Coriolis, 31057 Toulouse Cedex, France (koster@cerfacs.fr). Current

address: Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.

889

890 IAIN S. DUFF AND JACKO KOSTER

on preconditioning in the latter section. Finally, we consider some of the implications
of this current work in section 7.

Throughout, the symbol |x| should be interpreted in context. If x is a scalar, the
modulus is intended; if x is a set, then the cardinality, or number of entries in the set,
is understood.

2. Permuting a matrix to have large diagonals.

2.1. Transversals and maximum transversals. We say that an n×n matrix
A has a large diagonal if the absolute value of each diagonal entry is large relative
to the absolute values of the off-diagonal entries in its row and column. We will
be concerned with permuting the rows and columns of the matrix so the resulting
diagonal of the permuted matrix has this property. That is, for the permuted matrix,
we would like the ratio

|ajj |
maxi6=j |aij |(2.1)

to be large for all j, 1 ≤ j ≤ n. Of course, it is not even possible to ensure that this
ratio is greater than 1.0 for all j as the simple example

(
1 2
2 3

)
shows. It is thus necessary

to scale the matrix before computing the permutation. An appropriate scaling would
be to scale the columns so that the largest entry in each column is 1.0. The algorithm
that we describe in section 2.2 would then have the effect of maximizing (2.1).

For an arbitrary nonsingular n×n matrix, it is a necessary and sufficient condition
that for a set of n entries to be permuted to the diagonal, no two can be in the same
row and no two can be in the same column. Such a set of entries is termed a maximum
transversal, a concept that will be central to this paper and which we now define more
rigorously.

We let T denote a set of (at most n) ordered index pairs (i, j), 1 ≤ i, j ≤ n, in
which each row index i and each column index j appears at most once. T is called
a transversal for matrix A if aij 6= 0 for each (i, j) ∈ T . T is called a maximum
transversal if it has largest possible cardinality. |T | is equal to n if the matrix is
nonsingular. If indeed |T | = n, then T defines an n× n permutation matrix P with{

pij = 1 for (i, j) ∈ T,
pij = 0 otherwise

so that P TA is the matrix with the transversal entries on the diagonal.
In sparse system solution, a major use of transversal algorithms is in the first

stage of permuting matrices to block triangular form. The matrix is first permuted
by an unsymmetric permutation to make its diagonal zero-free, after which a sym-
metric permutation is used to obtain the block triangular form. An important feature
of this approach is that the block triangular form does not depend on which transver-
sal is found in the first stage [6]. A maximum transversal is also required in the
generalization of the block triangular ordering developed by [17].

2.2. Bottleneck transversals. We will consider two strategies for obtaining
a maximum transversal with large transversal entries. The primary strategy that
we consider in this paper is to maximize the smallest value on the diagonal of the
permuted matrix. That is, we compute a maximum transversal T such that for any
other maximum transversal T1 we have

min
(i,j)∈T1

|aij | ≤ min
(i,j)∈T

|aij |.

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 891

Transversal T is called a bottleneck transversal,1 and the smallest value |aij |, (i, j) ∈ T ,
is called the bottleneck value of A. Equivalently, if |T | = n, the smallest value on the
diagonal of P TA is maximized over all permutations P and equals the bottleneck
value of A.

An outline of an algorithm that computes a bottleneck transversal T ′ for a matrix
A is given below. We assume that we already have an algorithm for obtaining a
maximum transversal and denote by MT(A, T) a routine that returns a maximum
transversal for a matrix A, starting with the initial “guess” transversal T . We let Aε

denote the matrix that is obtained by setting to zero in A all entries aij for which
|aij | < ε (thus A0 = A) and Tε denote the transversal obtained by removing from
transversal T all the elements (i, j) for which |aij | < ε (thus T0 = T).

Algorithm BT.
Initialization:
Set εmin to zero and εmax to infinity.
M := MT(A, ∅);
T ′ := M ;
while (there exist i, j such that εmin < |aij | < εmax) do
begin

choose ε = |aij |
(we discuss how this is chosen later);
T := MT(Aε, T

′
ε);

if |T | = |M |
then

T ′ := T ; (?)
εmin := ε;

else
εmax := ε;

endif
end;
Complete transversal for permutation
(needed if matrix is structurally singular).

M is a maximum transversal forA, and hence |M | is the required cardinality of the
bottleneck transversal T ′ that is to be computed. If A is nonsingular, then |M | = n.
Throughout the algorithm, εmax and εmin are such that a maximum transversal
of size |M | does not exist for Aεmax but does exist for Aεmin. At each step, ε is
chosen in the interval (εmin, εmax), and a maximum transversal for the matrix Aε is
computed. If this transversal has size |M |, then εmin is set to ε; otherwise, εmax is
set to ε. Hence, the size of the interval decreases at each step and ε will converge to the
bottleneck value. After termination of the algorithm, T ′ is the computed bottleneck
transversal and ε the corresponding bottleneck value. The value for ε is unique. The
bottleneck transversal T ′ usually is not unique.

Algorithm BT makes use of algorithms for finding a maximum transversal. The
currently known algorithm with best asymptotic bound for finding a maximum trans-
versal is by Hopcroft and Karp [14]. It has a worst-case complexity of O(

√
nτ), where

τ is the number of entries in the matrix. An efficient implementation of this algorithm
can be found in Duff and Wiberg [11]. The depth-first search algorithm implemented
by Duff [7] in the Harwell Subroutine Library code MC21 has a theoretically worst-case
behavior of O(nτ), but in practice it behaves more like O(n+ τ). Because this latter

1The term bottleneck has been used for many years in assignment problems, for example [12].

892 IAIN S. DUFF AND JACKO KOSTER

algorithm is far simpler, we concentrate on this in the following, although we note
that it is relatively straightforward to modify and use the algorithm of Hopcroft and
Karp [14] in a similar way.

A limitation of Algorithm BT is that it maximizes only the smallest value on the
diagonal of the permuted matrix. Although this means that the other diagonal values
are no smaller, they may not be maximal. Consider, for example, the 3× 3 matrix δ 1.0 1.0

1.0 δ
δ

(2.2)

with δ close to zero. Algorithm BT applied to this matrix returns ε = δ and either
transversal {(1, 1), (2, 2), (3, 3)} or {(2, 1), (1, 2), (3, 3)}. Clearly, the latter transversal
is preferable. The modifications that we propose help to do this by choosing large
entries when possible for the early transversal entries.

It is beneficial to first permute the matrix to block triangular form and then to
use BT only on the blocks on the diagonal. This can be done since all entries in
any maximum transversal must lie in these blocks. Furthermore, not only does this
mean that BT operates on smaller matrices, but we also usually obtain a transversal
of better quality inasmuch as not only is the minimum diagonal entry maximized but
this is true for each block on the diagonal. Thus, for matrix (2.2) the combination
of an ordering to block triangular form followed by BT would yield the preferred
transversal {(2, 1), (1, 2), (3, 3)}.

There are other possibilities for improving the diagonal values of the permuted
matrix which are not the smallest. One is to apply a row scaling subsequent to an
initial column scaling of the matrix A. This will increase the numerical values of all
the nonzero entries in those rows for which the maximum absolute numerical value is
less than 1. A row scaling applied to the matrix (2.2) changes the coefficient a33 from
δ to 1.0, and now Algorithm BT will compute {(2, 1), (1, 2), (3, 3)} as the bottleneck
transversal of the matrix (2.2). Unfortunately, such a row scaling does not always
help, as can be seen by the matrix δ 1.0 1.0

1.0 δ
1.0 δ

with the maximum transversals {(1, 1), (2, 2), (3, 3)}, {(2, 1), (1, 2), (3, 3)}, and
{(1, 3), (2, 2), (3, 1)}, all legitimate bottleneck transversals. Indeed, the BT algorithm
is very dependent on scaling. For example, the matrix

(
1 2
3 4

)
has bottleneck transver-

sal {(2, 1), (1, 2)} whereas, if it is row scaled to
(

4 8
3 4

)
, the bottleneck transversal is

{(1, 1), (2, 2)}.
Another possibility for improving the size of the diagonal values is to apply Al-

gorithm BT repeatedly. Without loss of generality, suppose that, after application of
BT, entry ann has the smallest diagonal value. Algorithm BT can then be applied to
the (n−1)×(n−1) leading principal submatrix of A, and this could be repeated until
(after k steps) the (n−k)× (n−k) leading principal submatrix of A contains only 1s
(on the assumption that the original matrix was row and column scaled). Obviously,
this can be quite expensive, since Algorithm BT is applied O(n) times although we
have a good starting point for the BT algorithm at each stage. We call this algorithm
the successive bottleneck transversal algorithm. Because of this and because we have
found that it usually gives little improvement over BT, we do not consider it further
in this paper.

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 893

2.3. Maximum product transversals. An algorithm yielding the same trans-
versal independent of scaling is to maximize the product of the moduli of entries on
the diagonal, that is, to find a permutation σ so that∣∣∣∣∣

n∏
i=1

aiσi

∣∣∣∣∣(2.3)

is maximized. This is the strategy used for pivoting in full Gaussian elimination
by Olschowka and Neumaier [16] and corresponds to obtaining a weighted bipartite
matching. Olschowka and Neumaier [16] combine a permutation and scaling strategy.
The permutation, as in (2.3), maximizes the product of the diagonal entries of the
permuted matrix. (Clearly the product is zero if and only if the matrix is structurally
singular.) The scaling transforms the matrix into a so-called I-matrix, whose diagonal
entries are all 1 and whose off-diagonal entries are all less than or equal to 1.

Maximizing the product of the diagonal entries of A is equivalent to minimizing
the sum of the diagonal entries of a matrix C = (cij) that is defined as follows (we
here assume that A = (aij) denotes an n× n nonnegative nonsingular matrix):

cij =

{
log aj − log aij , aij 6= 0,
0, aij = 0,

where aj = maxk(akj) is the maximum absolute value in column j of matrix A.
Minimizing the sum of the diagonal entries can be stated in terms of an assignment

problem and can be solved in O(n3) time for full n × n matrices or in O(nτ logn)
time for sparse matrices with τ entries. A bipartite weighted matching algorithm is
used to solve this problem. Applying this algorithm to C produces vectors u, v and
a transversal T , all of length n, such that{

ui + vj = cij , (i, j) ∈ T,
ui + vj ≤ cij , (i, j) 6∈ T.

If we define

D1 = diag(d1
1, d

1
2, . . . , d

1
n), d1

i = exp(ui),

D2 = diag(d2
1, d

2
2, . . . , d

2
n), d2

j = exp(vj)/aj ,

then the scaled matrix B = D1AD2 is an I-matrix. We do not do this scaling in
our experiments; unlike Olschowka and Neumaier, we use a sparse bipartite weighted
matching, whereas they considered only full matrices.

The worst-case complexity of this algorithm is O(nτ logn). This is similar to BT,
although in practice it sometimes requires more work than BT. We have programmed
this algorithm, without the final scaling. We have called it algorithm MPD (for
maximum product on diagonal) and compare it with BT and MC21 in the later sections
of this paper. Note that on the matrix 2/ε 1

2/ε
1 ε

the MPD algorithm obtains the transversal {(1, 1), (2, 2), (3, 3)} whereas, for example,
for Gaussian elimination down the diagonal the transversal {(1, 3), (2, 2), (3, 1)} would
be better. Additionally, the fact that scaling does influence the choice of bottleneck
transversal could be deemed a useful characteristic.

894 IAIN S. DUFF AND JACKO KOSTER

3. Implementation of the BT algorithm. We now consider implementation
details of Algorithm BT from the previous section. We will also illustrate its perfor-
mance on some matrices from the Harwell–Boeing Collection [8] and the collection of
Davis [5]. A code implementing the BT algorithm will be included in a future release
of the Harwell Subroutine Library [15].

When we are updating the transversal at stage (?) of Algorithm BT we can easily
accelerate the algorithm described in section 2 by computing the value of the minimum
entry of the transversal, viz.

min
(i,j)∈T

|aij |,(3.1)

and then setting εmin to this value rather than to ε. The other issue, crucial for
efficiency, is the choice of ε at the beginning of each step. If, at each step, we choose
ε close to the value of εmin, then it is highly likely that we will find a maximum
transversal, but the total number of steps required to obtain the bottleneck transversal
can be very large. In the worst case, we could require τ − n steps when the number
of nonzero entries in Aε reduces by only one at each iteration.

The algorithm converges faster if the size of the interval (εmin, εmax) reduces
significantly at each step. It therefore would appear sensible to choose ε at each
step so that the interval is split into two almost-equal subintervals, that is, ε ≈
(εmin+εmax)/2. However, if most of the nonzero values in A that have a magnitude
between εmin and εmax are clustered near one of these endpoints, the possibility
exists that only a few nonzero values are discarded and the algorithm again will
proceed slowly. To avoid this, ε should be chosen as the median of the nonzero values
between εmin and εmax.

We now consider how a transversal algorithm like MC21 can be modified to im-
plement Algorithm BT efficiently. Before doing this, it is useful to describe briefly
how MC21 works. Each column of the matrix is searched in turn (called an original
column) and either an entry in a row with no transversal entry currently in the row is
found and this is made a transversal entry (a cheap assignment), or there is no such
entry and so the search moves to a previous column whose transversal entry is in one
of the rows with an entry in the original column. This new column is then checked
for a cheap assignment. If one exists, then this cheap assignment and the entry in
the original column in the row of the old transversal entry replace that as transversal
entries, thereby extending the length of the transversal by 1. If there is no cheap
assignment, the search continues to other columns in a depth-first search fashion until
a chain or augmenting path of the form

{(aj1,j), (aj1,j2), (aj3,j2), . . . , (ai,jk)}

is found, where there are no transversal entries in row i and every even member of the
path is a transversal entry. The assignment is made in column j and the transversal
is extended by 1 by replacing all transversal entries in the augmenting path with the
odd members of this path.

Transversal selection algorithms like MC21 do not take into account the numerical
values of the nonzero entries. However, it is clear that Algorithm BT will converge
faster if T is chosen so that the value of its minimum entry is large. We do this by
noting that, when constructing an augmenting path, there are often several candidates
for a cheap assignment or for extending the path. MC21 makes an arbitrary choice
and we have modified it so the candidate with largest absolute value is chosen. Note

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 895

that this is a local strategy and does not guarantee that augmenting paths with the
highest values will be found.

The second modification aims at exploiting information obtained from previous
steps of Algorithm BT. Algorithm BT repeatedly computes a maximum transversal
T = MT(Aε, T

′
ε). The implementation of MC21 in the Harwell Subroutine Library

computes T from scratch, so we have modified it so that it can start with a partial
transversal. This can be achieved easily by holding the set of columns which contain
entries of the partial transversal and performing the depth search through that set of
columns.

Of course, there are many ways to implement the choice of ε. One alternative is
to maintain an array PTR (of length τ) of pointers, such that the entries in the first
part of PTR point to those entries in A that form matrix Aεmax , the first two parts
of PTR point to the entries that form Aεmin , and the elements in the third part of
PTR point to all the remaining (smaller) entries of A. A new value for ε can then be
chosen directly (O(1) time) by picking the numerical value of an entry that is pointed
to by an element of the second part of PTR. After the assignment in Algorithm BT
to either εmin or εmax, the second part of PTR has to be permuted so that PTR
again can be divided into three parts. An alternative is to do a global sort (using a
fast sorting algorithm) on all the entries of A, such that the elements of PTR point
to the entries in order of decreasing absolute value. Then again PTR can be divided
into three parts as described in the previous alternative. By choosing (in O(1) time)
ε equal to the numerical value of the entry pointed to by the median element of the
second part of PTR, ε will divide the interval (εmin, εmax) into parts of close-to-equal
size. Both alternatives have the advantage of being able to choose the new ε quickly,
but they require O(τ) extra memory and (repeated) permutations of the pointers.

We prefer an approach that is less expensive in memory and that matches our
transversal algorithm better. Since MC21 always searches the columns in order, we
facilitate the construction of the matrices Aε, by first sorting the entries in each
column of the matrix A by decreasing absolute value. For a sparse matrix with a
well-bounded number of entries in each column, this can be done in O(n) time. The
matrixAε is then implicitly defined by an array LEN of length n with LEN[j] pointing
to the first entry in column j of matrix A whose value is smaller than ε, which is the
position immediately after the end of column j of matrix Aε. Since the entries of a
column of Aε are contiguous, the repeated modification of ε by Algorithm BT, which
redefines matrix Aε, corresponds to simply changing the pointers in the array LEN.

The actual choice of ε at phase (?) in Algorithm BT is done by selecting in
matrix Aεmin an entry that has an absolute value X such that εmin < X ≤ εmax.
The columns of Aεmin are searched until such an entry is found and ε is set to its
absolute value. This search costs O(n) time since, for each column, we have direct
access to the entries with absolute values between εmin and εmax through the pointer
array LEN.

As mentioned before, by choosing ε carefully we can speed up Algorithm BT
considerably. Therefore, instead of choosing an arbitrary entry from the matrix to
define ε, we can choose a number (k, say) of entries lying between εmin and εmax
at random, sort them by absolute value, and then set ε to the absolute value of the
median element.2 In our implementation we used k = 10.

2This is a technique commonly used to speed up sorting algorithms like quicksort.

896 IAIN S. DUFF AND JACKO KOSTER

Table 3.1
Times for transversal algorithms. The order of matrix is n and the number of entries is τ .

Matrix n τ Time in secs
MC21 BT MPD

MAHINDAS 1258 7682 0.01 0.01 0.02
ORANI678 2529 90158 0.02 0.10 0.13
RDIST1 4134 94408 0.02 0.18 0.37
GEMAT11 4929 33185 0.01 0.03 0.04
GOODWIN 7320 324784 0.27 2.26 1.82
ONETONE1 36057 341088 2.67 0.70 0.61
ONETONE2 36057 227628 2.63 0.53 0.42
TWOTONE 120750 1224224 60.10 6.95 2.17
LHR02 2954 37206 0.04 0.14 0.17
LHR14C 14270 307858 0.28 1.13 3.32
LHR71C 70304 1528092 1.86 9.00 37.73
AV41092 41092 1683902 35.72 10.81 65.13

The set of matrices that we used for our experiments are unsymmetric matrices
taken from the sparse matrix collections [9] and [5]. Table 3.1 shows the order, number
of entries, and time to compute a bottleneck transversal for each matrix. All matrices
are initially row and column scaled. By this we mean that the matrix is scaled so
that the maximum entry in each row and in each column is 1.

The machine used for the experiments in this and the following sections is a 166
MHz Sun ULTRA-2. The algorithms are implemented in Fortran 77.

4. The solution of equations by direct methods. MCSPARSE, a parallel
direct unsymmetric linear system solver developed by Gallivan, Marsolf, and Wijshoff
[13], uses a reordering to identify a priori large- and medium-grain parallelism and to
reorder the matrix to bordered block triangular form. Their ordering uses an initial
nonsymmetric ordering that enhances the numerical properties of the factorization,
and subsequent symmetric orderings are used to obtain a bordered block triangular
matrix [19]. The nonsymmetric ordering is effectively a modified version of MC21.
During each search phase, for both a cheap assignment and an augmenting path, an
entry aij is selected only if its absolute value is within a bound α, 0 ≤ α ≤ 1, of the
largest entry in column j. Instead of taking the first entry that is found by the search
that satisfies the threshold, the algorithm scans all of the column for the entry with
the largest absolute value.

The algorithm starts off with an initial bound α = 0.1. If a maximum transversal
cannot be found, then the values in each column are examined to determine the
maximum value of the bound that would have allowed an assignment to take place
for that column. The new bound is then set to the minimum of the bound estimates
from all the failed columns and the algorithm is restarted. If a bound less than a
preset limit is tried and a transversal is still not found, then the bound is ignored
and the code finds any transversal. In our terminology (assuming an initial column
scaling of the matrix) this means that a maximum transversal of size n is computed
for the matrix Aα.

In the multifrontal approach of Duff and Reid [10], later developed by Amestoy
and Duff [2], an analysis is performed on the structure of A + AT to obtain an
ordering that reduces fill-in under the assumption that all diagonal entries will be nu-
merically suitable for pivoting. The approximate minimum degree (AMD) algorithm

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 897

Table 4.1
Number of delayed pivots in factorization from MA41. A dash indicates that MA41 requires a real

working space larger than 25 million words (of 8 bytes).

Matrix Transversal algorithm used
None MC21 BT MPD

GEMAT11 - 76 0 0
ONETONE1 - 16261 255 100
ONETONE2 40916 8310 214 100
GOODWIN 536 1622 358 53
LHR02 3432 388 211 56
LHR14C - 7608 3689 169
LHR71C - 35354 - 2643
AV41092 - 10151 2143 1730

Table 4.2
Number of entries in the factors from MA41.

Matrix Transversal algorithm used
None MC21 BT MPD

GEMAT11 - 127819 78589 78161
ONETONE1 - 10359161 6957229 4715085
ONETONE2 14082683 2875603 2167523 2169903
GOODWIN 1263104 2673318 1791112 1282004
LHR02 2298550 333450 394724 235048
LHR14C - 3111142 4596028 2164392
LHR71C - 18786982 - 11599556
AV41092 - 16226036 15140098 14110336

of Amestoy, Davis, and Duff [1] is used to obtain the ordering to reduce the fill-in.
The numerical factorization is guided by an assembly tree. At each node of the tree,
some steps of Gaussian elimination are performed on a dense submatrix whose Schur
complement is then passed to the parent node in the tree where it is assembled (or
summed) with Schur complements from the other children and original entries of the
matrix. If, however, numerical considerations prevent us from choosing a pivot then
the algorithm can proceed, but now the Schur complement that is passed to the parent
is larger and usually more work and storage will be needed to effect the factorization.

The logic of first permuting the matrix so that there are large entries on the
diagonal, before computing the ordering to reduce fill-in, is to try to reduce the
number of pivots that are delayed in this way, thereby reducing storage and work for
the factorization. We show the effect of this in Table 4.1, where we can see that even
using MC21 can be very beneficial although the BT algorithm can show significant
further gains, and sometimes the use of MPD can cause further significant reduction
in the number of delayed pivots. We should add that the numerical accuracy of the
solution is sometimes slightly improved by these permutations and, in all cases, good
solutions were found.

In Table 4.2, we show the effect of this on the number of entries in the factors.
Clearly this mirrors the results in Table 4.1 and shows the benefits of the transversal
selection algorithms. This effect is seen in Table 4.3, where we can sometimes observe
a dramatic reduction in time for solution when preceded by a permutation. In all

898 IAIN S. DUFF AND JACKO KOSTER

Table 4.3
Time (in seconds on Sun ULTRA-2) for MA41 for solution of system.

Matrix Transversal algorithm used
None MC21 BT MPD

GEMAT11 - 0.28 0.20 0.20
ONETONE1 - 225.71 83.11 44.22
ONETONE2 81.45 17.05 9.48 11.54
GOODWIN 3.64 14.63 6.00 3.56
LHR02 24.85 1.07 1.29 0.58
LHR14C - 12.66 29.17 5.88
LHR71C - 148.07 - 43.33
AV41092 - 226.20 184.68 155.70

cases, an AMD ordering has been used on the permuted matrix.

In addition to allowing selection of the pivots chosen by the analysis phase, the
multifrontal code MA41 will do better on matrices whose structure is symmetric or
nearly so. The transversal orderings in some cases increase the symmetry of the
resulting reordered matrix. This is particularly apparent when we have a very sparse
system with many zeros on the diagonal. In that case, the reduction in number of
off-diagonal entries in the reordered matrix has an influence on the symmetry. Notice
that, in this respect, the more sophisticated transversal algorithms may actually cause
problems since they could reorder a symmetrically structured matrix with a zero-free
diagonal, whereas MC21 will leave it unchanged.

5. The solution of equations by iterative methods. A large family of iter-
ative methods, the so-called stationary methods, has the iteration scheme

Mx(k+1) = Nx(k) + b,(5.1)

where A = M −N is a splitting of A and M is chosen such that a system of the
form Mx = y is easy to solve. If M is invertible, (5.1) can be written as

x(k+1) = M−1Nx(k) +M−1b = (I −M−1A)x(k) +M−1b .(5.2)

We have

ρ(M−1N) ≤ ||M−1N ||∞ ≤ ||M−1||∞||N ||∞,

where ρ is the spectral radius, so that if ||M−1||∞||N ||∞ < 1, convergence of the
iterates x(k) to the solution A−1b is guaranteed for arbitrary x(0). In general, the
smaller ||M−1||∞||N ||∞, the faster the convergence. Thus an algorithm that makes
entries in M large and those in N small should be beneficial.

The simplest method of this type is the Jacobi method, corresponding to the split-
ting M = D and N = −(L+U), where D denotes the diagonal, L the strictly lower
triangular part, and U the strictly upper triangular part of the matrix A. However,
this is not a particularly current or powerful method so we conduct our experiments
using the block Cimmino implementation of Arioli et al. [3], which is equivalent to
using a block Jacobi algorithm on the normal equations. In this implementation, the
subproblems corresponding to blocks of rows from the matrix are solved by a direct
method similar to that considered in the previous section. For similar reasons, it can

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 899

Table 5.1
Number of iterations of block Cimmino algorithm on MAHINDAS.

Acceleration + Transversal algorithm
block rows None MC21 BT MPD

CG(1)
2 324 267 298 295
4 489 383 438 438
8 622 485 532 524

16 660 572 574 574

CG(4)
2 148 112 130 133
4 212 190 199 194
8 261 235 232 233

16 281 245 253 253

CG(8)
2 80 62 72 75
4 117 105 109 108
8 140 133 127 130

16 151 142 137 136

be beneficial to increase the magnitude of the diagonal entries through unsymmetric
permutations.

We show the effect of this in Table 5.1, where we see that the number of iterations
for the solution of the problem MAHINDAS (n = 1258, τ = 7682). The convergence
tolerance was set to 10−12. The transversal selection algorithm was followed by a
reverse Cuthill–McKee algorithm to obtain a block tridiagonal form. The matrix was
partitioned in 2, 4, 8, and 16 block rows and the acceleration used was a block CG
algorithm with block sizes of 1, 4, and 8.

In every case, the use of a transversal algorithm accelerates the convergence of
the method, sometimes by a significant amount. However, the use of the algorithms
to increase the size of the diagonal entries does not usually help convergence further.
The convergence of block Cimmino depends on angles between subspaces which are
not so strongly influenced by the diagonal entries.

6. Preconditioning. In this section, we consider the effect of using a permuta-
tion induced by our transversal algorithms prior to solving a system using a precon-
ditioned iterative method. We consider preconditionings corresponding to incomplete
factorizations of the form ILU(0), ILU(1), and ILUT and study the convergence of
the iterative methods GMRES(20), BiCGSTAB, and QMR. We refer the reader to a
standard text like that of Saad [18] for a description and discussion of these methods.
Since the diagonal of the permuted matrix is “more dominant” than the diagonal of
the original matrix, we would hope that such permutations would enhance conver-
gence.

We show the results of some of our runs in Table 6.1. The maximum number
of iterations was set to 1000 and the convergence tolerance to 10−9. It is quite
clear that the reorderings can have a significant effect on the convergence of the
preconditioned iterative method. In some cases, the method will converge only after
the permutation; in others it greatly improves the convergence. It would appear from
the results in Table 6.1 and other experiments we have performed that the more
sophisticated MPD transversal algorithm generally results in the greatest reduction

900 IAIN S. DUFF AND JACKO KOSTER

Table 6.1
Number of iterations required by some preconditioned iterative methods.

Matrix and method Transversal algorithm
MC21 BT MPD

IMPCOL E

ILU(0) GMRES(20) - 16 15
BiCGSTAB 123 21 11
QMR 101 26 17

ILU(1) GMRES(20) 59 15 11
BiCGSTAB 98 16 8
QMR 72 19 12

ILUT GMRES(20) 8 7 8
BiCGSTAB 9 5 5
QMR 10 8 8

MAHINDAS

ILU(0) GMRES(20) - - 179
BiCGSTAB - - 39
QMR - - 55

ILU(1) GMRES(20) - - 69
BiCGSTAB - - 26
QMR - - 34

ILUT GMRES(20) - - 15
BiCGSTAB - - 11
QMR - - 17

WEST0497

ILU(0) GMRES(20) - 60 19
BiCGSTAB - 78 22
QMR - 63 23

ILU(1) GMRES(20) - 79 15
BiCGSTAB - 82 15
QMR - 82 18

ILUT GMRES(20) - 15 10
BiCGSTAB - 15 7
QMR - 17 12

in the number of iterations, although the best method will depend on the overall
solution time including the transversal selection algorithm.

7. Conclusions and future work. We have described algorithms for obtain-
ing transversals with large entries and have indicated how they can be implemented
showing that resulting programs can be written for efficient performance.

While it is clear that reordering matrices so that the permuted matrix has a large
diagonal can have a very significant effect on solving sparse systems by a wide range of
techniques, it is somewhat less clear that there is a universal strategy that is best in all
cases. We have thus started experimenting with combining the strategies mentioned
in this paper and, particularly for the block Cimmino approach, with combining our
unsymmetric ordering with a symmetric ordering. One example that we plan to study
is a combination with the symmetric TPABLO ordering [4].

It is possible to extend our techniques to orderings that try to increase the size
of not just the diagonal but also the immediate sub and super diagonals and then use

PERMUTING LARGE ENTRIES TO THE DIAGONAL OF SPARSE MATRICES 901

the resulting tridiagonal part of the matrix as a preconditioner.
One can also build other criteria into the weighting for obtaining a bipartite

matching, for example, to incorporate a Markowitz count so that sparsity would also
be preserved by the choice of the resulting diagonal as a pivot.

Finally, we noticed in our experiments with MA41 that one effect of transversal
selection was to increase the structural symmetry of unsymmetric matrices. We are
thus exploring further the use of ordering techniques that more directly attempt to
increase structural symmetry.

Acknowledgments. We are grateful to Patrick Amestoy, Michele Benzi, and
Daniel Ruiz for their assistance with the experiments on the direct methods, the
preconditioned iterative methods, and the block iterative methods, respectively. We
would also like to thank Alex Pothen for some early discussions on bottleneck transver-
sals and John Reid and Jennifer Scott for comments on a draft of this paper.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Internat.
J. Supercomputer Appl., 3 (1989), pp. 41–59.

[3] M. Arioli, I. Duff, J. Noailles, and D. Ruiz, A block projection method for sparse matrices,
SIAM J. Sci. Statistical Comput., 13 (1992), pp. 47–70.

[4] M. Benzi, H. Choi, and D. Szyld, Threshold ordering for preconditioning nonsymmetric
problems, in Proc. Workshop on Scientific Computing ’97, Hong Kong, G. H. Golub, ed.,
Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, New York, 1997, pp. 159–165.

[5] T. A. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/̃ davis,
ftp://ftp.cise.ufl.edu/pub/faculty/davis (1997).

[6] I. S. Duff, MA28—A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations,
Tech. report AERE R8730, Her Majesty’s Stationery Office, London, UK, 1977.

[7] I. S. Duff, The design and use of a frontal scheme for solving sparse unsymmetric equations,
in Numerical Analysis, Proc. 3rd IIMAS Workshop, Lecture Notes in Math. 909, J. P.
Hennart, ed., Springer-Verlag, Berlin, New York, pp. 240–247.

[8] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[9] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users’ Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I), Tech. report RAL 92-086, Rutherford Appleton Laboratory,
Oxon, UK, 1992.

[10] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[11] I. S. Duff and T. Wiberg, Remarks on implementation of O(n1/2τ) assignment algorithms,
ACM Trans. Math. Software, 14 (1988), pp. 267–287.

[12] D. Fulkerson, I. Glicksberg, and O. Gross, A Production Line Assignment Problem, Tech.
report RM-1102, Rand Corporation, 1953.

[13] K. A. Gallivan, B. A. Marsolf, and H. A. G. Wijshoff, Solving large nonsymmetric sparse
linear systems using MCSPARSE, Parallel Comput., 22 (1996), pp. 1291–1333.

[14] J. E. Hopcroft and R. M. Karp, An n(5/2) algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[15] HSL, Harwell Subroutine Library. A Catalogue of Subroutines (Release 12), AEA Technology,
Harwell Laboratory, Oxfordshire, UK, 1996.

[16] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[17] A. Pothen and C. Fan, Computing the block triangular form of a sparse matrix, ACM Trans.
Math. Software, 16 (1990), pp. 303–324.

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[19] H. A. G. Wijshoff, Symmetric Orderings for Unsymmetric Sparse Matrices, Tech. report

CSRD 901, Center for Supercomputing Research and Development, University of Illinois,
Urbana, IL, 1989.

PERFORMANCE OF GREEDY ORDERING HEURISTICS FOR
SPARSE CHOLESKY FACTORIZATION∗

ESMOND G. NG† AND PADMA RAGHAVAN‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 902–914

Abstract. Greedy algorithms for ordering sparse matrices for Cholesky factorization can be
based on different metrics. Minimum degree, a popular and effective greedy ordering scheme, mini-
mizes the number of nonzero entries in the rank-1 update (degree) at each step of the factorization.
Alternatively, minimum deficiency minimizes the number of nonzero entries introduced (deficiency)
at each step of the factorization. In this paper we develop two new heuristics: modified minimum
deficiency (MMDF) and modified multiple minimum degree (MMMD). The former uses a metric
similar to deficiency while the latter uses a degree-like metric. Our experiments reveal that on the
average, MMDF orderings result in 21% fewer operations to factor than minimum degree; MMMD
orderings result in 15% fewer operations to factor than minimum degree. MMMD requires on the
average 7–13% more time than minimum degree, while MMDF requires on the average 33–34% more
time than minimum degree.

Key words. sparse matrix ordering, minimum degree, minimum deficiency, greedy heuristics

AMS subject classifications. 65F05, 65F50

PII. S0895479897319313

1. Introduction. It is well known that ordering the rows and columns of a ma-
trix is a crucial step in the solution of sparse linear systems using Gaussian elimination.
The ordering can drastically affect the amount of fill introduced during factorization
and hence the cost of computing the factorization [8, 14]. When the matrix is symmet-
ric and positive definite, the ordering step is independent of the numerical values and
can be performed prior to numerical factorization. An ideal choice, for example, is an
ordering that introduces the least fill. However, the problem of computing such an
optimal ordering is NP-complete [24]. Consequently, almost all ordering algorithms
are heuristic in nature. Examples include reverse Cuthill–McKee [6, 7, 9], automatic
nested dissection [10], and minimum degree [20].

A greedy ordering heuristic numbers columns successively by selecting at each
step a column with the optimal value of a metric. In the minimum degree algorithm
of Tinney and Walker [23] the metric is the number of operations in the rank-1 up-
date associated with a column in a right-looking, sparse Cholesky factorization. The
algorithm can be stated in terms of vertex eliminations in a graph representing the
matrix [19, 20]. In this framework, the number of operations in the rank-1 update is
proportional to the square of the degree of a vertex; consequently, implementations
use the degree as the metric. Efficient implementations of minimum degree are due to
George and Liu [12, 13]. The minimum degree algorithm with multiple eliminations

∗Received by the editors March 28, 1997; accepted for publication (in revised form) by J. Liu
March 25, 1998; published electronically July 9,1999. This work was supported in part by the
Defense Advanced Research Projects Agency under contracts DAAL03-91-C-0047, ERD9501310,
and Xerox-MP002315, by the Applied Mathematical Sciences Research Program, Office of Energy
Research, U.S. Department of Energy under contract DE-AC05-96OR22464 with Lockheed Martin
Energy Research Corp., and by the National Science Foundation under grants NSF-ASC-94-11394
and NSF-CDA-9529459.

http://www.siam.org/journals/simax/20-4/31931.html
†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

37831-6367 (ngeg@ornl.gov).
‡107 Ayres Hall, Department of Computer Science, The University of Tennessee, Knoxville, TN

37996-1301 (padma@cs.utk.edu).

902

GREEDY ORDERING HEURISTICS 903

(MMD), due to Liu [17], has become very popular in the last decade. Multiple inde-
pendent vertices are eliminated at a single step in MMD to reduce the ordering time.
More recently, Amestoy, Davis, and Duff [2] have developed the approximate minimum
degree (AMD) algorithm. AMD uses an approximation to the degree to further re-
duce the ordering time without degrading the quality of orderings produced. Berman
and Schnitger [5] have analytically shown that the minimum degree algorithm can, in
some rare cases, produce a poor ordering. However, experience has shown that the
minimum degree algorithm and its variants are effective heuristics for generating fill-
reducing orderings. In fact, only some very recent separator-based schemes [4, 15, 16]
have outperformed MMD for certain classes of sparse matrices. Two of these new
schemes are hybrids of a separator-based scheme and a greedy ordering strategy such
as the minimum degree algorithm.

A greedy ordering heuristic that was also proposed by Tinney and Walker [23], but
has largely been ignored, is the minimum deficiency (or minimum fill) algorithm. The
minimum deficiency algorithm minimizes the number of fill entries introduced at each
step of sparse Cholesky factorization (or deficiency in graph terminology). Although
the metrics look similar, the minimum deficiency and minimum degree algorithms
are different. For example, the deficiency could well be zero even when the degree is
not. There are two reasons why the minimum deficiency algorithm has not become
as popular as the minimum degree algorithm [8]. First, the minimum deficiency
algorithm is typically much more expensive than the minimum degree algorithm.
Second, it was believed that the quality of minimum deficiency orderings is not much
better than that of minimum degree orderings [8]. Recent results by Rothberg [21]
(and also by us [18]) demonstrate that minimum deficiency leads to significantly better
orderings than minimum degree. However, current implementations of the minimum
deficiency algorithm are slower than MMD by more than an order of magnitude [18,
21].

In this paper, we develop two greedy heuristics that produce better orderings than
minimum degree; they result in orderings that require 15–21% fewer operations in the
factorization step than MMD. The heuristics are variants of minimum deficiency and
minimum degree requiring on the average 7–34% more time than MMD. In section 2,
we provide background material and introduce notation to help describe our heuristics.
In section 3 we develop our MMDF and MMMD heuristics. We also show that the
two heuristics can be implemented using the update mechanism in the AMD scheme
of Amestoy, Davis, and Duff [2]. In section 4 we provide empirical results on the
performance of MMDF and MMMD. Section 5 contains some concluding remarks.
The remaining part of this section describes recent related work.

Related work. Rothberg has investigated metrics for greedy ordering schemes
based on approximations to the deficiency [21]. His work and our work [18] were done
independently of each other.1 In [21] Rothberg

• shows that the minimum deficiency algorithm is significantly superior to
MMD in terms of the quality of the orderings; on the average, relative to
MMD, minimum deficiency orderings produce 14% fewer nonzeros in the
Cholesky factor and require 28% fewer operations to compute the Cholesky
factor;
• develops three approximate minimum fill (AMF) heuristics based on approx-

imations to the deficiency;

1Raghavan and Rothberg presented their results independently at the 2nd SIAM Conference on
Sparse Matrices in 1996.

904 ESMOND NG AND PADMA RAGHAVAN

• concludes that heuristic AMF1 (renamed AMF in [22]) is the best among the
three; on the average, AMF1 orderings require 14% fewer operations in the
factorization step than MMD orderings.

In our earlier report [18], we

• establish that many of the techniques used in efficient implementations of the
minimum degree algorithm (namely, indistinguishable vertices, mass elimina-
tion, and outmatching) also apply to the minimum deficiency algorithm;
• corroborate Rothberg’s empirical results, establishing the superior perfor-

mance of the minimum deficiency metric;
• develop our MMDF and MMMD heuristics;
• show that MMDF (MMMD) orderings require 17% (15%) fewer operations

in the factorization step than MMD (on the average).

It is difficult to compare the results in [18] and [21] directly because the test suites
used in the two papers are substantially different. The aggregate measures reported
in the two papers are also different. Moreover, they were based on performance data
obtained from different sets of initial numberings.

More recently, in a revision of [21], Rothberg and Eisenstat have developed two
new metrics for greedy ordering schemes [22]. In [22] Rothberg and Eisenstat

• develop two heuristics, approximate minimum mean fill (AMMF) and average
minimum increase in neighbor degree (AMIND);
• show that AMMF orderings require 22% (median) to 25% (geometric mean)

fewer operations in the factorization step than MMD orderings; AMIND or-
derings require 20% (median) to 21% (geometric mean) fewer operations to
factor than MMD orderings.

This paper is a shorter version of [18]. The test suite in this paper is substantially
different from that in the original paper. In an attempt to compare the performance
of our heuristics with those of Rothberg and Eisenstat (AMF, AMMF, and AMIND,
[21, 22]), we now use nearly the same test suite as in their reports. Four of the
matrices in [21] and [22] are proprietary, and therefore are not available to us. To
report performance relative to MMD, we had earlier used the “median of ratios” over
seven initial orderings (six random orderings and the ordering in which the matrix
was given to us). In this paper, we use the “ratio of medians” over 11 random ini-
tial orderings (as in [21, 22]). As we will see later in the paper, our MMDF and
MMMD heuristics produce better orderings than MMD. The MMDF and MMMD
orderings are very competitive with those produced by AMF, AMMF, and AMIND.
What we see as interesting is the development of five different metrics that can pro-
duce orderings that are significantly better than those produced by MMD. We had
commented in our earlier report [18] that there could well be other relatively inexpen-
sive greedy strategies that outperform the ones known at that time. The performance
of newer schemes AMMF and AMIND [22] supports our prediction; AMMF seems to
be slightly better than our MMDF. As we discuss in section 5, we still believe that
there may well be other greedy metrics that perform better than the five developed
so far.

2. Implementing greedy ordering heuristics. The efficient implementation
of greedy ordering schemes is based on a compact realization of the graph model of
Cholesky factorization [19]. In this section, we provide a brief description of elimi-
nation graphs and quotient graphs, and introduce an example, together with some
notation used to describe our greedy heuristics. We also describe minimum degree
and minimum deficiency schemes using quotient graphs.

GREEDY ORDERING HEURISTICS 905

We use terminology common in sparse matrix factorization throughout. The
reader is referred to the book by George and Liu [14] for details.

Elimination graphs and quotient graphs. Sparse Cholesky factorization can
be modeled using elimination graphs [19]. Let G denote an elimination graph. At the
beginning, G is initialized to G0, the graph of a sparse symmetric positive definite
matrix [14]. At each step, a vertex and its incident edges are removed from G. If x is
the vertex removed, edges are added to G so that the neighbors of x become a clique.
Thus cliques are formed as the elimination proceeds.

A quotient graph [11, 14] is a compact representation of an elimination graph. It
requires no more space than that for G0 [14]. Unlike the elimination graph, vertices
are not explicitly removed and neither are cliques formed explicitly. Instead vertices
are grouped in “supervertices” and marked as “eliminated” or “uneliminated.”

Let G denote the current elimination graph. Let S be the set of vertices that
have been eliminated. Consider the subgraph induced by S in G0. This subgraph
will contain one or more connected components (which are also called domains). In
the quotient graph, the vertices in each connected component are coalesced into an
eliminated supervertex . Note that the cliques created by the elimination process in G
are easy to identify in a quotient graph. Each such clique contains all (uneliminated)
neighbors of an eliminated supervertex.

It is well known that as the elimination proceeds, some (uneliminated) vertices
will become indistinguishable from each other; that is, they share essentially the
same adjacency structure in the current elimination graph G. Now each set of in-
distinguishable vertices is coalesced into an uneliminated supervertex in the quotient
graph.2 Observe that all vertices in an uneliminated supervertex have the same degree
(or deficiency) and hence can be “mass-eliminated” when the degree (or deficiency)
becomes minimum [14, 18]. Furthermore, vertices in an uneliminated supervertex
form a clique.

Thus a quotient graph can be viewed as a graph containing two kinds of super-
vertices: uneliminated supervertices and eliminated supervertices. Each uneliminated
supervertex is a clique of indistinguishable vertices of the corresponding elimination
graph G. Each eliminated supervertex is a subset of the vertices that have been elim-
inated from the original graph G0. Vertices in the set of uneliminated supervertices
adjacent to the same eliminated supervertex in the quotient graph form a clique in the
elimination graph. For simplicity, we will say that these uneliminated supervertices
form a “clique” in the quotient graph. Two uneliminated supervertices are said to
be “neighbors” in the quotient graph when there is an edge between them or they
are adjacent to the same eliminated supervertex in the quotient graph; the vertices
belonging to one uneliminated supervertex are adjacent to those of the other super-
vertex in the corresponding elimination graph. We follow the convention in [14] in
our implementation. When an eliminated supervertex X is formed, edges between its
uneliminated neighbors are subsumed.

An example and some notation. Figure 1 contains an example of a quo-
tient graph. Eliminated supervertices are represented by rectangles and uneliminated
supervertices are represented by circles. Assume that an uneliminated supervertex
has been selected according to the greedy criterion, and the quotient graph has been
transformed. This gives a new eliminated supervertex in the quotient graph. Denote
the new eliminated supervertex by X; in the remaining part of this paper X will be

2Most implementations only coalesce sets of indistinguishable vertices that can be identified
inexpensively; identifying all maximal sets of indistinguishable vertices is too expensive.

906 ESMOND NG AND PADMA RAGHAVAN

X

X 1

X 2

Y 3

Y 4

Y 5

Y 2

Y 1

Z 1

Z 2
Z 3

Z 4

Z 5

Z 6

Z 7

Z 8

Fig. 1. An example of a quotient graph; X is the most recently eliminated supervertex. Super-
vertices {Y1, Y2, Y3, Y4, Y5} enclosed in a curve form a clique; other partial cliques used in MMDF
are shown using dotted curves.

referred to as the “most recently eliminated supervertex.” Let Y1, Y2, Y3, Y4, and Y5

(enclosed by a solid curve) denote the uneliminated supervertices that are adjacent
to X. Note that Y1, Y2, Y3, Y4, and Y5 form a clique in the quotient graph. Using
our convention, Z1, Z2, . . ., Z8 are neighbors of Y1. The eliminated supervertices X1

and X2 identify two other cliques: {Y1, Z2, Z3, Z4, Z5} and {Y1, Y2, Z5, Z6, Z7, Z8}.
Observe that these three cliques are not disjoint. Uneliminated supervertices that
are enclosed by a dotted curve (such as Z2, Z3, Z4, and Z5) form what we call a
“partial” clique; these “partial” cliques will be used to describe our heuristics in the
next section.

If V is a supervertex (either uneliminated or eliminated) in the quotient graph,
we define N1(V) as the set of uneliminated supervertices that are neighbors of V . We
use N2(V) to denote the set of uneliminated supervertices that are neighbors of those
in N1(V). We use deg(V) to denote the degree of an uneliminated supervertex V ;
deg(V) is the sum of |V | − 1 and the total number of vertices in all supervertices in
N1(V).

Minimum degree and deficiency schemes. Recall that a greedy heuristic
needs a metric d(v) for selecting the next supervertex to eliminate. Examples of d()
are the degree (in minimum degree) and the deficiency (in minimum deficiency). In
terms of elimination graphs, a greedy heuristic has the following structure: select a
vertex that minimizes d(), eliminate it from the current elimination graph, form the
next elimination graph, and update the value of the metric for each vertex affected by
the elimination. A greedy scheme can also be described in terms of quotient graphs:
select an uneliminated supervertex that minimizes d(), create a new quotient graph,
and update the value of the metric for each uneliminated supervertex affected by the
elimination.

In the minimum deficiency heuristic, updating the deficiency after one step of
elimination may be significantly more time consuming than updating the degree in
the minimum degree algorithm. Consider the example in Figure 1 where X is the most
recently eliminated supervertex. With minimum degree (MMD and AMD) only the

GREEDY ORDERING HEURISTICS 907

uneliminated supervertices in N1(X) need a degree update. However, with minimum
deficiency, we need to update the deficiency of not only supervertices in N1(X), but
also some of the supervertices belonging to N2(X). Any supervertex in N2(X) that
is a neighbor of two or more supervertices in N1(X) may need a deficiency update.
With respect to Figure 1, the deficiency of Z1 (a neighbor of Y1 and Y5) will change if
Y1 and Y5 are not adjacent prior to the elimination of X. Similarly, we may have to
update the deficiency of each of Z5, Z6, Z7, and Z8 (each supervertex is a neighbor
of both Y1 and Y2).

Rothberg showed that the true minimum deficiency algorithm (true local fill
in [21]) produces significantly better orderings than MMD; a true minimum defi-
ciency ordering, on the average, results in 28% fewer operations in computing the
Cholesky factor than an MMD ordering. We obtained similar results in [18]. Our
implementation of the minimum deficiency algorithm was on the average slower than
MMD by two orders of magnitude [18]. Let X be the most recently eliminated su-
pervertex. Using the deficiency as the metric but restricting updates, as in MMD,
to uneliminated supervertices in N1(X) leads to orderings that are inferior to true
minimum deficiency but still significantly better than MMD. This was observed by
Rothberg [21] and later corroborated by Ng and Raghavan [18]. However, even such
a restricted scheme is more than 40 times slower than MMD [18]. In the next section
we describe two relatively inexpensive but effective heuristics based on modifications
to the deficiency and degree.

3. Modified minimum deficiency and minimum degree heuristics. We
now describe two heuristics based on approximations to the deficiency and the degree.
Both metrics can be implemented using either the update mechanism in MMD or the
faster scheme in AMD.

Our first heuristic MMDF is based on a deficiency-like metric. Consider the ex-
ample in Figure 1, where X is the most recently eliminated supervertex. We update
the values of the metric d() of uneliminated vertices in N1(X) = {Y1, Y2, Y3, Y4, Y5}
just as in MMD. Consider updating d(Y1) in Figure 1. An upper bound δ on the
deficiency of Y1 can be obtained in terms of the degree of Y1. The true deficiency
of Y1 is obtained by subtracting from the upper bound the number of edges that
are present before Y1 is eliminated. Identifying all such edges requires examining
the uneliminated supervertices in N1(Y1) and N2(Y1). However, some of these edges
can be identified easily because in the quotient graph representation, uneliminated
supervertices connected to a common eliminated supervertex form a clique. Using
notation introduced earlier, N1(Y1) = {Y2, Y3, Y4, Y5} ∪ {Z1, Z2, . . . , Z8} is the set of
uneliminated neighbors of Y1. The elements of N1(Y1) can be grouped into a set of
disjoint “partial” cliques K.3 The obvious member of K is {Y2, Y3, Y4, Y5}, consisting
of the uneliminated neighbors of the eliminated supervertex X. The other partial
cliques depend on the order in which the neighbors of Y1 are examined. Without loss
of generality, assume {Z1} forms the second clique. Likewise let {Z2, Z3, Z4, Z5} be
the next partial clique we examine. Finally, {Z6, Z7, Z8} is the fourth disjoint partial
clique; we do not include Z5 because it was visited and included in the third partial
clique. The metric d(Y1) is defined as δ − C − ct; δ is an upper bound on deficiency,
C is the sum of contributions from partial cliques, and ct is the correction term. At
initialization, d(Y1) is set to the upper bound δ. We define δ, C, and ct below.

3The exact partitioning of the elements of N1(Y1) into disjoint partial cliques depends on the
data structure in the implementation of quotient graphs, and on the order in which the elements are
visited and marked.

908 ESMOND NG AND PADMA RAGHAVAN

δ : The upper bound δ is based on the external degree [17]: δ = edeg(Y1)[edeg(Y1)−
1], where edeg(Y1) = deg(Y1)−|Y1|. This upper bound favors larger superver-
tices. If two supervertices have the same degree, the larger supervertex will
have a smaller upper bound on deficiency since its external degree is smaller.

C : Let K be the set of disjoint partial cliques as described above. We define
C =

∑
W∈K |W | ∗ [|W | − 1], where W is a partial clique in K; the size of W

is the total number of vertices in all uneliminated supervertices that constitute
W .

ct : The correction term ct takes into account contributions missed because (1)
partial cliques in K are forced to be disjoint, and (2) cliques such as {Z1, Y5}
are not detected because we do not examine N2(Y1). Our heuristic value of ct
is 2 edeg(Y1)∗|Y1|. The rationale for the choice of ct is as follows. Assume that
each supervertex in N1(Y1) is connected to one other supervertex (in N1(Y1))
and that the associated contribution has been missed. Assume further that
the size of Y1 is representative of the sizes of supervertices in N1(Y1); then the
contributions that have been missed equal

∑
V ∈N1(Y1),V 6=Y1

2 |V ||Y1|, which

simplifies to ct = 2 edeg(Y1) ∗ |Y1|.
The greedy ordering process repeatedly involves operations such as (1) finding and
deleting vertices with a minimal value of the metric, and (2) altering values of the
metric for arbitrary vertices. In short, an implementation of a priority-queue [1] data
structure is required. In the minimum degree algorithm, the d() is the degree of a
vertex and is bounded above by n, the order of the matrix. Now the priority-queue
is implemented as a set of n bins with vertices in each bin stored as a linked list. In
a deficiency-based algorithm, d() can be as large as n2. We therefore use a heap [1]
to maintain the values of the metric.

We would like to emphasize that MMDF is a heuristic. We see the correction
term as an approximation to edges missed because we restrict our attention to partial
cliques that are disjoint. In our experiments we found that small multiples of the
correction term behaved just as well if not better. However, the heuristic performs
poorly if the correction term is absent.

Our second heuristic MMMD attempts to use a metric that is bound by a small
multiple of the degree. As indicated by the name it is a close variant of the minimum
degree algorithm with multiple eliminations. The goal is to come up with an ordering
algorithm that has a time complexity similar to that of MMD. Consider Figure 1, and
once again assume X is the most recently eliminated supervertex. For the supervertex
Y1, MMMD uses the metric d(Y1) = 2edeg(Y1)−U , where U is the size of the largest
partial clique in the set K (described above). More precisely, U = maxW∈K |W |. At
initialization we simply use 2 edeg(Y1). Note that MMMD differs from MMD only
in the definition of the metric. The metric in MMMD tries to take into account
contributions from the largest clique that contains Y1.

Our implementations of MMDF and MMMD are based on modifications of Liu’s
MMD code. In particular, the supervertices in the set K of Y1 are visited in the same
order as that in Liu’s MMD code. Hence, we expect the update cost of MMDF and
MMMD for each supervertex to be similar to that of Liu’s MMD.

Approximate MMDF and MMMD. We now briefly outline how “approxi-
mate” versions of the two schemes can be implemented using the faster update mech-
anism in the AMD scheme of Amestoy, Davis, and Duff [2]. Our description of AMD
is admittedly brief and is in terms of our notation. The reader is referred to [2] for
details.

GREEDY ORDERING HEURISTICS 909

To describe approximate-MMDF, we once again consider Figure 1 and the metric
for Y1, an uneliminated supervertex adjacent to the most recently eliminated super-
vertex X. The upper bound is now calculated using the approximate external degree
of AMD. The correction term can also be easily calculated in terms of this approxi-
mate external degree and the size of supervertex Y1. The main difference is in how K
is constructed, and hence the term C. Now the set K corresponds to the cliques used
in AMD to compute an approximation to the degree. AMD uses the sizes of certain
cliques of supervertices in the set N1(Y1) = {Y2, Y3, Y4, Y5} ∪ {Z1, Z2, . . . , Z6}. With
respect to the example in Figure 1, the cliques used in AMD are: {Y2, Y3, Y4, Y5},
{Z1}, {Z2, Z3, Z4, Z5}, {Z5, Z6, Z7, Zk}. The first clique is the one formed by elim-
ination of X; the remaining cliques have no overlap with this clique. However, the
remaining cliques may have supervertices in common. MMDF based on MMD forces
the partial cliques to be disjoint. On the other hand, approximate-MMDF relaxes
this restriction; i.e., it uses the cliques in AMD, and these cliques may have common
uneliminated supervertices. The approximation to C (the contribution to the defi-
ciency from the partial cliques) is computed using the clique sizes used in AMD (for
the approximation to the degree). Approximate-MMMD is similar; it also uses the
cliques in AMD.

It should be noted that in AMD, when a supervertex is shared by exactly two
cliques, the approximation to the degree is exact. In our approximate-MMDF, because
of the correction term, it is unlikely that our approximation to d(Y1) is exactly the
same as that in MMDF even when Y1 is shared by only two cliques. This comment
also applies to our approximate-MMMD.

Relation to other deficiency-like schemes. We would like to note that
MMDF is similar to AMF3, proposed by Rothberg [21]; it differs mainly in the way in
which the partial cliques are constructed, as well as in the definition of the correction
term. AMF, AMMF, and AMIND are three other heuristics developed by Rothberg
and Eisenstat [21, 22]. The deficiency-like metrics in AMF, AMMF, and AMIND use
only edges in the most recently formed clique while the metric in MMDF takes into
account edges in as many cliques as we can “easily identify.” AMIND also uses a
term which is similar to our correction term in MMDF. MMMD is similar to AMF
in that it uses only the size of a single clique but it differs in the sense that it uses a
degree-like metric.

4. Performance of MMDF and MMMD. We now report on the performance
of MMDF and MMMD. We use a set of 36 test matrices in our empirical study. Our
test suite is a subset of the one used by Rothberg and Eisenstat [21, 22]; their test
suite contains four other matrices that are proprietary and hence are not available
to us. Our MMD code is Liu’s Fortran implementation converted to C. Our MMDF
and MMMD heuristics are built using the MMD code. MMDF differs from MMD
in the metric update as well in the use of heaps to store and retrieve the metric.
Furthermore, unlike MMD, MMDF does not allow “multiple eliminations.” MMMD
is nearly identical to MMD and differs only in the metric update portion. All our
experiments were performed on a Sun Ultra Sparc-2 workstation.

The quality of greedy orderings can vary depending on the initial numbering. For
each test matrix, we use 11 different random initial numberings for MMD, MMDF, and
MMMD. We consider two measures of the quality of ordering: the number of nonze-
ros in the Cholesky factor, and the number of floating-point operations required to
compute the Cholesky factor. We also report execution times for MMD, MMDF, and
MMMD. The characteristics of the test matrices and the quality of MMD orderings

910 ESMOND NG AND PADMA RAGHAVAN

Table 1
Performance of MMD; |L| and operations are mean and median values over 11 initial orderings.

Problem rank |A| Mean Median
Time |L| Operations Time |L| Operations

(103) (secs) (103) (106) (secs) (103) (106)
3DTUBE 45330 3256.9 10.07 31739 42157 10.08 31842 42101
bcsstk15 3948 117.8 0.61 651 167 0.61 653 168
bcsstk16 4884 290.3 0.42 734 143 0.42 737 143
bcsstk17 10974 428.6 0.96 1130 197 0.97 1135 197
bcsstk18 11948 140.1 1.02 645 132 1.01 644 131
bcsstk23 3134 45.2 0.62 461 144 0.62 455 139
bcsstk25 15439 252.2 1.90 1530 341 1.88 1537 342
bcsstk29 13992 619.5 1.69 1767 443 1.70 1744 425
bcsstk30 28924 2043.5 2.91 3844 930 2.89 3856 935
bcsstk31 35588 1181.4 4.78 5311 2547 4.78 5263 2485
bcsstk32 44609 2014.7 5.32 5200 1078 5.25 5228 1096
bcsstk33 8738 591.9 1.30 2644 1301 1.32 2640 1302
bcsstk35 30237 1480.4 2.80 2737 389 2.80 2734 389
bcsstk36 23052 1166.2 1.57 2757 610 1.56 2761 609
bcsstk37 25503 1166.5 1.82 2838 558 1.77 2834 560
bcsstk38 8032 363.5 1.28 750 123 1.26 747 122
bcsstk39 46772 2089.3 8.18 7651 2187 8.12 7645 2191
bikker2 173160 854.9 43.27 101268 197828 43.27 100870 195802
cfd1 70656 1899.0 19.44 39724 46751 19.38 39959 46935
cfd2 123440 3211.3 36.93 89902 178101 36.84 90610 178166
copter2 55476 759.9 10.81 14247 12852 10.79 14183 12620
crystk01 4875 320.7 0.46 1081 336 0.46 1083 338
crystk02 13965 982.5 1.85 6107 4342 1.84 6124 4340
crystk03 24696 1775.8 3.91 13950 13167 3.92 13944 13051
flap 51537 1010.7 5.75 5613 1882 5.77 5630 1905
ford2 100196 544.7 8.64 2438 303 8.57 2448 309
gearbox 153746 9234.1 40.50 53012 57817 40.52 52973 57328
msc10848 10848 1240.6 1.08 2032 572 1.07 2028 576
msc23052 23052 1177.9 1.58 2757 612 1.57 2748 608
pwt 36519 326.1 2.55 1764 223 2.51 1768 225
sphere6 16386 114.7 0.57 794 133 0.57 796 133
struct1 46949 2329.5 4.15 5075 1302 4.13 5068 1299
struct2 73752 3670.9 7.74 9853 3867 7.74 9810 3817
struct3 53570 1227.3 6.35 5333 1231 6.36 5309 1216
struct4 4350 242.1 2.10 2299 1857 2.07 2248 1756
troll 213453 1198.5 42.66 61482 156149 42.37 61171 153228

are reported in Table 1. We report mean and median values over 11 initial random
numberings for MMD in Table 1.

Table 2 shows the performance of MMDF and MMMD relative to that of MMD.
The relative measure is computed as the ratio of the medians over 11 initial random
numberings. We also present the geometric mean and the median over all test matri-
ces in the last two lines of the table. The execution time of MMMD is slightly more
(7–13%) than that of MMD, while MMDF requires on average an overhead of 33–34%
over MMD. Our experiments indicate that avoiding the use of heaps in MMDF (as
suggested by a referee) will reduce about a third of this overhead.4

4One of the referees has suggested using a data structure similar to that in MMD, i.e., use n bins
for d() values. The last bin is used to store those d()’s that are larger than n− 1. On the occasions
when the minimum value of d()’s is greater than or equal to n, a linear search is used.

GREEDY ORDERING HEURISTICS 911

Table 2
Performance of MMDF and MMMD relative to MMD. For each problem we report the ratio of

median values over 11 initial random orderings.

Problem Ordering time |L| Operations
MMDF MMMD MMDF MMMD MMDF MMMD

3DTUBE 1.50 0.99 0.87 0.86 0.79 0.77
bcsstk15 0.77 0.93 0.89 0.92 0.76 0.83
bcsstk16 1.64 1.50 0.93 0.93 0.84 0.85
bcsstk17 1.21 1.11 1.00 0.98 0.97 0.95
bcsstk18 1.04 1.06 0.90 0.93 0.76 0.82
bcsstk23 0.79 1.05 0.87 0.93 0.77 0.88
bcsstk25 1.06 1.10 0.87 0.92 0.72 0.83
bcsstk29 1.08 1.05 0.94 0.95 0.82 0.83
bcsstk30 1.41 1.17 0.94 0.97 0.83 0.93
bcsstk31 1.36 1.18 0.92 0.95 0.81 0.88
bcsstk32 1.64 1.36 0.96 0.97 0.85 0.89
bcsstk33 1.10 1.17 0.90 0.89 0.77 0.76
bcsstk35 1.64 1.34 1.02 1.00 0.98 0.98
bcsstk36 1.68 1.47 1.01 1.00 0.98 0.96
bcsstk37 1.72 1.50 0.98 0.98 0.89 0.91
bcsstk38 1.02 1.21 0.99 1.00 0.94 1.00
bcsstk39 1.59 1.09 1.08 1.02 1.32 1.08
bikker2 2.02 1.24 0.86 0.86 0.69 0.71
cfd1 1.26 1.01 0.79 0.82 0.62 0.69
cfd2 1.25 0.99 0.80 0.80 0.65 0.69
copter2 1.19 1.05 0.80 0.86 0.66 0.75
crystk01 1.33 1.22 0.91 0.89 0.80 0.77
crystk02 1.23 1.04 0.86 0.83 0.72 0.68
crystk03 1.25 1.04 0.89 0.80 0.79 0.64
flap 1.50 1.06 0.93 0.91 0.81 0.78
ford2 1.30 1.06 0.92 0.95 0.73 0.81
gearbox 1.58 1.13 0.91 1.00 0.77 1.17
msc10848 1.56 1.33 0.95 0.96 0.85 0.88
msc23052 1.69 1.52 1.00 0.99 0.91 0.94
pwt 1.48 1.03 0.94 0.97 0.85 0.92
sphere6 1.74 1.04 0.89 0.96 0.76 0.93
struct1 1.72 1.08 0.95 0.96 0.85 0.90
struct2 1.80 1.06 0.97 0.98 0.94 0.93
struct3 1.28 1.05 0.95 0.96 0.87 0.90
struct4 0.73 0.99 0.80 0.84 0.65 0.70
troll 1.13 1.04 0.80 0.85 0.65 0.73

g-mean 1.33 1.13 0.91 0.92 0.80 0.84
median 1.34 1.07 0.92 0.95 0.80 0.86

Results for variants of MMDF and MMMD are summarized in Table 3. Approxi-
mate-MMDF (approximate-MMMD) performs just as well as MMDF (MMD); the
geometric mean and the median remain unchanged. For MMDF, MMMD, and their
approximate counterparts, adding Ashcraft’s initial compression step [3] improves the
performance slightly (1% on the average). The approximate versions of MMDF and
MMMD are based on our implementation of AMD, which are not as efficient as the
implementation in [2]. For example, our implementations do not include features
such as “aggressive absorption” and the use of extra storage to repack quotient graph
segments for improved cache-access. Likewise, in our implementation of Ashcraft’s
compression step, our hashing mechanism is not very efficient. We therefore do not
provide timing results for these experiments. We expect the overheads of approximate-

912 ESMOND NG AND PADMA RAGHAVAN

Table 3
Summary of performance of MMDF and MMMD variants relative to MMD. The geometric-

mean and median over all problems in the test suite are based on the ratio of median values over 11
initial random orderings for each problem.

Method |L| Operations
g-mean median g-mean median

Without initial compression
MMDF .91 .92 .80 .80
approximate-MMDF .91 .92 .80 .80
MMMD .92 .95 .84 .86
approximate-MMMD .92 .95 .84 .86

With initial compression
MMDF .90 .90 .79 .79
approximate-MMDF .90 .91 .79 .79
MMMD .92 .95 .84 .85
approximate-MMMD .92 .95 .84 .86

Table 4
Summary of operation counts to factor for MMDF, MMMD, AMF, AMMF, and AMIND rel-

ative to MMD (with initial compression).

Measure Ng–Raghavan Rothberg–Eisenstat
MMDF MMMD AMF AMMF AMIND

g-mean .79 .84 .85 .75 .79
median .79 .85 .85 .78 .80

MMDF (approximate-MMMD) relative to AMD (with or without initial compression)
to be the same as that of MMDF (MMMD) relative to MMD.

5. Conclusions. We have developed two new greedy heuristics: MMDF and
MMMD. Both of these schemes produce orderings that are better than MMD order-
ings. When initial compression is not performed, the first scheme MMDF produces
orderings that require approximately 20% fewer floating-point operations for factor-
ization than MMD, while the second scheme MMMD generates orderings that incur
14% fewer operations for factorization than MMD. The reductions are slightly bet-
ter when initial compression is performed. MMDF uses a deficiency-like metric, i.e.,
a metric whose value is a quadratic function of the degree. The execution time of
MMDF is approximately 1.3 times that of MMD. On the other hand, MMMD uses
a degree-like metric, which is bounded above by twice the value of the degree. The
implementation of MMMD is the same as that of MMD, but for the difference in the
choice of the metric. The slight increase in ordering time for MMMD is primarily due
to the differences in the orderings computed by the two schemes.5 Finally, there is no
change in the quality of the orderings when MMDF (MMMD) is implemented using
the AMD framework of Amestoy, Davis, and Duff [2].

For completeness, Table 4 summarizes the performance of our schemes, as well
as those in [22]. It appears that the performance of MMMD and AMF1 [21] and
AMF [22] are similar. Likewise, MMDF and AMIND [22] produce orderings of similar
quality. AMMF [22] appears to be slightly better than MMDF. Relative to MMD,
AMMF orderings require 25% (geometric mean) to 22% (median) fewer operations
for factorization, while MMDF (with compression) orderings require 21% (geometric
mean and median) fewer operations for factorization.

5The cost of maintaining the quotient graph depends on the adjacency structure and the elimi-
nation sequence.

GREEDY ORDERING HEURISTICS 913

Our work is an attempt to understand factors affecting the performance of greedy
ordering heuristics. We tried several metrics that are close to those in MMDF and
MMMD. Many of these had average operation counts for factorization similar to
those reported for MMDF and MMMD, while others varied substantially. We also
experimented with a variant of MMDF that did update the metric for “neighbors of
neighbors” as in true minimum deficiency. Surprisingly, the operation counts were
on the average higher by 3–4% for this variant. The performance of true minimum
deficiency shows that deficiency is a better metric than the degree. However, we
surmise that the improved performance of our heuristics is from the complicated
interplay of the metric and the greedy process and not necessarily from accurately
modeling the true deficiency. We conjecture that there could well be other relatively
inexpensive greedy strategies that significantly outperform the ones known so far.

Acknowledgments. The authors would like to thank the referees and the editor
for many thoughtful suggestions, which substantially improved the presentation of the
material.

REFERENCES

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison–Wesley, Reading, MA, 1974.

[2] P. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algo-
rithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[3] C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput.,
16 (1995), pp. 1404–1411.

[4] C. Ashcraft and J. W.-H. Liu, Robust Orderings of Sparse Matrices Using Multisection,
Technical report ISSTECH-96-002, Boeing Computer Services, Seattle, WA, 1996.

[5] P. Berman and G. Schnitger, On the performance of the minimum degree ordering for
Gaussian elimination, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 83–88.

[6] E. Cuthill, Several strategies for reducing bandwidth of matrices, in Sparse Matrices and
Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York, 1972,
pp. 157–166.

[7] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceed-
ings 24th ACM National Conference, August 1969, ACM, New York, pp. 157–172.

[8] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Oxford University
Press, Oxford, England, 1987.

[9] A. George, Computer Implementation of the Finite Element Method, Ph.D. thesis, Dept. of
Computer Science, Stanford University, Stanford, CA, 1971.

[10] A. George and J. W.-H. Liu, An automatic nested dissection algorithm for irregular finite
element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053–1069.

[11] A. George and J. W.-H. Liu, A quotient graph model for symmetric factorization, in Sparse
Matrix Proceedings 1978, I. S. Duff and G. W. Stewart, eds., SIAM, Philadelphia, PA,
1979, pp. 154–175.

[12] A. George and J. W.-H. Liu, A fast implementation of the minimum degree algorithm using
quotient graphs, ACM Trans. Math. Software, 6 (1980), pp. 337–358.

[13] A. George and J. W.-H. Liu, A minimal storage implementation of the minimum degree
algorithm, SIAM J. Numer. Anal., 17 (1980), pp. 282–299.

[14] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice Hall, Englewood Cliffs, NJ, 1981.

[15] A. Gupta, Fast and Effective Algorithms for Graph Partitioning and Sparse Matrix Order-
ing, Technical report RC-20496, IBM Research Division, T.J. Watson Research Center,
Yorktown Heights, NY, 1996.

[16] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection
ordering, SIAM J. Sci. Comput., 20 (1999), pp. 468–489.

[17] J. W.-H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[18] E. G.-Y. Ng and P. Raghavan, Performance of Greedy Ordering Heuristics for Sparse
Cholesky Factorization, manuscript, 1997.

914 ESMOND NG AND PADMA RAGHAVAN

[19] S. Parter, The use of linear graphs in Gaussian elimination, SIAM Rev., 3 (1961), pp. 119–
130.

[20] D. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
New York, 1972, pp. 183–217.

[21] E. Rothberg, Ordering Sparse Matrices Using Approximate Minimum Local Fill, manuscript,
1996.

[22] E. Rothberg and S. Eisenstat, Node selection strategies for bottom-up sparse matrix order-
ing, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 682–695.

[23] W. Tinney and J. Walker, Direct solution of sparse network equations by optimally ordered
triangular factorization, Proc. IEEE, 55 (1967), pp. 1801–1809.

[24] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Discrete Meth-
ods, 2 (1981), pp. 77–79.

AN ASYNCHRONOUS PARALLEL SUPERNODAL ALGORITHM
FOR SPARSE GAUSSIAN ELIMINATION∗

JAMES W. DEMMEL† , JOHN R. GILBERT‡ , AND XIAOYE S. LI§

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 915–952

Abstract. Although Gaussian elimination with partial pivoting is a robust algorithm to solve
unsymmetric sparse linear systems of equations, it is difficult to implement efficiently on parallel
machines because of its dynamic and somewhat unpredictable way of generating work and interme-
diate results at run time. In this paper, we present an efficient parallel algorithm that overcomes this
difficulty. The high performance of our algorithm is achieved through (1) using a graph reduction
technique and a supernode-panel computational kernel for high single processor utilization, and (2)
scheduling two types of parallel tasks for a high level of concurrency. One such task is factoring
the independent panels in the disjoint subtrees of the column elimination tree of A. Another task is
updating a panel by previously computed supernodes. A scheduler assigns tasks to free processors
dynamically and facilitates the smooth transition between the two types of parallel tasks. No global
synchronization is used in the algorithm. The algorithm is well suited for shared memory machines
(SMP) with a modest number of processors. We demonstrate 4- to 7-fold speedups on a range of 8
processor SMPs, and more on larger SMPs. One realistic problem arising from a 3-D flow calculation
achieves factorization rates of 1.0, 2.5, 0.8, and 0.8 gigaflops on the 12 processor Power Challenge, 8
processor Cray C90, 16 processor Cray J90, and 8 processor AlphaServer 8400.

Key words. sparse Gaussian elimination, unsymmetric linear systems, supernodes, parallelism,
dynamic scheduling and load balancing

AMS subject classifications. 65F50, 65F05

PII. S0895479897317685

1. Introduction. In earlier work with Eisenstat and Liu, we described a pub-
lically released sequential software library, SuperLU, to solve unsymmetric sparse
linear systems using Gaussian elimination with partial pivoting [6]. This left-looking,
blocked algorithm includes symmetric structural reduction for fast symbolic factoriza-
tion, and supernode-panel updates to achieve better data reuse in cache and floating-
point registers. Here, we assume the reader has prior knowledge of SuperLU and the
material upon which SuperLU is based [6, 25].

∗Received by the editors February 28, 1997; accepted for publication (in revised form) by E.
Ng January 30, 1998; published electronically July 9, 1999. The research of J. Demmel and X. Li
was supported in part by NSF grant ASC-9313958, DOE grant DE-FG03-94ER25219, UT subcon-
tract ORA4466 from ARPA contract DAAL03–91–C0047, DOE grant DE-FG03-94ER25206, and
NSF Infrastructure grants CDA-8722788 and CDA-9401156. This manuscript has been authored by
a contractor of the U.S. Government under contract DE-AC03-76SF00098. The U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contri-
bution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the
extent not limited by these rights.

http://www.siam.org/journals/simax/20-4/31768.html
†Computer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.

berkeley.edu).
‡Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@

parc.xerox.com). The research of this author was supported in part by the Institute for Mathematics
and Its Applications at the University of Minnesota and in part by DARPA contract DABT63-95-
C0087.
§National Energy Research Scientific Computing (NERSC) Center, Lawrence Berkeley National

Lab, MS 50F, 1 Cyclotron Rd., Berkeley, CA 94720 (xiaoye@nersc.gov). The work of this author
was supported in part by the Office of Computational and Technology Research, Division of Mathe-
matical, Information, and Computational Sciences of the U.S. Department of Energy under contract
76SF00098.

915

916 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

In this paper we study an efficient parallel algorithm based on SuperLU. The
primary objective of this work is to achieve good efficiency on shared memory systems
with a modest number of processors (for example, between 10 and 20). In addition
to measuring the efficiency of our parallel algorithm on these machines, we also study
a theoretical upper bound on performance of this algorithm. The efficiency of the
algorithm has been demonstrated on several shared memory parallel machines. When
compared to the best sequential runtime of SuperLU, the parallel algorithm typically
achieved 4- to 7-fold speedups on 8 processor platforms for large sparse matrices.

The rest of the paper is organized as follows. In section 2 we review the sequential
SuperLU algorithm. Section 3 presents the sources and the characteristics of the test
matrices. Section 4 presents the parallel machines used in our study. In section 5
we describe several design choices we have made in parallelization, including how to
find parallelism, how to define individual tasks, and memory management for super-
nodes. Section 6 sketches the high-level parallel scheduling algorithm. In section 7,
we present the parallel performance achieved with the test matrices on a number
of platforms. Both time and space efficiency will be illustrated. We also quantify
the sources of the overhead in parallelization and give a thorough analysis of their
impact on performance. In the end of this section we establish a PRAM (parallel
random-access machine) model to predict an upper bound on speedups attainable
by the proposed algorithm. Finally, section 8 draws conclusions and suggests future
research.

2. Overview of sequential algorithm in SuperLU. Figure 2.1 sketches the
supernode-panel factorization algorithm used in SuperLU. A supernode is defined to
be a range (r: s) of columns of L with the triangular block just below the diagonal
being full, and with the same row structure below this block. We store a supernode
as a rectangular block, including the triangle of U in rows and columns r through s
(see Figure 2.2). This allows us to address each supernode as a 2-D array in calls
to BLAS routines [7, 8] and to get high performance. To increase the average size
of supernodes (and hence performance), we merge groups of consecutive columns
(usually no more than four columns) at the fringe of the column elimination tree
(section 5.1) into relaxed supernodes regardless of their row structures. A panel is a
block of w consecutive columns in the matrix that are updated simultaneously by a
supernode using calls to the BLAS. The row structures of the columns in a panel may
not be correlated in any fashion, and the boundaries between panels may be different
from those between supernodes. Each panel factorization (outer loop in Figure 2.1)
consists of three distinct steps: (1) the symbolic factorization to determine the nonzero
structure, (2) the numerical updates by supernodes, and (3) the factorization of each
column in the panel. The pivot selection, detection of the supernode boundary, and
symmetric structure reduction (to reduce the cost of later symbolic factorization steps)
are all performed in the inner factorization step. Both panel and column symbolic
steps use depth-first search (DFS). A further refinement, a 2-D supernode partitioning
(defined by the blocking parameters t and b in Figure 2.2), enhances performance
for large matrices and machines with small caches. A more detailed description of
SuperLU is in the paper [6].

We conducted extensive performance evaluation for SuperLU on several recent
superscalar architectures. For large sparse matrices, SuperLU achieves up to 40% of
the peak floating-point performance on both IBM RS/6000-590 and MIPS R8000. It
achieves nearly 25% peak on the DEC Alpha 21164. Li [25] presented and analyzed
the performance results in more detail.

PARALLEL SPARSE GAUSSIAN ELIMINATION 917

for column j = 1 to n step w do
F (:, j : j + w − 1) = A(:, j : j + w − 1);
(1) Predict the nonzero structure of panel F (:, j : j + w − 1):

Determine which supernodes will update any of F (: , j: j + w − 1);
(2) Update panel F (:, j : j + w − 1) using previous supernodes:

for each updating supernode (r: s) < j in topological order do
• Triangular solve:
U(r : s, j : j + w − 1) = L(r : s, r : s)\F (r : s, j : j + w − 1);

• Matrix update:
F (s+ 1 : n, j : j + w − 1) = F (s+ 1 : n, j : j + w − 1)

− L(s+ 1 : n, r : s) · U(r : s, j : j + w − 1);
end for (r : s);

(3) Inner factorization for each column in the panel:
for column jj = j to j + w − 1 do
• Supernode-column update for column F (j : n, jj);
• Row pivoting for column F (jj : n, jj);
• Determine whether jj belongs to the same supernode as jj − 1;
• Symmetric structure pruning;

end for jj;
end for j;

Fig. 2.1. The supernode-panel factorization algorithm.

W

t

t

b

b

r s

j j+w-1

U

L

JJ

JJ

Lj:n J

PanelSupernode

Fig. 2.2. Illustration of a supernode-panel update. J = 1: j − 1.

3. Test matrices. To evaluate our algorithms, we have collected matrices from
various sources, with their characteristics summarized in Table 3.1.

Some of the matrices are from the Harwell-Boeing collection [9]. Many of the
larger matrices are from the ftp site maintained by Tim Davis of the University of

918 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

Table 3.1
Characteristics of the test matrices. Structural symmetry s is defined to be the fraction of

the nonzeros matched by nonzeros in symmetric locations. None of the matrices are numerically
symmetric. nnz(A) is the number of nonzeros in A. F = L+ U − I is the filled matrix, where I is
an identity matrix.

Matrix s n nnz(A)
nnz(A)

n
nnz(F) #flops/nnz(F)

1 Memplus .983 17758 99147 5.6 140388 12.5
2 Gemat11 .002 4929 33185 6.7 93370 16.3
3 Rdist1 .062 4134 9408 2.3 338624 38.1
4 Orani678 .073 2529 90158 35.6 280788 53.3
5 Mcfe .709 765 24382 31.8 69053 59.9
6 Lnsp3937 .869 3937 25407 6.5 427600 91.1
7 Lns 3937 .869 3937 25407 6.5 449346 99.7
8 Sherman5 .780 3312 20793 6.3 249199 101.3
9 Jpwh 991 .947 991 6027 6.1 140746 127.7
10 Sherman3 1.000 5005 20033 4.0 433376 139.8
11 Orsreg 1 1.000 2205 14133 6.4 402478 148.6
12 Saylr4 1.000 3564 22316 6.3 654908 160.0
13 Shyy161 .769 76480 329762 4.3 7634810 205.8
14 Goodwin .642 7320 324772 44.4 3109585 213.9
15 Venkat01 1.000 62424 1717792 27.5 12987004 247.9
16 Inaccura 1.000 16146 1015156 62.9 9941478 414.3
17 Af23560 .947 23560 460598 19.6 13986992 454.9
18 Dense1000 1.000 1000 1000000 1000 1000000 666.2
19 Raefsky3 1.000 21200 1488768 70.2 17544134 690.7
20 Ex11 1.000 16614 1096948 66.0 26207974 1023.1
21 Wang3 1.000 26064 177168 6.8 13287108 1095.5
22 Raefsky4 1.000 19779 1316789 66.6 26678597 1172.6
23 Vavasis3 .001 41092 1683902 41.0 49192880 1813.5

Florida.1 Those matrices are as follows. Memplus is a circuit simulation matrix from
Steve Hamm of Motorola. Rdist1 is a reactive distillation problem in chemical process
separation calculations, provided by Stephen Zitney of Cray Research, Inc. Shyy161
is derived from a direct, fully coupled method for solving the Navier–Stokes equa-
tions for viscous flow calculations, provided by Wei Shyy of the University of Florida.
Goodwin is a finite element matrix in a nonlinear solver for a fluid mechanics prob-
lem, provided by Ralph Goodwin of the University of Illinois at Urbana-Champaign.
Venkat01, Inaccura, and Raefsky3/4 were provided by Horst Simon, then of
NASA and currently at NERSC. Venkat01 comes from an implicit 2-D Euler solver
for an unstructured grid in a flow simulation. Raefsky3 is from a fluid structure
interaction turbulence problem. Raefsky4 is from a buckling problem for a con-
tainer model. Af23560 is from solving an unsymmetric eigenvalue problem, provided
by Zhaojun Bai of the University of Kentucky. Ex11 is from a 3-D steady flow cal-
culation in the SPARSKIT collection maintained by Yousef Saad at the University
of Minnesota. Wang3 is from solving a coupled nonlinear PDE system in a 3-D
(30 × 30 × 30 uniform mesh) semiconductor device simulation, as provided by Song
Wang of the University of New South Wales, Sydney. Vavasis3 is an unsymmetric
augmented matrix for a 2-D PDE with highly varying coefficients [32]. Dense1000
is a dense 1000× 1000 random matrix.

This paper does not address the performance of column preordering for sparsity.
We simply use the existing ordering algorithms provided by Matlab [18]. For all
matrices except 1 (Memplus), 15 (Venkat01), and 21 (Wang3), the columns were

1URL: http://www.cis.ufl.edu/∼davis

PARALLEL SPARSE GAUSSIAN ELIMINATION 919

Table 4.1
Characteristics of the parallel machines used in our study.

Bus Read Memory Programming
Machine Processor CPUs Bandwidth Latency Size Model
Sun

SPARCcenter 2000 SuperSPARC 4 500 MB/s 1200 ns 196 MB Solaris thread
SGI

Power Challenge MIPS R8000 16 1.2 GB/s 252 ns 2 GB Parallel C
DEC

AlphaServer 8400 Alpha 21164 8 1.6 GB/s 260 ns 4 GB pthread
Cray PVP C90 8 245.8 GB/s 96 ns 640 MB microtasking
Cray PVP J90 16 51.2 GB/s 330 ns 640 MB microtasking

permuted by Matlab’s minimum degree ordering of ATA, also known as “column
minimum degree” ordering. However, this ordering produces a tremendous amount
of fill for matrices 1, 15, and 21, because it only attempts to minimize the upper
bound on the actual fill and the upper bounds are too loose in these cases. We found
that when these three matrices were symmetrically permuted by Matlab’s symmetric
minimum degree ordering on A + AT , the amount of fill is much smaller than using
column minimum degree ordering. The last column in Table 3.1 shows the number of
nonzeros in matrix F when using these column preorderings.

The matrices are sorted in increasing order of flops/nnz(F), the ratio of the
number of floating-point operations to the number of nonzeros nnz(F). This “figure
of merit” gives the maximum potential data reuse, as described by Demmel et al. [6].
Thus, we expect uniprocessor performance to increase with increasing flops/nnz(F).

4. Shared memory multiprocessor systems used for testing. We evalu-
ated the parallel algorithm on several commercially popular machines, including the
Sun SPARCcenter 2000 [31], SGI Power Challenge [30], DEC AlphaServer 8400 [12],
and Cray C90/J90 [33, 34]. Table 4.1 summarizes the configurations and several key
parameters of the five parallel systems. In the column “Bus Bandwidth” we report
the effective or sustainable bandwidth to main memory. In “Read Latency” we report
the minimum amount of time it takes a processor to fetch a piece of data from main
memory into a register in response to a load instruction.

The last column in the table shows the programming model used to enable
multiprocessing. All the systems provide lightweight multithreading or multitask-
ing libraries. Synchronization and context switching of the threads are accomplished
rapidly at the user level, without entering the OS kernel. For P processors, we usu-
ally create P (logical) threads for the scheduling loop Slave worker() (Figure 6.1).
Scheduling these threads on available physical processors is done by the operating
system or runtime library. Thread migration between processors is usually invisible
to us. The program is easily portable to multiple platforms. The source codes on
different machines differ only in thread spawning and locking primitives.

Table 4.2 summarizes the characteristics of the individual processors in the par-
allel machines, including the clock speed, the cache size, the peak Mflop rate, and
the DGEMM and DGEMV peak Mflop rates. Most DGEMM and DGEMV Mflop
rates were measured using vendor-supplied BLAS libraries. When the vendors do
not provide a BLAS library, we report the results from PHiPAC [4], with an aster-
isk (∗) beside such a number. For some machines, PHiPAC is often faster than the
vendor-supplied DGEMM.

920 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

Table 4.2
Some characteristics of the processors used in the parallel systems.

Clock On-chip External #Flops/ Peak DGEMM DGEMV
MHz Cache Cache 1 cycle Mflops Mflops Mflops

MIPS R8000 90 16 KB 4 MB 4 360 340 210
Alpha 21164 300 8 KB-L1 4 MB 2 600 350 135

96 KB-L2
SuperSPARC 50 16 KB 1 MB 1 50 45∗ –
C90 240 – – 4 960 900 890
J90 100 – – 2 200 190 167

Table 5.1
Differences between the parallel algorithm and serial SuperLU.

Construct Parallel algorithm
Panel Restricted so it does not contain branchings in the etree (section 5.2)
Supernode Restricted to be a fundamental supernode in the etree (section 5.3)
Supernode storage Use either static or dynamic upper bound (section 5.3)
Pruning & DFS Use both G(LT) and pruned G(LT) to avoid locking (section 5.4)

5. Parallel strategies. In this section, we present crucial design choices we
have made to parallelize SuperLU, such as how we shall exploit both coarse and fine
levels of parallelism, how we shall define the individual tasks, and how we shall deal
with the issue of dynamic memory growth.

In order to make the parallel algorithm efficient, we need to make nontrivial
modifications to serial SuperLU. All these changes are summarized in Table 5.1 and
discussed in the subsections below. These show that the parallel algorithm is not a
straightforward parallelization of the serial one and illustrate the program complica-
tions arising from parallelization.

5.1. Parallelism. We exploit two sources of parallelism in the sparse LU fac-
torization. The coarse level parallelism comes from the sparsity of the matrix and is
exposed to us by the column elimination tree (or column etree for short) of A. The
vertices of this tree are the integers 1 through n, representing the columns of A. The
column etree of A is the (symmetric) elimination tree of ATA provided there is no
cancellation in computing ATA. More specifically, if Lc denotes the Cholesky factor
of ATA, then the parent of vertex j is the row index i of the first nonzero entry below
the diagonal of column Lc(:, j). The column etree can be computed from A in time
almost linear in the number of nonzeros of A by a variation of an algorithm of Liu [26].

Theorem 5.1 (column elimination tree [19]). Let A be a square, nonsingular,
possibly unsymmetric matrix, and let PA = LU be any factorization of A with pivoting
by row interchanges. Let T be the column elimination tree of A.

1. If vertex i is an ancestor of vertex j in T , then i ≥ j.
2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .
3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .
4. Suppose in addition that A is strong Hall (that is, it cannot be permuted to

a nontrivial block triangular form). If vertex j is the parent of vertex i in T ,
then there is some choice of values for the nonzeros of A that makes uij 6= 0
when the factorization PA = LU is computed with partial pivoting.

Since column i updates column j in LU factorization if and only if uij 6= 0,
part 3 of Theorem 5.1 implies that the columns in different subtrees do not update
one another. Furthermore, the columns in independent subtrees can be computed

PARALLEL SPARSE GAUSSIAN ELIMINATION 921

without referring to any common memory because the columns they depend on have
completely disjoint row indices [20, Theorem 3.2]. It has been shown in a series of
studies [14, 15, 19, 20] that the column etree gives the information about all potential
dependencies.

In general we cannot predict the nonzero structure of U precisely before the factor-
ization because the pivoting choices and hence the exact nonzero structure depend on
numerical values. The column etree can overestimate the true column dependencies.
An example is

A =

1 •
• 2 •
• 3 •
• 4

 ,

in which the Cholesky factor Lc of ATA is symbolically full, so the column etree is a
single chain. But if the numerical values are such that row 4 is selected as the pivot
row at the first step of elimination, column 1 will update neither column 2 nor column
3. Despite the possible overestimate, part 4 of Theorem 5.1 says that if A is strong
Hall, this dependency is the strongest information obtainable from the structure of A
alone.

Having studied the parallelism arising from different subtrees, we now turn our
attention to the dependent columns, that is, the columns having ancestor-descendant
relations. When the elimination process proceeds to a stage where there are more
processors than independent subtrees, we need to make sure all processors work co-
operatively on dependent columns. Thus the second level of parallelism comes from
pipelining the computations of the dependent columns.

Consider a simple situation with only two processors. Processor 1 gets a task
Task 1 containing column j, processor 2 gets another task Task 2 containing column
k, and node j is a descendant of node k in the etree. The (potential) dependency
says only that Task 2 cannot finish its execution before Task 1 finishes. However,
processor 2 can start Task 2 right away with the computations not involving column
j; this includes performing the symbolic structure prediction and accumulating the
numeric updates using the finished columns that are descendants in the etree. After
processor 2 has finished this part of the computation, it has to wait for Task 1 to finish.
(If Task 1 is already finished at this moment, processor 2 does not waste any time
waiting.) Then processor 2 will predict the new fills and perform numeric updates
that may result from the finished columns in Task 1. In this way, both processors do
useful work concurrently while still preserving the precedence constraint. Note that
we assume the updates can be done in any order. This could give different (indeed,
nondeterministic) numerical results from run to run.2

Although this pipelining mechanism is complicated to implement, it is essential
to achieve higher concurrency. This is because, in most problems, a large percentage
of the computation occurs at upper levels of the etree, where there are fewer branches
than processors. An extreme example is a dense matrix, the etree of which is a single
chain. In this case, the parallel SuperLU “reduces to” a pipelined column-oriented
dense LU algorithm.

2In order to guarantee determinism, we must statically assign the tasks to processors. The
performance cost we pay for determinism may be load imbalance and reduced parallelism. We are
considering adding an option that guarantees determinism, in order to help debug codes calling
parallel SuperLU.

922 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

(a) (b) (c)

Fig. 5.1. Panel definition. (a) a relaxed supernode at the bottom of the column etree; (b)
consecutive columns from part of one branch of the etree; (c) consecutive columns from more than
one branch of the etree.

5.2. Panel tasks. As studied by Demmel et al. [6], the introduction of super-
nodes and panels makes the computational kernels highly efficient. To retain the serial
algorithm’s ability to reuse data in cache and registers, we treat the factorization of
one panel as a unit task to be scheduled; it computes the part of U and the part of
L for all columns within this panel. Choosing a panel as scheduling unit affords the
best granularity on the SMPs we targeted and requires only modest changes to the
serial code [6]. The alternative, blocking the matrix by rows and columns [23, 29],
introduces too much synchronization overhead to make it worthwhile on SMPs with
modest parallelism.

A panel task consists of two distinct subtasks. The first corresponds to the outer
factorization, which accumulates the updates from the descendant supernodes. The
second subtask is to perform the panel’s inner factorization. We exploit parallelism
within the first subtask, but not the second.

Since the parallel algorithm uses the column etree as the main scheduling tool,
it is worth studying the relationship between the panels and the structure of the
column etree. We assume that the columns of the matrix are ordered according to a
postorder on the column etree. We expect a postorder on the column etree to bring
together unsymmetric supernodes, just as a postorder on the symmetric etree brings
together symmetric supernodes. Pictorially, panels can be classified into three types,
depending on where they are located in the etree, as illustrated in Figure 5.1.

In the pipelining algorithm, panels of type (c) complicate the record-keeping if a
processor owning this panel needs to wait for, and later perform, the updates from the
busy panels down the etree. To simplify this, we imposed two restrictions. We first
restricted the definition of panels so that type (c) panels do not occur. We will let a
panel stop before a node (column) that has more than one child in the etree. That
is, every branching node necessarily starts a new panel. Second, we make sure that
all busy descendant panels always form one path in the etree. Then the processor
waiting for these busy panels can simply walk up the path in the etree starting from
the most distant busy descendant.

With this restricted definition of panels, there will be more panels of smaller
sizes. The question arises of whether this will hurt performance. We studied the
distribution of floating-point operations on different panel sizes for all of our test
matrices and observed that usually more than 95% of the floating-point operations
are performed in the panels of largest size, and these panels tend to occur at a few
topmost levels of the etree. Thus, panels of small sizes normally do not represent much

PARALLEL SPARSE GAUSSIAN ELIMINATION 923

P1

P2 P3
1

2

3

4

5

6

7

8

Parallel execution:

Processor P1 finishes panel {3, 4} first;

Processor P2 finishes panel {1, 2} second;

Supernode

Panel

Processor P3 finishes panel {5, 6} third.

Fig. 5.2. A snapshot of parallel execution.

computation. On uniprocessors, we see almost identical performance using the original
and the new definitions of panels. Therefore, we believe that this restriction on panels
simplifies and accelerates the parallel scheduling algorithm with little performance loss
on individual processors.

5.3. Supernode storage using nonzero column counts in QR factoriza-
tion. It is important to store the columns of a supernode consecutively in memory, so
that we can call BLAS routines directly into place without paying the cost of copying
the columns into contiguous memory. Although this contiguity is easy to achieve in
a sequential code, it poses problems in the parallel algorithm.

Consider the scenario of parallel execution depicted in Figure 5.2. According to
the order of the finishing times specified in the figure, the panel consisting of columns
{3,4} will be stored in memory first, followed by panel {1,2}, and then followed
by panel {5,6}. The supernode {3,4,5,6} is thus separated by the panel {1,2} in
memory. The major difficulty comes from the fact that the supernodal structure
emerges dynamically as the factorization proceeds, so we cannot statically calculate
the amount of storage required by each supernode. Another difficulty is that panels
and supernodes can overlap in several different ways.

One immediate solution would be not to allow any supernode to cross the bound-
ary of a panel. In other words, the leading column of a panel would always be treated
as the beginning of a new supernode. Thus a panel could possibly be subdivided into
more than one supernode, but not vice versa. In such circumstances, the columns of
a supernode would always be contiguous in memory because they would be assigned
to a single processor by the scheduler. Each processor would simply store a (partial)
ongoing supernode in its local temporary store and copy the whole supernode into
the global data structure as soon as it was finished.

This restriction on supernodes would mean that the maximum size of supernodes
would be bounded by the panel size. As discussed in section 7.5 (see also Li [25]), for
best per-processor efficiency and parallelism, we would like to have large supernodes
but relatively small panels. These conflicting demands make it hard to find one good
size for both supernodes and panels. We conducted an experiment with this scheme

924 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 3 5 7 9 11 13 15 17 19 21 23
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

w = 16

w = 32

w = 48

Matrix

R
un

ni
ng

 ti
m

e
/ S

up
er

LU
 ti

m
e

Fig. 5.3. The sequential runtime penalty for requiring that a leading column of a panel also
starts a new supernode. The times are measured on the RS/6000-590.

for the sequential algorithm. Figure 5.3 shows the uniprocessor performance loss
for various panel sizes (i.e., maximum sizes of supernodes). For large matrices, say
matrices 12–21, the smaller panels and supernodes result in severe performance loss.
For example, when w = 16, the slowdown can be as large as 20% to 68%. Even for
large panel sizes, such as w = 48, the slowdown is still between 5% and 20%. However,
in the parallel algorithm, such large panels give rise to too large a task granularity
and severely limit the level of concurrency. We therefore feel that this simple solution
is not satisfactory. Instead, we seek a solution that does not impose any restriction
on the relation between panels and supernodes and that allows us to vary the size
of panels and supernodes independently in order to better trade off concurrency and
single-processor efficiency.

Our second and preferred solution is to preallocate space that is an upper bound
on the actual storage needed by each supernode in the L factor, irrespective of the nu-
merical pivoting choices. Then there will always be space to store supernode columns
as they are computed. We now describe how we preallocate enough (but not too
much) space.

After Gaussian elimination with partial pivoting, we can write A = P1L1P2L2 · · ·
Pn−1Ln−1 U , where Pi is an elementary permutation matrix representing the row
interchange at step i, and Li is a unit lower triangular matrix with its ith column
containing the multipliers at step i. We now define L as the unit lower triangular
matrix whose ith column is the ith column of Li, such that L− I =

∑
i(Li− I).3 We

3This L is different from the L̂ in PA = L̂U . Both L and L̂ contain the same nonzero values,
but in different positions. In this section, L is used as a data structure for storing L̂.

PARALLEL SPARSE GAUSSIAN ELIMINATION 925

shall make use of the following structure containment property in our storage scheme.
Here we quote only the result without proof.

Theorem 5.2 (see [14, 16]). Consider the QR factorization A = QR using
Householder transformations. Let H be the symbolic Householder matrix consisting
of the sequence of Householder vectors used to represent the factored form of Q. In
other words, we assume that no entries of H or R are zero because of numerical
cancellation. If A is a nonsingular matrix with nonzero diagonal, and L and U are
the triangular factors of A represented as above, then Struct(L) ⊆ Struct(H), and
Struct(U) ⊆ Struct(R).

In what follows, we describe how this upper bound can facilitate our storage
management for the L supernodes. First, we need a notion of fundamental super-
node, which was introduced by Ashcraft and Grimes [3] for symmetric matrices. In
a fundamental supernode, every column except the last (numbered highest) is an
only child in the elimination tree. Liu, Ng, and Peyton [27] gave several reasons
why fundamental supernodes are appropriate, one of which is that the set of funda-
mental supernodes is the same regardless of the particular etree postordering. For
consistency, we now also impose this restriction on the supernodes in L and H. For
convenience, let SL denote the fundamental supernodes in the L factor and SH denote
the fundamental supernodes in the symbolic Householder matrix H. We shall omit
the word “fundamental” when it is clear.

Our code breaks the L supernode at the boundary of an H supernode, forcing
the L supernode to be contained in the H supernode. In fact, if we use fundamen-
tal L supernodes and ignore numerical cancellation (which we must do anyway for
symmetric pruning), we can show that an L supernode is always contained in an H
supernode [21].

Our objective is to allocate storage based on the number of nonzeros in SH , so
that this storage is sufficiently large to hold SL. Figure 5.4 illustrates the idea of using
SH as a bound. Two supernodes in SL from different branches of the etree will go
to their corresponding memory locations of the enclosing supernodes in SH . Even if
an H supernode breaks into multiple L supernodes, those L supernodes will all lie on
one path in the column etree. Thus an L supernode from a different subtree cannot
interrupt the storage for a supernode as in Figure 5.2. Since the panels (and hence
the supernodes) within an H supernode are finished in order of increasing column
numbers, the columns of each SL supernode are contiguous in the storage of the SH
supernode.

To determine the storage for SH , we need an efficient algorithm to compute the
column counts nnz(H∗j) for H. We also need to identify the first vertex of each
supernode in SH . Then the number of nonzeros in each supernode is simply the
product of the column count of the first vertex and the number of columns in the
supernode.

Finding the first vertex and computing the column count can be done using a vari-
ant of the QR-column-count algorithm by Gilbert, Ng, and Peyton [21]. The modified
QR-column-count algorithm takes Struct(A) and the postordered T as inputs, and
computes nnz(H∗j) and SH . The complexity of the algorithm is O(m α(m,n)), where
m = nnz(A) and α(m,n) is the slowly growing inverse of Ackermann’s function com-
ing from disjoint set union operations. In practice, it is as fast as computing the
column etree T [25, Table 5.2]. In both the etree and QR-column-count algorithms,
the disjoint set union operations are implemented using path halving and no union
by rank (see [22] for details).

926 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

r s

Supernode in L

Supernode in H

Fig. 5.4. Bound of the L supernode storage using the supernodes in H.

One remaining issue is what we should do if the static storage given by an upper
bound structure is much too generous than actually needed. We developed a dynamic
prediction scheme as a fallback for this situation. In this scheme, we still use the
supernode partition SH . Unlike the static scheme, which uses the column counts
nnz(H∗j), we dynamically compute the column count for the first column of each
supernode in SH as follows. When a processor obtains a panel that includes the
first column of some supernode H(:, r : s) in SH , the processor invokes a search
procedure on the directed graph G(L(:, 1 : r − 1)T), using the nonzeros in A(:, r : s),
to determine the union of the row structures in the submatrix (r : n, r : s). We use
the notation D(r : n, r : s) to denote this structure. It is true that

Struct((L̂+U)(r : n, r : s)) ⊆ Struct(D(r : n, r : s)) ⊆ Struct(H(r : n, r : s)) .(5.1)

The search procedure is analogous to (but simpler than) the panel symbolic step
(Figure 2.1, step (1)); now we want only to determine the count for the column D(r :
n, r), without the nonzero structure or the topological order of the updates. Then
we use the product of nnz(D(r : n, r)) and s − r + 1 to allocate storage for the L
supernodes within columns r through s. Since nnz(L(r : n, r)) ≤ nnz(D(r : n, r)) ≤
nnz(H(r : n, r)), the dynamic storage bound so obtained is usually tighter than the
static bound.

The storage utilizations for the supernodes in SL are tabulated in Table 5.2. The
utilization is calculated as the ratio of the actual number of nonzeros in the supernodes
of L to the number of nonzeros in the supernodes of H. When collecting this data, the
maximum supernode size t was set to 64. For most matrices, the storage utilizations
using the static bound by H are quite high; they are often greater than 70% and are
over 85% for 14 out of the 21 problems. However, in the static scheme, the storage
utilizations for matrices 1 (Memplus), 15 (Venkat01), and 21 (Wang3) are only
4%, 11%, and 14%. The dynamic scheme overcomes those low utilizations. For the
three matrices above, the utilizations in the dynamic scheme are 68%, 74%, and 89%.
These percentage utilizations are quite satisfactory. For other problems, the dynamic
approaches also result in higher utilizations.

The runtime overhead associated with the dynamic scheme is usually between 2%
and 15% on the single processor RS/6000-590. From these experiments, we conclude
that the static scheme using H often gives a tight enough storage bound for SL.
For some problems, the dynamic scheme must be employed to achieve better storage

PARALLEL SPARSE GAUSSIAN ELIMINATION 927

Table 5.2
Supernode storage utilization, using static and dynamic upper bounds. The number tabulated

is the ratio of the number of nonzeros in supernodes of L to that in the prediction H.

Matrix Static Dynamic
1 Memplus .04 .68
2 Gemat11 .85 .90
3 Rdist1 .72 .73
4 Orani678 .56 .90
5 Mcfe .73 .89
6 Lnsp3937 .84 .92
7 Lns 3937 .86 .94
8 Sherman5 .92 .96
9 Jpwh 991 .88 .94
10 Sherman3 .89 .91
11 Orsreg 1 .90 .92
12 Saylr4 .89 .92
13 Shyy161 .91 .92
14 Goodwin .95 .98
15 Venkat01 .11 .74
16 Inaccura .96 .99
17 Af23560 .95 .97
18 Dense1000 1.00 1.00
19 Raefsky3 .99 .99
20 Ex11 .99 1.00
21 Wang3 .14 .89
22 Raefsky4 .99 .99
23 Vavasis3 .95 .98

utilization. Then the program will suffer from a certain amount of slowdown. Our
code tries the static scheme first and switches to the dynamic scheme only if the static
scheme requests more space than is available.

5.4. Nonblocking pruning and DFS. The idea of symmetric pruning [10, 11]
is to use a graph G′ with fewer edges than the graph G of LT to represent the structure
of L. Traversing G′ gives the same reachable sets as traversing G, but is less expensive.
As shown by Eisenstat and Liu [11], this technique significantly reduces the symbolic
factorization time.

In the sequential algorithm, in addition to the adjacency structure for G, there is
another adjacency structure to represent the reduced graph G′. For each supernode,
since the row indices are the same among the columns, we only store the row indices
of the first column of G and the row indices of the last column of G′. (If we used only
one adjacency list for each supernode, since pivoting may have reordered the rows
so that the pruned and unpruned rows are intermingled in the original row order, it
would be necessary to reorder all of L and A to account for it.)

Figure 5.5 illustrates the storage layout for the adjacency lists of G and G′ of
a sample matrix. Array Lsub[*] stores the row subscripts. G ptr[*] points to
the beginning of each supernode in array Lsub[*]. G’ ptr[*] points to the pruned
location of each supernode in array Lsub[*]. Using G ptr and G’ ptr together, we can
locate the adjacency list for each supernode in G′. This matrix has four supernodes:
{1,2}, {3}, {4,5,6}, and {7,8,9,10}. The adjacency lists for G and G′ are interleaved
by supernodes in the global memory Lsub[*]. The storage for the adjacency structure
of G′ is reclaimed at the end of the factorization.

The pruning procedure works on the adjacency lists in G′. Each adjacency list of
a supernode (actually only the last column in the supernode) is pruned at the position

928 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 • • •
• 2 • • • •

3 • •
4 • • •
• 5 • • •

• • • • • 6 • • •
7 • •

• • • • • • • 8 • •
• • • • • 9 •

• • • • 10

=⇒

1
2

3
4
5

• • 6
7

· • • 8
· 9

· 10

Factors F = L+ U − I Reduced supernodal G′

2

3 6 8 10

1 3

2

Lsub

G_ptr

1 2 6 8 2 6 8

adjacency list for G

G’_ptr

adjacency list for G’

3 6 8 10

3

4

4 5 6 8 9 7 8 9 10

5,6 7 8, 9, 10

10

106

6 8 9

Fig. 5.5. Storage layout for the adjacency structures of G and G′.

of the first symmetric nonzero pair in the factored matrix F , as indicated by the small
“·” in the figure. Both panel DFS and column DFS traverse the adjacency structure
of G′, as given by G’ ptr[*] in Figure 5.5.

In the parallel algorithm, contention occurs when one processor is performing
DFS using the adjacency list in G′ of column j (a READ operation), while another
processor is pruning the structure of column j and thus reordering the row indices
in the list (a MODIFY operation). There are two possible solutions to avoid this
contention. The first solution is to associate one mutually exclusive (mutex) lock
with each adjacency list of G′. A processor acquires the lock before it prunes the list
and releases the lock thereafter. Similarly, a processor uses the lock when performing
DFS on the list. Although the critical section for pruning can be short, the critical
section for DFS may be very long, because the list must be locked until the entire
DFS starting from all nodes in the list is completed. During this period, all the
other processors attempting to prune the list or to traverse the list will be blocked.
Therefore this approach may incur too much overhead, and the benefit of pruning
may be completely offset by the cost of locking.

We now describe a better algorithm that is free from locking. We will use both
graphs G′ and G to facilitate the DFS. Recall that each adjacency list is pruned only
once during the factorization. We will associate with each list a status bit indicating
whether or not it is pruned. Once a list is pruned, all the subsequent traversals of
the list involve only READ operations and hence do not require locking. If the search
procedure reaches a list of G′ that has not yet been pruned, we will direct the search
procedure to traverse the list of the corresponding column in G rather than G′. So,
when the search algorithm reaches column j, it does the following:

PARALLEL SPARSE GAUSSIAN ELIMINATION 929

1 3 5 7 9 11 13 15 17 19 21 23
0

0.2

0.4

0.6

0.8

1

Matrix

#
 e

d
g

e
s
 i
n

 G
’
/
#

 e
d

g
e

s
 i
n

 G

Fig. 5.6. Number of edges in G′ versus number of edges in G.

if column j has been pruned then
continue search from nodes in the G′-list of column j;

else
continue search from nodes in the G-list of column j;

endif

This scheme prevents us from using one minor working-storage optimization from the
sequential algorithm: sequential SuperLU uses separate G- and G′-lists for supernodes
with two or more columns but overlaps the lists for singleton supernodes. The parallel
code must use both lists for every supernode.

Since G′ is a subgraph of G, the DFS in the parallel code may traverse more
edges than those in the sequential code. This is because in the parallel algorithm, a
supernode may be pruned later than in the sequential algorithm. However, because
of the effectiveness of symmetric reduction, very often the search still uses the pruned
list in G′. So it is likely that the time spent in the occasional extra search in the
G-lists is much less than that when using the locking mechanism. Figure 5.6 shows
the relative size of the reduced supernodal graph G′, and Figure 5.7 shows the fraction
of searches that use the G′-lists. The numbers in both figures are collected on a single
processor Alpha 21164.

6. The asynchronous scheduling algorithm. Having described the parallel
strategies, we are now in a position to describe the parallel factorization algorithm.
Several methods have been proposed to perform sparse Cholesky factorization [13,
24, 28] and sparse LU factorization [2, 5, 17, 20] on SMPs. A common practice is
to organize the program as a self-scheduling loop, interacting with a global pool of
tasks that are ready to be executed. Each processor repeatedly takes a task from
the pool, executes it, and puts new ready task(s) in the pool. This pool-of-tasks
approach has the merit of balancing work load automatically even for tasks with large
variance in granularity. There is no notion of ownership of tasks or submatrices by
processors—the assignment of tasks to processors is completely dynamic, depending
on the execution speed of the individual processors. Our scheduling algorithm employs
this model as well. This is in contrast to some implementations of sparse Cholesky,

930 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 3 5 7 9 11 13 15 17 19 21 23
0

20

40

60

80

100

Matrix

P
e

rc
e

n
t
D

F
S

 i
n

 G
’−

lis
t

Fig. 5.7. Percent of individual search steps that take place in adjacency lists in G′.

Slave worker()

1. newpanel = NULL;
2. while (there are more panels) do
3. oldpanel := newpanel;
4. newpanel := Scheduler(oldpanel, queue);
5. if (newpanel is a relaxed supernode) then
6. relaxed supernode factor(newpanel);
7. else
8. panel symbolic factor(newpanel);
9. • Determine which supernodes will update panel newpanel;
10. • Skip all BUSY panels/supernodes;
11. panel numeric factor(newpanel);
12. • Accumulate updates from the DONE supernodes, updating newpanel;
13. • Wait for the BUSY supernodes to become DONE, then predict

new fills and accumulate more updates to newpanel;
14. inner factorization(newpanel); /* independent from other processors */
15. • Supernode-column update within the panel;
16. • Row pivoting;
17. • Detect supernode boundary;
18. • Symmetric structure pruning;
19. end if;
20. end while;

Fig. 6.1. The parallel scheduling loop to be executed on each processor.

which can schedule work to processors carefully and cheaply ahead of time [23]. The
dynamic nature of partial pivoting prevents us from doing this.

Our scheduling approach used some techniques from the parallel column-oriented
algorithm developed by Gilbert [20]. Figure 6.1 sketches the top level scheduling loop.
Each processor executes this loop until its termination criterion is met, that is, until
all panels have been factorized.

PARALLEL SPARSE GAUSSIAN ELIMINATION 931

The parallel algorithm maintains a central priority queue of tasks (panels) that
are ready to be executed by any free processor. The content of this task queue can
be accessed and altered by any processor. At any moment during the elimination,
a panel is tagged with a certain state, such as READY, BUSY, or DONE. Every
processor repeatedly asks the scheduler (at line 4) for a panel task in the queue.
The Scheduler() routine implements a priority-based scheduling policy described
below. The input argument oldpanel denotes the panel that was just finished by this
processor. The output argument newpanel is a newly selected panel to be factorized
by this processor. The selection preference is as follows:

(1) The scheduler first checks whether all the children of oldpanel’s parent panel,
say, parent, are DONE. If so, parent now becomes a new leaf and is immedi-
ately assigned to newpanel on the same processor.

(2) If parent still has unfinished children, the scheduler next attempts to take
from the queue a panel which can be computed without pipelining, that is, a
leaf panel.

(3) If no more leaf panels exist, the scheduler will take a panel that has some
BUSY descendant panels currently being worked by other processors. Then
the new panel must be computed by this processor in a pipelined fashion.

One might argue that (1) and (2) should be reversed in priority. Choosing to eliminate
the immediately available parent first is primarily concerned with locality of reference.
Since a just-finished panel is likely to update its parent or other ancestors in the etree,
it is advantageous to schedule its parent and other ancestors on the same processor.

To implement the priority scheme above, the task queue is initialized with the
leaf panels, that is, the relaxed supernodes, which are marked as READY. Later on,
Scheduler() may add more panels at the tail of the queue. This happens when all
the children of newpanel’s parent, parent, are BUSY; parent is then enqueued and is
marked as eligible for pipelining. By rule (1), some panel in the middle of the queue
may be taken when all its children are DONE. This may happen even before all the
initial leaf panels are finished. All the intermediate leaf panels are taken in this way.
By rules (2) and (3), Scheduler() removes tasks from the head of the queue.

It is worth noting that the executions of different processors are completely asyn-
chronous. There is no global barrier; the only synchronization occurs at line 13
in Figure 6.1, where a processor stalls when it waits for some BUSY updating su-
pernode to finish. As soon as this BUSY supernode is finished, all the processors
waiting on this supernode are awakened to proceed. This type of synchronization is
commonly referred to as event notification. Since the newly finished supernode may
produce new fills to the waiting panels, the symbolic mechanism is needed to discover
and accommodate these new fills.

7. Parallel performance. We now evaluate the performance of the parallel
algorithm. The organization of this section is as follows. Section 7.1 summarizes
the observed speedups on various platforms, relative to serial SuperLU. Section 7.2

Table 7.1
Time notation used to evaluate performance of the parallel algorithm.

Notation Meaning
Ts SuperLU best serial time
T ′s SuperLU serial time with smaller blocking tuned for parallel code
T1 Execution time of the parallel algorithm on one processor
TP Parallel execution time on P processors
TI Total idle time of all processors

932 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 2 3 4 5 6 7 8 9 10 11 12 13 15 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Matrix

S
pe

ed
up

 o
ve

r
S

up
er

LU P=1

P=2

P=4

Fig. 7.1. Speedup on a 4-CPU Sun SPARCcenter 2000.

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

8

Matrix

S
pe

ed
up

 o
ve

r
S

up
er

LU

P=1
P=4
P=8
P=12

Fig. 7.2. Speedup on a 12-CPU SGI Power Challenge.

quantifies parallel overhead and its impact on performance. Section 7.3 gives the
statistics of load balance. Section 7.4 studies the space efficiency of the algorithm. In
the performance evaluation, we timed various parts of the algorithms. Table 7.1 lists
our time notation.

7.1. Speedup summary. Figures 7.1 through 7.5 report the speedups of the
parallel algorithm on the five platforms, with number of threads “P” varied. Because
of memory limits we could not test all problems on the SPARCcenter 2000. The
speedup is measured against the best sequential runtime achieved by SuperLU on a

PARALLEL SPARSE GAUSSIAN ELIMINATION 933

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

8

Matrix

S
pe

ed
up

 o
ve

r
S

up
er

LU P=1

P=4

P=8

Fig. 7.3. Speedup on an 8-CPU DEC AlphaServer 8400.

1 3 5 7 9 11 13 15 17 19 21
0

1

2

3

4

5

6

7

Matrix

S
pe

ed
up

 o
ve

r
S

up
er

LU

P=1

P=4

P=8

Fig. 7.4. Speedup on an 8-CPU Cray C 90.

single processor of each parallel machine; that is, speedup = Ts/TP .

In each figure, the bottom curve labeled “P = 1” illustrates the overhead in
the parallel code when compared to the serial SuperLU, using the same blocking
parameters. The structure of the parallel code, when run on a single processor, does
not differ much from sequential SuperLU, except that a global task queue and various
locks are involved. The extra work in the parallel code is purely integer arithmetic. In
order to achieve a higher degree of concurrency, the panel size (w) and maximum size

934 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 3 5 7 9 11 13 15 17 19 21
0

2

4

6

8

10

12

14

Matrix

S
pe

ed
up

 o
ve

r
S

up
er

LU

P=1

P=4

P=8

P=16

Fig. 7.5. Speedup on a 16-CPU Cray J90.

of a supernode (maxsup) for “P > 1” are set smaller than those used for “P = 1”.4

We also tabulate these speedup figures in the appendix (Tables A.1 through A.5),
where the last two columns in each table show the factorization time and Megaflop
rate, corresponding to the largest number of processors used.

7.2. Impact of overhead on parallel efficiency. The parallel algorithm ex-
periences some overhead, which mainly comes from three sources: the reduced per-
processor efficiency due to smaller granularity of unit tasks, accessing critical sections
via locks, and orchestrating the dependent tasks via event notification. The purpose
of this section is to understand how much time is spent in each part of the algorithm
and explain the speedups we saw in section 7.1.

7.2.1. Decreased per-processor performance due to smaller blocking.
The first overhead is due to the necessity of reducing the blocking parameters in order
to achieve more concurrency. Recall that two blocking parameters affect performance:
panel size (w) and maximum size of a supernode (maxsup). For better per-processor
performance, we prefer larger values. On the other hand, the large granularity of unit
tasks limits the degree of concurrency.

On the Cray J90, this trade-off is not so important, because w = 1 is good for the
sequential algorithm. We therefore also use w = 1 in the parallel algorithm. When
varying the value of maxsup, we find that performance is quite robust in the range
between 16 and 64.

On the Power Challenge and AlphaServer 8400, we observe more dramatic dif-
ferences with varied blockings. Figures 7.6 and 7.7 illustrate this loss of efficiency for
several large problems on single processors of the two machines. In this experiment,
the parallel code is run on a single processor with two different settings of w and
maxsup. Figure 7.6 shows, on a single processor Power Challenge, the ratio of the
runtime with the best blocking for 1 CPU (w = 24,maxsup = 64) to the runtime

4Both w and maxsup denote the size in number of columns.

PARALLEL SPARSE GAUSSIAN ELIMINATION 935

13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

c
ti
o

n
 o

f
b

e
s
t
1

−
C

P
U

 p
e

rf
o

rm
a

n
c
e

Fig. 7.6. Ts/T ′s for serial SuperLU on 1-CPU Power Challenge.

13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

c
ti
o

n
 o

f
b

e
s
t
1

−
C

P
U

 p
e

rf
o

rm
a

n
c
e

Fig. 7.7. Ts/T ′s for serial SuperLU on 1-CPU AlphaServer 8400.

with the best blocking for 12 CPUs (w = 12,maxsup = 48). Figure 7.7 shows the
analogous ratio for the 8-CPU AlphaServer 8400. On the Power Challenge, the block-
ing used for best parallel performance achieves only 81% uniprocessor efficiency for
matrices 17 (Af23560) and 19 (Raefsky3). The corresponding lowest number on
the AlphaServer 8400 is 86% for matrix 22 (Raefsky4).

7.2.2. Accessing critical sections. Several places in the program must be
protected by mutual exclusion. In Table 7.2, we roughly count the number of times
the program acquires and relinquishes various locks. Note that the total number of
lockings performed is independent of the number of processors. Since we want to
allow different processors to enter different critical sections simultaneously, we use
five mutex variables to guard the five critical regions.

To see how much cost is associated with locking, in Table 7.3 we measured the time
it takes to acquire and relinquish a lock on several platforms, with different numbers

936 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

Table 7.2
Number of lockings performed.

Critical section Counts
Call Scheduler() Number of panels (approx.)∗
Allocate storage for row indices of L (Lsub) Number of supernodes
Allocate storage for L supernodes (SL) Number of supernodes
Allocate storage for a column of U (Usub/Uval) Number of columns
Increment supernode number nsuper Number of supernodes

*Here we assume that Scheduler() returns a new panel upon each call.

Table 7.3
Time in microseconds (cycles) to perform a single lock and unlock.

Machine P = 1 P = 4 P=8
SPARCcenter 2000 1.63 (82) 4.34 (217) 4.36 (218)
Power Challenge 1.13 (102) 1.98 (179) 2.02 (182)
AlphaServer 8400 0.98 (294) 2.26 (678) 2.71 (814)
Cray C90 1.34 (323) 1.09 (261) 1.40 (336)
Cray J90 2.67 (267) 4.17 (417) 4.42 (442)

of threads P . The figure in parentheses is the number of clock cycles. In this small
benchmark code, the critical section is simply one statement, to increment a counter.
The locking and unlocking are placed around this statement. The measurement is
done in a tight loop with many iterations. When there is more than one thread, the
time increases slightly, but not linearly in the number of threads.

The uniprocessor slowdown is partly due to the overhead incurred by using these
locks, when there are no other processors competing for the locks. By multiplying the
time for a single lock/unlock in Table 7.3 by the number of the lockings performed
in Table 7.2, we can estimate the locking overhead. As a concrete example, let us
consider a medium-size matrix, number 13 (Shyy161), on a single processor Cray J90.
Since the sequential code performance is 26 Mflops, each lock/unlock is equivalent to
roughly 69 floating-point operations. When the factorization is performed with panel
size w = 1, the total number of lock acquisitions is 237004, which, when multiplied
by 2.67 microseconds, results in about 0.64 seconds. This is less than 3% of the entire
factorization time (24.85 seconds). We observe that this percentage is typical for large
matrices (also the bottom curve in Figure 7.8). The locking overhead also varies with
machines. For example, it is higher on the Cray J90 than on the Power Challenge or
the AlphaServer 8400.

7.2.3. Coordinating dependent tasks. The third source of overhead is due to
insufficient parallelism in the pipelined executions of the dependent panels. Dependent
panels are those that have an ancestor-descendant relation in the column etree. When
a processor factoring a panel needs an update from a BUSY descendant panel, this
processor simply spins, waiting for that panel to finish, as shown at line 13 in the
scheduling loop of Figure 6.1. During the spin wait the processor does nothing useful.
The total amount of spin wait time observed is significant in some cases, especially
with larger numbers of processors. For example, for matrix 16 (Inaccura), on the
12-CPU Power Challenge, about 40% of the parallel runtime is spent spinning. The
corresponding number for the dense matrix is about 58%. The dense matrix is the
worst one, because the factorization of all panels must be carried out in pipelined
fashion.

Figure 7.8 depicts the locking overhead (section 7.2.2) and the spinning due to

PARALLEL SPARSE GAUSSIAN ELIMINATION 937

1 3 5 7 9 11 13 15 17 19 21
0

10

20

30

40

50

60

70

80

90

100

(1 − Efficiency)

Spin wait

Lock acquisition overhead

Matrix

P
e

rc
e

n
t

o
ve

rh
e

a
d

Fig. 7.8. Parallel overhead in percent on an 8-CPU Cray J90.

dependencies on the 8-CPU Cray J90. The locking overhead also includes the possible
contention from the 8 processors. In this figure, we also plot the inefficiency (i.e., 1-
efficiency) of the parallel algorithm. For most matrices, the spinning overhead due to
dependencies is much higher than the overhead from lock acquisition.

7.2.4. Putting all overheads together. In this subsection we evaluate the
effect of the combined overheads on the parallel efficiency. In summary, the overheads
include

Overhead (1): reduced uniprocessor performance due to smaller blocking;

Overhead (2): accessing critical sections;

Overhead (3): idle time (from spin wait in the panel pipeline and in the top-level
scheduling loop).

Overhead (1) affects only uniprocessor performance. Overhead (2) decreases both uni-
processor performance of the parallel code and parallel performance. Compared with
the serial execution, the parallel execution experiences more contention for locks.
But Table 7.3 and Figure 7.8 indicate that runtime does not increase significantly
because of contention. Therefore, we may model (2) as only adding overhead to the
uniprocessor execution. Overhead (3) exists only in the parallel computations.

We now analyze the relationships among the various times defined in Table 7.1.
All the times are measured independently. In particular, TI is obtained by timing
two kinds of idle periods on each processor and summing over all processors: one is
the spin wait in the panel update pipeline, and the other is when a processor calls
Scheduler() (line 4 in Figure 6.1) and fails to get a panel from the scheduler. We
found that, for the test matrices and the numbers of processors being considered,
failure from the scheduler rarely occurs. So most of the idle time is due to pipeline

938 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

waiting. The following relation holds for the parallel runtime:5

P TP ≈ T1 + TI .(7.1)

We now compute the observed efficiency (Eactual) as follows:

Eactual =
Ts
P TP

.(7.2)

Since TP , T1, and TI are obtained from different runs of the program, the left-
hand side and the right-hand side of (7.1) may not match well. For the purpose of
checking, we also compute the following quantity:

Echeck =
Ts

T1 + TI
.(7.3)

The closeness of Echeck to Eactual indicates the accuracy of the timings, as shown in
Tables 7.4 and 7.5.

In order to understand the impact of the overheads discussed in previous subsec-
tions on the parallel efficiency, we introduce two parameters α1 and αp, which are
calculated based on Ts, T1, TP , and TI as follows:

α1 =
T1 − Ts
T1

= 1− Ts
T1

,(7.4)

αp =
TI
P TP

.(7.5)

Both α1 and αp are in the range [0, 1); α1 measures the overhead that degrades the
uniprocessor performance, while αp measures the overhead in the parallel execution.
The smaller α1 and α2 are, the more efficient is the parallel algorithm. Since

(1− α1) · (1− αp) =
Ts
T1
· P TP − TI

P TP
≈ Ts
T1
· T1

P TP
= Eactual ,

we can use

Eest = (1− α1) · (1− αp)(7.6)

as an estimate for the actual efficiency.
In Tables 7.4 and 7.5, we report Eactual, Echeck, Eest, α1, and αp obtained on

two of the parallel machines.

Cray J90. In the first two columns of Table 7.4, we compare the estimated
efficiency Eest in (7.6) with the actually observed efficiency Eactual in (7.2). The
estimated and observed efficiencies are very close. Their differences are mostly within
5%, except for matrices 13 and 20, which have 15% and 9% differences. For these two
matrices, Eactual and Echeck differ significantly, indicating that some overhead is not
reflected in T1 or TI .

As mentioned in section 7.2.1, the uniprocessor performance on the J90 does not
degrade much with smaller maxsup; that is, Overhead (1) does not exist, so T ′s = Ts.
Therefore, Ts/T1 can be from the bottom curve in Figure 7.5. We gathered the

5In the absence of errors in the individual time measurement, equality should hold.

PARALLEL SPARSE GAUSSIAN ELIMINATION 939

Table 7.4
Efficiencies and overheads on a 16-CPU Cray J90.

Efficiency Overhead Balance
Matrix Eactual Echeck Eest α1 αp B

13 Shyy161 .47 .59 .63 .17 .23 .66
14 Goodwin .80 .79 .79 .12 .10 .97
15 Venkat01 .12 .13 .17 .32 .74 .99
16 Inaccura .46 .47 .48 .10 .46 .97
17 Af23560 .53 .55 .57 .13 .34 .93
18 Dense1000 .25 .26 .30 .07 .67 .99
19 Raefsky3 .53 .56 .58 .07 .37 .96
20 Ex11 .64 .70 .73 .05 .23 .98
21 Wang3 .19 .19 .22 .23 .71 .99
22 Raefsky4 .51 .53 .55 .02 .43 .97

Table 7.5
Efficiencies and overheads on a 12-CPU Power Challenge.

Efficiency Overhead Balance
Matrix Eactual Echeck Eest α1 αp B

13 Shyy161 .42 .54 .58 .27 .20 .70
14 Goodwin .49 .57 .61 .18 .25 .87
15 Venkat01 .17 .20 .27 .38 .56 .91
16 Inaccura .42 .45 .47 .21 .40 .88
17 Af23560 .56 .58 .59 .26 .20 .93
18 Dense1000 .35 .35 .34 .18 .58 .92
19 Raefsky3 .58 .62 .63 .25 .16 .95
20 Ex11 .64 .73 .74 .18 .09 .98
21 Wang3 .34 .36 .38 .19 .52 .93
22 Raefsky4 .54 .63 .65 .23 .15 .95
23 Vavasis3 .56 .68 .71 .14 .17 .97

statistics for αp on 16 processors, as shown in Table 7.4. For most problems, the
pipeline spin waiting, as measured by αp, is the primary cause of inefficiency. This
is particularly evident for matrices 15, 18, and 21, for which processors are idle 74%,
67%, and 71% of the time. This explains the low speedups achieved for these matrices.

Power Challenge. On a cache-based machine, the uniprocessor performance
loss of the parallel code is a combination of lockings and less efficient cache utiliza-
tion. Therefore, Ts/T1 equals the product of the numbers from the bottom curve
in Figure 7.2 (T ′s/T1) and Figure 7.6 (Ts/T

′
s). Compared to the J90, we observe that

α1 is much larger, because the cache plays an important role on the Power Challenge.
In fact, for matrices 13, 17, 19, 20, and 22, uniprocessor performance loss is more
severe than the parallel overhead, αp.

Again, for matrices 15, 18, and 21, the spin wait time is the major bottleneck; the
processors are idle more than 50% of the time. We found that Eest and Eactual did
not match as well as they did on the J90. For matrices 13, 14, and 23, the gaps are
16%, 12%, and 15%. The corresponding gaps between Echeck and Eactual are large
as well. This again indicates some overhead not accounted for in T1 or TI . We need
further study to fully understand this phenomenon.

7.3. Load balance. As mentioned earlier, our dynamic scheduling approach
can automatically balance the work load. One way to measure the load balance is as
follows. Let fi denote the number of floating-point operations performed on processor

940 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

Table 7.6
Working storage requirement as compared with the storage needed for L and U . The blocking

parameter settings are w = 8, t = 100, and b = 200.

LU storage Fraction of LU storage
Matrix (MB) P = 1 P = 8

1 Memplus 16.27 .23 1.51
2 Gemat11 1.15 .89 5.92
3 Rdist1 3.70 .23 1.54
4 Orani678 4.77 .11 .73
5 Mcfe 0.88 .18 1.26
6 Lnsp3937 4.93 .16 1.10
7 Lns 3937 7.04 .12 .77
8 Sherman5 2.75 .25 1.66
9 Jpwh 991 1.58 .13 .88
10 Sherman3 4.68 .22 1.47
11 Orsreg 1 4.23 .11 .72
12 Saylr4 6.98 .10 .70
13 Shyy161 80.01 .19 1.31
14 Goodwin 34.25 .04 .30
15 Venkat01 566.09 .02 .15
16 Inaccura 106.06 .03 .21
17 Af23560 145.02 .03 .22
18 Dense1000 9.90 .02 .14
19 Raefsky3 183.65 .02 .16
20 Ex11 277.59 .01 .08
21 Wang3 459.14 .01 .07
22 Raefsky4 271.28 .02 .10
23 Vavasis3 521.75 .02 .11

i, and let P denote the number of processors. We define the load balance B as

B =

∑
i(fi)

P maxi(fi)
.(7.7)

In other words, B equals the average work load divided by the maximum work load.
It is readily seen that 0 < B ≤ 1, and higher B indicates better load balance. If load
imbalance is the sole overhead in a parallel program, the parallel execution time is
simply the execution time of the slowest processor, whose work load is highest.

We should note that the load balance measured by (7.7) is an accurate measure
of work distribution only under the condition that each floating-point operation takes
the same amount of time. This is not the case in practice, but the large values of B
shown in the last columns of Tables 7.4 and 7.5 still show that good load balance was
achieved in terms of flop counts. Matrix 13 (Shyy161) is an exception.

7.4. Working storage requirement. The parallel algorithm may require more
working storage than the sequential one. Multiple threads share heap storage, static
storage, and code, all residing in main memory. Each thread, upon execution, is
allocated a private stack and has its own register set. Our program does not use
many stack variables, so the stack size for each thread need not be very large. All
working storage is allocated via malloc() from the heap. The working storage consists
of two parts, where one part is shared among all threads, and another part is local
to each thread. The shared working storage is mainly used to facilitate the central
scheduling activity and memory management. It includes

• one integer array of size p used as the task queue, where p is the total number
of panels;

PARALLEL SPARSE GAUSSIAN ELIMINATION 941

• one bit vector of size n to mark whether a column is busy;
• four integer arrays of size n to record the status of each panel;
• one integer array of size n to record a column’s most distant busy column

down the etree during pipelining;
• three integer arrays of size n to implement the storage layout for supernodes

(section 5.3).
The local working storage used by each thread is very similar to that used by sequential
SuperLU, that is, all that is necessary to factorize one panel. It includes

• eight integer arrays of size n to perform the panel and column DFS;
• one n-by-w integer array to keep track of the position of the first nonzero of

each supernodal segment in U ;
• one n-by-w integer array to temporarily store the row subscripts of the nonze-

ros filled in the panel;
• one n-by-w real array used as the sparse accumulator [18];
• one scratch space of size (t + b) × w to help BLAS calls. See Figure 2.1 for

the definition of t, b, and w.
This amount of local storage should be multiplied by P , where P is the number of
threads created. Thus the working storage grows affinely with respect to P , and this
algorithm, albeit efficient, is hard to scale up from a memory point of view.

To put this in perspective, Table 7.6 compares the working storage requirement
with the actual LU storage. The last two columns report the amount of working
storage as a fraction of the total LU storage in megabytes, for 1 and 8 threads. It is
clear that for P = 8, the working storage requirement can be comparable to the LU
storage for small problems. For large problems, working storage is typically 10% to
20% of the LU storage. Matrix 13 (Shyy161) is exceptionally bad: it is a matrix of
medium size for which the required working storage is more than LU storage. Since we
would not use multiple processors on the small problems anyway, the overall working
storage requirement is quite small.

7.5. A PRAM model to predict optimal speedup. Given a matrix with
a fixed column ordering, we want to establish a performance model to estimate the
maximum speedup attainable by our algorithm and, indeed, to determine the limita-
tions of algorithms based on partitioning a matrix by columns, and using a column
as a scheduling unit.

Because of various precedence constraints in the algorithm, some parts of the work
must be finished before other parts can start. Thus, the completion time of the parallel
algorithm is constrained by the amount of work that must be done serially, i.e., the
critical path. Our objective here is to give a lower bound on parallel completion time.

In the model we make the following simplifying assumptions: (1) The work in-
cludes only floating-point operations, and each floating-point operation takes one unit
of time. (2) There is an infinite number of processors. Whenever a task is ready, there
will be a free processor to execute this task immediately. (3) Accessing memory and
communication are free. (4) We ignore various overheads associated with the actual
implementation of the scheduling algorithm and the synchronizations. This model
gives an optimistic estimate; therefore, we can use it to prove upper bounds on the
performance of the parallel algorithm on a real machine.

The left-looking LU factorization algorithm can be modeled by a data structure
called a directed acyclic graph (DAG), in which edges are directed from groups of
the etree vertices representing supernodes to groups of the etree vertices representing
panels. (Panels and supernodes can overlap in arbitrary fashion.) Each node in

942 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 •
• 2 • •

3 • •
4 • •
• • •
• • 6 •

7 • •
•

• • • 9
• 10

=⇒

1 •
• 2 • •

3 • •
4 • •
• 5 • •
• • 6 •

7 • •
• • • • 8 • •

• • • • • 9 •
• • • • 10

Original A Factors F = L+ U − I

Update from supernode to panel

(panel size is 2)

Supernodes {1, 2}, {3}, {4, 5, 6}, {7, 8, 9, 10}

Panels {1, 2}, {3}, {4, 5}, {6}, {7, 8}, {9, 10}

Tmod(9, 6)

10

9

8

7

3

4

5

6

1

2

Tmod(7, 3)

Tmod(3, 2)

Tmod(7, 6)

Fig. 7.9. An example of computational DAG to model the factorization.

the DAG corresponds to the computation of a panel. An edge directed from s to
p corresponds to an update of panel p by supernode s. The edges also represent
precedence relations between the updating supernodes and the destination panels.
Figure 7.9 illustrates such a DAG for a 10-by-10 matrix.

In presenting our model, we employ the following notation:
• Tmod(p, d) := the task of updating panel p by a descendant supernode d;
• Tdiv(p) := the task of performing the inner factorization of panel p;
• tmod(p, d) := time taken by task Tmod(p, d);
• tdiv(p) := time taken by task Tdiv(p);
• EST (p) := earliest possible starting time of Tdiv(p);
• EFT (p) := earliest possible finishing time of Tdiv(p).

All times are expressed in units of floating-point operations. It is clear that for
any panel p the following relation holds: EFT (p) = EST (p) + tdiv(p).

According to our scheduling algorithm, each panel task is assigned to a single
processor. A panel task for panel p consists of the following two types of subtasks:

Tpanel(p) := {Tmod(p, d) | d ∈ D} ∪ {Tdiv(p)} ,
where D is the set of descendant supernodes that update the destination panel p.

PARALLEL SPARSE GAUSSIAN ELIMINATION 943

pd1 d2 dk

���
���
���
���

������

���
���
���
���

������

���
���
���
���
�
�
�

�
�
�

�
�
�

�
�
�

������

Tdiv(p)

d1 dk

d2

Tmod(p, d1)

Tmod(p, d2)
Tmod(p, dk)

Fig. 7.10. Tasks associated with panel p.

Figure 7.10 shows the part of the DAG associated with a particular panel p.
Each Tmod and Tdiv is an indivisible task and is carried out sequentially on one

processor. Clearly, Tdiv cannot start until all the Tmod’s have finished. By looking at
the precedence relations of these two types of tasks, we can determine the runtime of
Tpanel(p) on processor P . We will try to schedule these tasks as early as possible, in
order to derive the minimum parallel execution time.

We first look at the tasks associated with one particular panel p, as shown
in Figure 7.10. Suppose there are k descendant supernodes to update panel p, and
that all the times {EFT (d), d ∈ D} have been computed. We schedule the tasks
{Tmod(p, d), d ∈ D} to processor P in the order of Tmod(p, 1), . . . , Tmod(p, k), such
that

EFT (1) ≤ EFT (2) ≤ · · · ≤ EFT (k) .

Here, EFT (i) is the finishing time of the last column of supernode i, because a
supernode i cannot update any ancestor panel before its last column is completed.
We call this scheduling policy Sched-A. Then we can compute EST (p) and EFT (p)
as follows.

1. Run the following to get the completion times of the Tmod’s:
t = 0;
for i = 1 to k

t = max { t, EFT (i) }+ tmod(i);
endfor;

2. Set EST (p) = t and EFT (p) = t+ tdiv(p) .
Now we will give an informal argument for the optimality of the parallel runtime

resulting from Sched-A.
Theorem 7.1. For panel p, scheduling the Tmod’s by Sched-A gives the shortest

completion time.
Proof. Processor P requires at least

∑k
i=1 tmod(p, i) units of time to finish all the

updates to panel p. Now suppose another scheduling strategy Sched-B starts with
a task Tmod(p, i), i 6= 1. Due to the precedence constraint, Tmod(p, i) cannot start
until after time EFT (i) (≥ EFT (1)). That means processor P will be idle during
the period of LAG := EFT (i)− EFT (1). Thus the amount of time to finish all the

Tmod ’s will be at least LAG+
∑k
i=1 tmod(p, i).

On the other hand, in Sched-A, at least some Tmod(p, j), j < i have been scheduled
in the time period LAG. Hence the amount of work left after time EFT (i) is less

944 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

Table 7.7
Optimal speedup predicted by the model, and the column etree height.

maxsup = 32 maxsup = 64
Matrix w = 4 w = 8 w = 16 w = 4 w = 8 w = 16 height/n

1 Memplus 4.8 3.6 2.8 2.9 2.5 2.1 0.95
2 Gemat11 7.3 5.3 4.1 6.4 4.9 3.6 0.06
3 Rdist1 4.6 3.2 2.1 4.6 3.2 2.1 0.99
4 Orani678 42.2 28.4 16.6 42.2 28.4 16.6 0.64
5 Mcfe 6.6 4.3 2.6 6.6 4.3 2.6 0.67
6 Lnsp3937 23.2 15.4 9.7 23.2 15.4 9.7 0.25
7 Lns 3937 24.1 15.8 9.6 22.9 15.3 9.6 0.27
8 Sherman5 15.8 11.4 7.5 14.0 10.7 7.2 0.20
9 Jpwh 991 13.4 9.7 6.4 11.3 8.3 6.0 0.46
10 Sherman3 12.7 9.7 7.0 8.2 6.9 5.5 0.20
11 Orsreg 1 14.4 11.0 7.5 9.2 7.8 5.9 0.34
12 Saylr4 19.8 16.1 11.0 13.1 11.4 8.6 0.29
13 Shyy161 47.9 36.2 24.1 28.1 23.8 18.1 0.04
14 Goodwin 97.4 71.3 43.6 83.4 63.4 40.1 0.19
15 Venkat01 22.0 20.2 17.0 14.3 14.2 13.1 0.73
16 Inaccura 62.6 43.5 26.0 44.5 33.6 22.2 0.45
17 Af23560 70.9 55.3 37.2 41.4 35.7 27.4 0.20
18 Dense1000 33.1 23.7 18.4 18.2 14.9 12.7 1.00
19 Raefsky3 140.2 110.6 80.8 80.4 69.6 56.5 0.21
20 Ex11 106.7 83.5 58.2 61.6 53.2 41.7 0.35
21 Wang3 57.6 43.4 29.4 34.3 28.9 22.1 0.94
22 Raefsky4 99.1 77.1 52.0 56.3 48.5 37.3 0.33
23 Vavasis3 176.5 133.9 90.7 106.2 89.5 68.2 0.18

than the work left when using Sched-B. Sched-A will have an earlier finishing time
than Sched-B.

We are now ready to simulate parallel computation for the whole factorization.
To begin with, the EST s of the leaf panels in the column etree are initialized to zero.
Various times can be computed successively from the bottom of the etree to the top.
By applying the argument above inductively to all the panels in the DAG, with leaf
panels as the basis, we can show that EFT (root panel) gives the minimum execution
time. The (predicted) optimal speedup can then be computed by

Predicted speedup =
Total flops

EFT (root panel)
.

There are several points worth noting in this model. First, because of numer-
ical pivoting, we do not know the computational DAG in advance of the factoriza-
tion; rather, the DAG is built incrementally as the factorization proceeds. Also, the
floating-point operations associated with all the tasks are calculated on the fly. So this
model gives an a posteriori estimate. Second, for each panel computation, the schedul-
ing method of Sched-A requires sorting the EFT ’s of all the descendant supernodes
that will update this panel. The cost associated with this sorting is prohibitively high,
and so this method cannot be used to schedule panel updates in practice. Neverthe-
less, this gives us an upper bound on the theoretically attainable speedup.

In our algorithm, two parameters control task granularity: the panel size w de-
termines the amount of work in a Tdiv task, and both w and the maximum supernode
size maxsup determine the amount of work in a Tmod task. Any large supernode of
size exceeding maxsup (such as in a dense matrix) is divided into smaller ones so that
they fit into a cache.

Table 7.7 reports the predicted speedups when varying w and maxsup. For a fixed
value of maxsup, the simulated speedups decrease with increasing w. For sequential

PARALLEL SPARSE GAUSSIAN ELIMINATION 945

SuperLU we find empirically that the best choice for w is between 8 and 16, depending
on matrices and architectures. In the parallel setting, a smaller w—say, between 4 and
8—seems to give the best overall performance. This embodies an interesting trade-off
between available concurrency and per-processor efficiency.

We now compare the results when fixing w but varying maxsup. In sparser
matrices, such as matrices 1–10, the actual sizes of supernodes may be much smaller
than maxsup. The performance for such matrices are not so sensitive to maxsup.
However, for larger and denser matrices, a larger value of maxsup results in poorer
speedup.

Finally we note that the speedups for small matrices are very low, even with small
values of w and maxsup. Fortunately, for large matrices such as 13–21, the predicted
speedups are greater than 20 when w = 8 and maxsup = 32. These matrices perform
more than one billion floating-point operations in the factorization. It is these matrices
that require parallel processing power. The current column-oriented algorithm is well
suited for most of the commercially popular SMPs, because the number of processors
on these systems is usually below 20.

The height of the column etree can also be used as a crude prediction of the
parallel performance. The height of a node i is defined as

height(i) =

{
0 if i is a leaf node,
1 + max{ height(j) | j ∈ child(i)} otherwise.

The height of the etree is the height of the root, which represents the longest path
in the etree. The computation of all the nodes along this path must be performed
in succession. Therefore, the length of the critical path constrains performance. The
last column of Table 7.7 shows the height of the etree over total numbers of nodes n in
the etree. The larger height/n is, the larger the fraction of panels will be factorized
in pipelined manner, resulting in poor parallelism and more synchronizations. For
example, height/n for matrices 1, 3, 15, and 21 is rather large. This is consistent
with the lower predicted speedups. However, we must note that the etree height
alone is not an accurate measure of parallelism. For example, both dense matrix (18)
and a tridiagonal matrix have height/n = 1.00, but the former possesses much more
concurrency than the later.

The actual speedups achieved are much lower than the upper bounds predicted
by the PRAM model (Figures 7.1 through 7.5). This is because the model does not
capture the details of the machines and the implementation, such as cache behavior,
synchronization, etc. However, we do see a similar shape of speedup curves. For
example, the model predicts that matrices 15 and 21 have lower speedups compared
with the other large matrices. In reality, these two matrices perform worse than the
others. The poor performance is primarily due to two factors: (1) The column etree is
tall and contains substantial false dependencies. (2) The dynamic algorithm is needed
to allocate memory for the supernodes (section 5.3), because the static upper bound
on supernode storage is too large for these two problems (Table 5.2).

8. Conclusions. We have designed and implemented a parallel algorithm for
shared memory multiprocessors of modest size. The efficiency of the algorithm has
been demonstrated on several parallel machines. Figure 8.1 shows the speedups on 8
processors of three parallel machines. Figures 8.2 through 8.5 summarize the factor-
ization rate in Megaflops for six large matrices, with increasing numbers of processors.
We believe these large problems are the primary candidates to be solved on parallel
machines. In fact, the largest one in our test suite takes a little more than 0.5 GBytes

946 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

11 12 13 14 15 16 17 18 19 20 21 22
1

2

3

4

5

6

7

8

Power Challenge
Cray J90
AlphaServer 8400

Matrix

S
pe

ed
up

Fig. 8.1. Speedups on 8 processors of the Power Challenge, the AlphaServer 8400, and the
Cray J90.

1 4 8 12
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Fig. 8.2. Mflop rate on an SGI Power Challenge.

memory, far less than most parallel machines offer. Our algorithm is expected to work
well for even larger problems.

For a realistic problem arising from a 3-D flow calculation (matrix 20, Ex11), on
the 12-CPU Power Challenge, the 8-CPU Cray C90, the 16-CPU J90, and the 8-CPU
AlphaServer 8400, our parallel algorithm achieves 23%, 33%, 25%, and 17% peak
floating-point performance. The respective Mflop rates are 1002, 2583, 831, and 781.

PARALLEL SPARSE GAUSSIAN ELIMINATION 947

1 2 4 8
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Fig. 8.3. Mflop rate on a DEC AlphaServer 8400.

1 2 4 8
0

500

1000

1500

2000

2500

3000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Fig. 8.4. Mflop rate on a Cray C90.

These are the fastest results for the unsymmetric LU factorization on these powerful
high-performance machines. Previous results showed much lower factorization rates
because the machines used were relatively slow and the computational kernel in the
earlier parallel algorithms was based on Level 1 BLAS. The closest work is the parallel
symmetric pattern multifrontal factorization by Amestoy and Duff [1], also on SMPs.
However, that approach may result in too many nonzeros and so may be inefficient
for unsymmetric pattern sparse matrices.

948 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

1 4 8 16
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Fig. 8.5. Mflop rate on a Cray J90.

Another contribution is to provide detailed performance analysis and modeling for
the underlying algorithm. In particular, we identified the three main factors limiting
parallel performance: (1) contention for accessing critical sections, (2) processors
sitting idle due to pipeline waiting, and (3) the need to sacrifice some per-processor
efficiency in order to gain more concurrency. Which factor plays the most significant
role depends on the relative performance of integer and floating-point arithmetic in
the underlying architecture.

We have developed a theoretical model to analyze our parallel algorithm and pre-
dict the optimally attainable speedup. When comparing the theoretical prediction
(Table 7.7) with the actual speedups (Figure 8.1), we find that there exists a discrep-
ancy between the two. This is because our hypothetical machine and the optimal
scheduling used in the model do not capture all the details of a real machine with real
scheduling. Nevertheless, we do see a similar behavior in the predicted and actual
speedups. That is, for the matrices with lower predicted speedups, such as 11, 15,
18, and 21, the actual speedups are also lower. The model is a useful tool to help
identify the inherently sequential problems with bad column orderings. The model
also suggests that the panel-wise parallel algorithm, although efficient on small scale
SMPs, cannot effectively utilize more than 50 processors.

We plan to expand this research in several directions. We will study a more
scalable algorithm for larger parallel machines. That algorithm will likely partition the
matrix by both rows and columns, and schedule blocks of submatrices onto processors.
This will potentially increase parallelism, and reduce the panel update pipeline waiting
time. In the framework of SuperLU, both serial and parallel, we will investigate
incomplete LU factorizations, which can be used as a class of preconditioners for
unsymmetric sparse iterative solvers.

PARALLEL SPARSE GAUSSIAN ELIMINATION 949

Appendix A. Performance of the parallel algorithm.

A.1. On the Sun SPARCcenter 2000.

Table A.1
Speedup, factorization time, and Mflop rate on a 4-CPU SPARCcenter 2000.

Matrix P = 1 P = 2 P = 4 Seconds Mflops
1 Memplus 0.44 0.82 0.74 2.35 1
2 Gemat11 0.77 1.25 1.51 0.47 3
3 Rdist1 0.86 1.92 1.82 1.71 8
4 Orani678 0.71 1.24 2.08 1.98 8
5 Mcfe 0.79 1.38 2.00 0.45 9
6 Lnsp3937 0.96 1.85 2.03 2.26 18
7 Lns3937 0.92 1.73 3.09 2.41 19
8 Sherman5 0.83 1.70 2.81 1.26 20
9 Jpwh991 0.77 1.56 2.77 0.84 22
10 Sherman3 0.90 1.74 2.92 2.77 22
11 Orsreg1 0.89 1.75 3.17 2.27 27
12 Saylr4 0.88 1.76 3.10 4.17 25
13 Shyy161 0.90 1.82 3.25 59.55 26
15 Goodwin 0.92 1.86 3.61 20.50 33
18 Dense1000 0.97 1.96 3.64 16.39 41

Mean speedup 0.83 1.62 2.64
Std deviation 0.13 0.32 0.83

A.2. On the SGI Power Challenge.

Table A.2
Speedup, factorization time, and Mflop rate on a 12-CPU SGI Power Challenge.

Matrix P = 1 P = 4 P = 8 P = 12 Seconds Mflops
1 Memplus 0.72 1.73 1.73 1.69 0.42 4
2 Gemat11 0.89 1.86 2.36 3.71 0.07 22
3 Rdist1 0.89 1.66 1.56 2.23 0.44 32
4 Orani678 0.68 1.72 2.40 2.56 0.45 33
5 Mcfe 0.68 1.92 2.09 3.29 0.07 59
6 Lnsp3937 0.97 3.00 3.65 3.86 0.35 122
7 Lns3937 0.98 2.98 3.92 3.73 0.40 117
8 Sherman5 0.86 2.29 3.09 3.09 0.23 111
9 Jpwh991 0.83 2.40 3.43 5.33 0.09 205
10 Sherman3 0.87 2.36 2.78 2.78 0.40 157
11 Orsreg1 0.88 2.67 2.73 2.97 0.34 180
12 Saylr4 0.90 2.81 3.48 4.58 0.38 284
13 Shyy161 0.86 2.71 3.54 5.06 4.64 332
14 Goodwin 0.89 3.45 5.17 5.90 1.56 433
15 Venkat01 0.65 1.72 2.00 1.98 15.37 209
16 Inaccura 0.85 2.77 4.14 5.00 9.53 438
17 Af23560 0.91 2.98 5.10 6.70 8.87 722
18 Dense1000 0.85 2.64 3.32 4.17 0.90 740
19 Raefsky3 0.92 3.07 5.62 6.91 11.35 1070
20 Ex11 0.94 3.23 5.96 7.64 26.95 1046
21 Wang3 0.85 2.20 3.39 4.03 21.37 681
22 Raefsky4 0.94 3.05 5.17 6.52 33.57 936
23 Vavasis3 0.91 3.58 6.06 6.69 105.06 862

Mean speedup 0.86 2.56 3.59 4.37
Std deviation 0.09 0.59 1.36 1.73

950 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

A.3. On the DEC AlphaServer 8400.

Table A.3
Speedup, factorization time, and Mflop rate on an 8-CPU DEC AlphaServer 8400.

Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mflops
1 Memplus 0.46 0.79 0.79 0.78 0.64 0.59 3
2 Gemat11 0.83 1.63 1.88 1.88 1.88 0.08 20
3 Rdist1 0.90 1.98 2.10 1.77 1.77 0.31 40
4 Orani678 0.83 1.29 2.00 2.33 2.42 0.26 57
5 Mcfe 0.72 1.80 3.00 2.17 2.17 0.06 66
6 Lnsp3937 0.93 1.94 3.19 3.68 3.68 0.25 159
7 Lns3937 0.95 1.83 3.08 3.81 4.12 0.25 187
8 Sherman5 0.91 1.89 2.89 2.94 2.94 0.17 151
9 Jpwh991 0.92 1.89 3.00 3.30 3.00 0.11 178
10 Sherman3 0.88 1.83 2.72 2.74 2.74 0.34 180
11 Orsreg1 0.93 1.88 2.93 3.35 3.35 0.26 231
12 Saylr4 0.91 1.98 3.20 3.78 4.08 0.38 276
13 Shyy161 0.95 1.93 3.23 4.21 4.79 4.66 334
14 Goodwin 0.99 1.98 3.68 5.39 6.33 1.49 453
15 Venkat01 0.89 1.92 2.95 3.04 3.16 10.62 303
16 Inaccura 0.99 1.83 3.08 4.15 5.02 10.94 380
17 Af23560 0.95 1.98 3.72 5.03 5.77 11.58 553
18 Dense1000 0.98 1.86 3.35 4.32 4.80 0.99 675
19 Raefsky3 0.98 1.98 3.81 3.16 3.61 28.65 422
20 Ex11 0.99 1.98 3.76 5.56 7.06 34.23 781
21 Wang3 0.93 1.98 3.69 4.75 5.61 21.36 682
22 Raefsky4 0.98 1.98 3.81 5.44 6.63 42.79 734
23 Vavasis3 0.96 1.97 3.69 5.28 6.64 124.24 724

Mean speedup 0.92 1.74 2.89 3.59 4.01
Std deviation 0.13 0.28 0.81 1.31 1.77

A.4. On the Cray C90.

Table A.4
Speedup, factorization time, and Mflop rate on an 8-CPU Cray C 90.

Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mflops
1 Memplus 0.66 0.75 0.74 0.72 0.71 1.24 2
2 Gemat11 0.76 1.36 2.27 3.09 3.40 0.10 15
3 Rdist1 0.71 1.98 2.41 2.41 2.31 0.48 34
4 Orani678 0.72 1.24 2.22 2.91 3.20 0.41 37
5 Mcfe 0.69 1.25 1.82 2.00 2.00 0.10 43
6 Lnsp3937 0.78 1.51 2.77 2.84 4.41 0.27 151
7 Lns3937 0.78 1.51 2.95 3.97 4.23 0.30 156
8 Sherman5 0.77 1.49 2.90 3.59 4.07 0.15 170
9 Jpwh991 0.78 1.52 2.50 3.18 2.92 0.12 164
10 Sherman3 0.79 1.48 2.53 2.97 2.97 0.29 214
11 Orsreg1 0.80 1.53 2.69 3.25 3.55 0.22 278
12 Saylr4 0.83 1.58 3.05 3.85 3.97 0.33 318
13 Shyy161 0.80 1.50 2.87 3.87 4.86 3.29 477
14 Goodwin 0.84 1.65 3.31 4.83 6.59 0.99 682
15 Venkat01 0.70 1.28 1.65 1.73 1.74 14.04 229
16 Inaccura 0.86 1.70 3.19 4.38 5.21 5.18 807
17 Af23560 0.84 1.63 3.22 4.56 4.89 6.24 1035
18 Dense1000 0.95 1.86 2.95 3.30 3.55 0.71 943
19 Raefsky3 0.91 1.74 3.45 4.77 5.83 6.17 1977
20 Ex11 0.90 1.65 3.21 5.02 6.53 10.37 2583
21 Wang3 0.78 1.48 1.82 2.31 2.32 14.62 996
22 Raefsky4 0.92 1.80 3.43 4.60 5.46 13.13 2399

Mean speedup 0.80 1.53 2.63 3.42 3.85
Std deviation 0.08 0.27 0.67 1.11 1.55

PARALLEL SPARSE GAUSSIAN ELIMINATION 951

A.5. On the Cray J90.

Table A.5
Speedup, factorization time, and Mflop rate on a 16-CPU Cray J90.

Matrix P = 1 P = 4 P = 8 P = 12 P = 16 Seconds Mflops
1 Memplus 0.65 0.94 0.98 0.97 0.76 3.67 1
2 Gemat11 0.71 2.44 4.38 5.25 5.83 0.18 8
3 Rdist1 0.71 2.86 2.88 2.71 2.39 1.53 10
4 Orani678 0.71 2.07 3.11 3.82 3.85 1.13 13
5 Mcfe 0.77 2.21 2.70 2.70 2.52 0.29 15
6 Lnsp3937 0.75 2.87 4.91 6.21 6.39 0.66 62
7 Lns3937 0.79 2.75 4.63 5.41 5.41 0.83 58
8 Sherman5 0.80 2.91 4.64 5.07 5.32 0.41 63
9 Jpwh991 0.78 2.72 3.57 3.68 3.38 0.37 49
10 Sherman3 0.80 2.63 3.49 3.42 3.31 0.96 66
11 Orsreg1 0.83 2.83 3.88 4.22 4.16 0.70 89
12 Saylr4 0.81 2.91 4.26 4.82 4.82 0.99 108
13 Shyy161 0.83 2.92 5.30 6.94 7.47 8.06 196
14 Goodwin 0.88 3.32 6.66 10.02 12.81 1.94 354
15 Venkat01 0.68 1.84 1.96 1.98 1.90 47.34 68
16 Inaccura 0.90 3.26 5.55 6.64 7.39 15.09 277
17 Af23560 0.87 3.22 5.98 7.55 8.49 15.05 431
18 Dense1000 0.93 2.84 3.79 3.92 3.91 2.61 256
19 Raefsky3 0.93 3.38 6.20 7.69 8.43 19.03 641
20 Ex11 0.95 3.56 6.53 9.47 10.17 32.48 831
21 Wang3 0.77 2.53 3.21 3.14 3.06 50.42 288
22 Raefsky4 0.98 3.54 5.87 7.36 8.12 43.54 723

Mean speedup 0.81 2.75 4.29 5.13 5.45
Std deviation 0.09 0.60 1.51 2.38 2.97

Acknowledgments. Ed Rothberg not only provided us access to the SGI Power
Challenge, but also helped improve performance of our algorithm. We thank Esmond
Ng for correspondences on the issues of nonzero structure prediction, which helped
design the memory management scheme discussed in section 5.3. We thank Kathy
Yelick for suggestions on the presentation of the performance analysis section. We
thank Osni Marques, Peter Tang, and the anonymous referees for their suggestions
on improving the presentation of the material.

REFERENCES

[1] P. R. Amestoy and I. S. Duff, MUPS: A Parallel Package for Solving Sparse Unsymmetric
Sets of Linear Equations, Technical report, CERFACS, Toulouse, France, 1994.

[2] P. R. Amestoy, Factorization of Large Unsymmetric Sparse Matrices Based on a Multifrontal
Approach in a Multiprocessor Environment, Technical report TH/PA/91/2 and Ph.D. the-
sis, CERFACS, Toulouse, France, February 1991.

[3] C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal
method, ACM Trans. Math. Software, 15 (1989), pp. 291–309.

[4] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chin, Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-performance, ANSI C Coding Methodology, Technical
report CS-96-326, Computer Science Dept., University of Tennessee, Knoxville, TN, May
1996 (LAPACK Working Note 111).

[5] T. A. Davis and P.-C. Yew, A nondeterministic parallel algorithm for general unsymmetric
sparse LU factorization, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 383–402.

[6] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of FOR-
TRAN basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[8] J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

952 J. W. DEMMEL, J. R. GILBERT, AND X. S. LI

[9] I. S. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans. Math. Soft-
ware, 15 (1989), pp. 1–14.

[10] S. C. Eisenstat and J. W. H. Liu, Exploiting structural symmetry in unsymmetric sparse
symbolic factorization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 202–211.

[11] S. C. Eisenstat and J. W.H. Liu, Exploiting structural symmetry in a sparse partial pivoting
code, SIAM J. Sci. Comput., 14 (1993), pp. 253–257.

[12] D. M. Fenwick, D. J. Foley, W. B. Gist, S. R. VanDoren, and D. Wissel, The AlphaServer
8000 series: High-end server platform development, Digital Tech. J., 7 (1995), pp. 43–65.

[13] A. George, M. T. Heath, J. Liu, and E. Ng, Solution of sparse positive definitive systems on
a shared-memory multiprocessor, Internat. J. Parallel Programming, 15 (1986), pp. 309–
325.

[14] A. George, J. Liu, and E. Ng, A data structure for sparse QR and LU factorizations, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 100–121.

[15] A. George and E. Ng, An implementation of Gaussian elimination with partial pivoting for
sparse systems, SIAM J. Sci. Stat. Comput., 6 (1985), pp. 390–409.

[16] A. George and E. Ng, Symbolic factorization for sparse Gaussian elimination with partial
pivoting, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 877–898.

[17] A. George and E. Ng, Parallel sparse Gaussian elimination with partial pivoting, Ann. Oper.
Res., 22 (1990), pp. 219–240.

[18] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in Matlab: Design and imple-
mentation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[19] J. R. Gilbert and E. G. Ng, Predicting structure in nonsymmetric sparse matrix factoriza-
tions, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and
J. W. H. Liu, eds., Springer-Verlag, New York, 1993, pp. 107–139.

[20] J. R. Gilbert, An Efficient Parallel Sparse Partial Pivoting Algorithm, Technical report CMI
88/45052-1, Christian Michelsen Institute, Bergen, Norway, 1988.

[21] J. R. Gilbert, E. G. Ng, and B. W. Peyton, Computing row and column counts for sparse
QR factorization, talk presented at Fifth SIAM Conference on Applied Linear Algebra,
Snowbird, UT, June 1994; journal version in preparation.

[22] J. R. Gilbert, E. G. Ng, and B. W. Peyton, An efficient algorithm to compute row and
column counts for sparse Cholesky factorization, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075–1091.

[23] A. Gupta and V. Kumar, Optimally scalable parallel sparse Cholesky factorization, in Proc.
7th SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Philadelphia,
PA, 1995, pp. 442–447.

[24] A. Gupta, E. Rothberg, E. Ng, and B. W. Peyton, Parallel sparse Cholesky factorization
algorithms for shared-memory multiprocessor systems, in Advances in Computer Methods
for Partial Differential Equations–VII, R. Vichnevetsky, D. Knight, and G. Richter, eds.,
IMACS, New Brunswick, NJ, 1992, pp. 622–628.

[25] X. S. Li, Sparse Gaussian Elimination on High Performance Computers, Technical report
UCB//CSD-96-919 and Ph.D. thesis, Computer Science Division, University of California,
Berkeley, CA, September 1996.

[26] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[27] J. W. H. Liu, E. G. Ng, and B. W. Peyton, On finding supernodes for sparse matrix com-
putations, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 242–252.

[28] E. Ng and B. W. Peyton, A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors, SIAM J. Sci. Comput., 14 (1993), pp. 761–769.

[29] E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization on
the iPSC/860 and Paragon multicomputers, SIAM J. Sci. Comput., 17 (1996), pp. 699–713.

[30] SGI Power Challenge, Technical report, Silicon Graphics, Mountain View, CA, 1995.
[31] SPARCcenter 2000 architecture and implementation, Technical white paper, Sun Microsystems,

Inc., Mountain View, CA, November 1993.
[32] S. A. Vavasis, Stable finite elements for problems with wild coefficients, SIAM J. Numer. Anal.,

33 (1996), pp. 809–916.
[33] The Cray C 90 series, Cray Research, Inc., Eagen, MN, http://www.cray.com/swpubs/
[34] The Cray J90 series, Cray Research, Inc., Eagen, MN, http://www.cray.com/swpubs/

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF A USER
INTERFACE FOR A SPARSE MATRIX PACKAGE∗

ALAN GEORGE† AND JOSEPH LIU‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 953–969

Abstract. The authors designed and implemented a sparse matrix package called Sparspak in
the late 1970s. One of the important features of that package is an interface which shields the user
from the complicated calling sequences common to most sparse matrix software. The implementation
of the package was challenging because the relatively primitive but widely available Fortran 66
language was used. Modern programming languages such as Fortran-90 and C++ have important
features which facilitate the design of flexible and “user-friendly” interfaces for software packages.
These features include dynamic storage allocation, function name overloading, user-defined data
types, and the ability to hide functions and data from the user. This article describes the redesign of
the Sparspak user interface using Fortran-90 and C++, outlining the reasons for its various features
and highlighting similarities and differences in the features and capabilities of the two languages.
The two new implementations of Sparspak have been named Sparspak-90 and Sparspak++.

Key words. sparse matrix software, object-oriented numerical software, user interfaces

AMS subject classifications. 65F10, 65F50

PII. S0895479897317739

1. Introduction. Sparspak is a sparse matrix package that was designed and
implemented by the authors in the late 1970s.1 One of the important features of the
package is a user interface which shields the user from the complicated calling se-
quences common to most sparse matrix software available at that time. A description
of the interface together with motivation for its design can be found in [4].

This paper describes the design and some general implementation issues of the new
version of Sparspak. The software is being implemented in C++ and Fortran-90, and
the two implementations are referred to as Sparspak++ and Sparspak-90 throughout
this paper. An “object-oriented” approach to the design has been adopted, reflecting
widely accepted software engineering practice [1, 8].

Software for solving sparse systems of equations involves relatively complicated
data structures which are not provided as standard data types in the language in which
the software is implemented. Solving a sparse system of equations usually consists
of a number of individual steps typically involving different types of data structures;
sometimes data used at one step can be discarded at the end of it and the storage
released for later use. Sometimes the amount of storage required is not known until
at least some of the computation has been completed.

When Sparspak was implemented, Fortran 66 and its successor, Fortran 77, were
used almost exclusively for scientific computing. Neither language provides user-
defined data types nor dynamic storage allocation. Consequently, the subroutines
and functions implementing sparse matrix software tend to have long argument lists,

∗Received by the editors February 27, 1997; accepted for publication (in revised form) by E.
Ng January 30, 1998; published electronically July 9, 1999. This work was supported by Natural
Sciences and Engineering Research Council of Canada grants OGP 000811 and OGP 005509.

http://www.siam.org/journals/simax/20-4/31773.html
†Department of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

(jageorge@sparse.uwaterloo.ca).
‡Department of Computer Science, York University, Toronto, ON, M3J 1P3, Canada

(joseph@cs.yorku.ca).
1Dr. Esmond Ng, currently at the Mathematical Sciences Section, Oak Ridge National Labora-

tory, collaborated with the authors on a second release of the package in 1984.

953

954 ALAN GEORGE AND JOSEPH LIU

most of which have little or no relevance for the user of the software. One of the main
roles of the interface is to provide the user with simple subroutines whose argument
lists, to the extent possible, include only information specific to the problem; that
is, information that the user would inevitably know. The interface provides for the
allocation of storage and creation of data structures using the more primitive data
types available in the language. In addition, the interface ensures that its subroutines
are called in the correct order, provides uniform error message handling, and collects
timing and storage statistics.

There are several motivations for revisiting the interface design. First, Sparspak
has been in use for more than 15 years, and the users of the package have provided
useful feedback concerning both strong points and shortcomings of the interface. In
addition, Fortran has evolved substantially, so that the current standard, Fortran-90
[7], contains modern programming language features that make implementation of a
user interface far more convenient and effective. Collaterally, Fortran is no longer
the exclusive choice of scientific programmers; C [6] and C++ [11] are becoming
increasingly popular for implementing scientific software. Both of these languages
have features that are desirable in connection with implementing an interface for a
sparse matrix package. Finally, experience suggests that the package should cater
to a broader audience. When Sparspak was designed, it was assumed that its users
would be primarily engineers and scientists whose main interest would be solving
sparse problems arising in their applications. That is, it would serve as a utility in
various scientific applications and application packages. However, the package also
has been used extensively by researchers in sparse matrix computation. Thus, there
is a motivation to redesign it so that it can also serve as a research test bed for
experts in the field of sparse matrix computation. A corollary of this objective is
that the interface should be flexible enough to support techniques for dealing with
a wide spectrum of sparse matrix problems. The original package was restricted
to positive definite problems, and to least squares problems which could be solved
using techniques largely adapted from those used for positive definite problems. This
restriction simplified the design of the user interface.

An outline of the paper follows. Section 2 contains a brief review of the basic
steps that are performed in connection with solving large sparse systems of equations,
along with various contexts in which sparse systems are solved. This establishes
the capabilities that one would expect to find in a reasonably comprehensive sparse
matrix solver, regardless of whether it even has an interface. This in turn provides a
framework for identifying the features that we believe an ideal user interface should
possess in order that users, sophisticated and otherwise, are able to conveniently
exploit the capabilities of the package. Section 3 describes the basic elements of the
design of the package along with a description of the major objects that are integral
parts of it. Section 4 contains some examples of how the package might be used, with
particular focus on how users with varying levels of knowledge or sophistication can
use the package. This section provides a context in which to demonstrate how the
design objectives from section 2 are achieved, with comments about how the design,
together with various programming language features, promotes that objective. The
last section contains concluding comments about how various programming language
features aid in the implementation of the design, drawing attention to the similarities
and differences between C++ and Fortran-90, at least with respect to this application.

2. Design considerations. Loosely speaking, a user interface is something that
allows a user to access the capabilities of a system. In the present context, the interface

AN OBJECT-ORIENTED USER INTERFACE 955

is simply a layer of software which shields the user from the complications associated
with sparse matrix software, yet allows one to use that software in a natural and
convenient way to solve sparse systems of equations. Naturally, the design of the
interface is conditioned by the capabilities of the underlying sparse matrix software,
so an essential first step is to describe what is assumed to be those capabilities.

For definiteness, the problem to be solved will be denoted by

Ax = b,

where A is an n×n sparse coefficient matrix, and the method to be used is Gaussian
elimination.2 A triangular factorization of the matrix is computed, followed by the
solution of two triangular systems in order to obtain the solution x.

There is no general “best method” for solving sparse systems of equations. Even
if one restricts the basic algorithm to Gaussian elimination, the way it is best im-
plemented often depends on the characteristics of the given sparse linear system.
Therefore, a sparse matrix package should accommodate a variety of methods and al-
low for convenient inclusion of methods yet to be developed. This should be possible
with minimal disruption to the interface.

Sparse systems arise in a variety of contexts. Sometimes many problems having
the same structure must be solved, and sometimes many problems differing only in
their right-hand sides must be solved. Also, the way in which their structure and
numerical values become available is highly variable. The package should be able to
handle these situations efficiently and the interface should make it convenient and
natural for the user to exploit that capability.

The discussion above suggests the capabilities that one would expect in a rea-
sonably comprehensive sparse matrix package. In particular, there would be software
available to handle sparse positive definite systems, sparse symmetric indefinite sys-
tems, and general sparse unsymmetric systems. These include software for ordering
algorithms, software for creating appropriate data structures, and software for imple-
menting the actual numerical routines. In what follows, we regard the software that
does all these tasks, together with the user interface, as the package.

In general terms, the interface should support the following objectives:
• Usability. The intellectual overhead in learning to use the package should be

low.
• Versatility. The package should be flexible; that is, it should be convenient

to use in a wide variety of situations.
• Layered accessibility. The package should serve users having different levels

of expertise in sparse matrix computation, ranging from the casual user to
the sparse matrix researcher.
• Extensibility. The package should be designed so that it can be extended

easily to new methods as they are developed and also to other classes of
problems, such as sparse least squares problems and sparse nonlinear systems
of equations. Ideally, such extensions should cause minimal or no disruption
to the basic structure of the interface.
• User control. The interface should provide useful feedback, and the amount

of such feedback should be under the control of the user.

2The authors’ ultimate objective is to provide a package which deals with more general problems,
such as over- and underdetermined systems. Solving such systems may involve algorithms other than
Gaussian elimination, such as orthogonal factorization. However, for purposes of presentation, we
restrict our attention to square systems, since their requirements are diverse enough that meeting
the needs of these problems also provides the flexibility required to deal with more general classes.

956 ALAN GEORGE AND JOSEPH LIU

3. Basic elements of the design. This section describes some of the essential
ingredients of the package, with particular emphasis on its user interface. This pro-
vides a context in which to explain how many of the design objectives outlined in the
previous section have been achieved.

3.1. C++ and Fortran-90 classes. For illustration purposes, some Fortran-90
source codes are included with the description. However, C++ examples could have
as easily been included, and the discussion is largely language-independent.3 The
main features used to achieve the design objectives are available in both languages,
although the details differ somewhat.

One of the key features used is the ability to encapsulate data structures and
functions or subroutines that act upon them together as a single entity. In C++
these are classes and each class contains member variables and member functions.4

Fortran-90 does not really have an analogue of a C++ class. It supports the feature of
derived (user-defined) data types. However, unlike member functions in C++ classes,
there is no facility to explicitly bind functions or subroutines to a data type.

In Sparspak-90, modules are used to support features similar to classes in C++.
A Fortran-90 module can contain declarations of derived data types and procedures.
A programming style has been adopted in Sparspak-90 such that a module contains
a derived type together with routines that act on that data type. In other words, a
logical association of a set of routines and a derived type is provided through mem-
bership in a module. Furthermore, the binding of these routines with the derived
type can be achieved in a natural way by including an object of the derived type as
an argument in each of the routines. This organization allows one to treat (and think
about) Fortran-90 modules and C++ class definitions in the same way.

In what follows, the term “class” will be used. For C++ programmers, the
meaning will be immediate. For Fortran-90 programmers, this should be interpreted
as a module that defines a data type, together with a collection of routines that act
on instances of that data type.

Instances of a class are called objects. A program may have several objects of
the same class having different names. From the perspective of a typical user, use of
the package involves creating and using two types of objects: Problem objects and
Solver objects. These are described in the sections that follow.

3.2. The problem class. Regardless of the level of user sophistication, one
task is fundamental and ubiquitous: the user must communicate the sparse matrix
problem to the package, and the user interface should make this as convenient as
possible. The task is complicated by the variety of ways in which the problem may
materialize, as well as by transformations that the user might want to apply to the
input. The different ways include the following:

• The structure of the problem and its numerical values may become available
simultaneously or at differing times.
• There may be many systems to be solved, differing only in their numerical

values.
• There may be numerous problems that differ only in their right-hand sides;

these may be available all at once, or each may be the result of computations
involving previous right-hand side(s) in a sequence. The latter circumstance

3The corresponding C++ examples can be found online at http://www.cs.yorku.ca/∼joseph/.
4Member variables are sometimes referred to as instance variables, and member functions are

sometimes referred to as “methods.”

AN OBJECT-ORIENTED USER INTERFACE 957

arises naturally if the package is being used in connection with solving a
system of nonlinear equations.
• Given the matrix A, it may be desirable to generate a right-hand side corre-

sponding to a given solution or, given the structure of A, it may be desirable
to assign numerical values giving A certain properties (random, symmetric,
positive definite, diagonally dominant, etc.). Such capabilities can be useful
in developing and testing software.

The list above is far from exhaustive but serves to illustrate the variety of sit-
uations which the package should be able to handle. With these considerations in
mind, it seems natural and compelling that the package should contain a class that
can be viewed as the “problem repository.” This class is given the name Problem,
since objects of this class contain the numerical values and structure of the coefficient
matrix, its right-hand side(s), corresponding solution vectors, and related information
pertaining to the problem.

The class Problem has various member routines which operate on its data.
Roughly speaking, these routines fall into four categories:

1. Procedures which provide for input of structural and numerical values, such
as InAij, InRow, InColumn, and InRhs.

2. Procedures which adjust the input, such as ReplaceAij, MakeGSymmet-
ric, and MakeASymmetric. (The latter two procedures make the problem
structurally and numerically symmetric, respectively.)

3. Procedures which retrieve and/or display information, such as GetRhs, Get-
Solution, and PrintSolution.

4. Procedures which provide information about the problem, such as IsASym-
metric, IsGSymmetric, and IsAijPresent. The first two procedures
determine whether the matrix is numerically and structurally symmetric,
respectively, while the latter two determine whether the ijth element of the
matrix is present.

An important aspect of the Problem class is its general purpose design. It can
represent sparse matrix problems with square or rectangular matrices, with symmetric
or unsymmetric structures, and with symmetric or unsymmetric numerical values.
The general nature of its design allows easy extension of the package in the future
to handle more general types of sparse problems, thus promoting one of the design
objectives, namely, that the package should be easily extendible.

In order to provide concreteness to the description above, Figure 1 contains a
Fortran-90 subroutine which generates an n × n tridiagonal matrix problem. The
example provides an initial opportunity to elaborate on several design features of
Sparspak++ and Sparspak-90. Extensive use is made of the programming language
feature known as function name overloading, which is available in both Fortran-90
and C++. That is, different routines are allowed to have the same names, provided
that their parameter lists (“signatures”) differ. The compiler detects which routines
should be called by matching up the types and number of parameters in the routines.
Thus, routines which perform essentially the same role, even though they may employ
different internal data structures or operate on different objects, can still have the same
name. This name overloading capability is an important way in which the intellectual
overhead in learning and using the package is reduced.

Referring to the example in Figure 1, an instance of the problem class is initialized
by calling the function Construct. All objects in the package are initialized by calling

958 ALAN GEORGE AND JOSEPH LIU

subroutine MakeTriDiagProblem(p, n)

use Sparspak90

integer :: n, i

type (Problem) :: p

call Construct(p, "TriDiagProblem")

do i = 1, n-1

call InAij(p, i+1, i, -1D0); call InAij(p, i, i, 4D0)

call InAij(p, i, i+1, -1D0); call InRhs(p, i, 1D0)

end do

call InAij(p, n, n, 4D0); call InRhs(p, n, 1D0)

end subroutine MakeTriDiagProblem

Fig. 1. Tridiagonal test problem generator.

a function whose name is Construct.5 Of course, the routine that is actually executed
will depend on the type of the first member of the argument list (which the compiler
can determine). The key point is that the user has to remember only one function
name in connection with creating new objects, regardless of their type or class.

Another example demonstrating the convenience of overloading is illustrated by
the function InAij in the example in Figure 1. As noted in the previous section, the
structure and the numerical values of the system of equations can arrive at different
times and in different aggregations. If the user does not know the value of aij but
wishes to communicate the fact that the ijth element of A is nonzero, the function
InAij is still used but the last parameter is omitted.6 Analogously, overloaded input
routines InRow, InColumn, and InSubMatrix are available in the event that the
nonzeros (or perhaps only their positions in the matrix) become available by rows or
columns or as submatrices. Similar remarks apply to InRhs. The right-hand side
b can be input one element at a time, as shown in the example in Figure 1, or as
a subvector with an accompanying list of subscripts, or all at once. In all cases a
function with the same name is called. Thus, the user must remember only a small
number of function names to use Problem objects.

The call to the routine Construct in the example in Figure 1 illustrates another
design feature. All objects that are created during the use of Sparspak are given names
so that if they later generate error messages or other information, they can “identify
themselves.” Each class has a character string member variable called objectName,
and the printing of object information always includes its objectName for identifi-
cation. Since there may be numerous objects of the same type present in an executing
program, this self-identification is important in helping the user understand output
from his or her program. The explicit naming of each object created is optional; if the
user omits the parameter, a name for the object is created automatically. Each class
has a function ReName to make it possible for the user to change the name of an
object if that is desirable. The setup allows users to assign unique names to objects
for identification.

5This statement and the rest of the paragraph applies only to Sparspak-90. In C++, constructors,
which play the same role as Construct, are called automatically whenever an object of a class is
instantiated.

6Fortran-90 supports the notion of optional arguments, so this feature can be achieved in Fortran-
90 by using an optional argument rather than subroutine name overloading.

AN OBJECT-ORIENTED USER INTERFACE 959

program SimpleExample

use Sparspak90

type (Problem) :: p

type (SparseSpdSolver) :: s

call MakeTriDiagProblem(p, 5) ! create test problem

call Construct(s, p) ! create solver object

call Solve (s, p) ! instruct s to solve p

call PrintSolution(p) ! print the solution

call Destruct(p); call Destruct(s) ! release storage

end program SimpleExample

Fig. 2. Simple use of the package.

Another noteworthy feature is that each class has standard member procedures
Save and Restore for saving and restoring the contents of an object to and from an
external file.

3.3. The solver class. The second major type of object that the typical user
of the package will employ is a “solver” object. Loosely speaking, a solver object
accepts a problem object as input and produces a solution to the problem. The
package contains numerous different “solvers” for sparse systems of equations. That
is, in addition to a class of type Problem in the package, there are solver classes,
each consisting of a particular data structure, ordering algorithm, and numerical
factorization and substitution routines; together, these implement a particular overall
approach to solving a sparse system. For example, for symmetric positive definite
systems, there are several effective algorithms for finding a low fill ordering; there are
several efficient methods for storing Cholesky factors; and there are several efficient
ways of implementing the factorization using the same data structure (left-looking,
right-looking, multifrontal [3, 5, 9]). Various solvers result from selecting different
combinations of these options.

The multitude of solvers is necessary because problems vary in several dimensions.
They may or may not be square; if square, they may or may not be structurally sym-
metric. If they are structurally symmetric, they may or may not be numerically
symmetric. Regardless of either shape or symmetry, row and/or column interchanges
may be necessary to ensure numerical stability. In addition, for any particular com-
bination of problem attributes above, there may be more than one approach that will
solve the problem. Of course, a solver that assumes no special features will cope with
them all but not as efficiently as one that exploits special features that a problem
may possess.

3.4. Coarse structure of Sparspak. At a low (coarse) level of resolution, the
package can be regarded as consisting of just two fundamental types of classes, namely,
Problem and xxxSolver, where xxx denotes one of the numerous possibilities men-
tioned above. For example, Sparspak contains a solver for symmetric positive definite
problems that reorders the problem to reduce fill. This solver class has the name
SparseSpdSolver, standing for Sparse Symmetric positive-definite Solver. A simple
example showing its use is given in Figure 2, where the subroutine in Figure 1 is used
to create a small symmetric positive definite tridiagonal problem.

The package also contains a solver for symmetric positive definite problems that
orders the problem so that it has a small envelope. This solver class has the name
EnvSpdSolver, which stands for Envelope-reducing Symmetric positive definite Solver.

960 ALAN GEORGE AND JOSEPH LIU

Fig. 3. Coarse structure of Sparspak.

The only change necessary in the program in Figure 2 in order to use this solver would
be in line 4, where SparseSpdSolver would be changed to EnvSpdSolver. The use
of function name overloading for Solve and Destruct means that no other changes
are required; of course different procedures will be invoked. The compiler detects
which procedures should be called by matching up the types and numbers of param-
eters in the procedures.

“Behind the scenes,” Solve invokes subroutines which carry out the four standard
steps of solving a sparse positive definite system. These subroutine names are also
overloaded; they are invoked by the same names, regardless of the actual sparse
positive definite system solver class being used:

1. FindOrder: find an appropriate ordering;
2. SymbolicFactor: symbolic factorization;
3. Factor: numerical factorization;
4. Substitute: numerical forward and backward substitution.

Before numerical factorization, Solve will also invoke InMatrix to extract the nu-
merical matrix values from a given matrix Problem and place them into the internal
data structure. The subroutine name InMatrix is also overloaded, so that all Solve
subroutines use the same name, although the subroutine that it invokes depends on
the actual solver, since the data structures that store the Cholesky factor will generally
differ across solvers.

Thus, from the perspective of a typical user, Sparspak can be viewed as shown in
Figure 3. Two types of objects are involved in its use, namely, problem objects and
solver objects.

Figure 3 provides focus for an important point about the solver objects. As the
example in Figure 2 illustrates, a solver module can be used to solve a problem using
a single call to the subroutine Solve. That routine in turn invokes other subroutines
mentioned above to perform the various steps in solving a symmetric positive definite
system. These are the subroutines listed in the lower subbox in the box labeled

AN OBJECT-ORIENTED USER INTERFACE 961

xxxSolver. However, these routines are also accessible directly by the user; a user
who wishes to control when various steps of the computation are performed, or wishes
to execute only some of the steps, can invoke these “second-level” procedures directly.
The solvers contain private state variables (not accessible by the user) that ensure
these subroutines are called in the correct order and that issue warnings or fatal error
messages if they are called out of sequence.

It was noted earlier that there is no need for a function Construct in C++
because constructors are automatically called whenever a new object is created. Sim-
ilarly, when objects disappear in C++ as a result of leaving the scope in which the
object was declared, destructors are automatically invoked. This is not the case in
Fortran-90, so Sparspak-90 has Destruct routines to explicitly release storage used
by objects when they are no longer needed.

4. Meeting the design objectives. Section 2 described a number of design
objectives, and section 3 provided a general description of the design of Sparspak. The
objective of this section is to provide some examples which illustrate how the design
of the previous section allows the objectives to be met. Throughout this section,
references will be made to the five objectives enumerated in section 2.

One objective of the redesign of Sparspak is that it be able to cater to the needs of
a wide variety of users, from the casual user who may know little about sparse matrix
technology to the sparse matrix researcher who might use the package as a “toolbox”
containing functionality useful in advancing the field. To that end, the examples in
this section illustrate how the package might be employed by users with varying levels
of sophistication or need.

At a very coarse level, usage of the package can be divided into two categories:
standard usage and research usage. The distinction is based on the objects the user
declares and manipulates. Of course this distinction is somewhat arbitrary, but it
is useful in understanding the design and usage of the package. Standard users are
those who are aware of the coarse structure of the package, as described in the previous
section. Of course, within this group of users there will still be substantial variation
in the level of sophistication, but the objects that are manipulated by the user will be
generally limited to Problem objects and Solver objects. Some will use only a few
of the interface routines available and make no use of options that might be available,
while others will make extensive use of them. Research users, on the other hand, will
declare and manipulate some or all of the more basic objects within the package, such
as graphs, orderings, and so on. These objects will be used as building blocks for the
researcher’s own software development efforts.

4.1. Standard usage of the package. A simple example of basic usage of the
package was introduced in Figure 2. The user instantiates an object of the Problem
class, “loads” it with a problem, creates a Solver object, and then uses it to solve the
problem. If the user does not know that the problem has any special characteristics
(or that it may not have any), then the solver chosen will be a general one that
assumes no special properties.

For purposes of this discussion, suppose the problem to be solved is symmetric
and positive definite and that an envelope method is to be used to solve the problem.
Also, suppose one step of iterative refinement is to be performed on the solution.
These computations would be performed as shown in Figure 4. Here a built-in test
problem generator MakeGridProblem is used. The package provides a number of
subroutines to generate standard problems for testing software.

962 ALAN GEORGE AND JOSEPH LIU

program refine

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: s

real (double), dimension(36) :: x, res

call MakeGridProblem(p, 6, 6, "9pt") ! create test problem

call Construct(s, p) ! create solver object

call Solve(s, p) ! solve for initial solution

call ComputeResidual(p, res) ! compute the residual

call PrintVector(res, "residual") ! print the residual

call Solve(s, res) ! solve for correction

call GetSolution(p, x); ! retrieve the solution

x = x + res ! compute improved solution

call PrintVector(x, "refined solution") ! print solution

call Destruct(s); call Destruct(p) ! release storage

end program refine

Fig. 4. Sample user program—one step of iterative refinement.

The function name Solve is overloaded within each solver. In the example, the
first call to it involves the solver and problem objects s and p, and the solution is put
in the problem object p. In the second call to Solve, its arguments are the solver and
a vector rhs containing the right-hand side; its contents are replaced by the solution.

Just as in the example in Figure 2, a change of only one text string in the program
(EnvSpdSolver) is all that is needed to change the solver being used. All other
function names would remain unchanged.

The second example in this section demonstrates how two different methods for
solving a problem might be compared in terms of storage requirements and execution
times. Such quantities are automatically captured within each solver. Suppose a
user wants to compare the performance of the envelope and sparse solvers applied
to a 50× 50 grid problem obtained using a nine-point difference operator. One such
program to do this is shown in Figure 5. Note again the use of name overloading:
Factor, PrintStats, and Destruct invoke different subroutines, depending on the
types of their parameters.

It was noted at the end of the previous section that interface routines for solver
objects can be invoked at two levels. The user may choose to invoke only the Solve
function; in that case, the appropriate routines will be called in the required order,
and a solution will be produced. However, a user may wish to select various options
that might be available within a solver and/or explicitly invoke some of the steps. An
example appears in Figure 6. A grid problem is generated, just as in the example in
Figure 5. Then the problem is factored using an envelope solver, where the default
ordering is overridden by a random ordering. (The function RandomOrdering is
a built-in function in Sparspak that generates a random ordering.) Then the same
problem is factored using a fill-reducing solver, but the default ordering subroutine is
overridden by a user-supplied subroutine called MyOrdering. To be able to imple-
ment such a subroutine, of course, the user must know the interface for such ordering
subroutines.

Thus, some users of Sparspak will at times use the solver objects at this next level
of resolution, explicitly invoking subroutines which execute the individual steps of the
solution process. Some will select various options that may be available to adjust the

AN OBJECT-ORIENTED USER INTERFACE 963

program compare

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: envSolver

type (SparseSpdSolver) :: sparseSolver

call MakeGridProblem(p, 50, 50, "9pt") ! test problem

call Construct(envSolver, p) ! create solver objects

call Construct(sparseSolver, p)

call Solve(envSolver, p) ! solve problem using each method

call Solve(sparseSolver, p)

call PrintStats(envSolver) ! print performance statistics

call PrintStats(sparseSolver)

call Destruct(p) ! release storage

call Destruct(envSolver); call Destruct(sparseSolver)

end program compare

Fig. 5. Sample user program—comparing two solvers.

program myorder

use Sparspak90

type (Problem) :: p

type (EnvSpdSolver) :: envSolver

type (SparseSpdSolver) :: sparseSolver

interface

subroutine MyOrdering(g, order)

use Sparspak90

type (Ordering) :: order

type (Graph) :: g

end subroutine MyOrdering

end interface

call MakeGridProblem(p, 25, 25, "9pt") ! test problem

call Construct(envSolver, p) ! create solver objects

call Construct(sparseSolver, p)

call Factor (envSolver, p, RandomOrdering)

call PrintStats(envSolver, "random ordering: envelope solver")

call Factor(sparseSolver, p, MyOrdering)

call PrintStats(sparseSolver, "My ordering: sparse solver")

call Destruct(p) ! release storage

call Destruct(envSolver); call Destruct(sparseSolver)

end program myorder

Fig. 6. Using options in the package.

964 ALAN GEORGE AND JOSEPH LIU

program SimpleResearchUsage

use Sparspak90

type (Problem) :: p

type (Grid) :: grd

type (Graph) :: g

type (Ordering) :: rcmOrder, mmdOrder

call Construct(grd, 4, 4) ! create 4 by 4 grid object

call MakeGridProblem(p, grd, "9pt")

call Construct(g, p) ! create graph object from p

call Picture(g) ! draw incidence matrix of the graph

call Print(g) ! print the adjacency lists of g

call RCM(g, rcmOrder) ! find RCM ordering of g

call Picture(g, rcmOrder)! draw incidence matrix:RCM-reordered graph

call MMD(g, mmdOrder) ! find MMD ordering of g

call Picture(g, mmdOrder)! draw incidence matrix:MMD-reordered graph

call Destruct(g); call Destruct(p); call Destruct(grd) ! release storage

call Destruct(rcmOrder); call Destruct(mmdOrder)

end program SimpleResearchUsage

Fig. 7. Simple research-level usage of the package.

behavior of the algorithms executed at each step. However, the basic objects that the
user manipulates remain the same, and the details of data structures and algorithms
are hidden from the user. The user needs only to be concerned with the “essential
ingredients” of the problem.

The example in Figure 6 illustrates another design feature of Sparspak. Heavy use
is made of optional arguments. Many of the subroutines allow the user to include a
text string as a parameter to aid in making output from the package understandable.
In the example, such a string is included in the calls to the subroutine PrintStats.

4.2. Research usage of the package. At this level of usage of the package, the
user will be aware of some or perhaps all of the major classes or modules, along with
the various routines that operate on objects from these classes. These include such
things as graphs, orderings, elimination trees, grids, and so on. A simple example of
usage at this level is given in Figure 7. The comments in the program in Figure 7
provide an explanation of what the program does.

The example in Figure 7 illustrates a number of additional features of Sparspak.
Essentially all objects have the capability of printing themselves; that is, there is a
subroutine called Print (heavily overloaded) that will print the contents of an object.
For example, if the argument is a graph, the adjacency lists of the graph will be
printed. If the object is a problem object, a listing of the nonzeros in the matrix and
their positions will be printed, and similarly for other objects. Solver objects print
detailed information about their data structures and orderings. These are mainly
useful to sparse matrix researchers and for instructional purposes.

Similarly, many objects are able to draw a “picture” of themselves. For example,
it is often useful to be able to see the structure of matrices and graphs, and there are
Picture routines which provide such pictures. Indeed, even the solvers in Sparspak

AN OBJECT-ORIENTED USER INTERFACE 965

have Picture routines which provide pictures of the data structures used. Again,
such routines are useful for sparse matrix researchers as well as helpful in connection
with teaching about sparse matrix methods. As usual, the name is overloaded so
that the user needs only to remember one name, regardless of what object is being
pictured.

In cases where it makes sense to print or provide a picture of a permuted form
of the object, such as when the object is a graph or a problem, then an ordering
object can be (optionally) provided to the print and picture routines. This option is
used in the example in Figure 7, where a picture of the graph under the two different
orderings found is printed.

4.3. Low intellectual overhead. The examples in the previous subsections
make it evident that learning how to use the standard capabilities of the package is
relatively simple. Of course, if one wants to utilize the many options available, or use
the basic building blocks within the package, more must be learned. However, learning
to use the basic power and functionality of the software requires little intellectual
investment. This has been achieved through the following:

1. Simple structure. The typical user really needs to know about only two kinds
of objects, namely, problem objects that contain information about a sparse
system of equations, and solver objects which accept a problem as input and
produce a solution as output.

2. Name overloading. The user must remember only a few function names in
order to use the package. Functions which perform essentially the same task,
regardless of the underlying data structure and algorithms being used, are
invoked by the same name.

3. Information hiding. Intricate data structures used in storing sparse factors
and detailed implementation of numerical routines are hidden from the user.

4.4. Flexibility of the package. The examples presented above illustrate how
the package can cope with a wide variety of circumstances. The features that facilitate
its flexibility are as follows:

1. Object-oriented design, which allows multiple problem and solver objects to
be manipulated in one program.

2. There are a variety of methods available for solving a sparse system. The
various scenarios (multiple systems with the same structure, multiple systems
differing only in the right-hand side, etc.) can be handled in a natural way,
as illustrated by the example in Figure 4.

The example in Figure 6 illustrates how optional parameters allow the user to
replace the standard subroutines that find the ordering. Although only a modest
number of solution methods exist in the current package, the design allows the simple
extension of the package to include additional new methods.

4.5. Serving different users. One of the design objectives was to be able to
cater to the needs of users with varying levels of expertise. The examples in the
previous subsections demonstrate that the design allows this to occur in a more or
less seamless fashion.

At a basic level, the user creates one or more problem objects and one or more
solver objects. Depending on the context, relatively few member routines of those
objects might be invoked. An example of such usage is given in Figure 2.

On the other hand, the context might require slightly more functionality: One or
more of the second-level routines in the solver (FindOrder, SymbolicFactor, etc.)

966 ALAN GEORGE AND JOSEPH LIU

might be invoked. An example of this somewhat more sophisticated use of the package
is given in Figure 4. Other examples of the usage of these second-level routines in a
solver are given in Figures 5 and 6.

Finally, the individual basic objects upon which the package is based can also be
employed by the user. This is illustrated by the example in Figure 7.

4.6. User-package communications. Messages from the package are grouped
into three categories: error messages, warning messages, and information messages.
The extent to which these messages are printed is under the control of the user through
the value of a messageLevel variable. If it is set to zero, all messages are suppressed.
Setting it to one allows fatal errors to be printed; setting it to two allows warning
messages to be printed as well; and setting it to three permits all messages to be
printed. The message level can be reset during execution.

Sparspak allows multiple objects of the same class in the same program. As noted
earlier, to provide clear association of messages with objects, each object has a string
variable objectName for its identification. All messages printed are accompanied by
the corresponding objectName. This allows the user to relate package messages to
the objects that printed them.

To facilitate the use of the package by researchers, a debugging facility has been
included in Sparspak, using ideas borrowed in part from a debugging facility provided
in the Nachos system [2]. The user can select one of four debugging levels which control
the amount of debugging information printed. Setting the level to zero will suppress all
debugging information, with levels one, two, and three specifying increasing amounts
of information. Additionally, debugging messages can be grouped into categories
through the use of debug flags. For example, if a researcher is developing a new
ordering subroutine, only messages associated with orderings and graphs may be
desired. By setting the debug flag to “og,” only messages with “o” (ordering) or “g”
(graph) in their argument list will be printed. In this way, a software developer can
choose to print only messages within specified categories as well as control the amount
of information through setting the debug level. These parameters can be reset at any
time in the user program so that the user can choose different types and levels of
debugging information at selective portions of his or her code.

In Sparspak++, “conditional include” has been used for all the debugging state-
ments. In a production environment, the user can simply choose to exclude all such
debugging statements in compiling the code. On the other hand, for research develop-
ment of new algorithms, the package should be compiled including these statements.

Unfortunately, Fortran-90 has no such conditional include facility, so a much less
elegant solution has been used. All statements associated with debugging have a
trailing comment of the form !DEBUG, so that a simple text stream processor can
strip out the debugging statements prior to compilation when a “production version”
of the package is desired.

5. C++ and Fortran-90: Concluding remarks. The development of the
Sparspak++ and Sparspak-90 versions of Sparspak is an ongoing project. This article
has described the objectives of the revision to Sparspak, which represent a substantial
broadening over those of the original Sparspak package. In particular, supporting a
much larger problem class and catering to the needs of a broad spectrum of users
are prime objectives. The previous sections have provided the essential features of
the design, along with a rationale for it. Also included was a collection of sample
programs and commentary about them illustrating the way the design, together with
various language features, allows the objectives enunciated in section 2 to be met.

AN OBJECT-ORIENTED USER INTERFACE 967

Both C++ and Fortran-90 have a number of features that have been critical
in achieving the design objectives set for Sparspak. The ability to overload function
names is immensely helpful in keeping low the number of names a user must remember
and is also helpful in understanding the structure of the package.

Another important feature of both languages is the ability to create “objects.”
Although Fortran-90 is not as versatile as C++ in this respect, it is possible with
a simple programming protocol to have Fortran-90 modules and C++ classes serve
more or less identical roles in the implementations of Sparspak-90 and Sparspak++.
This feature is important in meeting one of the design goals, namely, the ability
to simultaneously have a number of sparse matrix problems in the process of being
solved.

In terms of providing a friendly and versatile interface to the user, one can easily
conclude that these two programming language features are among the most impor-
tant.

An important difference between the two languages that had a significant effect
on the ease of implementation was support of inheritance. Briefly, in C++ new classes
can be created from existing base classes by “subclassing” them. That is, one can de-
fine new classes as extensions of existing classes by declaring additional variables and
introducing additional member functions. The new class thus defined inherits all the
variables and functions from the base class. For example, the underlying structure of
Sparspak++ involves the definition of an SpdSolver class containing basic objects
and functions common to all symmetric positive definite direct solvers. Subclasses
of SpdSolver will inherit this set of member variables and member functions from
SpdSolver. Other functions and their interfaces may be declared in SpdSolver,
but the actual implementations of these member functions will depend on the so-
lution methods and will appear in subclasses of SpdSolver. There are currently
two subclasses of SpdSolver: EnvSpdSolver for the envelope solution method and
SparseSpdSolver for the sparse solution method. This feature has the important
and well-known advantage of promoting the reuse of software and making it more
manageable. Only one base class has to be maintained, even though it might be used
in numerous other classes.

Unfortunately, Fortran-90 does not support the notion of inheritance, so the ben-
efits of the strategy described above are less convenient to realize. There are modules
containing the user-defined data types and the subroutines that implement each basic
approach; these correspond to the subclasses of SpdSolver in the C++ implemen-
tation. For example, EnvSpdBase is one such Sparspak-90 “class” and another is
SparseSpdBase. The corresponding solver EnvSpdSolver is created in a mod-
ule with user-defined data type EnvSpdSolver having as one of its components
EnvSpdBase. Thus, EnvSpdBase can be viewed as a subclass of EnvSpdSolver
in the sense of C++. Similarly, a SparseSpdSolver is created in a module with user-
defined data type SparseSpdSolver having as one of its components SparseSpdBase.
This technique is known as composition in the software engineering literature.

At first glance, the advantage of software commonality appears to be lost, since
there are two “base classes,” namely, EnvSpdSolver and SparseSpdSolver. How-
ever, these solver classes are virtually identical. They differ only in the name of their
user-defined data type and in the name of one of its components. Name overloading
allows all subroutine calls to be otherwise identical. To change the EnvSpdSolver
module to the SparseSpdSolver solver requires only a simple global text change.
Thus, in reality only one solver module needs to be maintained. The use of makefiles

968 ALAN GEORGE AND JOSEPH LIU

and stream editor scripts allows the various solvers to be generated automatically,
and effective reuse of common software is achieved.

The Sparspak++ implementation makes extensive use of a standard C++ library,
called the Standard Template Library (STL) [10]. This has been a very substantial aid
in implementing many of the fundamental classes in Sparspak++. For example, the
STL vector and list classes are used extensively in creating the Sparspak++ Graph
class.7 There does not appear to be anything similar available in Fortran-90; such a
library would be very valuable, although it is not obvious that the language supports
the generality required to allow such a library to be implemented.

Not surprisingly, Fortran-90 has some powerful features for numerical computa-
tion that are absent in C++. Perhaps the most notably useful are various array
operations. The so-called colon notation, allowing a subarray to be referenced, is
highly useful. Also, array-valued subscripts are extremely useful in gather-scatter
operations and in applying permutations to arrays.

There are several features within C++ and absent in Fortran-90 that are poten-
tially useful, although their utility has not been fully explored at the time of writing.
One is dynamic binding, that is, the ability to establish links to routines at execution
time. A need for this feature has not yet been encountered, but it may be in the future.
The other notable feature in C++ that is almost certain to be useful is the ability
to “throw” and “catch” exceptions, such as floating-point overflow, divide-by-zero,
etc. When such exceptions happen many levels down within the procedure hierarchy,
it is often necessary to pass such information up the hierarchy to a level where the
exception can be addressed. The throw-and-catch facility available in C++ obviates
the need to have error flags appear in the argument lists of the routines which either
raise the exception, service it, or simply transmit it from one call level to another.

Finally, there are some differences in the way function name overloading is done
in the two languages and in the way function parameters are handled. However, the
capabilities are comparable and did not lead to a real distinction between the two
languages in terms of ease of implementation.

Acknowledgments. The authors would like to thank the referees and Dr. John
Lewis for many perceptive comments that have greatly improved the layout, notation,
and general readability of the paper.

REFERENCES

[1] G. Booch, Object-Oriented Analysis and Design with Applications, Benjamin/Cummings Pub-
lishing Co., Inc., Redwood City, CA, 1994.

[2] W. A. Christopher, S. J. Procter, and T. E. Anderson, The nachos instructional operat-
ing system, in Proceedings of USENIX Winter 1993 Technical Conference, The USENIX
Association, Berkeley, CA, 1993, pp. 479–488.

[3] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, UK, 1987.

[4] A. George and J. W.-H. Liu, The design of a user interface for a sparse matrix package,
ACM Trans. Math. Software, 5 (1979), pp. 134–162.

[5] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

7One might anticipate that the use of such a library might exact performance penalties. However,
C++ allows one to specify that a function be inline. This means that short utility functions that are
frequently called can instead have their code bodies included directly in the calling program. The
function is not “called,” and all overhead associated with the function call is eliminated.

AN OBJECT-ORIENTED USER INTERFACE 969

[6] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice–Hall Software
Series, Prentice–Hall, Englewood Cliffs, NJ, 1978.

[7] M. Metcalf and J. Reid, Fortran 90 Explained, Oxford Science Publications, Oxford, UK,
1990.

[8] B. Meyer, Object-Oriented Software Construction, Prentice–Hall, Englewood Cliffs, NJ, 1997.
[9] E. G. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor

computers, SIAM J. Sci. Comput., 14 (1993), pp. 1034–1056.
[10] A. Stepanov and M. Lee, The Standard Template Library, Technical Report HPL-94-34,

Hewlett-Packard Laboratories, Palo Alto, CA, April 1994.
[11] B. Stroustrup, The C++ Programming Language, Addison–Wesley, Reading, MA, 1986.

TOWARD AN EFFECTIVE SPARSE APPROXIMATE INVERSE
PRECONDITIONER∗

WEI-PAI TANG†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 970–986

Abstract. Sparse approximate inverse preconditioners have attracted much attention recently,
because of their potential usefulness in a parallel environment. In this paper, we explore several
performance issues related to effective sparse approximate inverse preconditioners (SAIPs) for the
matrices derived from PDEs. Our refinements can significantly improve the quality of existing SAIPs
and/or reduce the cost of computing them. For the test problems from the Harwell–Boeing collection
and some other applications, the performance of our preconditioners can be comparable or superior
to incomplete LU (ILU) preconditioners with similar preconditioning cost.

Key words. approximate inverse, globally coupled local inverse, ILU preconditioner, exponen-
tial decay

AMS subject classifications. 15A09, 15A23, 65F10, 65F50, 65Y05

PII. S0895479897320071

1. Introduction. The use of preconditioned Krylov space methods has been
proven to be a competitive solution technique for a wide range of large sparse matrix
problems. It is commonly acknowledged now that a high-quality preconditioner holds
the key to fast convergence. One of the most popular choices for the preconditioner
is the ILU preconditioner. In most cases, level one fill (ILU(1)) [16] is enough to
yield a good preconditioner. This surprisingly simple technique has provided a robust
preconditioner for many rather challenging applications such as semiconductor device
simulation, groundwater contamination, oil reservoir simulation, etc. However, the
successful use of ILU preconditioners depends on dealing with several issues:

• Potential zero pivot during the factorization process;
• Negative pivot may occur, even if A is positive definite;
• Instability, if the inverses of L and U are very large [23];
• Ordering—the quality of the preconditioner is sensitive to the ordering of the

unknowns [15, 16, 21];
• Parallel implementations—it is not a trivial task to write a high-performance

parallel implementation of ILU preconditioners. It is even more difficult to
construct an effective portable (between different architectures) implementa-
tion.

Recently, interest in a SAIP has emerged [8, 11, 14, 31, 32, 33, 35, 38, 39, 40].
The motivation of this renewed interest is largely from parallel processing. Instead of
using ILU to approximate the matrix A, we seek a sparse approximation of A−1. The
forward and backward solution process in the ILU preconditioning step is replaced
by a simple (sparse) matrix–vector product operation. Its parallel implementation is

∗Received by the editors April 14, 1997; accepted for publication (in revised form) by E. Ng
February 2, 1998; published electronically July 9, 1999. This work was supported by the Natural
Sciences and Engineering Research Council of Canada, the Information Technology Research Centre,
which is funded by the Province of Ontario, and NASA under contract NAS 2-96027 between NASA
and the Universities Space Research Association (USRA).

http://www.siam.org/journals/simax/20-4/32007.html
†Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada

(wptang@bz.uwaterloo.ca). This work was done while the author was at the Research Institute for
Advanced Computer Science (RIACS), NASA Ames Research Center.

970

EFFECTIVE SAIP 971

straightforward and can be effectively implemented. In addition, several other poten-
tial problems with using ILU preconditioners are solved.

The idea of using a sparse approximation of A−1 as a preconditioner [3, 4] was
proposed only slightly later than ILU was suggested [24]. The original crude approach
was far less effective than the latter, and hence did not gain popularity. To construct
a good, but sparse approximation M ≈ A−1, a key issue is the sparsity pattern of
M . Initial approaches failed to provide a robust technique to determine an effective
sparsity pattern. To reduce the cost of preconditioning, M has to be as sparse as
possible. Unfortunately, this goal has to be balanced with the quality of the precon-
ditioner. The search for an optimal sparsity pattern would be a much more expensive
proposition than the solution of Ax = b itself. Effective heuristics are required. The
success of several new methods relies on their elegant schemes in determining the
sparsity pattern and the solution of the approximation [5, 14, 11, 33, 39]. Their new
insight to this “old” idea has offered new promise. Some difficult problems can be
effectively solved using these new techniques.

There are two kinds of approaches to constructing sparse approximate inverses.
The first and usually more effective one is the factorized sparse approximate inverse [5,
6, 39]. The second approach is to construct a sparse matrix as the solution of

min
M
‖AM − I‖F ,(1.1)

subject to constraints on the number and position of the nonzeros entries of M . The
Frobenius norm is particularly useful for parallel implementation. Notice that

‖AM − I‖2F =
n∑
j=1

‖Amj − ej‖22,

where mj and ej are the jth column of M and I, respectively. Thus solving (1.1)
leads to solving n independent least squares problems,

min
mj
‖Amj − ej‖2, j = 1, . . . , n,(1.2)

which can be done in parallel.
A good comparison on these two different approaches can be found in [6]. We

will concentrate on the Frobenius norm approach in this paper, since much of this
work was completed before the new results were available. In addition, the techniques
discussed here are in general also useful.

The Frobenius norm approach avoids many of the potential difficulties with ILU
preconditioners and becomes a useful complementary approach to ILU. Currently, the
average performance of this type of preconditioner cannot match the performance of
the ILU type of preconditioner. The potential to improve them further will be explored
in this note. A comparison of approximate inverse preconditioners and ILU(0) on
Harwell–Boeing matrices can be found in [29].

In the next section, some limitations of a sparse approximation to a dense in-
verse are discussed. Section 3 presents some heuristic techniques which can improve
the performance of this method. For a variety of problems derived from PDEs and
some difficult problems from the Harwell–Boeing collection, the performance of our
enhanced SAIP can be comparable or superior to an ILU preconditioner with similar
preconditioning cost,1 where the measure of cost is the number of nonzero entries in

1We refer the preconditioning cost only for the application of the preconditioner.

972 WEI-PAI TANG

A =

0.96 −1
−1 2 −1

−1 2 −1 0

. . .
. . .

. . .

. . .
. . .

. . .

0 −1 2 −1
−1 2

20×20

.

Fig. 2.1. A counter example of decay.

the preconditioner. It should also be noted that these techniques are also useful for
any other approximate sparse inverse preconditioners.

2. Two issues. The inverse of a sparse matrix is generally full. The construc-
tion of a good sparse approximation is commonly based on the assumption that the
majority of elements in the inverse are very small. This is often a questionable as-
sumption. In particular, a problem displaying global coupling will necessarily have a
dense inverse. This suggests an intrinsic conflict between a good approximation and a
sparse approximation. A good approximation requires adequate global information in
the preconditioner. However, the sparsity in the approximate inverse leads to compact
support which inhibits the exchange of global information.

2.1. Inverse and decay. The basis for the SAIP approach is the assumption
that the majority of elements in the inverse which we are to approximate are small.
Its theoretical foundation is the decay estimate of the inverse elements of a sparse
matrix. Many papers discuss this issue (e.g., [18, 19, 20, 22, 41, 48]). Matrices derived
from PDEs typically exhibit this desirable decay feature in their inverse. However,
the decay results presented there can often be misleading. For example, a typical
estimate might be: If a banded matrix A is positive definite (or an M -matrix) the
following bound can be established:

|bij | ≤ Cγ|i−j|,(2.1)

where γ < 1, C > 0 and bij is the element of A−1 at the (i, j)th location. Intuitively,
when the distance |i− j| is large, the size of the element bij will be very small, since
γ < 1. This is known as the decay phenomenon. The statement (2.1), while correct,
may cause the following facts to be overlooked.

While it is true that γk → 0 when k → ∞, very large constant C may lead to
unacceptable slow decay, or none at all, as illustrated by the following examples. The
matrix A on the left of Fig. 2.1 is a banded symmetric, positive definite matrix. The
gray level picture of its inverse (Fig. 2.1) appears on the right . The darker the pixel
in the image, the larger the element of the inverse. It can be seen that only the upper
right part of the inverse displays decay. In the lower left part, the inverse elements
are actually getting bigger when the distance |i − j| increases! Is the estimate (2.1)
wrong? No, it is correct. Since the constant C is so large, even an increasing trend
can appear under this estimate.

Actually, a well-conditioned matrix can exhibit nondecay behavior. On the left
of Fig. 2.2 is a “nice” M -matrix which is (row) diagonally dominant. The gray level

EFFECTIVE SAIP 973

A2 =

53.1 −32
−21 52.1 −31 0

−21 51.1 −30

. . .
. . .

. . .

0
. . .

. . .
. . .

−21 35.1 −14
−21 34.1

20×20

.

Fig. 2.2. Another counter example of decay.

(a) The image of the inverse
Laplacian.

The plot of a typical row of the inverse

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

(b) A cross section of the
inverse Laplacian.

Fig. 2.3. One row of the inverse.

image of its inverse is presented beside the matrix. Again, note that the elements
in a row of the inverse of A2 do not decay. For the first few rows, the size of the
elements are increasing first when the column index increases. Interestingly enough,
the elements in any column decay away from the diagonal “exponentially.” Notice that
this matrix is not column diagonally dominant. This example is specially designed to
demonstrate the following often overlooked result: row diagonally dominant ensures
only columnwise decay in the inverse and vice versa [48].

The second important issue in designing an effective SAIP algorithm is the pattern
of the decay. It has been observed that the elements of some inverse matrices decay
in an oscillatory pattern [48]. For example, the image of the inverse of a typical
matrix derived from the model problem on an equally spaced rectangular grid using a
5-point stencil is presented in Fig. 2.3(a). A cross section of the inverse (a row) is also
presented in Fig. 2.3(b). The estimate in (2.1) is obviously not useful for identifying
the sparsity pattern in the approximation. The real challenging issue is how to extract
the true decay pattern from the seemingly complicated image and use it to guide the
selection of a sparsity pattern for a SAIP.

The complication in Fig. 2.3(b) is caused by the conflict between the construction
of a matrix and the topology of the original problem. The matrix structure is essen-
tially only helpful for operators in one-dimensional (topologically) space. For a sparse
matrix problem derived from a higher dimensional grid, an artificial linear ordering

974 WEI-PAI TANG

(a) The image of the inverse Lapla-
cian with a random ordering.

0
10

20
30

40

0

10

20

30

40
1

1.2

1.4

1.6

A discrete Green’s function
of an anisotropic problem

(b) A surface plot of the discrete Green’s
function for aniso test problem.

0

20

40

60 0 10 20 30 40 50

0

0.5

1

1.5

2

 A discrete Green’s function for 9 point Poisson operator

(c) Discrete Green’s function.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
 A cross section of the discrete Green’s function

(d) A cross section of the surface.

Fig. 2.4. A cross section of the surface.

has to be imposed on the unknowns. These unknowns are physically distributed in a
higher dimensional space. The distance between two unknowns in a matrix structure
in this case has nothing to do with the distance in the solution domain of the original
problem. The latter governs the physical influences between two unknowns. If a
random ordering is chosen, the inverse matrix of the discrete Laplacian can look
chaotic (see Fig. 2.4(a)). No useful conclusion can be abstracted from this picture,
since the distance between any two unknowns doesn’t have any physical meaning.

Any meaningful discussion of the decay should relate to the topological distance
in the physical space of the problem rather than the index difference in a matrix. The
template operator [48, 49] is a more natural structure. Using a template operator,
a row of the inverse will be presented as a discrete Green’s function on the physical
solution domain. We can compare the discrete Green’s function with the Green’s

EFFECTIVE SAIP 975

function for the original PDE problem graphically using the template operator. The
earliest discussion on this concept can be found in the classical book [26, pp. 315–
318]. A more recent discussion can also be found in [41]. The surface plot of a discrete
Green’s function for the Laplace operator on a square grid is presented in Fig. 2.5(a).
It is a very natural imitation of the Green’s function in PDEs for this problem. All
the mystery of the oscillatory decay disappears. A monotonic decay picture clearly
relates the decay to the physical distance rather than to the indices in the matrix.
In designing an effective sparsity pattern for SAIP, it is also important to use the
physical (or graphical) distance as the criterion for determining the sparsity pattern
of SAIP.

In addition, for example, discrete Green’s functions do not display decay for many
anisotropic (second-order) elliptic PDEs.2 Fig. 2.4(b) is the discrete Green’s function
of a typical test case: aniso (see test problems) [12, 16]. No good sparse approximation
can be obtained. Regular SAIP algorithms perform poorly for this kind of problem
(see Table 3.1).

Another interesting example is from unsteady incompressible Navier–Stokes prob-
lems. The Poisson equation is solved at each time step. The discretization scheme is
a 9-point stencil on a curvilinear grid. If we plot the discrete Green’s function and
one of its cross sections at the middle of the solution domain (with a 50 × 50 grid),
the plots are extremely oscillatory (see Fig. 2.4(c,d)). No decay is displayed. Most of
the elements in the inverse are far away from zero.

2.2. Global coupling. From the discussion above, it is clear that a good ap-
proximation cannot solely depend on the decay or on having a majority of the elements
in the inverse be small. In particular, a sparse approximation implies some sort of
compact support. Therefore, it cannot contain any global information in the approx-
imation when a problem is globally coupled. Even if the discrete Green’s function
decays, the rate of the decay may not be fast enough to be represented by a few
nonzero elements. Other techniques should be used in conjunction with the SAIP
methods to yield competitive performance. Here is a simple benchmark for the model
problem.3 In the table below we compare the SPAI(0.4) [33] preconditioner with
ILU(0) in order to reduce the residual norm by 10−8. Both preconditioners have a
similar number of nonzero elements. We used Bi-CGSTAB when the SPAI(0.4) pre-
conditioner is used. The number of applications of the preconditioners (i.e., Mx = p,
where M is the preconditioner) are compared. The number of nonzeros of the cor-
responding preconditioner is indicated in the parentheses. To ensure fairness of the
comparison, we did not take advantage of symmetry in ILU(0).

SPAI(0.4) ILU(0)
Grid size Numbers of applications (nonzeros in M)

32 × 32 68 (4624) 25 (4992)
64 × 64 160 (19472) 63 (20224)

If we examine the surface plots of the ILU(0)s inverse and SPAI(0.4) and compare
them to the original discrete Green’s function, the reasons for differing performance
are clear. Three plots for the same row (or grid node) are presented (see Fig. 2.5):

2When a problem is anisotropic, the decay pattern should also be guided by the anisotropy of
the problem [12].

3We refer to the model problem as the Poisson equation on a unit square with Dirichlet boundary
conditions.

976 WEI-PAI TANG

0
2

4
6

8
10

0

2

4

6

8

10
0

1

2

3

4

5

x 10
−3

The plot of a discrete Green’s function

(a) The true discrete
Green’s function.

0
2

4
6

8
10

0

2

4

6

8

10
0

0.5

1

1.5

2

2.5

x 10
-3

The sparse approximate inverse

(b) The SAIP approxima-
tion.

0
2

4
6

8
10

0

2

4

6

8

10
0

0.5

1

1.5

2

2.5

3

x 10
-3

The inverse of ILU(0)

(c) The discrete function
of ILU (0) factorization.

Fig. 2.5. Discrete Green’s function.

• Left: the true discrete Green’s function of the model problem at the middle
of the solution region;
• Middle: the corresponding approximate inverse SPAI(0.4) for the same posi-

tion;
• Right: the discrete Green’s function of the ILU(0) factorization, namely, the

same row of the ILU(0)s inverse.
The true inverse has global support while the SAIP can only collect the informa-

tion from its few neighbors. Although the incomplete factorization has only compact
support, its inverse still has a (weak) global base. That explains the very different
performance.

3. The refinement techniques. From the previous discussion and our numer-
ical testing, the following issues can be identified for the current techniques:

• Cost in identifying a good sparsity pattern and the approximation—this cost
problem comes from two sources. The first is the computation of a good
sparsity pattern for the approximation. The second source is the fast growth
of the number of nonzero elements in the approximation when the accuracy
of the approximation is tightened.
• Lack of global information in the approximation.
• The effectiveness of the compression—the sparse approximation of an inverse

can be viewed as a compressed image. The information contained in the
approximation for the inverse is not very effective if you compare Fig. 2.5(a)
and Fig. 2.5(b).

We propose several approaches which can improve the performance of a sparse
approximate inverse preconditioner.

3.1. Local inverse approximation. Both adaptive search technique [33] and
dropping approach [11] are more computationally expensive than ILU factorization
due to the dynamic nature of the computation. For the former approach, the least
squares problems (1.2) are solved by the QR factorization. Algorithms are derived to
determine the profitable positions of the nonzero entries adaptively. This dynamic ap-
proach makes the parallel implementation expensive. For Chow and Saad’s approach,
standard iterative methods (e.g., GMRES) are used to find an approximate solution
to Amj = ej , and a dropping strategy is applied to mj to control the amount of fill-in.
The idea is to let the Krylov subspace build up the sparsity pattern gradually and
then the nonzero entries are selected automatically by size.

EFFECTIVE SAIP 977

We propose a simpler approach to make the computation cheaper. When this
technique is used in conjunction with a global coupling method, the quality of the
SAIP can be comparable with ILU preconditioners.

A sparse matrix can be represented by a digraph G = (O, E) [28]. Define Lk(oi),
the k-level neighbor set of node oi, as the set of nodes which are a distance k + 1 or
less from oi. The 0-level neighbor set contains all the nodes which directly connect
to node oi. Similarly, define Wk(oi), the kth-wavefront of node oi, as the set of nodes
which are a distance k + 1 from node oi. It can be shown that the elements in a
discrete Green’s function decay in a wavefront fashion for many problems [48]. In
particular, Lk(oi) includes the k most influential wavefronts. That is the motivation
to choose Lk(oi) for the locations to approximate the discrete Green’s function at
node oi. The computation of these locations is also cheap. The submatrix4

A(Lk(oi),Lk(oi))

is defined as the k-level local matrix of node oi. Using the level concept to define the
sparsity pattern is widely used for ILU preconditioning [34, 16].

The local approximation of an inverse is to use the discrete Green’s function of
the local matrix A(Lk(oi),Lk(oi)) for node oi as the approximation of the discrete
Green’s function of node oi for the original matrix. More precisely, we solve a small
problem for each node oi:

AT (Lk(oi),Lk(oi))x = eoi ,

where eoi is a unit basis vector with one in the oi position.5 Inject the elements of x
to the corresponding locations of the k-level neighbor set in a zero row of the target
approximation inverse. To compute the local discrete Green’s function is an easy task
and can be implemented in parallel effectively.

We call this approximate inverse a k-level local inverse preconditioner, or simply,
a local inverse preconditioner. The level 0 approach was used by Benson originally.
Unfortunately, the results were disappointing. However, when we use the k-level local
matrix in conjunction with a global coupling, the result is more promising. In [36],
the adjacency graph of Ak k = 1, 2, 3 is used for the sparsity pattern for a factorized
approximate inverse. This is equivalent to our 1-level approach.

3.2. Globally coupled local inverse approximation. A promising technique
which can bring in more global information is the multilevel approach. We consider
an algebraic two-level technique to improve the quality of the approximation.

For the graph G = (O, E) of a sparse matrix A, a set of global nodes (coarse
grid nodes) is first selected. We group the indexes for global nodes at the end of a
permutation vector. The original matrix can be reordered in a 2× 2 block form:

A =

[
A1 A2

A3 A4

]
,

4The MATLAB notation is adopted for extracting a submatrix from a given matrix A.
5Note that the local matrix can be singular. Since many nonzero elements have been dropped

to form the local matrix, a similar technique used in the shifted ILU method is adapted to ensure
that A(Lk(oi),Lk(oi)) is not singular. Specifically, the values of the dropped elements can be (or
partially) added to the corresponding diagonal elements. For the test problems from PDEs, this
remedy is actually never activated. Another remedy is to replace the above linear system by a least
squares problem. Therefore, a local approximation of the discrete Green’s function is still possible.

978 WEI-PAI TANG

where the second row corresponds to the coarse (global) grid nodes. In [11], Chow
and Saad also discussed the approaches using block form to improve the SAIP.

We tested several algorithms for choosing global nodes. The best performance
comes from a generalized red-black ordering [15]. A brief description of the algorithm
is as follows:

Set all nodes as unmarked.
While unmarked node set is not empty

Pick an unmarked node as red (coarse grid) node and mark it.
Mark all its unmarked neighbors as black (fine grid) nodes.

end

The inverse of this reordered block matrix is

A−1 =

[
A−1

1 (I +A2S
−1A3A

−1
1) −A−1

1 A2S
−1

−S−1A3A
−1
1 S−1

]
,

where S = A4 − A3A
−1
1 A2 is the well-known Schur complement. We compute the

k-level local inverse Ã−1
1 of A1; use this approximation to compute an approximation

S̃ of the Schur complement S. Then, compute the k-level local inverse S̃−1 of S̃. The
k-level globally coupled local inverse preconditioner (GCLI(k)) is then

M = Ã−1 =

[
Ã−1

1 (I +A2S̃−1A3Ã
−1
1) −Ã−1

1 A2S̃−1

−S̃−1A3Ã
−1
1 S̃−1

]
.(3.1)

For most of the PDE problems, A1 is a diagonal matrix; hence, the computation of
S is simple. Given a vector x = (yT , zT)T , y contains the elements for the fine grid
nodes (black), while z contains the elements for the coarse grid nodes (red). The
preconditioning step Mx can be described as

Mx = M

[
y
z

]
=

[
u− Ã−1

1 A2w
w

]
,

where u = Ã−1
1 y and w = −S̃−1(A3u − z). The process can be interpreted as one

sweep of a two-level iteration. The vector u is the approximation on the fine grid,
which is “projected” to the coarse grid for computing a new right-hand side A3u− z.
Then the solution w on the coarse grid is used to refine the results on the fine grid in

the second application of Ã−1
1 for Ã−1

1 A2w.
Tables 3.1, 3.2, and 3.3 present the numerical results for some typical problems

which arise in PDEs. A detailed description of these problems is presented in the
next section. A description of the matrices from the Harwell–Boeing collection can
be found in many references, for example, in [29, 33]. The advantages of using a
simpler two-level approach are clear if one compares the performance of three different
preconditioning techniques. The GCLI(k) shows competitive performance to ILU(k).

Table 3.2 presents the results for the same problems on a finer grid. To save space,
we did not list the results for GCLI(1), since the improvement is similar. Notice that
the algebraic two-level approach can be recursively applied to the Schur complement
as well. Our numerical testing indicates that another 30% speed up can be obtained,
on average. The detailed list is not presented. Of course, the improvement brought
by a multilevel approach is not “cost-free.” The original simple preconditioning step

EFFECTIVE SAIP 979

Table 3.1
Performance comparison.

Problem ILU(0) SPAI(0.4) GCLI(0)
Size Number of iterations (nonzero in M)

Laplacian 861 22 (4930) 58 (4089) 20 (3977)
Variab. 861 19 (4930) 60 (3874) 17 (3977)
Disc. 900 22 (5280) 46 (4935) 30 (3880)
Indef. 861 21 (4930) 47 (3678) 27 (3977)
Aniso 961 33 (5642) 160(4805) 98 (4561)

ILU(1) SPAI(0.2) GCLI(1)
Size Number of iterations (nonzero in M)

Laplacian 861 15 (6498) 34(13338) 13 (9801)
Variab. 861 10 (6498) 19(13972) 10 (9801)
Disc. 900 13 (6963) 27(16513) 23 (9391)
Indef. 861 14 (6498) 24(14669) 22 (9801)
Aniso 961 24 (7442) 68(14551) 68 (11280)

Table 3.2
Performance comparison for finer grids.

Problem ILU(0) SPAI(0.4) GCLI(0)
Size Number of iterations (nonzero in M)

Laplacian 2401 35 (14210) 84 (11809) 44 (11620)
Variab. 2401 49 (14210) 75 (10833) 36 (11620)
Disc. 2500 51 (14800) 87 (14692) 53 (11620)
Indef. 2401 42 (14210) 73 (10855) 50 (11620)

Table 3.3
Anisotropic problems.

Problem ILU(1) SPAI(0.2) Two(0.2)
Size Iterations (nonzero in M)

Aniso 961 24 (7442) 68(14551) 38 (11310)
Stones 961 24 (7994) 94(17790) 41 (11190)

Sherman 4 1104 11 (7130) 22(11550) 17 (5237)

(a matrix–vector multiplication) is now replaced by several matrix–vector multipli-
cations. The multilevel approach will complicate the parallel programming task and
increase the cost in communications. However, the return from the investment is
rewarding.

For many anisotropic problems, the GCLI(k) may cause unnecessary introduc-
tion of many nonzeros in the sparse approximation. Some of these nonzero entries do
not contribute much to the quality of the approximation. We also tried to combine
the adaptive search technique with the two-level method, namely, the sparse approx-
imation of the matrix S−1 is computed by SPAI(α), where the control parameter
α = 0.2 is used. Table 3.3 presents numerical testing for some anisotropic problems.
Two(0.2) is the combination of the two-level approach and the adaptive search method
(SPAI(0.2)) [33].

3.3. A priori dropping technique. The technique of dropping small elements
is often used after some approximation is formed. It can play an important role in
reducing the growth of the nonzeros in an approximation. This technique is adopted
in both ILU and SAIP. When the problem is anisotropic, however, the elements of its
inverse usually decay extremely slowly or even have no small values at all. This often

980 WEI-PAI TANG

Table 3.4
A priori dropping technique.

ILU(0) ILU(1) Grote(0.2) Two(0.2) Drop(0.2)
Number of iterations (nonzeros in the preconditioner)

Orsirr 1 23 (7888) 10 (13562) 19 (13973) 12 (12050) 16 (3206)
Orsirr 2 23 (7856) 10 (11922) 19 (12137) 12 (10180) 15 (4653)
Orsreg 1 24 (16338) 12 (27060) 23 (30673) 10 (21080) 13 (12070)
Pores 2 27 (21710) 8 (50680) 27 (27598) 25 (28100) 53 (4399)
Pores 3 21 (4006) 10 (5844) 42 (24487) 41 (17110) 44 (9438)

leads to failure in determining an effective sparse approximation if a regular adaptive
technique or discarding technique is used. When anisotropy is strong, it is beneficial
to drop the small elements in the original matrix prior to computing the approximate
inverse. Using the notation in MATLAB, the approximated original matrix is defined
by

Ã = A. ∗ (abs(A) > ε),

where ε is the threshold.6 A similar idea is also adopted in algebraic multigrid [43],
in the solution of dense systems [1, 37], and in [36].

We compute the approximate inverse of the approximated original matrix Ã as
the preconditioner. When many small elements are dropped, the fast growth of the
number of nonzeros in SAIP is dramatically reduced. For the adaptive search tech-
niques [33], the number of probes is also reduced and the resulting approximation
has many fewer nonzeros. When the adaptive search technique and dropping small
elements are combined with the two-level approach, the improvement for some prob-
lems is significant. For example, we choose the three oil reservoir simulation matrices:
Orsirr 1, Orsirr 2, Orsreg 1, and Pores 2, Pores 3 from the Harwell–Boeing collec-
tion. These matrices result from a three-dimensional irregular grid and are very
anisotropic. In Table 3.4 we present a performance comparison between the three
different approaches, where Drop(0.2) drops the small elements before applying a
two-level Grote–Huckle approach with control parameter α = 0.2. The computa-
tional cost in both computing and applying the sparse approximate preconditioner is
significantly reduced.

3.4. Wavelet compression. Each of the discrete Green’s functions of a matrix
(see Fig 2.5(a)) can be considered as a smooth surface. A compact approximation
cannot represent the surface well. We also remark that even if the discrete Green’s
function displays decay behavior, the rate of decay may not be enough for the sparse
approximate inverse to have a good convergence performance. However, the smooth
surface in the discrete Green’s function can be converted into many very small wavelet
coefficients. Specifically, we apply a wavelet transform to compress the piecewise
smooth discrete Green’s function and then apply the standard techniques (e.g., Grote
and Huckle’s implementation) to construct a sparse approximate inverse in the wavelet
space. Having a majority of small elements allows us to aggressively discard most of
these small elements and maintain the quality of the approximations. Intuitively, we
can use the same storage to recover a more “authentic” inverse.

Two discrete Green’s functions of the Laplacian in the wavelet space are displayed
in Fig. 3.1. The most significant contribution in these discrete Green’s functions is

6For a matrix with a very different scale, the threshold should relate to the largest element in a
given row, and different rows should use different thresholds for discarding the small elements.

EFFECTIVE SAIP 981

0
10

20
30

40

0

10

20

30

40
-2

0

2

4

6

8

10

x 10
-4

(a) At the corner of the domain.

0
10

20
30

40

0

10

20

30

40
-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
-4

(b) At the center of the domain.

Fig. 3.1. Discrete Green’s functions in wavelet space.

very compact. Fig. 3.1(a) corresponds to a grid node near the corner, while Fig. 3.1(b)
is for the center grid node of the rectangular region.

The fast wavelet-based approximate inverse can be constructed as follows. Given
an orthogonal wavelet function in the continuous space, there corresponds an ortho-
gonal matrix W that transforms vectors from the standard basis to the wavelet basis.
Furthermore, if v is a vector of smoothly varying numbers (with possibly local singu-
larities), its wavelet representation ṽ = Wv will have mostly small entries. We can
also represent two-dimensional transforms by W . Let A be a matrix in the standard
basis. Then Ã = WAWT is the representation of A in the wavelet basis. This wavelet
representation Ã is also called the standard form of A [7]. Assuming A−1 is piecewise
smooth, our idea is to apply a wavelet transform to compress A−1 and then use it
as a preconditioner. At first glance, this seems impossible since we do not even have
A−1. Note that

Ã−1 ≡ WA−1WT = (WAWT)−1 = Ã−1,

where W is an orthogonal wavelet transform matrix. Therefore, we can first trans-
form A to its wavelet basis representation Ã and then apply, for example, Grote and
Huckle’s method to find an approximate inverse for Ã, which is the preconditioner
that we want to compute. In other words, we do not need to form A−1 but are still
able to compute its transform.

We shall next show how we utilize the wavelet transform in the least squares
approach. Consider (1.1) again. Let W be an orthogonal wavelet transform matrix;
i.e., x̃ = Wx is the vector x in the wavelet basis. (Note that W can be 1-level or full
log2 n-level wavelet transform matrix.) Then

min
M
‖AM − I‖F = min

M
‖WAWTWMWT − I‖F(3.2)

= min
M̃
‖ÃM̃ − I‖F ,

where Ã = WAWT and M̃ = WMWT are the representations of A and M in the
wavelet basis, respectively. Thus, our n least squares problems become

min
m̃j
‖Ãm̃j − ej‖2, j = 1, 2, . . . , n.(3.3)

Note that since A is sparse, so is Ã (but probably denser than A). Because of the
wavelet basis representation, if M is piecewise smooth, we would expect M̃ , neglecting

982 WEI-PAI TANG

Table 3.5
Wavelet sparse approximate inverse.

Test Problem Wavelet SPAI SPAI(0.4) SPAI(0.2) ILU(0)
(64× 64) Number of iterations (nonzeros in the preconditioner)

Laplacian 50 (6616) 160 (19472) 63 (69688) 57 (20224)
Variab. 66 (6616) >200 (18618) 129 (73936) 93 (20224)
Helical 68 (6616) >200 (19472) 126 (69628) 89 (20224)

Table 3.6
A comparison of scaling for Pores 2.

ILU(0) ILU(1) Grote(0.2) Two(0.2) Drop(0.2)
Number of iterations (nonzeros in the preconditioner)

Scaling 27 (21710) 8 (50680) 27 (27598) 25 (28100) 53 (4399)
No scaling 26 (10837) 12 (21289) 57 (73099) 74 (31350) 78 (27840)

small entries, to be sparse too. Therefore, the sparse solution of (3.3) would hopefully
give rise to a more effective approximate inverse than the original approach without
the wavelet transform.

The numerical testing and comparisons for three test problems arising from PDEs
are presented in Table 3.5. Wavelet compression demonstrates its effectiveness in
compression. Very few nonzero entries (one-third of the ILU(0) or one-tenth of the
SPAI(0.2)) are used to approximate the inverse in wavelet space and the quality of
the preconditioner is superior to ILU(0). A detailed analysis and more experimental
results are presented in [10].

We have presented several approaches which can improve the performance of
SAIP. Many other techniques similar to those used in the ILU preconditioner may also
be beneficial. For example, (block) diagonal scaling is often a very useful technique.
In Table 3.6, block row scaling is applied to matrices Pores 2 and Pores 3. With
the scaling, the performance of these same techniques are very different compared to
without scaling. The benefits of scaling were discussed in several papers (for example,
[25]). Table 3.6 is a comparison for test problem Pores 2.

In summary, there are many techniques which can be used toward a more effective
approximate inverse preconditioner. The choice should depend on the characteristics
of the application. The techniques we discussed here are also useful for other approx-
imate inverse preconditioners.

4. Conclusion. In this paper, we have discussed several implementation issues
which may enhance the performance of a sparse approximation inverse preconditioner.
For a specific application, if the proper technique is adopted, the improvement can be
significant.

Appendix A. Test problems. A detailed description of the test problems is
presented here. The iterative methods, preconditioned CG and Bi-CGSTAB, are used
for computations [50].

Helical spring (Helical). If a single turn of a helical spring of small angle α
and radius R is deformed into a plane ring under the influence of an axial load, the
stress-function Φ can be shown to satisfy the differential equation [13]

Φxx + Φyy +
3

R− yΦx − 2Gλ = 0,

EFFECTIVE SAIP 983

and it vanishes on the boundary Γ, where Γ is the boundary of the cross section in
the (x, y) plane which contains the axis of the spring. G is the modulus of rigidity
and λ = sinα cosα/R.

The special case we considered is one in which the problem has rectangular cross
section Ω = (−.5, .5)× (−1, 1) and R = 5. The problem has an exact solution [42]:

Φ = (1− y2)(1− 4x2)(5− y3)(0.0004838y + 0.0010185).

Variable coefficient problem (Variab). This problem has continuous variable
coefficients for second-order derivative terms. The unknown is defined on a unit square
with homogeneous Dirichlet boundary condition. It satisfies the equation

((1 + x2)ux)x + uyy + (tan y)3uy = −100x2.

Discontinuous coefficient problem (Disc). In this test, the following equa-
tion was considered:

(Kxux)x + (Kyuy)y + ux + uy = sin(πxy).

The unknown vanishes on the boundary of the solution domain Ω = (0, 1) × (0, 1),
where

Kx = Ky =

1, [0, .5]× [0, .5],
10+3, [.5, 1]× [0, .5],
10−3, [0, .5]× [.5, 1],
1, [.5, 1]× [.5, 1].

In general, discontinuous coefficient problems are relatively difficult to solve.
Stone’s third problem (Stones). This anisotropic and discontinuous coeffi-

cient test problem is widely used in the oil industry as a benchmark problem [47].
The equation

∂

∂x

(
Kx

∂P

∂x

)
+

∂

∂y

(
Ky

∂P

∂y

)
= −q(A.1)

was discretized on the unit square using a finite difference technique. A 33× 33 grid
was used (see Fig. A.1), and a harmonic average was used for discontinuities in Kx

and Ky [2]. Let xi and yi, i = 1, . . . , 33 be the grid nodes on the x-axis and y-axis,
respectively. The values of Kx, Ky, and q are

(Kx,Ky) =

(1, 100) if (xi, yj) ∈ A, 14 ≤ i ≤ 30, 1 ≤ j ≤ 16,
(100, 1) if (xi, yj) ∈ B, 5 ≤ i ≤ 12, 5 ≤ j ≤ 12,
(0, 0) if (xi, yj) ∈ C, 12 ≤ i ≤ 19, 21 ≤ j ≤ 28,
(1, 1) if (xi, yj) ∈ D, elsewhere.

(A.2)

q1(3, 3) = 1.0, q2(3, 27) = 0.5, q3(23, 4) = 0.6,(A.3)

q4(14, 15) = −1.83, q5(27, 27) = −0.27.

Indefinite PDE (Indef). The problem tested was

Lu = −
[(

1 +
1

2
sin(50πx)

)
ux

]
x

−
[(

1 +
1

2
sin(50πx) sin(50πy)

)
uy

]
y

+ 20 sin(10πx) cos(10πy)ux − 20 cos(10πx) sin(10πy)uy + cu,(A.4)

984 WEI-PAI TANG

A

C B

D

•q1 (3,3)

•q2 (3,27)

•
q3 (23,4)

• q4 (14,15)

•
q5 (27,27)

Fig. A.1. Stone’s third problem.

where u = exp(xy) sin(πx) sin(πy) is defined on a unit square. This testing problem
is taken from the paper of Cai, Gropp, and Keyes [9]. The sign of the coefficient c in
(A.4) has a crucial effect on this problem. The difficulty of the linear system depends
on both the mesh widths 4x,4y and the magnitude of c. For a fixed grid size, the
larger the magnitude of the negative value c, the more difficult the problem will be.
In this work, the cases for c = −20 and −70 were tested.

Anisotropic PDE (Aniso). The PDE is the same as (A.1). The value distri-
butions of Kx and Ky are

(Kx,Ky) =

(100, 1) if 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2,
(1, 100) if 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1/2,
(100, 1) if 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1,
(1, 100) if 0 ≤ x ≤ 1/2, 1/2 ≤ y ≤ 1.

REFERENCES

[1] G. Alleon, M. Benzi, and L. Giraud, Sparse approximate inverse preconditioning for dense
linear systems arising in computational electromagnetics, Numer. Algorithms, 16 (1997),
pp. 1–15.

[2] A. Behie and P. A. Forsyth, Comparison of fast iterative methods for symmetric systems,
IMA J. Numer. Anal., 3 (1983), pp. 41–63.

[3] M. W. Benson, Iterative Solution of Large Scale Linear Systems, thesis, Lakehead University,
Thunder Bay, Ontario, Canada, 1973.

[4] M. Benson and P. Frederickson, Iterative solution of large sparse linear systems arising in
certain multidimensional approximation problems, Utilitas Math., 22 (1982), pp. 127–140.

[5] M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.

[6] M. Benzi and M. Tuma, Numerical experiments with two approximate inverse preconditioners,
BIT, 38 (1998), pp. 234–241.

[7] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms
I, Comm. Pure Appl. Math., 44 (1991), pp. 141–184.

[8] R. Bridson and W.-P. Tang, Ordering anisotropy and factored sparse approximate inverses,
SIAM J. Sci. Comput., submitted.

[9] X.-C. Cai, W. D. Gropp, and D. E. Keyes, A comparison of some domain decomposition
algorithms for nonsymmetric elliptic problems, in Proceedings Fifth International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan,
D. E. Keyes, G. Meurant, J. S. Scroggs, and R. G. Voigt, eds., SIAM, Philadelphia, PA,
1992, pp. 224–235.

EFFECTIVE SAIP 985

[10] T. Chan, W.-P. Tang, and W. Wan, Wavelet sparse approximate inverse preconditioners,
BIT, 37 (1997), pp. 644–650.

[11] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM
J. Sci. Comput., 18 (1997), pp. 1657–1675.

[12] S. S. Clift and W.-P. Tang, Weighted graph based ordering techniques for preconditioned
conjugate gradient methods, BIT, 35 (1995), pp. 30–47.

[13] L. Collatz, The Numerical Treatment of Differential Equations, 3rd ed., Springer-Verlag, New
York, 1966.

[14] J. Cosgrove, J. Diaz, and A. Griewank, Approximate inverse preconditionings for sparse
linear systems, Internat. J. Comput. Math., 44 (1992), pp. 91–110.

[15] D. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned
conjugate gradient methods applied to unstructured grid problems, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 944–961.

[16] D. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Towards a cost effective ILU precondi-
tioner with high level fill, BIT, 32 (1992), pp. 442–463.

[17] D. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Drop tolerance preconditioning for
incompressible viscous flow, Internat. J. Computer Math., 44 (1992), pp. 301–312.

[18] C. de Boor, Dichotomies for band matrices, SIAM J. Numer. Anal., 17 (1980), pp. 894–907.
[19] S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J.

Numer. Anal., 14 (1977), pp. 616–619.
[20] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverse of band matrices, Math.

Comp., 43 (1984), pp. 491–499.
[21] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gradients,

BIT, 29 (1989), pp. 635–657.
[22] V. Eijkhout and B. Polman, Decay rates of inverses of banded m-matrices that are near to

Toeplitz matrices, Linear Algebra Appl., 109 (1988), pp. 247–277.
[23] H. C. Elman, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986),

pp. 191–217.
[24] D. J. Evans, The use of pre-conditioning in iterative methods for solving linear equations with

symmetric positive definite matrices, J. Inst. Math. Appl., 4 (1968), pp. 295–314.
[25] Q. Fan, P. A. Forsyth, J. R. F. McMacken, and W.-P. Tang, Performance issues for

iterative solvers in device simulation, SIAM J. Sci. Comput., 17 (1996), pp. 100–117.
[26] G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial Differential Equa-

tions, John Wiley, New York, 1960.
[27] R. W. Freund, G. H. Golub, and N. N. Nachtigal, Iterative solution of linear systems,

Acta Numerica, (1992), pp. 57–100.
[28] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems,

Prentice–Hall, Englewood Cliffs, NJ, 1981.
[29] N. I. M. Gould and J. A. Scott, On Approximate-Inverse Preconditioners, Technical report

RAL-TR-95-026, Computing and Information System Dept., Atlas Center, Rutherford
Appleton Laboratory, Osfordshire OX11 0QX, England, 1995.

[30] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[31] M. Grote and H. Simon, Parallel preconditioning and approximate inverses on the connec-
tion machine, in Proceeding of the Scalable High Performance Computing Conference
(SHPCC), April 1992, Williamsburg, VA, IEEE Computer Science Press, Piscataway, NJ,
1992, pp. 76–83.

[32] M. Grote and H. Simon, Parallel preconditioning and approximate inverses on the connection
machine, in Sixth SIAM Conference on Parallel Processing for Scientific Computing II,
R. Sincovec et al., eds., SIAM, Philadelphia, PA, 1993, pp. 519–523.

[33] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–854.

[34] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–156.
[35] T. Huckle and M. Grote, A New Approach to Parallel Preconditioning with Sparse

Approximate Inverses, Technical report SCCM-94-03, Dept. of Scientific Comput-
ing/Computational Mathematics, Stanford University, Stanford, CA, 1994.

[36] I. E. Kaporin, New convergence results and preconditioning strategies for the conjugate gra-
dient method, Numer. Linear Algebra Appl., 1 (1994), pp. 179–210.

[37] L. Y. Kolotilina, Explicit preconditioning of systems of linear algebraic equations with dense
matrices, J. Soviet Math., 43 (1988), pp. 2566–2573.

986 WEI-PAI TANG

[38] L. Kolotilina, A. Nikishin, and A. Yeremin, Factorized sparse approximate inverse (FSAI)
preconditionings for solving 3D FE systems on massively parallel computers II, in Iterative
Methods in Linear Algebra, Proc. of the IMACS International Symposium, Brussels, 1991,
R. Beauwens and P. Groen, eds., 1992, pp. 311–312.

[39] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditionings
I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[40] J. Lifshitz, A. Nikishin, and A. Yeremin, Sparse approximate inverse (FSAI) precondition-
ings for solving 3D CFD problems on massively parallel computers, in Iterative Methods in
Linear Algebra, Proc. of the IMACS International Symposium, Brussels, 1991, R. Beauwens
and P. Groen, eds., 1992, pp. 83–84.

[41] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 707–728.

[42] J. Rice and R. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer-Verlag, New
York, 1985.

[43] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods, Frontiers in
Applied Mathematics 3, S. F. McCormick, ed., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[44] Y. Saad, Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 1200–1232.

[45] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[46] H. D. Simon, Incomplete LU preconditioners for conjugate-gradient-type iterative methods,
Paper No. SPE 13533, in Proceedings of the 1985 Reservoir Simulation Symposium, Dallas,
TX, 1985.

[47] H. L. Stone, Iterative solution of implicit approximations of multidimensional partial differ-
ential equations, SIAM J. Numer. Anal., 5 (1968), pp. 530–558.

[48] W.-P. Tang, Schwarz Splitting and Template Operators, Ph.D. thesis, Computer Science Dept.,
Stanford University, Stanford, CA, 1987.

[49] W.-P. Tang, Template Operators and Exponential Decay, Technical report CS-90-46, Dept. of
Computer Science, University of Waterloo, Ontario, Canada, 1990.

[50] H. A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Comput., 13 (1992), pp. 631–644.

SCALABLE PARALLEL PRECONDITIONING WITH THE SPARSE
APPROXIMATE INVERSE OF TRIANGULAR MATRICES∗

ARNO C. N. VAN DUIN†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 987–1006

Abstract. In this paper an approach is proposed for preconditioning large general sparse ma-
trices. This approach combines the scalability of the application of explicit preconditioners with
the preconditioning efficiency of incomplete factorizations. Several algorithms resulting from this
approach are presented. Both the preconditioning efficiency and the cost of applying this precondi-
tioner are tested. The experiments indicate that this technique offers the ability to make efficient
use of parallel computers with a convergence rate comparable to that of the underlying incomplete
factorization.

Key words. triangular matrices, preconditioning, iterative methods, parallel computation,
sparse matrices, sparsity, numerical linear algebra

AMS subject classifications. 65F10, 65F35, 65F50, 65Y05

PII. S0895479897317788

1. Introduction. The problem of finding the solution vector x of a linear system

Ax = b,(1.1)

where A is a general sparse n × n matrix and b an n-dimensional vector, arises in
many application areas. The use of an iterative method is imperative when both
time and memory constraints prohibit the use of a direct solver. In practice, basic
iterative schemes [13] like Jacobi, Richardson, Gauss–Seidel, and SOR, as well as
Krylov subspace methods like CGS [25], BiCGSTAB [28], GMRES [24], and QMR
[12], show poor convergence when they are applied without a preconditioner. Applying
such a (left) preconditioner P−1 to the system (1.1) means mathematically that the
system

Ãx = b̃(1.2)

is solved, where Ã = P−1A and b̃ = P−1b. This preconditioner is then efficient
only when the time needed to solve (1.2) (including the time needed to set up the
preconditioner) is (far) less than the time needed to solve the unpreconditioned system
(1.1). This can be achieved by choosing a P−1 that can be constructed easily and that
can be applied without much extra cost. This is why P is often diagonal, triangular, or
orthogonal. Incomplete factorizations have proven to be quite efficient preconditioners
in a great number of cases [18]. Unfortunately those preconditioners do not allow for
a large degree of parallelism usually, neither in setting up the preconditioner nor in
applying the preconditioner. A method to gain parallelism in applying this type of
preconditioner, i.e., triangular solves, is by explicitly inverting the triangular matrices.
The big disadvantage of explicitly inverting sparse triangular matrices is that the
resulting triangular matrix is not necessarily sparse, making the preconditioner more
expensive; both setting up the preconditioner and applying the preconditioner require

∗Received by the editors March 4, 1997; accepted for publication (in revised form) by E. Ng May
7, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31778.html
†Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The

Netherlands (arno@cs.leidenuniv.nl).

987

988 ARNO C. N. VAN DUIN

more operations. A way to overcome this problem is by making the explicit inverse
sparser (“sparsification”); see [1, 9, 27, 26]. Due to this sparsification the resulting
matrix is not the exact inverse of the triangular matrix but an approximation of it. In
this article several ways to compute such approximate inverses of triangular matrices
are proposed.

2. Inverting triangular matrices. Without loss of generality it is assumed
that the triangular matrices have a unit diagonal, as in LDU factorization. Only
upper triangular matrices are considered; lower triangular matrices can be treated
likewise. Each of these matrices U can be written as

U = I +

n−1∑
i=1

eiu
T
i ,(2.1)

in which uTi contains the strictly upper triangular part of the ith row of U , so ui(j) = 0
for all j ≤ i.

U can also be expressed in product form:

U =

1∏
i=n−1

(I + eiu
T
i).(2.2)

This follows from the fact that, for j ≤ k, eku
T
k eju

T
j = 0, since the jth entry of

uk (= uTk ej) equals zero for all j ≤ k.
The inverses of the terms in (2.2) are easy to construct:

(I + eiu
T
i)−1 = I − eiuTi ,(2.3)

and therefore,

U−1 =

n−1∏
i=1

(I − eiuTi).(2.4)

Since U−1 is also upper triangular, it is also possible to write U−1 in the same
form as (2.1):

U−1 = I +
n−1∑
i=1

eiû
T
i .(2.5)

Combining this with (2.4), an expression for ûTi , the strictly upper triangular part
of the ith row of U−1 is obtained:

ûTi = −uTi
n−1∏
j=i+1

(I − ejuTj).(2.6)

No data resulting from the calculation of any other ûj is needed for the calculation
of ûi; i.e., there are no true dependencies between the calculation of ûi and ûj (i 6= j),
so all ûi can be calculated in parallel. On a shared memory computer this will work
fine, since the only concurrent accesses to the same memory location will be read
accesses. On a distributed memory machine, where both the triangular factor U and
its approximate inverse Û are distributed, there is some communication overhead.

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 989

By doing one all-to-all broadcast, each processor can get its own local copy of the
complete U and no further communication is required. When this approach is not
feasible (because there is not enough memory with each processor to store the complete
U), a common approach is to use p− 1 (p = number of processors) steps to send the
rows of U along all processors. In the first step, processors 1 to p− 1 send their block
of rows to the next processor; processors 2 to p receive these rows and update their
own rows. In step i, processors i to p − 1 send the block of rows of U they received
in step i − 1 to the next processor. These rows are processed and then sent on. To
accommodate for the load imbalance, p is usually larger than the number of physical
processors. How to distribute the matrices in order to minimize the communication
overhead and balance the computation is not trivial, but it is beyond the scope of this
article. The interested reader is referred to [15, 5] and the references therein.

Algorithm 1. Sparse product algorithm.

for i = 1 to n− 1
ûTi = −uTi
j is first nonzero position in ûTi
while j < n do

α = −ûTi ej
ûTi = ûTi + αuTj (sparse daxpy)
j is next nonzero position in ûTi

endwhile
endfor

Algorithm 1 is a sparse algorithm to compute the rows of U−1. Sparsity is used
twice: j will loop over the nonzero entries only, and the vector update (termed daxpy
in the algorithm) can be performed using sparse techniques.

With each product in (2.6), ûi can get more nonzero entries. This has the effect
that U−1 is less sparse than U (for realistic problems U−1 is nearly a dense matrix),
and therefore, apart from the fact that it might be impossible to store the explicit in-
verse, multiplying with U−1 is computationally more expensive than backward solving
with U . This makes it in general cheaper (faster) to perform a backward solve instead
of inverting U and perform a matrix-vector multiplication. Even when the backward
solve needs to be done a lot of times, e.g., because U−1 is used as a preconditioner
for some iterative solving procedure, it is usually not worthwhile to invert U explic-
itly; the gain achieved by using a (possibly parallel) matrix-vector multiplication is
annihilated by the extra work caused by fill. Nevertheless, if the fill can be controlled
and the sparsity preserved, explicitly inverting U can be cost effective. Of course
the number of nonzeros of U−1 is fixed, making it impossible to design an algorithm
that computes the exact inverse of U that has less nonzeros than the matrix resulting
from Algorithm 1. But on the other hand the exact inverse is not really needed since
U−1 is used only to precondition the system, and an approximate inverse of U can
be just or almost as effective as a preconditioner for the system as the exact inverse.
This article discusses a number of ways to come up with an approximate inverse of
U . The preconditioning effectiveness is compared with that of the exact inverse, and
the increase in parallel performance is examined.

990 ARNO C. N. VAN DUIN

3. Drop strategies. In order to preserve the sparsity of the preconditioner, an
approximate inverse Û of U is used. This approximate inverse of U can be calculated
in several ways. All of these ways have in common that all rows can be computed
in parallel. The standard approach is to compute a matrix Û for which ‖I − ÛU‖F
is small in some sense; see, e.g., [7, 6, 14]. Another approach is to truncate formula
(2.6). There are a number of ways to do this, and each will result in a different
approximate inverse. As with Gaussian elimination, several fill drop strategies can be
used to control the “fill.” In this section these strategies are discussed.

3.1. Numerical fill dropping. The numerical fill drop strategies known from
incomplete factorizations can be adapted into Algorithm 1 in two ways. The first
method is to drop according to the final value of an entry, i.e., on α. When α gets
below a certain threshold ε, the corresponding element is dropped, and the vector
update that otherwise would have been executed and could have caused more fill is
not performed. Algorithm 2 uses this method of numerical dropping.

Algorithm 2. Numerical fill drop strategy I: On final value.

for i = 1 to n− 1
ûTi = −uTi
j is first nonzero position in ûTi
while j < n do

α = −ûTi ej
if |α |> ε then

ûTi = ûTi + αuTj (sparse daxpy)
else

ûTi (j) = 0
endif
j is next nonzero position in ûTi

endwhile
endfor

The second method is to drop fill as soon as it occurs, i.e., within the sparse vector
update. A possible implementation of such a vector update is given in Algorithm 3.
In the implementation described, this strategy is applied on top of the dropping on
final value.

A problem with these numerical fill drop strategies is that there is no direct
control over the number of fills. Since the values of the entries are unknown until
they have been calculated, the only way the number of fills can be predicted is by
computing the preconditioner. One way to obtain some kind of control is by putting
a (for each row (possibly) different) restriction on the allowed number of nonzero
entries, an ILUT-like adaptation (see [22]).

In Figure 3.1 it is shown what the resulting matrix looks like when applied to
the incomplete Cholesky factor with no fill of the reverse Cuthill–McKee [8] reordered
matrix nos3 from the Harwell–Boeing set [11].

3.2. Positional fill dropping. As with numerical fill dropping, the situation
is similar to that of incomplete Gaussian elimination. There are three methods for
positional fill dropping. The first method uses a predetermined set S of positions, and

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 991

Algorithm 3. Numerical fill drop strategy II: Within vector update.

for all nonzeros in uTj
k is column index of this nonzero
u is value of this nonzero
d = α ∗ u
if position k not filled in ûTi then

if |d |> ε then
register this fill
ûTi (k) = d

endif
else

ûTi (k) = ûTi (k) + d
endif

endfor

Fig. 3.1. The Cholesky factor of nos3 and its approximate inverse with approximately twice as
many nonzero elements.

ûTi (k) is only calculated when (i, k) ∈ S. Algorithm 4 uses this strategy. A difficulty
with this strategy is how to choose the set S.

The second method reduces this problem to the choice of one parameter. It uses
a rewritten form of (2.4), which can also be obtained by working out the Neumann
series expansion of (2.1):

n−1∏
i=1

(I − eiuTi) = I −
n−1∑
j1=1

ej1u
T
j1 +

n−2∑
j2=1

ej2uTj2 n−1∑
j1=j2+1

ej1u
T
j1

(3.1)

−
n−3∑
j3=1

ej3uTj3 n−2∑
j2=j3+1

ej2uTj2 n−1∑
j1=j2+1

ej1u
T
j1

+ · · · .

992 ARNO C. N. VAN DUIN

Algorithm 4. Positional fill drop strategy I: On predetermined position.

for i = 1 to n− 1
for all k for which (i, k) ∈ S and uTi (k) 6= 0

ûTi (k) = −uTi (k)
endfor
for all j for which (i, j) ∈ S and ûTi (j) 6= 0

α = −ûTi (j)
for all k for which (i, k) ∈ S and uTj (k) 6= 0

ûTi (k) = ûTi (k) + αuTj (k)
endfor

endfor
endfor

By truncating (3.1), a new fill drop criterion is obtained. The first two terms of
(3.1) are for free. The number of extra terms is denoted by the subscript m. The
subscripted Û is used to denote after which term (3.1) is truncated, so

Û0 = I −
n−1∑
j1=1

ej1u
T
j1 ,

Û1 = I −
n−1∑
j1=1

ej1u
T
j1 +

n−2∑
j2=1

ej2u
T
j2

n−1∑
j1=j2+1

ej1u
T
j1 ,(3.2)

etc.

Algorithm 5 calculates Ûm.
A disadvantage of this truncation is now apparent: vector updates with uTk for

the computation of ûTi will be performed (worst case) m times. The third method
accumulates these updates. This is done by using the notion of fill levels [10, 17, 19].
All fill with a fill level higher than some predefined value is dropped. The fill level of
an entry is defined as follows. The positions of all nonzeros in U are defined to have
fill level zero. All fill that is caused by a vector update due to an entry at a position
with fill level zero are defined to have fill level one (i.e., when U has a nonzero at
position (i, k) associated with ûTi ek in Algorithm 1, all fill that is generated due to
the resulting vector update has fill level one). Likewise higher fill levels are defined.
The positions of all structural zeros of Û are defined to have fill level +∞.

Using the definitions given above, the following initialization function is obtained:

levelij =

{
0 if uTi (j) 6= 0,
+∞ if uTi (j) = 0,

(3.3)

and the function to update the fill levels is

levelik = min(levelij + 1, levelik),(3.4)

in which i is the index of the row vector of Û that is constructed, j is the index of the
vector that is added to ûTi , and k is the index within the corresponding vector update

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 993

Algorithm 5. Positional fill drop strategy II: On truncation level.

for i = 1 to n− 1
ûTi = −uTi
for all nonzeros j1 in uTi

α1 = −uTi ej1
for all nonzeros j2 in uTj1

α2 = −uTj2ej2α1

:
for all nonzeros jm in uTjm−1

αm = −uTj2ej2αm−1

ûTi = ûTi + αmu
T
jm

(sparse daxpy)
endfor
:
ûTi = ûTi + α2u

T
j2

(sparse daxpy)
endfor
ûTi = ûTi + α1u

T
j1

(sparse daxpy)
endfor

endfor

Algorithm 6. Positional fill drop strategy III: On fill level.

for i = 1 to n− 1
ûTi = −uTi
j is first nonzero position in ûTi
while j < n do

if levelij ≤ m then
α = −ûTi ej
ûTi = ûTi + αuTj (sparse daxpy)
update fill levels

else
ûTi (j) = 0

endif
j is next nonzero position in ûTi

endwhile
endfor

loop. The algorithm thus obtained is Algorithm 6. This algorithm can be viewed as
a special case of Algorithm 4, where S is equal to the nonzero pattern of Um.

Another variant is to use the fill levels of the incomplete factorization as initial
fill levels for the approximate inverse. So the function given in (3.3) becomes

levelij =

{
iclevelij if uTi (j) 6= 0,
+∞ if uTi (j) = 0

(3.5)

with iclevelij being the final fill level of the entry at position (i, j) of the incomplete
factorization.

994 ARNO C. N. VAN DUIN

3.3. Hybrid drop strategy. The numerical drop strategies presented in section
3.1 and the positional drop strategies presented in section 3.2 can also be combined
into hybrid fill drop strategies. One of the possible strategies is to use both numerical
dropping on final value and fill level dropping. This leads to Algorithm 7: a com-
bination of Algorithm 2 and Algorithm 6. Another type of hybrid drop strategies is
to use any of the algorithms presented in this section to determine the positions of
the nonzero elements of Û and to use a standard approximate inverse algorithm to
calculate the values of these nonzero elements.

Algorithm 7. Hybrid fill drop strategy I: On fill level and final value.

for i = 1 to n− 1
ûTi = −uTi
j is first nonzero position in ûTi
while j < n do

α = −ûTi ej
if |α |> ε and levelij ≤ m then

ûTi = ûTi + αuTj (sparse daxpy)
update fill levels

else
ûTi (j) = 0

endif
j is next nonzero position in ûTi

endwhile
endfor

3.4. Set-up cost. In order to assess the cost of the construction of the approx-
imate inverse using any of the algorithms presented, a few assumptions are made.
The first assumption is that each row of U has roughly the same number of nonzeros.
Thus, the cost of each sparse vector update is the same. The second assumption is
that this also holds for L. This assumption is needed to estimate the cost of the
incomplete factorization. Let nnzU denote the number of off-diagonal nonzeros in the
matrix U . Define likewise nnzL and nnzÛ . The third assumption is that the discarding
of fill happened after it had been created. In that case each off-diagonal nonzero in L
caused a sparse vector update with a row from U . This also holds for the off-diagonal
nonzeros of Û . The cost (in terms of number of floating point operations) for the
back-substitution (Csubstitute), for the incomplete factorization (Cfactorize), and for

the approximate inversion (Capp.invert), can now be expressed as

Cfactorize = O
(

nnzL ∗ nnzU
n

)
,

Capp.invert = O
(

nnzÛ ∗
nnzU
n

)
,

Csubstitute = O(nnzU).

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 995

The relative extra cost of calculating Û compared with the cost of the incomplete
factorization and the cost of back-substitution is

Capp.invert

Cfactorize
= O

(
nnzÛ
nnzL

)
,

Capp.invert

Csubstitute
= O

(nnzÛ
n

)
.

Under the assumption that L has about the same number of nonzeros as U , the
extra cost for the (parallelizable) approximate inversion relative to the cost for the
decomposition is governed by the factor of extra nonzeros in Û compared with U .

3.5. Asymmetry. The drop strategies presented have in common that they can
be used both in a column-wise manner and in a row-wise manner. In general, the
resulting preconditioner will not be the same. To illustrate this, consider the following
matrix and its column-wise and row-wise approximate inverses, where the entry at
position (2,4) is dropped:

1 a b c
0 1 d 0
0 0 1 e
0 0 0 1

column-wise

;

1 −a −b+ ad −c+ be
0 1 −d 0
0 0 1 −e
0 0 0 1

row-wise

;

1 −a −b+ ad −c+ be− ade
0 1 −d 0
0 0 1 −e
0 0 0 1

 .

For fill level dropping, the pattern but not the values for the row-wise and column-
wise approximate inverse will be the same. When one of the numerical dropping
strategies is applied, even the patterns can be different. This can be seen from the
example above: since the elements at position (1,4) differ, −c + be can be below the
threshold while −c+ be− ade is not, or vice versa.

In the experiments presented in the following sections, the row-wise algorithms
were used.

4. Numerical results. In this section the algorithms from section 3 are tested
on the Poisson problem on a unit square, discretized on a 32×32 grid. An incomplete
Cholesky decomposition using fill levels 0, 1, 2, 3, and 4 was calculated and used to
precondition the system. The effectiveness of this preconditioner is given in Table 4.1.
For these experiments the right-hand side was generated using a constant one solution
vector, and the initial guess equaled the zero vector. Convergence was reached when
the 2-norm of the residual was a factor 109 smaller than the 2-norm of the initial
residual.

The inverse of the preconditioner was approximated using each of the described
algorithms. The approximate inverse is denoted with the term ICI. The results are
presented in the next subsections.

4.1. Preconditioning efficiency. As an example of the standard approximate
inverse approach the SPAI algorithm [14] is used. In SPAI there are three parameters:
(a) ε = the desired accuracy of ICI (i.e., ‖ei − ÛUei‖2 < ε); (b) nmax, the maximum
number of elements in each row of ICI; and (c) nadd, the maximum number of elements
added to the sparsity pattern before a new least squares problem is solved. In the

996 ARNO C. N. VAN DUIN

Table 4.1
Number of CG-iterations needed for convergence and number of nonzeros of the incomplete

Cholesky factorization as a function of the fill-level for the test problem.

level #iter nnz
0 32 3008
1 24 3969
2 20 4899
3 15 6728
4 12 8495

IC(0) 32/3008

IC(1) 24/3969

IC(2) 20/4899

IC(3) 15/6728

IC(4) 12/8495

0 1 2 3 4 5 6 7

x 10
4

0

10

20

30

40

50

60

70

80

90

100

number of non-zeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

Fig. 4.1. Preconditioning efficiency of the SPAI approximate inverse of various decompositions.

experiments, only ε is varied; nmax (100) and nadd (1) are kept constant (for larger
problems a larger value for nadd (e.g., 10) is more efficient [14]).

In Figure 4.1 the number of iterations needed for CG to converge as a function
of the number of nonzeros in the SPAI approximate inverse of the various incomplete
Cholesky decompositions is presented. The number of nonzeros grows with the desired
accuracy of the approximate inverse. The results for IC(0) (for which U has 3008
nonzeros and needs 32 CG-iterations for convergence) are also presented in Table
4.2. What can be seen from Figure 4.1 is that the gain in preconditioning efficiency
obtained due to higher fill level in the Cholesky decomposition cannot be achieved
with the SPAI approximate inverse of that decomposition unless a large number of
nonzeros in the approximate inverse is allowed.

Next, the two methods of numerical dropping described in section 3.1 were applied
to the test problem. The thresholds used are 0.9, 0.5, 0.2, 0.1, 1e-2, 1e-3, and 1e-5.
The results are depicted in Figure 4.2. For this problem, dropping on final value
is better than dropping on intermediate value. Third, the two variants of positional
dropping of Algorithm 6 were applied to the test problem, and the results are depicted
in Figure 4.3. The other two strategies (Algorithms 4 and 5) were not tested.

Finally the result of the experiments with the hybrid dropping of Algorithm 7 on
the test problem are presented in Figure 4.4. Only the results for approximating the
inverse of IC(2) are presented. The approximations of the other decompositions show

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 997

Table 4.2
Number of CG-iterations and number of nonzeros of the SPAI approximate inverse of IC(0)

for several thresholds.

ε #it. #nnz
1.0 96 1024
0.5 96 1024
0.2 52 3008
0.1 41 5769

0.01 34 19754
0.001 34 41308

0.0001 33 68228

IC(0) 32/3008

IC(1) 24/3969

IC(2) 20/4899

IC(3) 15/6728

IC(4) 12/8495

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

IC(0) 32/3008

IC(1) 24/3969

IC(2) 20/4899

IC(3) 15/6728

IC(4) 12/8495

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

Fig. 4.2. Preconditioning efficiency of the approximate inverse with numerical dropping (left:
final value, right: intermediate value) for various decompositions.

a similar behavior. The results of the experiments with the second hybrid dropping
algorithm show that given the sparsity pattern generated with the positional dropping
strategy using fill levels (Algorithm 6), a better approximation of the inverse of the
decomposition does not necessarily result in a better preconditioner.

These experiments show that, for higher levels, relatively more nonzeros are
needed in order to come close to the preconditioning efficiency of the triangular solve.
So, the gain in preconditioning efficiency relative to the number of nonzeros is better
for the triangular solve than it is for its approximate inverse.

4.2. Comparing the approximate inverses. In Figure 4.5 the results for the
test problem preconditioned with the different approximations of IC(2) are plotted.
For this problem the numerical dropping on final value strategy gives the best pre-
condition efficiency/number of nonzeros ratio (the lowest line in the graph).

The preconditioner was also tested on some symmetric matrices from the Harwell–
Boeing set. The algorithm used is the ILUT-like extended version of Algorithm 2
ICI(F ,ε), with fixed threshold parameter ε = 0.01 and various values for the maximum
number of nonzeros (F is the ratio between the number of nonzeros in the approximate
inverse and the Cholesky factor). The results are presented in Table 4.3. With this
threshold the convergence rate within two iterations of that of IC(0) could be reached
for all matrices, albeit that for nos3 ICI(∞,0.01) requires 16.5 times as much nonzeros
as the Cholesky factor.

For problems of considerably larger size, it is probably worthwhile to view the
triangular matrices as a block triangular matrix and only invert the diagonal blocks

998 ARNO C. N. VAN DUIN

IC(0) 32/3008

IC(1) 24/3969

IC(2) 20/4899

IC(3) 15/6728

IC(4) 12/8495

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

20

40

60

80

100

120

number of nonzeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

IC(0) 32/3008

IC(1) 24/3969

IC(2) 20/4899

IC(3) 15/6728

IC(4) 12/8495

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

20

40

60

80

100

120

number of nonzeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

Fig. 4.3. Preconditioning efficiency of the approximate inverse with positional dropping (left:
new levels, right: passed levels) for various decompositions.

eps=0

eps=0.00001

eps=0.001

eps=0.01

eps=0.1

eps=0.2

eps=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

number of nonzeros

nu
m

be
r

of
 C

G
-it

er
at

io
ns

IC(2) 20/4899 app. inverted

Fig. 4.4. Preconditioning efficiency of the approximate inverse of IC(2) with hybrid dropping.

approximately. This is also suggested in [20], where it is shown that using the exact
inverse of the diagonal blocks can already result in a performance gain of a factor three
on an Alliant FX/8 with 8 processors, but was less effective than level scheduling on
that platform. However, as long as both the diagonal blocks and the off-diagonal
blocks contain enough nonzeros for the associated matrix-vector multiplications to
be performed efficiently, approximately inverting only the diagonal blocks instead of
the whole triangular factor will not have a large degrading effect on the obtainable
speed-up. In this case, the application of the preconditioner consists of a series of
sequential steps, which are themselves easily parallelizable.

4.3. Comparing triangular solve with matrix-vector multiplication. An
important aspect of the preconditioner other than its efficiency in decreasing the num-
ber of iterations needed for convergence is the time needed to apply the preconditioner.

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 999

standard inverse

numerical I

numerical II

positional III

hybrid I

hybrid II

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

number of non-zeros

nu
m

be
r

of
 c

g-
ite

ra
tio

ns

IC(2) 20/4899

Fig. 4.5. Preconditioning efficiency of the approximate inverses of IC(2).

Table 4.3
Number of CG-iterations needed for convergence for ICI with numerical dropping (ε = 0.01)

and limits on the maximum number of nonzeros.

ICI(F, 0.01) ICI(∞, 0.01)
Matrix IC(0) F=1.0 F=1.5 F=2.0 F=3.0 F=4.0 Iter. F

494 bus 41 ‡ ‡ 252 89 53 43 5.3
662 bus 50 161 98 70 61 54 50 6.4
685 bus 62 130 85 71 62 63 62 5.9
1138 bus 76 ‡ ‡ ‡ 240 162 78 6.4
gr 30 30 25 42 38 32 30 28 25 7.8
lund a 17 134 132 115 83 63 17 7.1
lund b 10 63 48 42 30 23 10 6.0
nos3 46 79 70 63 57 52 45 16.5
nos4 23 52 43 36 30 26 23 4.9
nos5 47 86 58 53 48 48 47 8.9
nos6 29 41 36 31 30 29 29 3.9
nos7 32 47 42 38 34 33 30 7.6

poisson 32 53 48 39 42 40 32 6.0

‡ means no convergence within 300 iterations. The last column specifies the number of iterations
when ICI with no limit on the number of nonzeros would be used: when F=7.0, ICI with no limit
would require 7.0 times the number of nonzeros of IC(0)

Therefore the time needed to do a triangular solve is compared with the time needed
to multiply a vector with a triangular matrix on several computing platforms: an
HP700/9000 workstation, a CRAY-C90, and a CM-5. The triangular matrices used
were randomly generated with dimension and number of nonzeros per row as driving
parameters. The dimension was varied from 100 to 25600 and the average number of
off-diagonal nonzeros from 1 to 64.

Timings for the HP workstation are presented in Figure 4.6. Since the number of

1000 ARNO C. N. VAN DUIN

test1

test2

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n=2^i*100 (i=0:8), nnz=2^j (j=1:7)

tim
e

M
S

R
-s

ol
ve

 /
tim

e
JA

D
-m

ul
tip

ly

timings on HP

Fig. 4.6. Timings to do a triangular solve relative to the time needed for matrix-vector multi-
plication on an HP workstation.

floating point operations is the same, one would expect that neither one of the two
would be clearly better. The experiments show that both methods outrun each other
in about half of the cases. The subroutines used were AMUXJ and LDSOL from
SPARSKIT2 [21].

For the CRAY-C90, timings are presented in Figure 4.7. Due to the jagged diag-
onal storage, the matrix vector multiply can make better use of the vector capabilities
than the triangular solve. One would expect that this difference would decrease with
growing number of nonzeros per row, but in these experiments this effect is not ap-
parent even for 64 nonzeros per row.

In order to be able to specify beforehand how many nonzeros are allowed in the
approximate inverse, given the dimension of the matrix, the number of nonzeros in
the incomplete factorization, and the speed-up desired, the time needed to perform a
matrix vector multiplication for a given dimension is modeled by a linear function of
the number of nonzeros. From Figure 4.7 this seems to be a reasonable assumption.
The same is assumed for the triangular solve with the average number of nonzeros
per row being larger than 10. Let tJAD denote the time needed to perform one matrix
vector multiplication, and zJAD the number of nonzeros per row in the approximate
inverse. This leads to the following function:

tJAD(n, zJAD) = aJAD(n)zJAD + bJAD(n),

where aJAD(n) and bJAD(n) are the model parameters sought.
Likewise for the triangular solve:

tMSR(n, zMSR) = aMSR(n)zMSR + bMSR(n).

The least squares solution of the coefficients as a function of n is given in Figure
4.8. Again linear functions are used as a model for these coefficients, using least

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 1001

amuxj

ldsol

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

nnz/n

t (
m

s)

Timings on CRAY-C90, with n=1600,3200,6400

Fig. 4.7. Timings to do a triangular solve compared to the time needed for matrix-vector
multiplication on a CRAY-C90.

squares to find the coefficients. With the found parameters, it is now possible to
give an estimate for the number of nonzeros that can be allowed in the approximate
inverse.

Let f be the desired speed-up factor that one wants to achieve on the CRAY-C90;
then setting ftJAD = tMSR leads to

F (n, f, zMSR) =
zJAD

zMSR

=
aMSR(n)

f · aJAD(n)
+

bMSR(n)

f · aJAD(n)zMSR

− bJAD(n)

aJAD(n)zMSR

.

For n > 1000, F is independent of n. In Figure 4.9, F is plotted as a function of
f and zMSR. In the previous section it was shown that the number of nonzeros needed
to get close to the preconditioning efficiency of the incomplete factorization is at least
a factor of two or three larger than the number of nonzeros in the incomplete factor.
From this figure it can be seen that if the original factor contains 20 nonzeros per
row and the desired speed-up is a factor three, then the approximate inverse may not
contain more than three times as many nonzeros.

For the implementation on the CM-5, the global execution model as provided by
CM Fortran was used. For the sparse matrix vector multiply a built-in subroutine,
SPARSE MATVEC MULT, was available. For the triangular solve, the routine LD-
SOL was converted to CM Fortran. The timings are presented in Table 4.4. The
CM-5 used had 1024 processors of which 512 were used for these experiments.

Although more efficient implementations of triangular solve on a CM-5 probably
exist, the speed-up obtainable by, for instance, level scheduling is usually in order of
4 to 8, which is quite modest with respect to the number of processors. On this type
of machine the excellent scalability of the approximate inverse preconditioner clearly
pays off.

1002 ARNO C. N. VAN DUIN

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5000 10000 15000 20000 25000 30000
n

a_jad
model

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 5000 10000 15000 20000 25000 30000
n

b_jad
model

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 500 1000 1500 2000 2500 3000 3500
n

a_msr
model

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500
n

b_msr
model

Fig. 4.8. The values of the coefficients and the linear functions used as a model.

F
 0.75

 1
 1.5
 2
 3
 4
 5

2 3 4 5 6 7 8 9 10 11
10

20
30

40
50

60

0

5

10

15

20

desired speed-up

z_msr

z_jad/z_msr

Fig. 4.9. The factor of allowed nonzeros in the approximate inverse as a function of the
number of nonzeros in the incomplete factorization and the desired speed-up of the matrix-vector
multiplication over the triangular solve.

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 1003

Table 4.4
Timings on a CM-5 with 512 processors for sparse matrix-vector multiplication, inner product

wise triangular solve, and vector update-wise triangular solve.

n nnz/n multiply solve (dot) solve (daxpy)
800 2 0.003 0.443 0.134

4 0.003 0.445 0.197
8 0.004 0.452 0.335

16 0.005 0.474 0.604
32 0.007 0.541 1.138
64 0.011 0.677 2.226

1600 2 0.003 0.886 0.260
4 0.003 0.892 0.396
8 0.005 0.926 0.661

16 0.006 1.032 1.199
32 0.009 1.259 2.286
64 0.014 1.624 4.436

3200 2 0.004 1.818 0.524
4 0.004 1.829 0.786
8 0.006 2.022 1.327

16 0.008 2.417 2.417
32 0.012 3.052 4.565
64 0.021 4.469 8.899

6400 2 0.005 3.883 1.049
4 0.006 5.138 1.613
8 0.006 5.535 2.708

16 0.008 6.285 4.904
32 0.013 7.661 9.284
64 0.021 10.399 18.198

5. Related work. In his thesis [9], Dağ investigates the partitioned inverse of
the triangular matrix

U−1 =
n∏
i=1

(I − eiuTi) =
K∏
k=1

Uk,(5.1)

where Uk is the product of a set of consecutive elementary matrices Uk = (I −
eiu

T
i) . . . (I−ejuTj) such that there is no or little fill-in. When U is not so sparse, e.g.,

when U stems from a complete factorization, the number of terms in (5.1) can be quite
moderate (see [2]). Unfortunately this is not true when U is as sparse as it is when
an incomplete factorization was used. Three algorithms for discarding fill (“spar-
sification”) are presented: (1) numerical dropping on exact value (SW xILUi), (2)
positional dropping on fill-level (IWjILUi), (3) numerical dropping on exact value
after fill-level dropping (SIW x

j ILUi). IWjILUi with one partition is equal to Al-
gorithm 6. SW xILUi is similar to Algorithm 2; likewise SIW x

j ILUi is similar to
Algorithm 7. The difference is that SW xILUi and SIW x

j ILUi drop elements using
a threshold after all elements (of one column or row) are calculated, thus introducing
more work than Algorithms 2 and 7. The resulting approximate inverse (Ũ) is closer
to the exact inverse in the sense that ‖U−1 − Ũ‖F ≤ ‖U−1 − Û‖F , but this does not
imply that ‖I − UŨ‖F ≤ ‖I − UÛ‖F .

The resulting preconditioners are tested on a shared memory machine (a Sequent
Symmetry). The timings show that using multiple partitions (K > 1) reduces the
required CPU time. This is due to the effect that for K > 1 the preconditioner is a
better approximation of U−1, while at the same time full use can be made (still) of
the 14 available processors.

1004 ARNO C. N. VAN DUIN

Another approach is to calculate a factored approximate inverse directly from A
instead of doing some kind of incomplete factorization first. Kolotilina and Yeremin
[16] calculate an approximate inverse with fixed sparsity pattern of the complete
Cholesky factor L without actually calculating L. Benzi, Meyer, and Tůma [3] and
Benzi and Tůma [4] perform an incomplete (bi)conjugation process resulting in a
preconditioner that is largely independent of the ordering of the matrix [4]. The
incomplete biconjugation process contains less parallelism than in the algorithms pro-
posed in this article, but so does the incomplete factorization. Their algorithm stays
within reasonable limits from the incomplete factorization time with on average equal
preconditioning performance with the same number of nonzeros. More nonzeros, how-
ever, does not necessarily mean better or equal convergence with their method.

6. Conclusions and future work. Ideally one would like to use the exact in-
verse as a preconditioner. In this way one can calculate the influence of the right-hand
side to the solution at all nodes in one step. Unfortunately it is too expensive to cal-
culate the exact inverse, and it is also too expensive to store the exact inverse. Instead
of using the exact inverse, a complete factorization can be used. The resulting factors
can be viewed as sparse indirect representation of the exact inverse. Although this
is much cheaper than calculating the exact inverse, it is (usually) still too costly to
be feasible. There are two ways to save on computing time and storage: (i) calculate
a sparse approximation of the exact inverse and (ii) calculate sparse approximations
of the factors. The first way leads to an explicit preconditioner, the second to an
incomplete decomposition. If one calculates the explicit preconditioner that corre-
sponds to the incomplete factorization, one notices that the number of nonzeros is
much larger than the sum of the number of nonzeros of the factors. For this reason
one expects the incomplete factorization to yield a better preconditioner than a sparse
approximate inverse with the same sparsity. For tridiagonal matrices this is more than
true, since the incomplete factorization is exact, whereas the approximate inverse is
not. For some application areas, however, sparse approximations can be competitive
preconditioners; see, e.g., [23].

The method proposed in this article combines the advantages of being an ex-
plicit preconditioner with the preconditioning efficiency of the underlying incomplete
factorization. The algorithms developed show how the (mainly) sequential process
involved with the triangular solve steps of an incomplete factorization can be turned
into a scalable parallel process by using the sparse approximate inverse of the trian-
gular factors. The algorithms have in common with the Frobenius norm approach
that all columns (or rows) of the preconditioner can be calculated in parallel. The
amount of work associated with each algorithm strongly depends on the sparsity of
the triangular matrix, but the experiments show that a preconditioner efficiency close
to that of the underlying incomplete factorization can be achieved.

The method can be extended in a way similar to that used by [9] to come up
with products of sparse triangular matrices. In that case the aim would be to use
as many matrices as possible such that each matrix gives rise to a scalable parallel
matrix vector multiplication and at the same time the total number of floating point
operations does not grow (much). In this way it is possible to approximate the inverse
of the factor better with the same sparsity.

The assumption that an incomplete factorization has already been computed leads
to several disadvantages of this method. The first disadvantage is that only the appli-
cation and part of the setting up of the preconditioner contains scalable parallelism.
When the time required for calculating the incomplete factorization is relatively small,

SPARSE APPROXIMATE INVERSE OF TRIANGULAR SYSTEMS 1005

e.g., because it can be used many times, this method remains applicable. A major
disadvantage is that if the incomplete factorization does not exist or is unstable,
this method is simply not applicable. A third disadvantage is that, apart from the
parameters for the incomplete factorization, parameters for the approximate inver-
sion need to be chosen. Finding the optimal parameters might turn out to be hard.
Another disadvantage is that it is very unlikely that the resulting preconditioner will
do a better job in reducing the number of iterations than the underlying incomplete
factorization. Therefore, the challenge will be to find an explicit preconditioner in
the form of products of sparse matrices, such that the combined sparsity stays within
certain limits and each matrix contains enough nonzeros to make efficient use of the
parallel processing capability when used in a matrix vector product, while at the same
time each of these matrices can be computed in parallel using the original matrix A
instead of some (hard to parallelize) incomplete factorization.

Acknowledgments. The author would like to thank Henk van der Vorst and
Harry Wijshoff for their helpful comments and suggestions.

REFERENCES

[1] F. Alvarado and H. Dağ, Sparsified and incomplete sparse factored inverse preconditioners,
in Copper Mountain Conference on Iterative Methods, Preliminary Proceedings, Vol. I,
April 9–14, 1992.

[2] F. L. Alvarado and R. Schreiber, Optimal parallel solution of sparse triangular systems,
SIAM J. Sci. Comput., 14 (1993), pp. 446–460.

[3] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.

[4] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[5] R. H. Bisseling, Sparse matrix computations on bulk synchronous parallel computers, in Pro-
ceedings ICIAM’95, Issue 1. G. Alefeld, O. Mahrenholtz, and R. Mennicken, eds., Nu-
merical Analysis, Scientific Computing, Computer Science, Akademie Verlag, Berlin, 1996,
pp. 127–130.

[6] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM
J. Sci. Comput., 18 (1997), pp. 1657–1675.

[7] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[8] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Pro-
ceedings 24th National Conference, Association for Computing Machinery, Brandon Press,
Princeton, NJ, 1969, pp. 157–172.

[9] H. Dağ, Iterative Methods and Parallel Computation for Power Systems, Ph.D. thesis, Uni-
versity of Wisconsin-Madison, December 1995.

[10] E. F. d’Azevedo, P. A. Forsyth, and W. P. Tang, Towards a cost-effective ILU precondi-
tioner with high level fill, BIT, 32 (1992), pp. 442–463.

[11] I. S. Duff, R. G. Grimes, and J. C. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[12] R. Freund and N. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian
linear systems, Numer. Math., 60 (1991), pp. 315–339.

[13] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press,
London, 3rd edition, 1996.

[14] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[15] M. T. Heath, E. Ng, and B. W. Peyton, Parallel algorithms for sparse linear systems, SIAM
Rev., 33 (1991), pp. 420–460.

[16] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate inverse precondition-
ings I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[17] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–
162.

1006 ARNO C. N. VAN DUIN

[18] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete decompo-
sitions in solving sets of linear equations as they occur in practical problems, J. Comput.
Phys., 44 (1981), pp. 134–155.

[19] D. J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
New York, London, 1972, pp. 183–217.

[20] Y. Saad, Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 1200–1232.

[21] Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Technical report
TR-1029, CSRD, University of Illinois at Urbana-Champaign, Urbana, IL, 1990.

[22] Y. Saad, ILUT: A dual threshold incomplete LU-factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[23] Y. Saad, Preconditioned Krylov subspace methods for CFD applications, in Solution Techniques
for Large-Scale CFD Problems, W. G. Habashi, ed., Wiley, New York, 1995, pp. 139–158.

[24] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[25] P. Sonneveld, CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36–52.

[26] R. Suda, Large scale circuit analysis by preconditioned relaxation methods, in Proc. PCG’94,
Keio University, 1994, pp. 189–205.

[27] R. Suda, New Iterative Solvers for Parallel Circuit Simulation, Ph.D. thesis, Department of
Information Sciences, University of Tokyo, Tokyo, Japan, 1996.

[28] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

MATRIX RENUMBERING ILU: AN EFFECTIVE ALGEBRAIC
MULTILEVEL ILU PRECONDITIONER FOR SPARSE MATRICES∗

E. F. F. BOTTA† AND F. W. WUBS†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1007–1026

Abstract. In this paper a multilevel-like ILU preconditioner is introduced. The ILU factoriza-
tion generates its own ordering during the elimination process. Both ordering and dropping depend
on the size of the entries. The method can handle structured and unstructured problems. Re-
sults are presented for some important classes of matrices and for several well-known test examples.
The results illustrate the efficiency of the method and show in several cases near grid independent
convergence.

Key words. multilevel methods, preconditioning, ILU, dropping strategies, Krylov-subspace
methods

AMS subject classifications. 65F10, 65N06

PII. S0895479897319301

1. Introduction. Solving large sparse systems of equations continues to be a
major research area. This attention is caused by the fact that solving such equations
forms the bottleneck in many practical problems. For really large systems direct
methods become too expensive in CPU time and storage requirements, and therefore
an iterative approach is needed. In particular the use of preconditioned CG-type
methods has proved to be very competitive. It is also widely recognized that the
quality of the preconditioner determines the success of the iterative method. With a
proper preconditioner the choice of the CG-like accelerator is not that critical.

The preconditioner presented in this paper is a special multilevel-like incomplete
factorization. In this introduction we briefly describe the various incomplete decom-
position approaches available today and their relation to the approach presented here.

The history of ILU factorizations is amongst others described in [15]. Moreover,
historical notes are to be found in the textbooks of Axelsson [1], Hackbusch [31], and
Saad [50]. The first roots of the approach lie in the 1960s [13, 42, 43] and since then
the method has become applicable to a wide class of problems. Furthermore, analyses
for important classes of matrices could be made. Today, ILU factorizations are an
important tool for solving large-scale problems.

Classical ILU approach. The classical approach is to allow only fill entries in
the L and U factors, where the original matrix A has nonzeros. This simple approach
allows for a very efficient implementation by Eisenstat [25] and is still very popular.

As observed by Dupont, Kendall, and Rachford [23], an important improvement
in the convergence of the classical approach can be obtained by lumping the dropped
elements onto the diagonal. With this modification, the factorization, called MILU, is
made exact for a constant vector. For a more general matrix A Gustafsson [30] found
a similar result. For many second-order elliptic problems, the preconditioning with
the classical ILU gives asymptotically the same condition number as with diagonal
scaling, i.e., O(h−2). After this simple modification this improves to O(h−1). For M-
matrices the existence of ILU factorizations can be proved [35], but this is not the case

∗Received by the editors March 31, 1997; accepted for publication (in revised form) by R. Freund
January 19, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31930.html
†Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The

Netherlands (E.F.F.Botta@math.rug.nl, F.W.Wubs@math.rug.nl).

1007

1008 E. F. F. BOTTA AND F. W. WUBS

for MILU factorizations. Here, the factorization may break down [24]. The subject
of existence is studied by Beauwens and Quenon [5] and Notay [38, 39]. Relaxed
forms of MILU have been introduced to prevent the problem of breakdown and bad
conditioning [40]. Problems occur at positions in the matrix where due to lumping
the diagonal becomes very small.

The classical approach is an example of drop-by-position, which can be generalized
by also allowing fill at other user-specified positions in the L and U factors. In general
it is difficult to determine where to allow fill. Hence, matrix-dependent approaches
are to be favored.

Matrix-dependent approaches. One may distinguish two approaches: one in
which only the nonzero structure of the original matrix determines the fill pattern,
and another in which the values of the coefficients also are involved.

An example of the first approach is the one based on the level of fill. The levels are
defined recursively. Entries belonging to the original nonzero structure of the matrix
are defined to have a level of fill of zero. Fills in the LU factors caused by entries of
level k have level k + 1. For many problems the size of elements decreases with the
level number and in practice the number of levels is kept low (see [50, section 10.3.3]).
This approach appears to be rather successful [17]. However, there can still be a lot
of fill of which most entries are very small.

In the second approach, called drop-by-size method (or incomplete factorization
by value, e.g., [1]) such small elements are dropped according to a dropping rule. Let
us briefly review some of the drop-by-size strategies.

In the ILU method, proposed by Saad [50, section 10.4.1], the factors L and U are
constructed row by row, with L unit lower triangular. When constructing row i, first
the 2-norm of the ith row of the original matrix is calculated. Multiplied by a user
specified tolerance, this is used as a drop tolerance for this row and the multipliers
used in the construction of this row. The fill in L and U is further limited by keeping,
besides the diagonal, only the p largest elements in the L and U parts of the row.

Axelsson and Munksgaard [3] and Axelsson [1] follow the standard construction
of the L and U factors. Elements in the part of the matrix still to be factorized at
step k of the construction are dropped if

|a(k)
ij | ≤ ε|a(k)

ii a
(k)
jj |1/2.

For block matrices the dropping condition is generalized to

||A(k)
ij || ≤ ε{||A(k)

ii ||||A(k)
jj ||}1/2.

This approach is strongly based on symmetric positive definite systems.
D’Azevedo, Forsyth, and Tang [18] base the dropping rule on the maximum values

in rows i and j of the original matrix, i.e.,

|a(k)
ij | < εmin(||ai∗||∞, ||aj∗||∞).

This condition is applied successfully to nonsymmetric problems. Nevertheless, one
should be careful when the maximum does not occur at the diagonal position and as
a result large multipliers may come across.

Ordering strategies. In any (I)LU factorization the ordering may have a signif-
icant impact on the amount of fill. Finding an optimal ordering is difficult (NP-hard),
but over the years several successful heuristics have evolved. Some well-known ex-
amples are (reverse) Cuthill–McKee, minimum degree, and nested dissection (see,

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1009

e.g., [21]). For a variety of orderings the effect on preconditioned CGs has been
studied by Duff and Meurant [22]. It turns out that orderings can have a dramatic
influence on the convergence and that the norm of the residual matrix R = A − LU
is useful as an estimate for the quality of the preconditioning. It appears that for
ILU(0) the simple row ordering and the spiral ordering perform very well.

When more drop-tolerance controlled fill is allowed, the situation is different. Now
the red-black ordering and the alternating diagonal ordering are very competitive. In
the matrix renumbering ILU (MRILU) method, described in section 2, this type
of ordering is generated automatically for each new Schur complement during the
elimination process.

In D’Azevedo, Forsyth, and Tang [18] a near-optimal ordering is constructed
during the elimination process. The basic idea is to choose in each step of a level-of-
fill approach the next pivot node that minimizes the Frobenius norm of a discarded fill
matrix. Hence in some sense the norm of the residual matrix is minimized. For ILU(0)
on a standard Laplace problem this leads to an ordering very similar to the spiral
ordering and with ILU(1) a generalized red-black ordering evolves. This agrees nicely
with the results of Duff and Meurant [22], who also show that in case of anisotropy the
ordering becomes even more critical. In such cases the method designed by D’Azevedo,
Forsyth, and Tang constructs an ordering that is different from the isotropic case,
leading to a better convergence. An interesting analysis for modified block incomplete
factorizations is given by Magolu [36]

Repeated red-black orderings have been studied extensively. Brand [12], and sep-
arately Axelsson and Eijkhout [2], analyzed this approach. Notay and Ould Amar
[41] showed recently a bound for the condition number of the preconditioned matrix
O(N0.153), where N is the total number of unknowns. Hence the condition number
comes close to the optimal value one. In [8] we considered a fixed red-black order-
ing and combined this with a dropping strategy. It appeared that grid-independent
convergence is possible if used in a CG process.

MRILU as presented in this paper determines the ordering by itself. At every
block step in the process we determine an independent set, i.e., a set of unknowns
not directly connected in the graph. The unknowns associated with an independent
set can be eliminated simultaneously. This concept is stretched to the case of a weak
coupling. This is very similar to the work done by Saad [50] and Saad and Zhang
[51] in ILU with multielimination (ILUM); however, there each elimination is exact
and at a later stage the resulting system is solved by a simple iteration scheme. It
appears that in our approach again grid-independent convergence is possible even
for unstructured problems. An interesting side effect of red-black orderings is their
attractiveness for implementation on supercomputers. This was the basic argument
for Saad to develop ILUM. In [10] we constructed such an implementation for a
shared-memory parallel computer using block slicing to distribute the work over the
processors and jagged-diagonal storage to speed up the vector processing.

The above orderings ask for a matrix close to an M-matrix and are not very suit-
able for many other matrices. The (Navier–) Stokes problem, for example, leads to
matrices that differ largely from an M-matrix. The Stokes problem can be written as
a system with a symmetric indefinite matrix. It has negative and positive eigenvalues.
The Navier–Stokes equation is a perturbation of the Stokes equation but is not sym-
metric. Another example is the convection-diffusion equation with strong convection
and discretized by central differences. In [27, sect. 4.4] an overview of direct methods
for this type of problem is given.

1010 E. F. F. BOTTA AND F. W. WUBS

The symmetric structure of the matrix is destroyed by partial or complete pivoting
and therefore we always employ diagonal pivoting (reordering). A form relevant to
our approach is the diagonal pivoting method of Bunch and Parlett [14]. In this
method the notion of a pivot is extended to 2× 2 blocks that are used when, due
to large elements outside the diagonal, choosing a 1× 1 pivot on the diagonal is no
longer stable.

Relation to algebraic multigrid. Grid-independent convergence has become
almost synonymous with multigrid. The algorithms in the multilevel world can be
classified into two groups: parallel subspace correction (PSC) and successive subspace
correction (SSC) [61]. Some papers use the corresponding terminology from domain
decomposition approaches: additive Schwarz and multiplicative Schwarz methods.
The two types are similar to the Jacobi and Gauss–Seidel methods. The first is more
suited for parallel computations whereas the second is more attractive on sequential
computers. The classical V-cycle multigrid is an SSC method (see [61]), whereas
the Bramble–Pasciak–Xu (BPX) method [11] is a PSC method. In the classical ap-
proaches the sequence of nested subspaces is given and together with the correspond-
ing orthogonal projections the coarse grid matrices are constructed by means of the
Galerkin approach. One way to improve the robustness of this classical approach is
to use matrix-dependent projections [19, 44, 45]. As a next step the subspaces can be
determined by the matrix. This resulted in the so-called algebraic multigrid (AMG).
Although these steps were first done in the multiplicative context they can also be
applied in the additive form (see [28]).

The approach we follow is connected with AMG as introduced by Ruge and
Stüben [47]. In their approach two steps in particular are important. The first step
is the selection of coarse grid points. The coarse grid points should be distributed
uniformly over the grid such that the matrix can be ordered in a 2× 2 block partition
with the property that the coupling between points in A22 is weak. The second step is
the construction of an interpolation formula, again using the matrix entries. Once this
interpolation operator with a weighting of unity is settled, the coarse grid operator
can be constructed by a Galerkin approach. Thereafter the construction is started
again at the coarse grid. In the iteration process smoothing at each level has to be
applied to get rid of high-frequency errors. In [16] an AMG method is presented that
can handle nonsymmetric problems. Here, a special interpolation formula is derived
that can handle positive off-diagonal elements and is accurate for linear functions.
Moreover, the coarse grid operator is computed more accurately by an approximate
elimination. This results in a rather robust method.

In a certain sense our approach may be viewed as such an AMG method. However,
we don’t use smoothing and the prolongation and restriction operators appear in
a natural way during the decomposition. As with AMG only one algorithm can
handle various problems, which is not the case for the geometrically oriented multigrid
algorithms.

In the following we will assume that the matrices originate from a partial differ-
ential equation (PDE) without any specific scaling of columns. If possible we start
with a symmetric matrix; otherwise a row scaling is performed such that a reasonable
degree of normality is obtained [17]. In the case of a system of PDEs the unknowns
should be properly scaled by the user. Note that dropping strategies are sensitive to
scaling. Scaling is a difficult job and can best proceed on a problem-by-problem basis;
see [27] for further discussion.

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1011

e e e e e e e e e e ee e e e e ee e e e e e e e e e ee e e e e ee e e e e e e e e e ee e e e e ee e e e e e e e e e ee e e e e ee e e e e e e e e e ee e e e e ee e e e e e e e e e e

u u u u u
u u u u u
u u u u u
u u u u u
u u u u u

Fig. 1. Hierarchical multigrid ordering in NGILU.

2. MRILU. MRILU generalizes an earlier method called nested grids ILU
(NGILU) [8]. For a better understanding of MRILU we will therefore start with a short
description of this method. NGILU uses a multilevel approach as in multigrid and
combines a hierarchical multigrid ordering of the unknowns with an easy-to-construct
ILU factorization using a special drop tolerance technique. The construction of the
incomplete factorization is illustrated by a brief discussion of the first reduction step.
Suppose we start with the system Sx = b on the grid given in Figure 1. On this grid
we distinguish between points/unknowns ◦ and •, where the dots are the points from
a next-coarser grid. This allows the system to be partitioned as(

S11 S12

S21 S22

)(◦
•
)

=

(
b1
b2

)
.(1)

For many problems it can be shown that S11 is well-conditioned. Think of S11 as
the matrix that remains when the unknowns in the dots are prescribed. In that case
we will get rid of the smallest eigenvalues and the corresponding smooth eigenvectors
(low frequencies). For this well-conditioned S11 we can easily construct a sparse
incomplete factorization S̃11 and use it with a drop tolerance ε to construct the
incomplete factorization

S̃ =

(
S̃11 S̃12

S̃21 S̃22

)
=

(
S̃11 O

S̃21 S(2)

)(
I S̃−1

11 S̃12

O I

)
.

Here the Schur complement

S(2) = S̃22 − S̃21S̃
−1
11 S̃12

corresponds with the reduced system obtained after elimination of the unknowns in
the circles. Now we repeat the process for this reduced system on the coarser grid
given by the dots in Figure 1. We continue this approach until we obtain a Schur
complement small enough to be solved with some standard method and we finally
arrive at the incomplete factorization

A = LU +R,

where R is called the residual matrix. To obtain grid-independent convergence, it
is essential that the drop tolerance ε decreases as we go to higher levels (normally
by a factor of 4 or 5 in two dimensions). If we consider, just as an illustration, the

1012 E. F. F. BOTTA AND F. W. WUBS

extreme case that the residual matrix has only nonzeros in the first left upper part
R11, the vector Rx contains only components of the first level. With this type of
preconditioner all low-frequency errors are eliminated immediately and the iterative
method has only to remove high-frequency errors with a wavelength in the order of
the mesh size.

This approach can be combined with Gustafsson’s modification. It is also ad-
vantageous to use an appropriate ordering of the unknowns within each level. For a
five-point stencil we can use a red-black ordering. This offers the possibility of start-
ing in the first step with an exact reduction of about half of the unknowns. This will
always be the starting point and the preconditioning and acceleration are actually
performed for this reduced problem.

Some results of NGILU are given in the next section. For many problems NGILU
leads to fast, smooth, and (almost) grid-independent convergence. However, short-
comings of NGILU are the need for a structured grid and, for supercomputers, the
sequential nature of the forward and backward substitution when solving LUx = b. It
also turns out that the method does not perform well on stretched grids, a property
it shares with a number of popular iterative methods [9].

The problem with NGILU is that the numbering is based entirely on the grid
and does not take into account the size of the nonzero elements of the matrix. For
an efficient factorization it is crucial that the upper left blocks S11 are always well-
conditioned. The difficulties with the stretched grid are caused by the fact that there
this condition is violated.

These shortcomings have been overcome in MRILU, the generalized version of
NGILU. Here the renumbering is not made beforehand on the basis of the underlying
grid or the sparsity pattern [21] but is determined during the construction of an
incomplete block factorization using the sparsity pattern and the magnitude of the
elements. The method is related to ILUM of Saad [48, 49]. During the factorization
we guarantee by construction that the diagonal blocks to be inverted are strongly
diagonally dominant, i.e., the coefficients of S11 satisfy∑

i6=k
|sik| ≤ ε|sii| with ε < 1.

By taking ε small enough, we can approximate S11 by a diagonal matrix. This not
only simplifies the construction of the next Schur complement but also leads to more
potential parallelism. The unknowns belonging to S11 can be eliminated simultane-
ously. This also means that the ordering within this level is no longer relevant.

For general matrices the renumbering can be constructed by a greedy algorithm.
In the implementation we keep track of the absolute sum of columns belonging to the
points selected for S11. For each following candidate we now can easily verify whether
it can be added to the (near) independent set selected thus far.

In this way each Schur complement S is partitioned as(
S11 S12

S21 S22

)
and the strongly diagonally dominant S11 is replaced by a diagonal matrix.

To limit the number of nonzeros, small elements will be dropped during the
construction. It is difficult to study the existence and stability of ILU factorizations
for general matrices and even more difficult to study the effect of dropping on the

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1013

eigenvalues of the preconditioned system. Therefore dropping criteria as used in
practice are based on heuristics.

Dropping an element sij and, in the modified approach, compensating for this
dropping by adding sij to sii means a modification of row i and column j. Whether
this dropping is acceptable is usually measured in terms of sii and sjj . For stretched
grids or strongly varying coefficients the diagonal of the next Schur complement can be
significantly smaller than the original diagonal of S22. Relatively small modifications
of the diagonal in S22 may be large compared to this new diagonal. The diagonal of
the next Schur complement can become even smaller in the steps to follow. This is the
main reason that the factorization can easily break down (cf. section 1). To anticipate
these problems we would prefer dropping criteria based on the nontrivial diagonal D in
the final factorization. The diagonal of S11 becomes a (slightly modified) part ofD and
this explains that, just as with NGILU, dropping elements outside S11 is much more
critical. We limit the dropping outside S11 to S12 and S21 and approximate D within
S22 by the diagonal of the next Schur complement (temporarily calculated without
dropping outside S11). For dropping we now demand that on each row or column i the
sum of the absolute values of all discarded elements, including the values belonging to
earlier levels, is smaller than ε|di|, with di the “updated” diagonal element on row i.
When dropping entries in S21 on a certain row, that same row might also be accessed
for dropping on higher levels. Therefore we limit the row space for dropping within
S21 even further and multiply the remaining space by the number of columns in S21

divided by the dimension of S. Finally, the available space for lumping on rows of S21

should not be consumed too fast and therefore only entries smaller than a quarter of
this space are dropped. Similar restrictions are made for the dropping within columns
of S12.

For many problems it turns out that the di become more or less constant during
the block factorization; see also [33]. This offers the possibility to simplify the drop-
ping strategy and use a constant di just from the start. In the next section we refer
to it as the simplified dropping strategy.

The above approach can be generalized to a block approach. To decide whether
entries in a certain block row can be dropped, we multiply this block row from the
left with the inverse of the corresponding diagonal block. This can be simplified
somewhat by considering only the absolute maximum in each column of this inverse.
The dropping in columns can be handled in a similar way using multiplication from
the right.

Theoretical results for this type of preconditioner or the related AMG-based ap-
proach are rare, as is also observed in [28]. In general it is restricted to existence of the
decomposition and analysis of special cases. For the case of a symmetric diagonally
dominant M -matrix some theoretical results with respect to the NGILU method can
be found in [56, 8]. For MRILU it is shown in [7] that on all levels the constructed
Schur complements are again symmetric diagonally dominant M -matrices. Similar
results can be found in [4, 46].

3. Results. In the first two problems the typical behavior of NGILU is illus-
trated by a comparison to other standard methods. In the variety of problems that
follows, the results of MRILU are compared with those of several other methods. We
will focus our attention on the solution process.

Of course the cost for solving depends upon the quality of the preconditioner,
hence on the cost for its construction. For one of the examples described in section
3.4, i.e., the Poisson equation on a finite element mesh with 37,791 unknowns, detailed

1014 E. F. F. BOTTA AND F. W. WUBS

Table 1
Results on a finite element mesh for various values of ε.

ε Flops prec. Flops solving Flops Rel. fill Levels It.
0.7 152 1699 1851 0.77 12 45
0.6 174 1057 1231 0.86 13 27
0.5 194 727 921 0.95 14 18
0.4 223 546 769 1.1 16 13
0.3 284 501 785 1.3 17 11
0.2 368 441 809 1.6 19 9
0.15 481 424 905 1.9 21 8
0.1 764 363 1127 2.4 24 6
0.03 1684 311 1995 3.6 35 4
0.01 3279 293 3572 5.1 46 3
0.003 6231 246 6477 6.9 59 2
0.001 10221 296 10517 8.7 69 2
0 55562 749 56311 54.0 1

information about what happens when going from a rough preconditioner (ε = 0.8)
toward a complete factorization (ε = 0) is presented in Table 1.

The table shows (in flops per unknown) the cost for the construction of the pre-
conditioner, the cost for solving, and the total cost. It further shows the fill (number
of nonzeros in the incomplete LU factorization divided by the nonzeros in the original
system), the number of levels, and, finally, the number of CG iterations needed for
a decrease in the 2-norm of the residual of the preconditioned system by at least a
factor of 106. The results for (ε = 0) are from a standard Cholesky factorization. The
behavior shown in Table 1 is typical for MRILU. The results presented in this section
are obtained for a choice of ε such that the cost for construction of the preconditioner
and the cost for solving are of the same order. Note that this choice is not very critical
with respect to the total number of flops. The number of iterations is normally of the
order of 10. The presented results for solving can be somewhat improved by using a
smaller value of ε. This certainly can be done in time-dependent or nonlinear systems
where the preconditioner can be used several times and the cost of its construction is
therefore amortized over several solves. For more detailed information with respect
to the costs and a comparison with other methods we refer to [6]. Unless denoted
otherwise we will use Bi-CGSTAB as accelerator.

3.1. Poisson equation on a uniform grid. For a Poisson equation with con-
stant coefficients discretized on a uniform grid it may be expected from the discussion
in the previous section that the hierarchical multigrid ordering will work well. For
Neumann boundary conditions on all sides of the unit square, the results for a number
of standard methods and NGILU are given in Figure 2. The figure shows the number
of flops per unknown necessary to improve the preconditioned residual by six dig-
its versus the number of unknowns. In modified incomplete Cholesky CG (MICCG)
small perturbations are applied to the diagonal as described in [32], i.e., before the
factorization all diagonal elements are multiplied by 1 + ζh2. The choice ζ = 10 is
almost optimal in the present case. With standard incomplete Cholesky CG (ICCG)
the number of flops per unknown grows very strongly with the problem size. Per-
turbed MICCG does a much better job, but NGILU is by far the best and shows grid
independent convergence.

For this simple standard problem special-purpose solvers, e.g., solvers based on
FFT or cyclic reduction, are an order of magnitude faster than NGILU(0.2); see [6].
Methods such as the BPX method [11] or the multilevel filtering technique [34], which

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1015

0 0.5 1 1.5 2 2.5

x 10
5

0

500

1000

1500

2000

2500

Number of unknowns

N
um

be
r

of
 fl

op
s

pe
r

un
kn

ow
n

I-standard ILU

II-standard MILU

III-NGILU(0.2)

I II

III

Fig. 2. Neumann problem −∆u = f on a uniform grid.

are designed for constant coefficient problems (but also can operate on nonconstant
coefficient cases), work well on this problem. From [34] we took the result of the
standard BPX method for the corresponding problem with 12,000 unknowns (a point
very near the left of our plot). To gain 6 digits 750 flops are needed, about twice
as many as for NGILU(0.2). According to the bound for the condition number of
the preconditioned matrix O(log h−1), this gap will increase with the number of un-
knowns. For this problem the multilevel filtering technique (an improvement of the
BPX method) using an appropriate filter is about as efficient as NGILU(0.2).

3.2. An aquifer problem. As a less trivial example we take a simplified aquifer
problem as described in [57]. The nonsymmetric system of linear equations is a result
of the discretization of the following steady convection-diffusion equation:

− ∂

∂x

(
a(x, y)

∂u

∂x

)
− ∂

∂y

(
a(x, y)

∂u

∂y

)
+ 2e2(x2+y2) ∂u

∂x
=

{
100 in center,

0 elsewhere.

The diffusion equation coefficient function a(x, y) and the Dirichlet boundary condi-
tions are shown in Figure 3. Figure 4 shows the convergence behavior of Bi-CGSTAB
on a 201 × 201 grid for ILU, MILU, and NGILU. The standard MILU factorization
breaks down in this case. It is essential to use MILU with a small drop tolerance
[55]. Note the smooth convergence behavior of NGILU, which is very favorable; see
[57, 53, 52].

3.3. Poisson equation on a severely stretched grid. Investigating the flow
in a driven cavity [58] leads to a solution where a lot of action occurs near the bound-
aries.1 To get enough resolution near the boundaries, a grid is used, as given in
Figure 5. Here we consider the solution of the homogeneous Poisson equation with
zero Neumann boundary conditions on an exponentially stretched grid, where the
ratio of maximum and minimum mesh size is given by hmax/hmin = 100. The results

are obtained for a nonzero starting vector and the stopping criterion u
(n)
max − u(n)

min <

1See http://www.math.rug.nl/˜veldman/cfd-gallery.html.

1016 E. F. F. BOTTA AND F. W. WUBS

10000
0.00001

100

u=0

u=1 u=1

u=1

¡¡¡
¡
¡
¡
¡
¡
¡

¡
¡
¡

¡
¡
¡
¡

¡
¡
¡
¡

¡
¡
¡
¡

¡
¡
¡
¡

¡
¡
¡
¡

¡
¡
¡

¡
¡
¡
¡
¡
¡
¡
¡¡

Fig. 3. Diffusion coefficient a(x, y).

0 2000 4000 6000 8000 10000 12000 14000
-10

-8

-6

-4

-2

0

2

4

Number of flops per unknown

Lo
g1

0
of

 th
e

2-
no

rm
 o

f t
he

 p
re

co
nd

iti
on

ed
 r

es
id

ua
l

BiCGSTAB on 201 x 201 grid

I-standard ILU

II-MILU(0.02)

III-NGILU(0.2)

I

II
III

Fig. 4. Convergence behavior on an aquifer problem.

10−6(u
(0)
max − u

(0)
min). This type of problem may cause the convergence of standard

iterative methods (including multigrid) to deteriorate [9]. In Figure 6 matrix renum-
bering ICCG (MRICCG), the symmetric version of MRILU (with the simplified drop-
ping strategy), is compared to the standard methods SOR, ICCG, and MICCG. The
last one again uses a proper perturbation of the diagonal, and for both ICCG and
MICCG the efficient Eisenstat implementation is used [25]. Moreover, in MICCG a
small perturbation is applied to the diagonal. The figure shows for an M ×M grid
the number of flops per unknown as a function of M . Clearly MRILU outperforms
the other methods. Moreover, it shows a convergence nearly independent of the grid.
All methods show their typical behavior. For SOR it is known that for the optimal
overrelaxation factor the convergence is 1−O(1/M) (see [62]) and for ICCG a similar
behavior holds. This means that the work is linear in M . For MICCG the amount of
work is about

√
M . This is nicely reflected in the results.

The stretching of the grid may also be interpreted as anisotropy. We applied
MRILU to many other types of anisotropic problems, among which are the two-
dimensional ones described in [29] and [34]. The behavior is always the same as for

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1017

Fig. 5. Exponentially stretched grid.

0 100 200 300 400 500 600
0

2

4

6

8

M

flo

ps
 p

er
 u

nk
no

w
n

*1000

I SOR
II ICCG
III MICCG
IV MRICCG

I II

III

IV

Fig. 6. Comparison with standard iterative methods on a stretched grid.

the problem described in this section and about 300 flops per grid point are needed.
This means that an order of magnitude in efficiency is easily gained with respect to
the results in those papers. Similar observations are made in [28].

3.4. Poisson equation on a finite element mesh. MRILU can handle arbi-
trary sparsity patterns. Here we will show results on a finite element mesh as given in
Figure 7. This grid is generated by a finite element package. On this grid −∆u = f
has been solved with Dirichlet boundary conditions. As stopping criterion we de-
mand that the 2-norm of the residual of the preconditioned system is decreased by
at least a factor of 106. Again we compare MRILU, with the simplified dropping
strategy, to some standard methods: a direct solver (a frontal method), ILU, and
MILU. The results are displayed in Figure 8, where M denotes the square root of the
total number of unknowns. As one may expect the direct solver is applicable only to
small problems. However, one should note that in the case of a repeated solve direct
methods may be attractive. For ILU we see again its predicted linear behavior. We
see the same behavior for MILU because the perturbation is difficult to choose on a
general mesh. MRILU shows again its nearly grid-independent convergence. Hence,
it performs equally well on structured and unstructured grids. For a comparison with
other advanced methods on this problem see [6].

1018 E. F. F. BOTTA AND F. W. WUBS

Fig. 7. Finite element grid.

0 50 100 150 200 250 300
0

1

2

3

4

M

flo

ps
 p

er
 u

nk
no

w
n

X 103

I Direct method
II ILU
III MILU
IV MRILU

I

II

IV

III

Fig. 8. Comparison on a finite element grid.

3.5. Centrally discretized convection-diffusion problem. In this section
we will show how MRILU can be applied to convection-dominated problems. We
consider the model problem

−uxx − uyy + aux + buy = f, a, b� 1.(2)

In many fluid flow problems convection plays a central role. However, numerically
there are some difficulties associated with the terms modeling this phenomenon. For
a sufficient accuracy one usually needs at least a second-order discretization. A simple
one is the central discretization

ux ≈ (uj+1 − uj−1)/(2∆x).(3)

In strongly convection dominated flows this results in weak coupling of odd and even
points, which may result in the occurrence of so-called 2-∆x wiggles. For that reason
artificial diffusion often is used to restore the coupling.

On sufficient fine grids, nevertheless, central differences are the most accurate
[58, 59], but we have to face some problems concerning the coefficient matrix. In
strongly convection dominated flows this matrix may be far from an M-matrix. The
diagonal is weak with respect to the off-diagonal elements. This is especially difficult

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1019

for incomplete decompositions. In complete decompositions partial pivoting usually
is used to overcome this problem. However, this destroys the structure in the matrix.

It is also possible to precondition on the basis of the so-called one-sided discretiza-
tion of the convection-diffusion problem. (For more details on these defect correction
type approaches see [20].)

We prefer the use of a block form, as will be explained below. In one dimen-
sion there is much similarity between our approach and nested dissection or cyclic
reduction. Therefore we will introduce our block form by that method.

One-dimensional cyclic reduction. Consider the stencil

[1 ε − 1]

as a simplification of the convection-diffusion stencil in one dimension. Eliminating
the unknowns at the odd points of the grid results in a system for unknowns at the
even points for which the stencil is given by

[−1/ε ε+ 2/ε − 1/ε].

To obtain this stencil, multipliers ±1/ε have to be used. In practical computations
ε may become as small as 0.01, resulting in large multipliers. However, after this
unusual step a symmetric positive definite system occurs which can be solved by
standard approaches. Elman and Golub [26] show how such an approach can be
utilized.

One-dimensional block cyclic reduction. Suppose we keep unknowns of two
subsequent grid points together. We then get a block stencil of the form[

0 1
0 0

] [
ε −1
1 ε

] [
0 0
−1 0

]
.

After elimination of the odd pairs we obtain the following reduced system for the
even pairs: [

0 1
1+ε2

0 0

] [
ε+ ε

1+ε2 −1

1 ε+ ε
1+ε2

] [
0 0
−1

1+ε2 0

]
.

In this case the multipliers used are[−1
1+ε2

ε
1+ε2

0 0

]
and

[
0 0
−ε

1+ε2
−1

1+ε2

]
.

Observe that all elements in the multiplier are now less than one. Hence, the
reduction is stable. Furthermore, observe that the diagonal elements of the central
block have become larger. As the process is repeated these elements keep growing.
(In fact they double as long as they are small with respect to the other elements in
the block.) This is a favorable situation which says that the coupling of the unknowns
within a pair will become stronger during the reduction and eventually will fix the
coupling between odd and even points in the back substitution. Observe that this
block approach is applicable for any ε and thus also in cases where it is not necessary.

The extension of this block approach to two dimensions is done as follows. Pairs
are chosen on the basis of the dominant flow direction. These pairs are maintained
during the whole process. (Note that one could form new pairs for each new Schur
complement. This gives slightly better results but is of course also more expensive.)

1020 E. F. F. BOTTA AND F. W. WUBS

Table 2
Convection-diffusion problem with a = 10,000, b = 1000.

Problem Fill Rel.fill It. Flops
SCR Low 2.0 35 2390
κ = 2417 Mod. 2.6 11 911

High 2.8 5 451

SBlCR Low 0.9 8 435
κ = 18 Mod. 1.4 4 268

High 1.8 3 230

Convection-diffusion with constant coefficients. We will present some re-
sults for the convection-diffusion problem (2) with a = 10,000, b = 1000. The domain
is the unit square; we take Dirichlet conditions at x = 0, y = 0, and Neumann con-
ditions at x = 1, y = 1, and improve the preconditioned residual by 6 digits. The
number of equidistant grid points in each direction is 32. We choose a convection-
dominated flow (mesh Peclet number about 150) and compare the standard approach
without blocks, resulting in exactly the same Schur complement as the one used in
[26] with the block approach. The results are displayed in Table 2. The first column
gives the condition number of the first Schur complement in both approaches and one
observes a dramatic difference. The second column gives a fuzzy indication of the fill.
This is made more explicit in the third column, where the fill needed for the decom-
position relative to that of the original matrix is given. The fourth column shows the
number of iterations and the last column gives the flop count for the solution process.
Note the relation between the bad conditioning and the iteration. In the pointwise
approach far more fill is needed to get an acceptable number of iterations.

Comparison on a rotating flow. For a convection-diffusion problem posed by
Morton [37] we will compare our result with those of Elman and Golub [26, Tables
6.1 and 6.2]. In this problem the coefficients of the first derivatives vary and can
be interpreted as velocities belonging to a rotating flow. For this problem Elman
and Golub use two methods: block Gauss–Seidel and GMRES combined with block
ILU. For the choice of the blocks four variants are considered. They are displayed in
Figure 9. Our comparison will be expressed in flop counts. In Table 3 the results are
shown when the residual is improved by six digits starting with a random vector. Here
(2,M–) denotes that a block size of 2 has been used with the unmodified approach
(M+ for modified). For 1/ε = 100 the matrix is almost triangular, which explains the
good convergence for all methods. For 1/ε = 1000 the block variant performs much
better than the other methods.

3.6. SHERMAN problems. Recently, Chapman, Saad, and Wigton [17] showed
results for incomplete decompositions on the SHERMAN problems 2, 3, and 5.2 In
this section we compare these results with those of MRILU. (For problems 1 and 4
MRILU performs analogously.) In Table 4 these problems are described briefly. In the
comparison we adopted results from [17] of GMRES(50) with various preconditioners:

• ILUT: threshold drop tolerance and fill number;
• ILUD: Gustafsson’s modification variant of ILUT; drop tolerance only;
• ILU(k): dropping strategy based on “level of fill.”

2SHERMAN problems are available as part of the Harwell–Boeing Collection at
http://math.nist.gov:80/MatrixMarket. Users should be aware that the block size in SHERMAN2
is 6 instead of the given number 5.

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1021

ddd
ddd
d

@
@
@
@
@@

ddd
ddd
d

@
@
@
@
@@

ddd
ddd
d

@
@
@
@
@@

ddd
ddd
d

@
@
@
@
@@

ddd
ddd
d

@
@
@
@
@@

ddd
ddd
d

@
@
@
@
@@

Natural one-line

ddd
ddd
d

ddd
ddd
d

ddd
ddd
d

ddd
ddd
d

ddd
ddd
d

ddd
ddd
d

@
@

@
@

@@

@
@

@
@

@@

@
@

@
@

@@

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqq

Red-black one-line

d d d d d d d dd d d d d d d dd d d d d d d dd d d d d d d d
d d d d d d d dd d d d d d d dd d d d d d d dd d d d d d d d

dd
dd

Natural two-line

d d d d d d d dd d d d d d d dd d d d d d d dd d d d d d d d
d d d d d d d dd d d d d d d dd d d d d d d dd d d d d d d d

dd
ddqqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqqqqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq

qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqqqqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq qqqqq

Red-black two-line

Fig. 9. Blocks used in ILU and Gauss–Seidel.

It is interesting to compare our approach with these methods. The methods are quite
similar but MRILU adds the matrix-dependent ordering and the use of blocks. A
random right-hand side is used with a zero starting vector. The residual is improved
by eight digits. The results can be found in Table 5. For the SHERMAN2 problem one
observes that ILUD has serious convergence problems. It is well known (see section
1) that a modified ILU factorization is more sensitive to convergence problems than
its unmodified ILU variant. Here the unmodified ILUT performs reasonably only
with high fill. This is because one solves a problem with block size 6 by a pointwise
method. A pointwise version of MRILU has similar difficulties with this problem.

The SHERMAN3 problem looks like a Poisson problem. The matrix is almost
symmetrical and it turns out that here MRILU can also be combined with CG. Com-
pared to Bi-CGSTAB, this doubles the number of iterations but also halves the num-
ber of matrix vector multiplications. Therefore the number of flops is comparable.

The ordering produced by MRILU and the use of blocks for SHERMAN2 clearly
has a favorable influence on the results. An order of magnitude is easily gained for a
comparable fill.

3.7. The incompressible Navier–Stokes equations. In this section some
preliminary results for the two-dimensional incompressible Navier–Stokes equations
are presented. There is some resemblance to the AMG approach followed by Webster
[60].

The incompressible Navier–Stokes equations read

ut = −uux − vuy − px +
1

Re
(uxx + uyy),

vt = −uvx − vvy − py +
1

Re
(vxx + vyy),(4)

ux + vy = 0

1022 E. F. F. BOTTA AND F. W. WUBS

Table 3
Comparison on a rotating flow.

31× 31 grid
1/ε

Method 10 100 1000
Ordering r.fill flops r.fill flops r.fill flops

Nat. one-line 1098 243 >1350
Gauss–Seidel RB one-line 1071 261 >1350

Nat. two-line 1026 234 >1350
RB two-line 999 234 >1350
Nat. one-line 260 182 858

GMRES/ILU RB one-line 1071 702 1924
Nat. two-line 364 260 2262
RB two-line 624 676 1846

Fill (1,M+) (1,M+) (2,M–)
Bi-CGSTAB/MRILU Low 1.0 303 1.1 201 1.5 482

Mod. 1.4 238 1.5 165 2.4 434
High 1.9 198 1.8 136 3.8 321

63× 31 grid
Gauss–Seidel Nat. 1-line >1350 198 >1350

Nat. 2-line 1161 198 >1350
GMRES/ILU Nat. 1-line 442 260 >3900

Nat. 2-line 520 312 1664

Fill (1,M+) (1,M+) (2,M–)
Bi-CGSTAB/MRILU Low 1.1 333 1.1 210 1.5 417

Mod. 1.5 271 1.5 170 2.3 335
High 2.0 237 1.8 154 3.4 307

Table 4
Short description of SHERMAN problems.

Problem Order Nonzeros Description
SHERMAN2 1080 23094 Thermal simulation, steam injection
SHERMAN3 5005 20033 Black oil, IMPES simulation
SHERMAN5 3312 20793 Fully implicit black oil simulator

with u and v the horizontal and vertical velocity, p the pressure, and Re the Reynolds
number. They are discretized using a finite-difference formulation on a uniform stag-
gered grid:

×→
↑

i

j u

v

p

The diffusion term is discretized using the standard second-order central scheme. For
the convection term a first-order upwind scheme is used. The equations are solved
simultaneously; therefore we can keep together the unknowns belonging to a single
grid cell in a vector wi,j = (ui− 1

2 ,j
, vi,j− 1

2
, pi,j) and denote the dicretized system with

the stencil

NW N
W C E

S SE,

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1023

Table 5
Flop count per unknown for SHERMAN problems 2, 3, and 5.

Method Fill SHERMAN2 SHERMAN3 SHERMAN5
r.fill it. flops r.fill it. flops r.fill it. flops

ILUD Low 0.8 n.c. n.c. 1.0 77 8150 1.4 36 3905
High 1.6 76 15127 1.6 32 2907 4.0 17 1744

ILUT Low 0.7 145 25504 0.9 216 25174 1.0 30 2754
High 1.5 12 1661 2.1 46 5634 1.9 21 1772

ILU(k) k=0 1.0 45 8171 1.0 233 27316 1.0 36 3714
k=2 3.0 7 1327 3.1 50 6746 3.1 19 1810

(6,M–) (1,M+) (1,M+)
MRILU Low 0.4 4 634 1.0 19 747 0.6 8 380

Mod. 0.5 3 490 1.3 12 518 0.8 6 315
High 0.7 2 391 1.9 9 450 1.1 4 230

Table 6
Results for the incompressible Navier–Stokes equations.

Problem Fill Rel.fill It. Flops
Steady Low 2.7 14 1723
state Mod. 3.4 11 1557

High 4.1 9 1471

Time Low 1.1 13 1040
dependent Mod. 1.7 11 1067

High 2.1 9 982

where the coefficients are 3× 3 matrices.
In Table 6 we show results of the solution of a typical linear system coming about

in the Newton iteration in the steady state driven cavity problem; see [54] for more
detail. The problem is discretized on a 33× 33 grid (3267 unknowns) and the precon-
ditioned residual is improved by six digits. For the time-dependent problem the time
step is such that a Courant number of approximately 1 is obtained. One observes that
the steady state problem asks for a much higher fill than the time-dependent problem.

4. Conclusions. Preconditioning techniques combined with CG-like iterations
methods provide powerful tools for solving large sparse systems of equations. Moti-
vated by the success of the nested grid method NGILU, we developed the more general
MRILU method, which also can be used on unstructured grids.

An attractive property of this method is that its structure is simple: it is merely
an ILU factorization. The essential ingredients are the ordering, which is carried out
during the factorization process, and the dropping, which has to be done carefully in
order not to destroy the convergence. Both ordering and dropping are based on the
size of the entries of the matrix.

Convergence behavior is observed that is nearly independent of the mesh size,
an attractive property for very large problems. The method has been applied suc-
cessfully to symmetric, nonsymmetric, and indefinite problems. For many of the
problems shown in this paper the method decreases the number of flops needed to get
a prescribed accuracy by an order of magnitude in comparison with other advanced
iteration methods. Implementations on high-performance computers are possible due
to the high degree of independence in the L and U factors.

The analysis of such a general method is difficult and will be the subject of future
research. It may be expected that this will lead to further improvements of the
method.

1024 E. F. F. BOTTA AND F. W. WUBS

Acknowledgment. The authors wish to thank Prof. Henk van der Vorst for
providing the code for the discretization of the aquifer problem.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, London, 1994.
[2] O. Axelsson and V. Eijkhout, The nested recursive two-level factorization method for nine-

point difference matrices, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1373–1400.
[3] O. Axelsson and N. Munksgaard, Analysis of incomplete factorizations with fixed storage

locations, in Preconditioning Methods, Analysis and Applications, D.J. Evans, ed., Gordon
and Breach, London, 1983, pp. 219–241.

[4] R.E. Bank and C. Wagner, Multilevel ILU Decomposition, Numer. Math, to appear.
[5] R. Beauwens and L. Quenon, Existence criteria for partial matrix factorizations in iterative

methods, SIAM J. Numer. Anal., 13 (1976), pp. 615–643.
[6] E.F.F. Botta, K. Dekker, Y. Notay, A. van der Ploeg, C. Vuik, F.W. Wubs, and P.M.

de Zeeuw, How fast the Laplace equation was solved in 1995, Appl. Numer. Math., 24
(1997), pp. 439–455.

[7] E.F.F. Botta and A. van der Ploeg, Preconditioning techniques for matrices with arbitrary
sparsity patterns, in Proceedings of the Ninth International Conference on Finite Elements
in Fluids, New Trends and Applications, University of Padova, Venice, 1995, pp. 989–998.

[8] E.F.F. Botta, A. van der Ploeg, and F.W. Wubs, Nested grids ILU-decomposition
(NGILU), J. Comput. Appl. Math., 66 (1996), pp. 515–526.

[9] E.F.F. Botta and F.W. Wubs, The convergence behaviour of iterative methods on severely
stretched grids, Internat. J. Numer. Methods Engrg., 36 (1993), pp. 3333–3350.

[10] E.F.F. Botta, F.W. Wubs, and A. van der Ploeg, A fast linear-system solver for large
unstructured problems on a shared-memory computer, in Proceedings of the Conference
on Algebraic Multilevel Iteration Methods with Applications, O. Axelsson and B. Polman,
eds., University of Nijmegen, Nijmegen, The Netherlands, 1996, pp. 105–116.

[11] J. Bramble, J. Pasciak, and J.-C. Xu, Parallel multilevel preconditioners, Math. Comp., 55
(1990), pp. 1–22.

[12] Cl.W. Brand, An incomplete-factorization preconditioning using red-black ordering, Numer.
Math., 61 (1992), pp. 433–454.

[13] N.I. Buleev, A numerical method for the solution of two-dimensional and three-dimensional
equations of diffusion, Mat. Sb., 51 (1960), pp. 227–238.

[14] J.R. Bunch and B.N. Parlett, Direct methods for solving symmetric indefinite systems of
linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–655.

[15] T.F. Chan and H.A. van der Vorst, Approximate and incomplete factorizations, Parallel
Numerical Algorithms, ICASE/LaRC Interdiscip. Ser. Sci. Eng. 4, Kluwer Academic Pub-
lishers, Dordrecht, the Netherlands, 1997, pp. 167–202.

[16] Q. Chang, Y.S. Wong, and H. Fu, On the algebraic multigrid method, J. Comput. Phys., 125
(1996), pp. 279–292.

[17] A. Chapman, Y. Saad, and L. Wigton, High-order ILU Preconditioners for CFD Problems,
Technical report UMSI 96/14, University of Minnesota, Minneapolis, 1996.

[18] E.F. D’Azevedo, P.A. Forsyth, and W.P. Tang, Towards a cost-effective ILU preconditioner
with high level fill, BIT, 32 (1992), pp. 442–463.

[19] P.M. de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid
solver, J. Comput. Appl. Math., 3 (1990), pp. 1–27.

[20] J.-A. Désidéri and P.W. Hemker, Convergence analysis of the defect-correction iteration for
hyperbolic problems, SIAM J. Sci. Comput., 16 (1995), pp. 88–118.

[21] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Monogr.
Numer. Anal., Oxford University Press, New York, 1986.

[22] I.S. Duff and G.A. Meurant, The effect of ordering on preconditioned conjugate gradients,
BIT, 29 (1989), pp. 635–657.

[23] T. Dupont, R.P. Kendall, and H.H. Rachford, Jr., An approximate factorization procedure
for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp.
559–573.

[24] V. Eijkhout, Beware of unperturbed modified incomplete factorizations, in Iterative Methods
in Linear Algebra, R. Beauwens and P. de Groen, eds., North–Holland, Amsterdam, 1992,
pp. 583–591.

[25] S.C. Eisenstat, Efficient implementation of a class of preconditioned conjugate gradient meth-
ods, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 1–4.

EFFECTIVE MULTILEVEL ILU PRECONDITIONER 1025

[26] H.C. Elman and G.H. Golub, Line iterative methods for cyclically reduced discrete convection-
diffusion problems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 339–363.

[27] G.H. Golub and C.F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[28] T. Grauschopf, M. Griebel, and H. Regler, Additive multilevel preconditioners based on bi-
linear interpolation, matrix dependent geometric coarsening and algebraic multigrid coars-
ening for second order elliptic PDEs, Appl. Numer. Math., 23 (1997), pp. 63–95.

[29] M. Griebel and P. Oswald, Tensor-product-type subspace splittings and multilevel iterative
methods for anisotropic problems, Adv. Comput. Math., 4 (1995), pp. 171–206.

[30] I. Gustafsson, A class of 1st order factorization methods, BIT, 18 (1978), pp. 142–156.
[31] W. Hackbusch, Iterative Solution of Large Sparse Linear Systems of Equations, Appl. Math.

Sci. 95, Springer-Verlag, New York, 1994.
[32] E.F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, Iterative

methods for the solution of linear systems, J. Comput. Appl. Math., 24, (1988), pp. 265–
275.

[33] S. Knapek, Matrix-dependent multigrid homogenization for diffusion problems, SIAM J. Sci,
Comput., 20 (1999), pp. 515–533.

[34] C.-C.J. Kuo, T.F. Chan, and C. Tong, Multilevel filtering elliptic preconditioners, SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 403–429.

[35] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp.
148–162.

[36] M.-M. Magolu, Ordering strategies for modified block incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 378–399.

[37] K.W. Morton, Generalised Galerkin methods for steady and unsteady problems, in Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, eds., Academic Press, New
York, 1982, pp. 1–32.

[38] Y. Notay, Solving positive (semi)definite linear systems by preconditioned iterative methods,
in Preconditioned Conjugate Gradient Methods, O. Axelsson and L.Y. Kolotilina, eds.,
Lecture Notes in Math. 1457, Springer-Verlag, Berlin, 1990, pp. 105–125.

[39] Y. Notay, Conditioning analysis of modified block incomplete factorizations, Linear Algebra
Appl., 154/156 (1991), pp. 711–722.

[40] Y. Notay, DRIC: A dynamic version of the RIC method, J. Numer. Linear Algebra Appl., 1
(1994), pp. 511–532.

[41] Y. Notay and Z. Ould Amar, A nearly optimal preconditioning based on recursive red-black
orderings, J. Numer. Linear Algebra Appl., 4 (1997), pp. 369–391.

[42] T.A. Oliphant, An implicit numerical method for solving two-dimensional time-dependent
diffusion problems, Quart. Appl. Math., 19 (1961), pp. 221–229.

[43] T.A. Oliphant, An extrapolation process for solving linear systems, Quart. Appl. Math., 20
(1962), pp. 257–267.

[44] A. Reusken, Multigrid with matrix-dependent transfer operators for a singular perturbation
problem, Computing, 50 (1993), pp. 199–212.

[45] A. Reusken, Fourier analysis of a robust multigrid method for convection-diffusion equations,
Numer. Math., 71 (1995), pp. 365–398.

[46] A. Reusken, On the approximate cyclic reduction preconditioner, SIAM J. Sci. Comput., to
appear.

[47] J.W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S.F. McCormick, ed.,
Frontiers Appl. Math. 3, SIAM, Philadelphia, PA, 1987, pp. 73–130.

[48] Y. Saad, Highly Parallel Preconditioners for General Sparse Matrices, Recent Advances in
Iterative Methods, IMA Vol. Math. Appl. 60, Springer-Verlag, New York, 1994, pp. 165–
199.

[49] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM
J. Sci. Comput., 17 (1996), pp. 830–847.

[50] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, MA, 1996.
[51] Y. Saad and J. Zhang, BILUM: Block Versions of Multi-Elimination and Multi-Level ILU

Preconditioner for General Sparse Linear Systems, Technical report UMSI 97-126, Uni-
versity of Minnesota, Minneapolis, 1997.

[52] G.L.G. Sleijpen and H.A. van der Vorst, Maintaining convergence properties of BiCGstab
methods in finite precision arithmetic, Numer. Algorithms, 10 (1995), pp. 203–223.

[53] G.L.G. Sleijpen and H.A. van der Vorst, Reliable updated residuals in hybrid Bi-CG meth-
ods, Computing, 56 (1996), pp. 141–163.

[54] G. Tiesinga, Block preconditioned BiCGstab(2) for solving the Navier-Stokes equation, Z.

1026 E. F. F. BOTTA AND F. W. WUBS

Angew. Math. Mech., 76 (1996), pp. 563–564.
[55] A. van der Ploeg, Preconditioning techniques for large sparse, non-symmetric matrices with

arbitrary sparsity patterns, in Iterative Methods in Linear Algebra, R. Beauwens and
P. de Groen, eds., North–Holland, Amsterdam, 1992, pp. 173–179.

[56] A. van der Ploeg, Preconditioning for Sparse Matrices with Applications, Ph.D. thesis, Uni-
versity of Groningen, Groningen, The Netherlands, 1994.

[57] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[58] R.W.C.P. Verstappen and A.E.P. Veldman, A fourth-order finite volume method for direct
numerical simulation of turbulence at higher Reynolds numbers, in Computational Fluid
Dynamics ’96, J. Periaux, et al., eds., John Wiley, New York, 1996, pp. 1073–1079.

[59] R.W.C.P. Verstappen and A.E.P. Veldman, Direct numerical simulation of turbulence at
lower costs, J. Engrg. Math., 32 (1997), pp. 143–159.

[60] R. Webster, An algebraic multigrid solver for Navier-Stokes problems in the discrete second-
order approximation, Internat. J. Numer. Methods Fluids, 22 (1996), pp. 1103–1123.

[61] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),
pp. 581–613.

[62] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SPARSE MATRIX COMPUTATIONS ARISING IN DISTRIBUTED
PARAMETER IDENTIFICATION∗

CURTIS R. VOGEL†

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1027–1037

Abstract. A penalized least squares approach known as Tikhonov regularization is commonly
used to estimate distributed parameters in partial differential equations. The application of quasi-
Newton minimization methods then yields very large linear systems. While these systems are not
sparse, sparse matrices play an important role in gradient evaluation and Hessian matrix-vector mul-
tiplications. Motivated by the spectral structure of the Hessian matrices, a preconditioned conjugate
gradient method is introduced to efficiently solve these linear systems. Numerical results are also
presented.

Key words. distributed parameter identification, regularization, conjugate gradient iteration,
preconditioning

AMS subject classifications. 65F10, 65N22

PII. S0895479897317703

1. Introduction. Parameter identification means the estimation of coefficients
in a differential equation for observations of the solution. By a distributed parameter
we mean a coefficient which is not simply a constant but is a function of position
and/or time. Distributed parameter identification problems arise in a number of
applications. Important examples include the estimation of elastic parameters from
seismic observations and the determination of aquifer characteristics from ground-
water flow observations. A simple mathematical model for groundwater flow, which
will serve to illustrate numerical techniques to be presented in this paper, is the partial
differential equation (PDE)

−∇ · (κ∇u) = f(x), x ∈ Ω.(1.1)

In groundwater flow applications, u represents fluid pressure, κ(x) is the (spatially
dependent) hydraulic conductivity, and ~v = −κ∇u is the fluid flow field. Provided
the fluid is incompressible, f(x) represents the fluid gain or loss rate, e.g., due to
injecting or pumping out fluid from wells in the aquifer. The parameter of interest,
q(x) = log(κ(x)), is known as the log conductivity and is to be estimated from
observations of the solution u(x) to the PDE (1.1). Adopting notation from [1], we
represent the parameter-dependent PDE by

A(q)u = f(1.2)

and the observations of the solution by

uobs = Cu.(1.3)

The parameter-to-observation map is the composition

F(q)
def
= C u(q) = CA(q)−1f.(1.4)

∗Received by the editors March 3, 1997; accepted for publication (in revised form) by R. Freund
March 2, 1998; published electronically July 9, 1999. This work was partially supported by NSF
grant DMS-9622119 and Air Force Office of Scientific Research grant F49620-96-1-0456.

http://www.siam.org/journals/simax/20-4/31770.html
†Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717-0240

(vogel@math.montana.edu).

1027

1028 CURTIS R. VOGEL

The measured data, which are inexact, are modeled by

z = F(q) + η.(1.5)

The error term η accounts for factors such as measurement errors and inadequacies
of the mathematical model.

To estimate the parameter q given the data z, one must somehow “solve” the
operator equation

F(q) = z.(1.6)

Obvious numerical difficulties are presented by the nonlinearity of the operator F and
the large number of unknowns in the discretization of (1.6). A more subtle but very
serious difficulty is the ill-posedness of (1.6), i.e., the lack of continuous dependence
of the parameter q on the data z.

To overcome ill-posedness, one must apply regularization. Intuitively, this means
replacing the ill-posed problem (1.6) with a “nearby” well-posed problem such as the
penalized least squares minimization

min
q

1

2
||F(q)− z||2 + αJreg(q).(1.7)

This approach is known as Tikhonov regularization in the inverse problems community
[15, 9]. Here Jreg is the regularization, or penalty, functional. Besides imposing
stability, it serves to penalize “unreasonable,” e.g., highly oscillatory, estimates for
the parameter q. A popular choice in distributed parameter identification is the
squared H1 seminorm,

Jreg(q) =
1

2

∫
Ω

|∇q|2 =
1

2

∫
Ω

∑
i

(
∂q

∂xi

)2

.(1.8)

Recently, the total variation (TV) functional

Jreg(q) =

∫
Ω

|∇q| =
∫

Ω

√√√√∑
i

(
∂q

∂xi

)2

(1.9)

has been applied (see [4, 8, 17]). This has the advantage of better recovering “blocky,”
possibly discontinuous, coefficients q(x). The regularization parameter α in (1.7) is a
small positive number which quantifies the trade-off between the goodness of fit to
the data and stability.

We will address numerical linear algebraic issues in the solution of problems such
as (1.7) which arise in regularized distributed parameter identification. Quasi-Newton
methods for handling the nonlinearity yield a sequence of approximates qν+1 = qν+s,
with

Hνs = −g(qν), ν = 0, 1, . . . ,(1.10)

where the approximate Hessian takes the form

Hν = Hls + αL.(1.11)

The L in (1.11) arises from regularization functionals such as (1.8) or (1.9) and is a
symmetric, nonnegative diffusion operator; cf. [16]. In case (1.8), L is the negative

MATRIX COMPUTATIONS IN PARAMETER IDENTIFICATION 1029

Laplacian. Standard discretization techniques, e.g., finite difference or finite element
methods, then yield large sparse positive semidefinite matrices. Unfortunately, when
these same discretization techniques are applied, the discretization of the least squares
term Hls is not sparse. It is symmetric, and with certain quasi-Newton schemes (e.g.,
Gauss–Newton linearization of the least squares term in (1.7)), it is positive definite.
Moreover, it has eigenvalues which cluster at zero, which means that it has limited
useful spectral content. In addition, using adjoint, or costate, techniques [5, 18], one
can compute the action of the least squares Hessian Hls on a vector very quickly with
sparse matrix methods. This suggests the use of iterative methods such as conjugate
gradients (CG) to solve (1.10). Since CG convergence tends to be slow, the issue of
preconditioning is important. We will present a preconditioner based on the operator
L which is effective unless the regularization parameter α becomes very small.

This paper is organized as follows. Section 2 contains an example which illus-
trates the important role played by sparse matrices in gradient evaluation and Hessian
matrix-vector multiplications. While this example involves a specific 2-D boundary
value problem, the structure and ideas presented here carry over to more general prob-
lems. The matrix computations outlined in this section are the discrete analogue of
continuous adjoint approaches for computing derivatives in parameter identification
and control theory. In section 3, we discuss the spectral properties of the Hessian
(1.11), and we present a preconditioned conjugate gradient (PCG) method for its
inversion. Numerical results are presented in the final section.

2. Gradient and Hessian matrix-vector evaluation. We first briefly dis-
cuss standard numerical optimization techniques used in parameter identification [1].
Assume a discretization of (1.2)–(1.7),

min
q∈Rnq

1

2
||F(q)− z||2 + αJreg(q),(2.1)

where

F(q) = Cu(q) = CA(q)−1f .(2.2)

Let n, m, and nq, respectively, denote the lengths of the vectors u, z, and q. Then
A(q) is an n× n matrix, while C is m× n. Standard secant methods such as BFGS
are ineffective for nonlinear least squares problems. Instead, one typically employs a
Gauss–Newton approximation (see [7, p. 221]) to the least squares fit-to-data term
in (2.1):

Jls(q + s)
def
=

1

2
||F(q + s)− z||2

≈ 1

2
||F′(q)s + r(q)||2.(2.3)

Here the prime (′) denotes differentiation with respect to q, and r(q) = F(q)− z de-
notes the least squares residual. Differentiating (2.3) with respect to s and evaluating
at s = 0, one obtains the true least squares gradient,

gls(q) = F′(q)T r(q).(2.4)

Taking the second derivative with respect to s in (2.3) yields the Gauss–Newton
approximation to the least squares Hessian,

Hls(q) = F′(q)TF′(q).(2.5)

1030 CURTIS R. VOGEL

This matrix is nq × nq and symmetric. Unlike the true least squares Hessian, which
contains the additional term F′′(q)T r(q), it is also guaranteed to be positive semidef-
inite. From (2.2) and the fact that A(q)−1A(q) = I,

F′(q) = −CA(q)−1A′(q)A(q)−1f = −CA(q)−1A′(q)u(q).(2.6)

Since A(q) is an n× n matrix, its derivative A′(q) is a tensor of size n× nq × n.
To illustrate additional structure, consider a 2-D version of (1.1) on the open unit

square, Ω = {(x, y) : 0 < x < 1, 0 < y < 1}, with homogeneous Dirichlet boundary
conditions

− ∂

∂x

(
exp(q(x, y))

∂u

∂x

)
− ∂

∂y

(
exp(q(x, y))

∂u

∂y

)
= f(x, y), (x, y) ∈ Ω,(2.7)

u(x, y) = 0, (x, y) ∈ ∂Ω.

Applying cell-centered finite difference (CCFD) discretization [19] on a uniform nx×nx
grid with lexicographical ordering of the n = n2

x coefficients of u, one obtains a discrete
analogue of (1.2),

A(q)u = f .(2.8)

In the case of uniform CCFD discretization of (2.7), one can express

A(q) = BTxDx(q)Bx +BTy Dy(q)By

= BdivD(q)Bgrad,(2.9)

where Bdiv = BTgrad is block upper bidiagonal and D(q) is diagonal with diagonal en-
tries consisting of κ = exp(q) evaluated at the cell boundary midpoints. The matrix
A(q) is symmetric positive definite and block tridiagonal. For an illustration of the
sparsity structure, see [13, p. 55]. With other finite difference and finite element dis-
cretizations on a uniform grid, this sparsity structure is retained. The cost of storing
and inverting A(q) using direct methods which utilize sparsity is O(n3

x) = O(n3/2). If
state-of-the-art sparse iterative techniques for elliptic PDEs (e.g., multigrid methods)
are used, the storage and computational requirements are typically much smaller. It
should be noted that with other geometries or boundary conditions or more general
diffusion operators, A(q) need not be symmetric, but its sparsity structure is much
the same.

If one assumes observations of u(x, y) at the n cell centers, then the observation
operator C is the n × n identity matrix. More generally, with m observations and
(local) interpolation, C is m× n and sparse.

Next, we discuss the efficient evaluation of both the least squares gradient and
Hessian matrix-vector products. The fact that A(q)−1 is, in general, a full matrix
makes it impractical to assemble the m× nq matrix F′(q); cf. (2.6). Fortunately, all
that is required is the action of F′(q) and its transpose on vectors. In particular, the
ith component of the least squares gradient in (2.4) is

[gls(q)]i
def
=

∂Jls
∂qi

=

(
∂F

∂qi

)T
r(q)

= −
(
C A(q)−1 ∂A

∂qi
u(q)

)T
r(q)

= −
(
∂D

∂qi
Bgradu(q)

)T
BTdivA(q)−TCT r(q).(2.10)

MATRIX COMPUTATIONS IN PARAMETER IDENTIFICATION 1031

The last equality follows from (2.9). If D(q) = diag(exp(qi)), then ∂D
∂qi

has only one

nonzero entry, which is exp(qi) in position i, i.
To evaluate the gradient, one first obtains the solution u(q) to the discrete linear

system (2.8) and then computes the residual r(q) = Cu(q) − z. Next, one obtains
the solution y(q) to the discrete adjoint system

A(q)Ty = −CT r(q).(2.11)

After computing ũ = Bgradu and ỹ = BTdivy, one computes the gradient components
(∂D∂qi ũ)T ỹ for i = 1, . . . , n + 1. Note that these are all sparse matrix computations

and that two sparse matrix inversions (one for A(q) and one for its transpose) are
required to obtain the gradient vector.

Matrix-vector multiplication with the Gauss–Newton approximation to the Hes-
sian matrix (cf. (2.5)) can be carried out in a similar manner. Given a vector v ∈ Rn+1,

[Hlsv]i =

(
CA(q)−1 ∂A

∂qi
u(q)

)T
CA(q)−1

n+1∑
j=1

∂A

∂qj
vj

 u(q)

=

(
∂D

∂qi
Bgradu(q)

)T
× BTdivA(q)−TCTCA(q)−1Bdiv

n+1∑
j=1

vj
∂D

∂qj

Bgradu(q)

=

(
∂D

∂qi
ũ

)T
BTdivA(q)−TCTCA(q)−1Bdiv

n+1∑
j=1

vj
∂D

∂qj

 ũ.(2.12)

Given that one has ũ from the gradient computation, this requires inversion of sparse
matrices A(q) and A(q)T , plus some additional sparse matrix and dot product com-
putations. Similar adjoint techniques may be used to apply the true Hessian. See for
example [14].

Finally, we examine the structure of the matrices arising in the discretization of
the regularization operator in (1.7). In general the gradient of Jreg takes the form

J ′reg(q) = L(q)q,(2.13)

where L(q) is a positive semidefinite diffusion operator with a diffusion coefficient
which may depend on q. The associated boundary conditions are “natural,” or ho-
mogeneous Neumann. The true Hessian of the regularization term is

J ′′reg(q) = L(q) + (L′′(q))q
≈ L(q).(2.14)

The above approximate Hessian is symmetric and positive semidefinite and corre-
sponds to the “lagged diffusivity” fixed point iteration introduced in [16]. In the case
of H1 regularization (1.8), L is the negative Laplacian, which is independent of q. In
the case of TV (1.9),

L(q)v = −∇ ·
(

1

|∇q|∇v
)
.(2.15)

1032 CURTIS R. VOGEL

Provided that the same discretization methods are applied, the sparsity structure of
the resulting nq × nq matrix L(q) will be much the same as A(q), e.g., block tridiag-
onal. The spectral properties of L(q) and A(q) should also be quite similar, except
that L(q) has a nontrivial null space consisting of constant vectors. Note, however,
that Hls(q) and L(q) have drastically different structures. Due to the presence of
A(q)−1 in (2.6), Hls(q) is a full matrix with eigenvalues which cluster at zero.

3. Solution of linear systems. In many parameter identification applications
where minimization problems such as (1.7) are solved, quasi-Newton schemes for
handling the nonlinearity are rapidly convergent. The computational bottleneck is
the solution of the linear systems (1.10), with (approximate) Hessian matrices of the
form

H = Hls + αL,(3.1)

where α is a small positive parameter. L is a discretization of a diffusion operator,
e.g., the negative Laplacian, with natural boundary conditions. With standard dis-
cretization methods, it is symmetric, positive semidefinite, and sparse, and its null
space, null(L), consists of the constant vectors.

The least squares Hessian matrix Hls is harder to characterize. From a spec-
tral standpoint, it has much in common with “blurring” matrices arising in image
reconstruction (see [3]). It is the discretization of a compact operator and hence has
eigenvalues which cluster at zero. In 2-D, the blurring matrix is block Toeplitz and
can be applied quickly using fast Fourier transforms (FFTs). FFTs can also be used
to construct effective preconditioners for systems (3.1) arising in image deblurring
[3, 17]. In parameter identification, Hls has no such regular structure, but the adjoint
approaches sketched in the previous section can be used to compute Hessian matrix-
vector products. The construction of effective preconditioners is more difficult in this
case, since the explicit computation of components of Hls is impractical.

Given the compactness of the continuous least squares Hessian, perhaps the most
obvious approach is to precondition with L, converting (3.1) to standard form [11]

H̃ = H̃ls + αI, H̃ls a discretization of a compact operator.(3.2)

In this case, the rate of convergence of PCG is known to be asymptotically superlinear
[6] as the discretization level h→ 0. Since L has a nontrivial null space, a preliminary
transformation is required. Consider the decomposition

s = av0 + s⊥,(3.3)

where s⊥ ∈ null(L)⊥ and v0 ∈ null(L) with ||v0|| = 1. From the linearizations (2.3)
and (2.14), one obtains the quadratic penalized least squares functional

Qα(a, s⊥) = ||aF′(q)v0 + F′(q)s⊥ + r||2 + α(s⊥)TLs⊥,(3.4)

whose minimizer satisfies the block system[
vT0 w0 wT

0

w0 F′(q)TF′(q) + αL

] [
a
s⊥

]
=

[−vT0 g
−g

]
(3.5)

with w0 = F′(q)TF′(q)v0. Taking the Schur complement, one solves the reduced
system

H s⊥ = −g,(3.6)

MATRIX COMPUTATIONS IN PARAMETER IDENTIFICATION 1033

where

H = F′(q)TF′(q)− w0w
T
0

vT0 w0
+ αL

def
= H ls + αL,

g = g − vT0 g

vT0 w0
w0.

One then sets

a =
−vT0 g −wT

0 s⊥

vT0 w0

and computes s using (3.3).
One can show that null(H) = null(L) and that g ∈ null(L)⊥. Hence, the reduced

system (3.6) is consistent and has a unique pseudoinverse solution in null(L)⊥. This
pseudoinverse solution can be obtained using CG, given an initial guess in null(L)⊥.
One can precondition the reduced system (3.6) with L⊥, the restriction of L to
null(L)⊥, obtaining the desired transformation of the reduced Hessian to the form
(3.2).

It should be noted that the above approach is in principle very similar to that
of Hanke and Hansen [11]. However, in terms of practical implementation it is quite
different in that it does not require a (not necessarily square) matrix B for which

sTLs = ||Bs||2.(3.7)

Without a factorization L = BTB, it is not possible to transform the problem to
allow the direct application of conjugate gradient least squares (CGLS) or LSQR or
some other variant of CG specially designed for least squares problems.

4. Numerical experiments. Consider the 2-D diffusion equation (2.7) with
slightly different boundary conditions, u = 0 on the left (x = 0) and right (x = 1)
boundary edges, and no flux (uy = 0) boundary conditions on the top and bottom
edges. Corresponding to a point source at (x0, y0) = (1/2, 1/2), we took f(x, y) =
δ(x− x0, y − y0), the Dirac distribution. This yields a solution u with a logarithmic
singularity at (x0, y0). The diffusion coefficient κ(x, y) was taken to be piecewise
smooth with a curved interface between regions of low diffusivity on the left and
higher diffusivity on the right, and is shown in the upper left subplots of Figures 4.1
and 4.2. The parameter of interest, q(x, y) = log(κ(x, y)), is also piecewise smooth.
For a discussion of an alternative numerical approach to a very similar model problem,
see [10].

All computations were performed using MATLAB [12]. We applied uniform
CCFD discretization to the PDE (2.7). The solution u(x, y) and the parameter q(x, y)
are defined by their values at the cell centers. With nx = 64 cells on a side, the vectors
u and q are both of length n = 4096. The resulting discretization error is insignifi-
cant compared to the simulated measurement error. Linear interpolation was used to
obtain values of q at the cell interface midpoints. Due to the logarithmic singularity
in u, simulated data were generated only at cell centers outside a neighborhood of
radius of .05 of the source point (x0, y0). Hence, the matrix C, which is induced by
the piecewise constant CCFD representation of the solution u, is diagonal with 1’s at
diagonal entries corresponding to nodes outside this neighborhood, and 0’s elsewhere.
Most of the diagonal entries are 1’s. We generated simulated data according to the

1034 CURTIS R. VOGEL

x

y

true kappa

0 0.5 1

0

0.2

0.4

0.6

0.8

1 1

1.2

1.4

1.6

1.8

2

x

y

alpha = 1

0 0.5 1

0

0.2

0.4

0.6

0.8

1 1.35

1.4

1.45

1.5

1.55

1.6

x

y

alpha = .001

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

y

alpha = .0001

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 4.1. Grayscale plots showing true diffusion coefficient κ = exp(q(x, y)) (upper left corner)
and reconstructions obtained for α = 1 (upper right), α = 10−3 (lower left), and α = 10−4 (lower
right).

0
0.5

1

0

0.5

1
1

1.5

2

x

true kappa

y

ka
pp

a(
x,

y)

0
0.5

1

0

0.5

1
1

1.5

2

x

alpha = 1

y

ka
pp

a(
x,

y)

0
0.5

1

0

0.5

1
1

1.5

2

x

alpha = .001

y

ka
pp

a(
x,

y)

0
0.5

1

0

0.5

1
1

1.5

2

2.5

x

alpha = .0001

y

ka
pp

a(
x,

y)

Fig. 4.2. Surface plots showing true diffusion coefficient κ = exp(q(x, y)) (upper left corner)
and reconstructions obtained for α = 1 (upper right), α = 10−3 (lower left), and α = 10−4 (lower
right).

discrete version of (1.5), with additive Gaussian error whose mean was zero and whose
standard deviation was selected so that the noise-to-signal ratio ||η||/||Cu|| = 0.01.

Figures 4.1 and 4.2 show the reconstructions obtained by solving the penalized
least squares minimization problem (1.7) with TV penalty (cf. (1.9)), for various
values of the regularization parameter α. Note the increasing amount of detail as α
decreases. Note also for small α the onset of spurious oscillations due to the inversion
of noise in the data.

MATRIX COMPUTATIONS IN PARAMETER IDENTIFICATION 1035

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

CG/PCG iteration

||r
es

id
ua

l||

alpha = 1

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

CG/PCG iteration

||r
es

id
ua

l||

alpha = .01

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

CG/PCG iteration

||r
es

id
ua

l||

alpha = .001

0 50 100 150 200
10

−4

10
−2

10
0

10
2

CG/PCG iteration

||r
es

id
ua

l||

alpha = .0001

Fig. 4.3. Convergence history for CG iterations (solid lines) and PCG iterations (circles),
showing norm of the residual, ||Hsk + g|| vs. iteration count k. The upper left subplot corresponds
to α = 1; the upper right subplot corresponds to α = 10−2; the lower left subplot corresponds to
α = 10−3; and the lower right subplot corresponds to α = 10−4.

To estimate the parameter q, we employed a crude “continuation in α” ap-
proach, solving minimization problems (2.1) for a decreasing sequence, α = 10−k, k =
0, 1, 2, 3, 4. For each fixed value of α, we applied a quasi-Newton iteration with the
value of q from the previous α as the initial guess. At least for relatively large α, this
eliminated the need for “globalization” (e.g., line search or trust region) to guarantee
convergence, and it required relatively few total quasi-Newton iterates. An a posteri-
ori scheme (see [11]) can then be applied to determine the “best” value of α. Given an
optimality criterion for α, one may instead estimate α “on the fly” rather than use a
predetermined sequence of values for the regularization parameter. See, for example,
[2]. Note that the parameterization of the diffusivity, κ = exp(q), eliminated the need
for a nonnegativity constraint on κ.

The quasi-Newton scheme consists of Gauss–Newton linearization of the least
squares functional (cf. (2.5)) and “lagged diffusivity” linearization of the TV penalty
term; cf. (2.14). The convergence rate for each α is linear but quite rapid. For
each value of α, we took five quasi-Newton iterations. Each quasi-Newton iteration
required the solution of a linear system of the form (3.1). To solve these systems,
we applied CG with and without preconditioning. Figure 4.3 provides a comparison
between plain CG and PCG and shows the effects of decreasing the regularization
parameter α. The results shown in this figure correspond to the fifth quasi-Newton
iteration in each case but are essentially independent of quasi-Newton iteration count.
The preconditioner is as described in the previous section. The performance of plain
CG varied little with α. On the other hand, PCG performed very well for larger
values of α, and the performance deteriorated as α decreased. For α = 1, to attain a
three order of magnitude decrease in the residual norm, PCG required less than 1/30
as many iterations as plain CG. This ratio decreased to about 1/7 for α = 10−2 and
1/3 for α = 10−3. For α = 10−4, PCG required about half as many iterations as plain
CG.

1036 CURTIS R. VOGEL

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

10
1

index i

la
m

bd
a i

Hessian, alpha=0

0 500 1000 1500
1

10

index i

la
m

bd
a i

Precond. Hessian, alpha=0

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

index i

la
m

bd
a i

Hessian, alpha=.0001

0 500 1000 1500

0.001

0.1

index i

la
m

bd
a i

Precond. Hessian, alpha=.001

Fig. 4.4. Eigenvalue distributions for the Hessian (top row) and preconditioned Hessian (bottom
row of subplots) for α = 1 (left subplots) and α = 10−3 (right subplots).

The cost of each CG iteration is dominated by the Hessian matrix-vector mul-
tiplication. From (2.12), this is dominated by the cost of solving one linear system
involving the block tridiagonal matrix A(q) and one linear system involving its trans-
pose. Each PCG iteration requires an additional inversion of L⊥, as described at
the end of section 3. Assuming the cost of inverting L⊥ is comparable to that of
inverting A(q) and assuming that the dominant costs arise in solving linear systems,
one plain CG iteration should be about two-thirds as expensive as one PCG itera-
tion. This rough cost analysis ignores a substantial amount of overhead in the Hessian
matrix-vector multiplications; cf. (2.12). Consequently, from Figure 4.3 one observes
a computational cost advantage for PCG for all values of α ≤ 10−4, but the advantage
becomes less pronounced as α decreases. Obviously, when applying a “continuation in
α” approach, this particular preconditioner can drastically reduce total computational
cost, since several systems (3.1) with relatively large α must be solved.

We close this section with an explanation for the deterioration in PCG perfor-
mance as α decreases. The analysis in [6] shows that CG is superlinearly convergent
for Hilbert space operators equations in which the operator is a compact perturba-
tion of the identity. Unfortunately, this analysis is qualitative and gives no indication
of the effects of varying parameters such as α. Looking at the continuous version
of (3.1), we see that the Hessian is the sum of a symmetric compact operator, with
eigenvalues clustering at zero, and a positive scalar multiple of a diffusion operator,
with eigenvalues clustering at positive infinity. Assuming that boundary conditions
are imposed so that L is invertible (it is not, but this technical difficulty is overcome
by the decomposition (3.3)) our PCG scheme would yield a transformed operator of
the form

H̃ = L−1/2HlsL
−1/2 + αI.(4.1)

Since L−1/2 is now compact, L−1/2HlsL
−1/2 is again compact and has eigenvalues

which decay to zero more rapidly than those of Hls. Consequently, the eigenvalues of
H̃ cluster at α; cf. (3.2). This is clearly seen in the bottom two subplots in Figure 4.4.

MATRIX COMPUTATIONS IN PARAMETER IDENTIFICATION 1037

Unfortunately, as can be seen in the lower right subplot, there are a relatively large
number of eigenvalues which are significantly greater than α and are not clustered.
Note that the eigenvalue computations were performed on much smaller systems of
order 322 = 1024. While the results for the order 642 system may be somewhat
different, the qualitative behavior is the same.

REFERENCES

[1] H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,
Birkhauser, Boston, 1989.

[2] P. Blomgren and T. F. Chan, Modular Solvers for Constrained Image Restoration Problems,
UCLA CAM Report 97-52, Department of Mathematics, Univ. California, Los Angeles,
1997.

[3] R. H. Chan, T. F. Chan, and C. K. Wong, Cosine transform based preconditioners for
total variation minimization problems in image processing, in Iterative Methods in Linear
Algebra II, Proc. 2nd IMACS Internat. Symposium on Iterative Methods in Linear Algebra,
Bulgaria, June 1995, IMACS Ser. Comput. Appl. Math. 3, S. Margenov and P. Vassilevski,
eds., pp. 311–329.

[4] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-
based image restoration, in ICAOS ’96, 12th Internat. Conf. on Analysis and Optimization
of Systems: Images, Wavelets, and PDE’s, Paris, June 26–28, 1996, Lecture Notes in
Control and Inform. Sci. 219, M. Berger, R. Deriche, I. Herlin, J. Jaffre, and J. Morel, eds.,
Springer-Verlag, New York, 1996, pp. 241–252.

[5] G. Chavent and P. Lemonnier, Identification de la non-linearité d’une equation parabolique
quasilineare, Appl. Math. Optim., 1 (1974), pp. 121–162.

[6] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations,
SIAM J. Numer. Anal., 4 (1967), pp. 10–26.

[7] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[8] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM
J. Appl. Math., 56 (1996), pp. 1181–1198.

[9] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Friedr. Vieweg & Sohn,
Braunschweig, 1993.

[10] M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-
water filtration problems, Inverse Problems, 13 (1997), pp. 79–95.

[11] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math.
Indust., 3 (1993), pp. 253–315.

[12] MATLAB, The MathWorks, Inc., Natick, MA, 1997.
[13] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, MA,

1996.
[14] F. Santosa and W. W. Symes, Computation of the Hessian for least-squares solutions of

inverse problems in reflection seismology, Inverse Problems, 4 (1988), pp. 211–233.
[15] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4 (1963),

pp. 1624–1627.
[16] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci.

Comput., 17 (1996), pp. 227–238.
[17] C. R. Vogel and M. E. Oman, A fast, robust algorithm for total variation based reconstruction

of noisy, blurred images, IEEE Trans. Image Process., 7 (1998), pp. 813–824.
[18] C. R. Vogel and J. G. Wade, Analysis of costate discretizations in parameter estimation for

linear evolution equations, SIAM J. Control Optim., 33 (1995), pp. 227–254.
[19] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic

problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375.

BLOCK STATIONARY METHODS FOR NONSYMMETRIC
CYCLICALLY REDUCED SYSTEMS ARISING FROM

THREE-DIMENSIONAL ELLIPTIC EQUATIONS∗

CHEN GREIF† AND JAMES VARAH‡

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1038–1059

Abstract. We consider a three-dimensional convection-diffusion model problem and examine
systems of equations arising from performing one step of cyclic reduction on an equally spaced
mesh, discretized using the seven-point operator. We present two ordering strategies and analyze
block splittings of the resulting matrices. If the matrices are consistently ordered relative to a given
partitioning, Young’s analysis for the block Gauss–Seidel and block SOR methods can be applied.
We compare partitionings for which this property holds with ones where the matrices do not have
Property A yet still give rise to an efficient solution process. Bounds on convergence rates are derived
and the work involved in solving the systems is estimated.

Key words. cyclic reduction, stationary methods, three-dimensional problems, convection-
diffusion

AMS subject classifications. 65F10, 65N22

PII. S0895479897317715

1. Introduction. Consider the three-dimensional (3D) convection-diffusion equa-
tion with constant coefficients

−(uxx + uyy + uzz) + σux + τuy + µuz = p(x, y, z)(1.1)

on the unit cube Ω = [0, 1] × [0, 1] × [0, 1], subject to Dirichlet-type boundary con-
ditions. We focus on applying seven-point finite difference discretizations, for exam-
ple centered differences to the diffusive terms, and centered differences or first-order
upwind approximations to the convective terms. Let us define n and h so that n3 is
the number of unknowns and h = 1/(n + 1) is the mesh size, and let F denote the
corresponding difference operator, after scaling by h2, so that for a gridpoint ui,j,k
not next to the boundary we have

F ui,j,k = a ui,j,k + b ui,j−1,k + c ui−1,j,k(1.2)

+d ui+1,j,k + e ui,j+1,k + f ui,j,k−1 + g ui,j,k+1.

If we denote the mesh Reynolds numbers by

β =
σh

2
, γ =

τh

2
, δ =

µh

2
,(1.3)

then the values of the components of the computational molecule are given by

a = 6, b = −1− γ, c = −1− β, d = −1 + β,(1.4)

e = −1 + γ, f = −1− δ, g = −1 + δ

∗Received by the editors March 3, 1997; accepted for publication (in revised form) by Z. Strakoš
February 27, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31771.html
†SCCM Program, Gates Building, Stanford University, Stanford, CA 94305 (greif@

sccm.stanford.edu).
‡Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,

Canada (varah@cs.ubc.ca).

1038

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1039

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 352
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 352

(a) lexicographic ordering (b) red/black ordering

Fig. 1.1. Sparsity patterns of the matrices corresponding to two possible orderings of the un-
knowns

if centered difference approximations of the first derivatives are used and by

a = 6 + 2(β + γ + δ), b = −1− 2γ, c = −1− 2β,(1.5)

d = −1, e = −1, f = −1− 2δ, g = −1

if backward first-order accurate schemes are used.
The sparsity pattern of the underlying matrix depends on the ordering of the

unknowns. In Fig. 1.1 the sparsity patterns associated with two possible ordering
strategies are illustrated. The natural lexicographic ordering in (a) is one where the
unknowns are numbered rowwise and then planewise. The red/black ordering in (b)
means we color the gridpoints using two colors, in a checkerboard fashion, and then
number all the points that correspond to one of the colors first.

As is evident from Fig. 1.1(b), if we split the matrix into four blocks of the same
size, we can see that the two diagonal blocks are diagonal matrices. This means that
the matrix has Property A [24]. A cheap and relatively simple process of elimination
of all the points that correspond to one color (say, red) leads to a smaller system of
equations, whose associated matrix is the Schur complement of the original matrix,
and is still fairly sparse. This procedure amounts to performing one step of cyclic
reduction. Notice that in general both the original and the reduced matrices are
nonsymmetric.

The cyclic reduction step can be repeated until a small system of equations is
obtained, which can then be solved directly. This procedure is called complete cyclic
reduction. It has been studied in several papers, mainly for symmetric systems arising
from two-dimensional (2D) self-adjoint elliptic problems. A general overview of the
algorithm and a list of references can be found in [12]. Early papers that present and
analyze the algorithm are those of Hockney [17], Buneman [2], and Buzbee, Golub,
and Nielson [4]. Buzbee et al. [3] use cyclic reduction for solving the Poisson equation
on irregular regions; Concus and Golub [6] discuss 2D nonseparable cases. Application
of cyclic reduction to matrices with arbitrary dimensions is done by Sweet [20], [21].
Detyna [7] presents a fast O(n2) algorithm and discusses its stability and efficiency.

One step of cyclic reduction for symmetric positive definite systems is analyzed
by Hageman and Varga in [16] and later by Hageman, Luk, and Young [15], where it
is shown that the reduced solver generally converges faster than the unreduced solver.

1040 CHEN GREIF AND JAMES VARAH

In [1], Axelsson and Gustafsson use cyclic reduction in conjunction with the conjugate
gradient method. Elman and Golub have conducted an extensive investigation for 2D
elliptic non-self-adjoint problems [8], [9], [10] and have shown that one step of cyclic
reduction leads to systems with several valuable properties, such as symmetrizability
for a large set of the underlying PDE coefficients, which is effectively used to derive
bounds on the convergence rates of iterative solvers, and fast convergence.

Preliminary analysis for the non-self-adjoint 3D model problem (1.1) has been
done by the authors in [14], where one step of 3D cyclic reduction has been described
in detail, and a block Jacobi solver has been analyzed, which is based on a certain
block splitting (referred to as 1D splitting throughout this paper), in conjunction with
what we called a two-plane ordering strategy.

The computational molecule of the reduced operator consists of 19 points, located
on 5 parallel planes. Let R denote the reduced difference operator, after scaling by
ah2. Then for an interior gridpoint, ui,j,k, we have

Rui,j,k = (a2 − 2be− 2cd− 2fg)ui,j,k − f2 ui,j,k−2 − 2ef ui,j+1,k−1(1.6)

−2cf ui−1,j,k−1 − 2df ui+1,j,k−1 − 2bf ui,j−1,k−1 − e2 ui,j+2,k

−2de ui+1,j+1,k − c2 ui−2,j,k − d2 ui+2,j,k − 2bc ui−1,j−1,k

−b2 ui,j−2,k − 2eg ui,j+1,k+1 − 2cg ui−1,j,k+1 − 2ce ui−1,j+1,k

−2bd ui+1,j−1,k − 2dg ui+1,j,k+1 − 2bg ui,j−1,k+1 − g2 ui,j,k+2 .

The following results hold for any ordering strategy. See [14] for the proofs, which
have been obtained by using the techniques of Elman and Golub [8], [9].

Theorem 1.1. The reduced matrix can be symmetrized by a real diagonal sim-
ilarity transformation if and only if the products bcde, befg, and cdfg are positive.

Theorem 1.2. If be, cd, fg > 0, then both the reduced matrix and the sym-
metrized reduced matrix are diagonally dominant M -matrices.

In this paper our purpose is to extend the analysis initiated in [14] and examine
block stationary methods as solvers for the reduced system. In section 2 we present the
ordering strategies that are examined. In section 3 two block splittings are presented,
and bounds on convergence rates are derived. In section 4 we analyze the reduced
system in the context of consistently ordered matrices. In section 5 the amount of
computational work involved in solving the linear systems is estimated, a comparison
of the reduced system with the unreduced system is conducted, and some numerical
results which validate our analysis and illustrate the fast convergence of the reduced
system are given. Finally, in section 6 we conclude.

2. Orderings for the reduced system. We consider two ordering strategies
for the reduced grid. The two-plane ordering has been described in detail in [14]. It
corresponds to ordering the unknowns by gathering blocks of 2n gridpoints from two
horizontal lines and two adjacent planes. This ordering strategy is depicted in Fig.
2.1(a). In the figure, the numbers are the indices of the gridpoints, which are to be
expressed below by ` in (2.1) and (2.15).

The connection between the index of a gridpoint, `, and its coordinate values
(i, j, k) = (xh ,

y
h ,

z
h) is given below. The term fix is borrowed from MATLAB and

means rounding to the nearest integer toward zero.

i = fix{[(`− 1) mod (2n)]/2}+ 1,(2.1a)

j =

{
2 · [fix(`−1

n2) + 1], ` mod 4 = 0 or 1,
2 · fix(`−1

n2) + 1, ` mod 4 = 2 or 3,
(2.1b)

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1041

x

y
z

1

32

2

3

4

5

6

7

8

25

27

29

24

31

26

28

30

9

11

13

15

10

12

14

16

17

19

21

23

18

20

22

2

1

4

3

8

75

9 11

12

13

1614

15

18

17 19

20

21

22

23

24

25

26

27

28

29

30

31

32

6

10

(a) two-plane (b) two-line

Fig. 2.1. Two suggested ordering strategies for the reduced grid (in the figure the unreduced grid
is of size 4× 4× 4).

k =

{
2 · fix((`−1) mod n2

2n) + 1, ` odd,

2 · [fix((`−1) mod n2

2n) + 1], ` even.
(2.1c)

See [14] for specification of the matrix entries.
An alternative to the two-plane ordering is a straightforward generalization to

three dimensions of the two-line ordering used by Elman and Golub in [9]. It is illus-
trated in Fig. 2.1(b). The reduced matrix for this ordering strategy is block pentadi-
agonal:

S = penta[Sj,j−2, Sj,j−1, Sj,j , Sj,j+1, Sj,j+2].(2.2)

Each Si,j is (n2/2) × (n2/2) and is a combination of n
2 uncoupled matrices, each of

size n× n.
The diagonal matrices {Sj,j} are themselves block tridiagonal. Each submatrix is

of size n× n and its diagonal block is

S
(0)
j,j =

{
penta(−c2, −2bc · E01 − 2ce · E10, ∗, −2bd · E01 − 2de · E10, −d2), j odd,
penta(−c2,−2bc · E10 − 2ce · E01, ∗,−2bd · E10 − 2de · E01, −d2), j even,

where E10 = (1, 0, 1, 0, . . .), E01 = (0, 1, 0, 1, . . .), and * stands for the value along the
main diagonal of the matrix, which is given by a2−2cd−2be−2fg for gridpoints not
next to the boundary. See [14] for specification of the main diagonal’s values associated
with gridpoints next to the boundary.

For the superdiagonal and the subdiagonal blocks of the matrices Sj,j we have
the following irregular tridiagonal structure, which depends on whether j is even or
odd. The superdiagonal matrices are given by

S
(1)
j,j =

−e2 −2de
−e2

−2ce −e2 −2de
. . .

. . .

−2ce −e2 −2de
−e2

(2.3)

1042 CHEN GREIF AND JAMES VARAH

if j is odd or

S
(1)
j,j =

−e2

−2ce −e2 −2de
−e2

. . .

. . .

−e2

−2ce −e2

(2.4)

if j is even.
The subdiagonal matrices are

S
(−1)
j,j =

−b2
−2bc −b2 −2bd

−b2
. . .

. . .

−b2
−2bc −b2

(2.5)

if j is odd or

S
(−1)
j,j =

−b2 −2bd
−b2
−2bc −b2 −2bd

. . .

. . .

−2bc −b2 −2bd
−b2

(2.6)

if j is even.
The superdiagonal and the subdiagonal blocks of S, Sj,j±1 are block tridiagonal:

S
(−1)
j,j−1 =

{
diag(−2bf · E01), j odd,
diag(−2bf · E10), j even,

(2.7)

S
(0)
j,j−1 =

{
tri(−2cf, −2bf · E10 − 2ef · E01, −2df), j odd,
tri(−2cf, −2bf · E01 − 2ef · E10, −2df), j even,

(2.8)

S
(1)
j,j−1 =

{
diag(−2ef · E10), j odd,
diag(−2ef · E01), j even,

(2.9)

S
(−1)
j,j+1 =

{
diag(−2bg · E01), j odd,
diag(−2bg · E10), j even,

(2.10)

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1043

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1440
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1440

(a) two-plane (b) two-line

Fig. 2.2. Sparsity patterns of the reduced matrices associated with the two ordering strategies
(the matrices correspond to 6 × 6 × 6 grids). Each square corresponds to an n2 × n2 block (n2

gridpoints form two coupled planes in the reduced grid).

S
(0)
j,j+1 =

{
tri(−2cg, −2bg · E10 − 2eg · E01, −2dg), j odd,
tri(−2cg, −2bg · E01 − 2eg · E10, −2dg), j even,

(2.11)

S
(1)
j,j+1 =

{
diag(−2eg · E10), j odd,
diag(−2eg · E01), j even.

(2.12)

Finally, the matrices Sj,j−2 and Sj,j+2 are diagonal:

Sj,j−2 = diag(−f2), j = 3, . . . , n ;(2.13)

Sj,j+2 = diag(−g2), j = 1, . . . , n− 2.(2.14)

The connection between the gridpoint’s index and its coordinate values is given
by

i = [(`− 1) mod n] + 1,(2.15a)

k = fix

(
`− 1

n2/2

)
+ 1,(2.15b)

j =

{
2 · (fix((fix(`− (k − 1) · (n2/2))− 1)/n)) + 1, k odd,
2 · (fix((fix(`− (k − 1) · (n2/2))− 1)/n)) + 2, k even.

(2.15c)

The sparsity patterns of the matrices corresponding to two-plane ordering and
two-line ordering are depicted in Fig. 2.2.

1044 CHEN GREIF AND JAMES VARAH

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 720
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1056

(a) 1D splitting (b) 2D splitting

Fig. 3.1. Sparsity patterns of the block diagonal matrices associated with the block Jacobi split-
ting, for the two suggested block splittings, using the two-plane ordering strategy.

3. Block splittings and bounds on convergence rate. For the two ordering
strategies presented in section 2 the matrices can be expressed as block tridiagonal,
of the form

S = tri[Sj,j−1, Sj,j , Sj,j+1] .(3.1)

S is an (n3/2) × (n3/2) matrix. In the case of two-plane ordering, each block Si,j is
of size n2 × n2 and is block tridiagonal with respect to 2n× 2n blocks. In the case of
two-line ordering, each block Si,j is of size (n2/2) × (n2/2) and is block tridiagonal
with respect to n× n blocks.

In solving the reduced system using a stationary method, various splittings are
possible. We consider two obvious ones, based on dimension. We use the term 1D
splitting for a splitting which is based on partitioning the matrix into O(n) blocks
(2n×2n blocks for the two-plane ordering and n×n blocks for the two-line ordering).
A 2D splitting is one which is based on partitioning the matrix into O(n2) blocks
(n2 × n2 blocks for the two-plane ordering and (n2/2) × (n2/2) blocks for the two-
line ordering). Notice that the 1D splitting for both ordering strategies is essentially
associated with blocks of gridpoints that are x-oriented. However, the 2D splitting
for the two-line ordering corresponds to x-y oriented planes of gridpoints, whereas
for the two-plane ordering it corresponds to x-z oriented planes of gridpoints. (These
observations can be deduced by referring to Fig. 2.1.) Different orientations can be
obtained by simply reordering the unknowns so that the roles of x, y, and z are
interchanged.

The sparsity patterns of the block diagonal parts of the splittings associated with
the block Jacobi scheme are depicted in Fig. 3.1.

We now compare the orderings. We have the following useful result.
Theorem 3.1. If be, cd, fg > 0, then for the 1D splitting the spectral radius of the

Jacobi iteration matrix associated with two-plane ordering is smaller than the spectral
radius of the iteration matrix associated with the two-line ordering.

Proof. By Theorem 1.2 the matrices are M -matrices. Each ordering strategy
produces a matrix which is merely a symmetric permutation of a matrix associ-
ated with the other ordering. Suppose S1 = M1 − N1 is a 1D splitting of the two-
plane ordering matrix and S2 = M2 − N2 is a 1D splitting for the two-line order-

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1045

ing. There exists a permutation matrix P such that PTS2P = S1. Consider the
splitting PTS2P = PTM2P − PTN2P . It is straightforward to show by examining
the matrix entries that PTN2P ≥ N1. The latter are both nonnegative matrices;
therefore by [23, Thm. 3.15] it follows that 0 < ρ(M−1

1 N1) < ρ(PTM−1
2 N2P) =

ρ(M−1
2 N2) < 1.
The same result applies to 2D splitting, provided that the orientation of the planes

of gridpoints is identical for both ordering strategies. The proof for this is identical
to the proof of Theorem 3.1.

The results indicated in Theorem 3.1 can be observed in Fig. 3.2. It is interesting
to observe that the superiority of the two-plane ordering carries over to the case
be, cd, fg < 0, which corresponds to the region of mesh Reynolds numbers larger
than 1 (for which the PDE is considered convection-dominated). We remark, however,
that the amount of computational work per each iteration is somewhat higher for the
system which corresponds to two-plane ordering. In Fig. 3.2 a few cross sections of
mesh Reynolds numbers are examined. For example, graph (a) corresponds to flow
with the same velocity in x, y, and z directions. Graph (b) corresponds to flow only
in x and y directions, and no convection in z direction, and so on. (See (1.3) for
definitions of β, γ, and δ.)

We now derive bounds on convergence rates. Below we shall attach the subscripts
1 and 2 to matrices associated with the 1D splitting and 2D splitting, respectively.
Since two-plane ordering gives rise to a more-efficient solution procedure than two-line
ordering, we focus on it.

Denote the two splittings for the block Jacobi scheme by S = D1−C1 = D2−C2.
In [14] we have shown that if be, cd, and fg have the same sign then a real diagonal
nonsingular symmetrizer can be found, and thus (since the symmetrizer is diagonal)
the sparsity patterns of the original nonsymmetric matrix and the symmetrized matrix
are identical. Let us attach the hat sign to a matrix to denote application of the
similarity transformation that symmetrizes it. That is, for a given matrix X and a
diagonal symmetrizer Q, Q−1XQ is to be denoted by X̂.

The matrices D̂−1
1 Ĉ1 and D̂−1

2 Ĉ2 are similar to the original iteration matrices
D−1

1 C1 and D−1
2 C2, respectively, and thus have the same spectral radii. Following

Elman and Golub’s strategy [8], [9], the symmetric matrix can be handled more easily
as far as computing the spectral radius is concerned, since we can use the following:

ρ(D−1
i Ci) = ρ(D̂−1

i Ĉi) ≤ ||D̂−1
i ||2||Ĉi||2 =

ρ(Ĉi)

λmin(D̂i)
, i = 1, 2.(3.2)

The results presented below are for the case be, cd, fg > 0, using two-plane
ordering. These conditions are equivalent to |β|, |γ|, |δ| < 1 if centered differences
are used to discretize the convective terms. No restriction on the magnitude of the
mesh Reynolds numbers is imposed if upwind differences are used. For these values
tight bounds for the spectral radius of the iteration matrix can be obtained.

For D̂1 the minimal eigenvalue has been found in [14, Thm. 3.8], and the relevant
part of this theorem is quoted below.

Proposition 3.2. The minimal eigenvalue of D̂1 is

η = a2 − 2be− 2fg − 2
√
befg − 4(

√
bcde+

√
cdfg) · cos(πh)− 4cd cos2(πh) .(3.3)

A lower bound for D̂2 − D̂1 is given by the following proposition.

1046 CHEN GREIF AND JAMES VARAH

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) β = γ = δ (b) β = γ, δ = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) γ = δ = 0 (d) β = 0, γ = δ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) β = γ = 0 (f) β = δ = 0

Fig. 3.2. Spectral radii of iteration matrices versus mesh Reynolds numbers for the block Jacobi
scheme, using 1D splitting and centered difference discretization. The broken lines correspond to
two-plane ordering. The solid lines correspond to two-line ordering.

Proposition 3.3. The minimal eigenvalue of D̂2− D̂1 is bounded from below by
−ξ, where

ξ = 2fg cos

(
π

n
2 + 1

)
+

√
4befg + 16 · cdfg · cos2(πh) + 16

√
bcde · fg · cos(πh).(3.4)

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1047

Table 3.1
Comparison between the computed spectral radius and the bound, for the 2D splitting, with

β = γ = δ = 0.5.

Scheme Upwind Centered

n ρ bound ratio ρ bound ratio

4 0.265 0.430 1.62 0.203 0.309 1.52

6 0.411 0.530 1.29 0.297 0.368 1.24

8 0.499 0.583 1.17 0.350 0.398 1.14

10 0.553 0.615 1.11 0.381 0.415 1.09

12 0.588 0.634 1.08 0.400 0.425 1.06

14 0.611 0.647 1.06 0.413 0.432 1.05

The proof for this part follows from [14, Lem. 3.10], where it is shown that the
spectral radius of D̂2 − D̂1 is bounded by ξ.

Combining Propositions 3.2 and 3.3, and applying Rayleigh quotients to the ma-
trices D̂1 and D̂2 − D̂1, we obtain the following lemma.

Lemma 3.4. The minimal eigenvalue of D̂2 is bounded from below by η−ξ, where
η and ξ are the expressions given in (3.3) and (3.4).

The bound for Ĉ2 can be obtained by combining [14, Lems. 3.11–3.13], as follows.
Lemma 3.5. The spectral radius of the matrix Ĉ2 is bounded by

φ = 4
√
befg + 4

√
bcde · cos

π

n+ 1
+ 2be cos

(
π

n
2 + 1

)
.(3.5)

Finally, Lemmas 3.4 and 3.5 lead to the following theorem.
Theorem 3.6. The spectral radii of the iteration matrices D−1

1 C1 and D−1
2 C2

are bounded by φ+ξ
η and φ

η−ξ , respectively, where η, ξ, and φ are defined in (3.3),

(3.4), and (3.5), respectively.
Corollary 3.7. If be, cd, fg > 0 then the block Jacobi iteration converges for

both the 1D and 2D splittings.
Proof. For this we can use Varga’s result on M -matrices [23, Thm. 3.13]. Alter-

natively, Taylor expansions of the bounds given in Theorem 3.6 are given by

ρ(D−1
1 C1) ≤ φ+ ξ

η
= 1−

(
10

9
π2 +

1

6
µ2 +

1

6
τ2 +

1

6
σ2

)
h2 + o(h2)(3.6)

and

ρ(D−1
2 C2) ≤ φ

η − ξ = 1−
(

2π2 +
3

10
µ2 +

3

10
τ2 +

3

10
σ2

)
h2 + o(h2)(3.7)

and thus are smaller than 1.
In Table 3.1 we give some indication on the quality of the bound for the 2D

splitting. Results with a similar level of accuracy have been obtained and presented
in [14] for the 1D splitting. As can be observed, the bounds are tight and become
tighter as n increases, which suggests that they are asymptotic to the spectral radii.

We now discuss other stationary methods, namely, Gauss–Seidel and SOR. Rel-
ative to a given partitioning, if the reduced matrix is consistently ordered, then it
is straightforward to apply Young’s analysis, and the bounds in Theorem 3.6 can be
used for estimating the rate of convergence of the Gauss–Seidel and SOR schemes.
The reader is referred to [19, Defs. 4.3 and 4.4] for definitions of Property A and con-
sistent ordering. As stated in [19], a matrix that is consistently ordered has Property

1048 CHEN GREIF AND JAMES VARAH

A; conversely, a matrix with Property A can be permuted so that it is consistently
ordered. We mentioned in the introduction that the matrix of the unreduced system
has Property A. For the reduced system, we have the following observations.

Proposition 3.8. The reduced matrix associated with two-line ordering, SL, does
not have Property A relative to 1D or 2D partitionings.

Proof. Let Si,j denote the (i, j)th n×n block of SL, and let Q be an (n2/2)×(n2/2)
matrix, whose entries satisfy qi,j = 1 if Si,j 6= 0 and qi,j = 0 otherwise. Let T be an
n × n matrix, such that ti,j = 1 if the (i, j)th (n2/2) × (n2/2) block submatrix of
S is nonzero, and ti,j = 0 otherwise. Clearly, T is a pentadiagonal matrix and thus
does not have Property A. Since Q can be referred to as a partitioning of T into
(n/2)× (n/2) blocks, it also does not have Property A.

Proposition 3.9. The reduced matrix associated with two-plane ordering, SP ,
does not have Property A relative to 1D partitioning.

Proof. Let Si,j denote the (i, j)th 2n× 2n block of SP , and let Q be an (n2/4)×
(n2/4) matrix, whose entries satisfy qi,j = 1 if Si,j 6= 0 and qi,j = 0 otherwise. It is
straightforward to see that the nonzero pattern of Q is identical to that of the matrix
associated with using a nine-point operator for a 2D grid. Since the latter does not
have Property A relative to partitioning into 1× 1 matrices, the result follows.

On the other hand, we have the following proposition.
Proposition 3.10. The reduced matrix associated with two-plane ordering, SP ,

has Property A and, moreover, is consistently ordered relative to 2D partitioning.
Proof. The matrix is block tridiagonal relative to this partitioning [24].
For the SOR scheme we have the following result, which is completely analogous

to Elman and Golub’s result for the 2D problem [9, Thm. 4].
Theorem 3.11. Let Lω denote the block SOR operator associated with 2D split-

ting and using two-plane ordering. If either be, cd, fg > 0 or < 0, then the choice
ω∗ = 2

1+
√

1−ρ2(D−1
2 C2)

minimizes ρ(Lω) with respect to ω, and ρ(Lω∗) = ω∗− 1.

The proof of this theorem is essentially identical to the proof of Elman and Golub
in [9, Thm. 4] and follows from Young [24, Chap. 14, Sects. 5.2 and 14.3]. The algebraic
details on how to pick the signs of the diagonal symmetrizer so that the symmetrized
block diagonal part of the splitting is a diagonally dominant M -matrix are omitted.
That ρ(D−1

2 C2) < 1 is known by Corollary 3.7. The reduced matrix is consistently
ordered by Proposition 3.10.

A way to approximately determine an optimal relaxation parameter for the case
be, cd, fg > 0 is to replace ρ(D−1

2 C2) by the bound for it (given in Theorem 3.6) in
the expression for ω∗ in Theorem 3.11. If the bound for the block Jacobi scheme is
tight, then the estimate of ω∗ is fairly accurate.

Proposition 3.12. Suppose be, cd, fg > 0. For the system associated with 2D
splitting and for h sufficiently small, the choice

ω̃∗ =
2(η − ξ)

η − ξ +
√

(η − ξ)2 − φ2
(3.8)

approximately minimizes ρ(Lω). The spectral radius of the iteration matrix is approx-
imately ω̃∗ − 1.

The Taylor expansion of the estimate for the optimal relaxation parameter is
given by

ω̃∗ = 2− 2

5

√
100π2 + 15(τ2 + µ2 + σ2) · h+O(h2).(3.9)

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1049

0 50 100 150 200 250

0

50

100

150

200

250

nz = 144

Fig. 4.1. The sparsity pattern of the matrix Cd.

From (3.9) it follows that the estimated asymptotic rate of convergence of the block
SOR scheme is approximately the second term in (3.9) (with the negative sign re-
moved) and is thus O(h).

4. Near-Property A for 1D splitting of the two-plane matrix. Although
the matrix associated with two-plane ordering does not have Property A relative to
the 1D partitioning, some interesting observations can be made: As before, let {Si,j}
denote the n2×n2 blocks of the reduced matrix. Each block Si,j is a block tridiagonal
matrix relative to 2n × 2n blocks. We attach superscripts to mark how far a block
diagonal is from the main block diagonal, and we define

Cd = −
(
S

(−1)
j,j+1 + S

(1)
j,j+1 + S

(−1)
j,j−1 + S

(1)
j,j−1

)
.(4.1)

See [14] for specification of the entries of these matrices. As in section 3 (with a slight
change in notation), let SP = D − C be the 1D splitting of the matrix, and define C̃
so that SP = D− (C̃ +Cd). The matrix D− C̃ has Property A, but SP does not. Let
us examine the matrix that prevents SP from having Property A, namely, Cd. It is
an extremely sparse matrix, and the magnitude of the nonzero values in this matrix
is bounded by 2 if be, cd, fg > 0. The nonzero pattern of Cd is depicted in Fig. 4.1.

We wish to estimate how far the reduced matrix SP is from having block Property
A, relative to the 1D partitioning. Let us denote the upper part and the lower part of
Cd by Ud and Ld, respectively, and let Ũ and L̃ be the upper part and lower part of
C̃, respectively. Then the spectral radius of the block Gauss–Seidel matrix satisfies

ρGS = ρ((D − L̃− Ld)−1(Ũ + Ud)) ≤ ||(D − L̃)−1Ũ ||2 + ||(D − L̃)−1Ud||2
1− ||(D − L̃)−1Ld||2

.

(4.2)

||(D − L̃)−1Ũ ||2 is significantly larger than the other norms in the above inequality,
which means that the spectral radius of the Gauss–Seidel iteration matrix associated
with the two-plane ordering can be estimated by replacing the two-plane matrix by
D − C̃, which does have Property A and thus is easier to analyze. Alternatively, the
following observation has been obtained by numerical experiments:

ρ(D−1C) ≈ ρ(D−1C̃) + ρ(D−1Cd).(4.3)

1050 CHEN GREIF AND JAMES VARAH

β = γ = δ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β = γ = δ

(a) ρGS vs ρ2
J − centered (b) ρGS vs ρ2

J − upwind

α
−4 −3 −2 −1 0 1 2 3
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

(c) hB(α)

Fig. 4.2. “Near Property A” for the 1D splitting.

Young’s analysis can be applied directly to both D − C̃ and D − Cd (both have
Property A), and thus an approximate relationship between the eigenvalues of the
block Jacobi iteration matrix and the eigenvalues of the block Gauss–Seidel iteration
matrix can be obtained.

For be, cd, fg > 0 we have observed that the spectral radius of the block Jacobi
iteration matrix satisfies

ρ2
J ≈ ρGS .(4.4)

The first two graphs in Fig. 4.2 illustrate this phenomenon numerically. The broken
lines in graphs (a) and (b) correspond to the square of the spectral radius of the
iteration matrix associated with block Jacobi, for a 256× 256 matrix. The solid lines
correspond to the spectral radius of the block Gauss–Seidel iteration matrix. As can
be seen, the curves are almost indistinguishable. This phenomenon becomes more
dramatic as the systems become larger.

Some analysis can be done using Varga’s work on extensions of the theory of p-
cyclic matrices [22], [23, Sect. 4.4]. (In this paper we are concerned only with p = 2.)
Recall [23, Def. 4.2], which defines a set S of matrices as follows. The square matrix
B ∈ S if B satisfies the following properties:

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1051

1. B ≥ 0 with zero diagonal entries.
2. B is irreducible and convergent, i.e., 0 < ρ(B) < 1.
3. B is symmetric.

If be, cd, fg > 0, the reduced matrix SP is a diagonally dominant M -matrix
which can be symmetrized, and D̂1/2 is well defined. Define S̃ = D̂−1/2ŜD̂−1/2 =
I − D̂−1/2ĈD̂−1/2.

Applying block Jacobi to the original reduced system is analogous to apply-
ing point Jacobi to S̃, in the sense that the spectra of the iteration matrices asso-
ciated with both systems are identical. The iteration matrix associated with S̃ is
B = D̂−1/2ĈD̂−1/2. Showing that the matrix B belongs to the set S defined above is
easy and is omitted. Let L be the lower part of B. Define MB(θ) = θL + LT , θ ≥ 0,
and mB(θ) = ρ(MB(θ)). Let

hB(ln θ) =
mB(θ)

ρ(B)θ1/2
, θ > 0.(4.5)

Then we have [23, Thm. 4.7] (with a slight modification so as to match the
terminology used in this paper), as follows.

Theorem 4.1. Let B ∈ S. Then, hB(α) ≡ 1 if and only if B is consistently
ordered.

In some sense hB(ln θ) measures the departure of the matrix B from having block
Property A. For matrices that are not consistently ordered, the following result applies
[23, Thm. 4.6].

Theorem 4.2. If B ∈ S, then either hB(α) ≡ 1 for all real α, or hB(α) is strictly
increasing for α ≥ 0. Moreover, for any α 6= 0,

1 ≤ hB(α) ≤ cosh
(α

2

)
.(4.6)

Figure 4.2(c) demonstrates how close the function hB is to 1 for the reduced
matrix when 1D partitioning is used and provides another way to illustrate the near-
Property A of the matrix. In the figure, the function hB is computed for a symmetrized
block Jacobi 256× 256 matrix, where β = γ = δ = 0.5.

We can now analyze the Gauss–Seidel and SOR schemes. Recall [23, Thm. 4.8]
(slightly modified), as follows.

Theorem 4.3. Let LB,ω denote the SOR iteration matrix. If B ∈ S then the
Gauss–Seidel iteration matrix, which corresponds to the case ω = 1, satisfies

ρ2(B) ≤ ρ(LB,1) <
ρ(B)

2− ρ(B)
,(4.7)

with equality possible only if B is consistently ordered.
This is a sharpened form of the Stein–Rosenberg theorem [23]. Applying this

theorem to our reduced matrix, we have the following theorem.
Theorem 4.4. If the bound for the block Jacobi iteration matrix tends to the

actual spectral radius as h → 0, then the spectral radius of the block Gauss–Seidel
iteration matrix coincides with the square of the bound for the spectral radius of the
block Jacobi iteration matrix up to O(h2) terms.

Proof. Since the iteration matrix B has the same spectral radius as D−1C, where
SP = D−C, we can use the bound for the 1D iteration matrix, which was presented
in Theorem 3.6. For simplicity of notation, denote this bound by Φ. Clearly, since

1052 CHEN GREIF AND JAMES VARAH

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4.3. Spectral radius of the SOR iteration matrix versus the relaxation parameter. The
uppermost curve corresponds to 1D splitting for the unreduced system, and then we have, in order,
2D splitting for the unreduced system, 1D splitting for the reduced system, and 2D splitting for the
reduced system.

0 < ρ(B) ≤ Φ,

ρ(B)

2− ρ(B)
≤ Φ

2− Φ
.(4.8)

Since Φ has a Taylor expansion of the form 1 − ch2 + O(h2), by (3.6), it follows
that Φ

2−Φ and Φ2 have the same Taylor expansion up to O(h2) terms, of the form

1− 2ch2 +O(h3). Indeed, in terms of the PDE coefficients,

Φ

2− Φ
= 1−

(
20

9
π2 +

1

3
σ2 +

1

3
τ2 +

1

3
µ2

)
h2 +O(h3),(4.9)

and the same for Φ2. It has been shown that the bound for ρ(B) is extremely tight as
h → 0, and so we can replace the spectral radii by the bounds for the spectral radii
in Theorem 4.3 to obtain the desired result.

The actual meaning of this result is that for systems of equations that are large
enough, the matrix nearly has Property A relative to 1D partitioning, at least as far
as the convergence properties of the block Gauss–Seidel scheme are concerned. Since
the solution process for small mesh Reynolds numbers is more efficient for the 1D
splitting, compared to the 2D splitting, as we shall see in section 5, it was our aim to
overcome the difficulty of not being able to apply Young’s analysis directly.

For the block SOR scheme, the upper bound for the spectral radius is given in
[23, Thm. 4.9] as

√
ω∗ − 1 and is not tight. However, it is numerically evident that

the bound for the Jacobi iteration matrix can be effectively used to estimate the
optimal SOR parameter. In Fig. 4.3 we can observe that the behavior for the 1D
splitting is qualitatively identical to the behavior of two-cyclic consistently ordered
matrices. Here we present results for centered difference discretization of the problem
with β = γ = δ = 0.5. The reduced matrix is 256× 256. In the figure we also present
the behavior of the SOR iteration matrix of the unreduced system.

5. Computational work and numerical experiments. Having done some
analysis, in this section we examine which of the 1D and 2D solvers is more efficient
overall and show that the reduced system is superior to the unreduced system.

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1053

5.1. Aspects of computational work. If be, cd, fg > 0, then by [23, Thm.
3.15] or by (3.6) and (3.7), it is evident that the spectral radius of the iteration matrix
associated with the 2D splitting is smaller than that of the 1D iteration matrix.
However, inverting D1 involves less computational work than inverting D2. We now
compare these two solution procedures.

We begin with the block Jacobi scheme. Asymptotically, there is a fixed ratio
of 1.8 between the rate of convergence of the two splittings (see (3.6) and (3.7)). In
rough terms, this number characterizes the ratio between number of iterations until
convergence for the two solvers.

As far as the computational work per iteration is concerned, if D1 = L1U1 and
D2 = L2U2 are the LU decompositions of the matrices of the systems that are to be
solved in each iteration, we can assume that the number of operations per iteration is
approximately the number of nonzeros in Li +Ui plus the number of nonzeros in the
other part of the splitting. In order to avoid costly fill-in using Gaussian elimination
for D2 (whose band is sparse), we use instead a technique of inner-outer iterations.

Let k1 and k2 denote the number of iterations for the schemes associated with
the 1D splitting and the 2D splitting, respectively. Let us also define cost functions
as follows: c1(n) and c2(n) represent the overall number of floating point operations
for each of the solvers, and cin(n) represents the cost of the inner solve. Then

c1(n) ≈ [nz(L1 + U1) + nz(S −D1)] · k1 = [10n3 − 19n2 + 4n] · k1,(5.1a)

c2(n) ≈ [cin(n) + nz(S −D2)] · k2 = [cin(n) + 3n3 − 8n2 + 4n] · k2.(5.1b)

The term nz(X) stands for the number of nonzeros of a matrix X, and S stands for
the reduced matrix.

Proposition 5.1. For n large enough, the scheme associated with the 2D splitting
is cheaper than the one associated with the 1D splitting only if cin(n) < 15n3.

Proof. If n is large enough we can use the relation k1

k2
= 1.8 and refer only to the

leading power of n in the expressions for c1(n) and c2(n). So doing, it follows that

c1(n)

c2(n)
≈ 18n3

cin(n) + 3n3
,(5.2)

and the result stated in the proposition readily follows.
What is left now is to examine the amount of work involved in solving the inner

system of equations. A natural choice of a splitting for this system is D2 = D1−(D1−
D2). It is straightforward to show the following by Propositions 3.2 and 3.3.

Proposition 5.2. If block Jacobi based on the splitting D2 = D1 − (D1 − D2)
is used, then the spectral radius of the inner iteration matrix, namely, I −D−1

1 D2, is
bounded by ξ

η , where η and ξ are defined in (3.3) and (3.4).
For considering methods that are faster than block Jacobi for the inner system,

we have the following useful result.
Proposition 5.3. The inner matrix is block consistently ordered relative to 1D

partitioning.
Proof. The inner matrix is block tridiagonal relative to this partitioning.
We are now ready to prove the main result of this subsection.
Proposition 5.4. If be, cd, fg > 0, then if 1D splitting is used in solving the

inner system, the cost of solving it is higher than 15n3 floating point operations, for
block Jacobi as well as block Gauss–Seidel and block SOR, and thus, for n large enough
and the methods considered in this paper, the 1D solver is faster than the 2D solver.

1054 CHEN GREIF AND JAMES VARAH

Proof. The Taylor expansion of the bound in Proposition 5.2 is

ξ

η
=

4

9
−
(

43

81
π2 +

65

648
µ2 +

29

648
τ2 +

25

324
σ2

)
h2 + o(h2).(5.3)

For h small enough, we can simply examine the leading term: The bound is approxi-
mately 4

9 if block Jacobi is used, and since by Proposition 5.3 the matrix is consistently
ordered, Young’s analysis shows that the spectral radius is approximately 16

81 if block
Gauss–Seidel is used and approximately 0.055 if block SOR with the optimal relax-
ation parameter is used. For both of these schemes each iteration costs about 7n3

floating point operations. Since reducing the inital error by a factor of 10m takes
roughly −m/ log10 ρ iterations, where ρ is the spectral radius of the associated itera-
tion matrix, it follows that even for the block SOR scheme with the optimal relaxation
parameter, which is the fastest scheme considered here, after two iterations the error
is reduced only by a factor of approximately 102.5, which is obviously far from satis-
factory. Thus the iteration count is larger than 2, and the cost of inner solve is larger
than 15n3 floating point operations.

We remark that an inexact inner solve can also be considered (see, for example,
Elman and Golub’s paper on inexact Uzawa algorithms [11]), but this is beyond the
scope of this work.

It is our conclusion that the solver associated with 1D splitting is more efficient
than the one associated with the 2D splitting if upwind differences are used or if
centered differences with mesh Reynolds numbers smaller than 1 in magnitude are
used.

5.2. Comparison with the unreduced system. One step of cyclic reduction
results in a more complicated difference operator compared to the original, unreduced
system, and a grid which is more difficult to handle as far as ordering of the unknowns
is concerned. Moreover, the unreduced matrix is block consistently ordered relative
to both 1D and 2D splittings (we refer to the straightforward one-line and one-plane
partitionings as the basis for 1D and 2D splittings in case of the unreduced system)
and thus Young’s analysis can be easily applied. One could ask, therefore, what the
advantages of using cyclic reduction are. In this subsection we illustrate the superiority
of the reduced system over the unreduced system.

We start with the block Jacobi scheme. For the unreduced system we shall refer
to natural lexicographic ordering of the unknowns, so that the lines of gridpoints are
x-oriented and the planes are x-y oriented. We start with quoting the following result,
given in [14, Sects. 2 and 4].

Lemma 5.5. The spectral radius of the block Jacobi scheme associated with the
1D splitting for the unreduced system is

2
√
be · cos(πh) + 2

√
fg · cos(πh)

a+ 2
√
cd · cos(πnh)

.(5.4)

The Taylor expansion of (5.4) about h = 0 is given by

1−
(

3

4
π2 +

1

16
σ2 +

1

16
τ2 +

1

16
µ2

)
h2 + o(h2).(5.5)

In [14] we have shown that the spectrum of the iteration matrix of the unreduced
system can be found by a sequence of diagonalizations and permutations that form

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1055

a similarity transformation of the matrix into a matrix whose associated iteration
matrix is easy to analyze, as far as its spectrum is concerned. The reader is referred
to the proof of [14, Thm. 2.1] for full details. For the 2D splitting a similar procedure
can be applied. The technique we have used is similar to the one presented in [14] and
the algebraic details are omitted.

Lemma 5.6. The spectral radius of the block Jacobi iteration matrix associated
with 2D splitting is given by

2
√
fg · cos(πh)

a+ 2
√
cd · cos(πnh) + 2

√
be · cos(πnh)

,(5.6)

and its Taylor expansion about h = 0 is

1−
(

3

2
π2 +

1

8
σ2 +

1

8
τ2 +

1

8
µ2

)
h2 + o(h2).(5.7)

The same type of analysis that has been done in the previous section, comparing the
1D splitting to the 2D splitting for the reduced system, is possible for the unreduced
system. Below we sketch the main details: Suppose inner-outer iterations are used in
solving the scheme associated with the 2D splitting. Denote, again, this splitting for
the inner system as D2 = D1− (D1−D2) (D1 and D2 are now different than the ones
defined in section 3). Then we have the following proposition.

Proposition 5.7. Consider the unreduced system. Suppose be, cd, fg > 0, n is
sufficiently large, and 1D splitting is used in solving the inner system. Then for the
stationary methods considered in this paper, the 1D solver is faster than the 2D solver.

Proof. The ratio between the asymptotic rate of convergence between the 1D solver
and the 2D solver is 2. The number of nonzeros of the whole matrix is approximately
7n3, the number of nonzeros of D1 is approximately 3n3, and the number of nonzeros
of D2 is approximately 5n3. Since the spectral radii for the two splittings are available,
we can find the spectral radius for the iteration matrix of the inner system. Its Taylor
expansion is given by 1

2 − (3
8π

2 + 1
16σ

2 + 1
32τ

2)h2 + o(h2). Defining cost functions
analogous to the ones defined in section 3 for the reduced system, and using the same
line of argument, we have

c1(n)

c2(n)
≈ 14n3

cin(n) + 2n3
,(5.8)

and from this it follows that only if cin(n) < 12n3 the 2D solver is more efficient.
However, as in Proposition 5.4, this means at most two iterations of the inner solve
can be performed, which is not enough for the required accuracy.

Since the 1D splitting for both the reduced and the unreduced systems gives rise
to a more efficient solve, we compare these two systems, focusing on this splitting.
See also [14, Sect. 4]. The LU decomposition for the solution of the system in each
iteration is done once and for all (see [12] for operation count) and its cost is negligible
in comparison with the amount of work done in the iterative process.

Each iteration in the reduced system costs about 10n3 floating point operations,
whereas each iterate for the unreduced system costs approximately 7n3 floating point
operations per iteration. Hence, the amount of computational work per iteration is
cheaper for the unreduced system by a factor of about 10/7. However, using the
asymptotic formulas (3.6) and (5.5), it is evident that the number of iterations required
for the unreduced system is larger than that required for the reduced system, and in

1056 CHEN GREIF AND JAMES VARAH

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) ρgs − centered (b) ρgs − upwind
Fig. 5.1. Comparison between the spectral radii of the Gauss-Seidel iteration matrices of the

reduced and unreduced systems. The uppermost curve corresponds to 1D splitting for the unreduced
system, and then we have, in order, 2D splitting for the unreduced system, 1D splitting for the
reduced system, and 2D splitting for the reduced system.

the worst case, the ratio between the work required for solving the reduced system
versus the unreduced system is roughly (10/7) · (27/40), which is 27/28 and is still
smaller than 1, thus the reduced solver is more efficient. If the convective terms are
nonzero, then this ratio becomes smaller, and in practice we have observed substantial
savings, as is illustrated in the test problem discussed in section 5.3.

Moving from comparing the block Jacobi scheme for both the reduced and the
unreduced systems to comparing Gauss–Seidel and SOR is straightforward if Young’s
analysis can be used. In section 4 we showed that even though the reduced matrix is
not consistently ordered relative to 1D partitioning, it is nearly consistently ordered.
In general, convergence analysis for the Jacobi scheme does not always indicate the be-
havior of the Gauss–Seidel and SOR schemes. Nevertheless, for two-cyclic consistently
ordered matrices (or matrices that are nearly so) the strong connections between the
spectra of the Jacobi iteration matrix and the Gauss–Seidel and SOR iteration matri-
ces [24] allow us to conclude that once the superiority of the reduced system over the
unreduced system has been shown for Jacobi, this superiority is carried over to the
other stationary schemes. Indeed, our numerical experiments verify this observation,
as is illustrated in section 5.3.

In Fig. 5.1 the superiority of the reduced system over the unreduced system for the
Gauss–Seidel scheme is illustrated numerically. The graphs were created for a small
512-point grid. It is interesting to notice that the reduced 1D Gauss–Seidel iteration
matrix is well behaved (i.e., its spectral radius is significantly smaller than 1), even
for the convection-dominated case, when centered differences are used. Convergence
does not occur when the block Jacobi scheme with the same values of mesh Reynolds
numbers is used. We have no bounds on convergence rates for this range of mesh
Reynolds numbers and thus cannot explain this phenomenon analytically.

The superiority of the reduced system is evident also for the SOR scheme (see Fig.
4.3). Notice that for the SOR scheme it is difficult to determine the optimal relaxation
parameter when be, cd, and fg are negative.

We end this subsection with a remark regarding the case of convection-dominated
equations. Our convergence analysis does not cover the case of mesh Reynolds num-

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1057

Table 5.1
Comparison between iteration counts for the reduced and unreduced system, for different values

of mesh Reynolds numbers. N/C marks no convergence after 2,000 iterations. GS = Gauss–Seidel.

System Reduced Unreduced

PDE coeff. (σ = τ = µ) 10 20 100 1000 10 20 100 1000

Jacobi centered 393 173 53 N/C 1030 444 N/C N/C

GS centered 188 77 14 322 492 198 N/C N/C

SOR centered 36 25 - - 61 38 - -

Jacobi upwind 455 239 75 43 1194 620 179 89

GS upwind 219 111 27 10 574 287 63 16

SOR upwind 39 27 18 9 66 45 24 11

bers that are greater than 1 in magnitude in conjunction with centered difference
discretization. Since the numerical solution might be oscillatory when a centered dif-
ference scheme is used [18], analysis for this case is of less interest. Nevertheless,
Fourier analysis based on Chan and Elman’s technique [5], which shows that when
one of the mesh Reynolds numbers tends to∞ the scheme still converges, is presented
in [13].

5.3. Test problem. Consider (1.1), where the right-hand side is such that the
solution for the continuous problem is u(x, y, z) = sin(πx) · sin(πy) · sin(πz) and the
domain is the unit cube. The Dirichlet boundary conditions in this case are zero. The
performance of the solvers for this specific problem well represents the performance
for other test problems that we have examined.

We have taken the zero vector as our initial guess and have used ||ri||2/||r0||2 <
10−10 as a stopping criterion (here ri denotes the residual at the ith iterate). The
program stopped if the stopping criterion was not satisfied after 2,000 iterations. Our
numerical experiments were executed on an SGI Origin 2000, which has four parallel
195 MHZ processors, 512 MB RAM, and 4MB cache. The program was written in
MATLAB 5.

In the experiments that are presented, the 1D solver is used. In Table 5.1, the
grid is of size 32 × 32 × 32. The matrix of the underlying system of equations is of
size 32, 768 × 32, 768. In the table, iteration counts for the Jacobi scheme and the
Gauss–Seidel scheme are presented for four values of the PDE coefficients and for two
discretization schemes.

The PDE coefficients referred to in Table 5.1 are specified in (1.1). For the values
of these coefficients in the table, namely 10, 20, 100, and 1,000, the corresponding
values of the mesh Reynolds numbers are 0.1515, 0.3030, 1.515, and 15.15. Notice that
the last two are larger than 1, and so for these values we have no analytical way of
knowing the optimal relaxation parameter and the experiments for these values were
not performed.

The following observations can be made.
1. Overall the reduced solver is substantially faster than the unreduced solver.

There are cases where the reduced solver converges whereas the unreduced
solver does not. We remark that in all cases that were examined, the CPU
time for the reduced solver was less (much less in most cases) than the CPU
time for the unreduced system.

2. For σ = 50 convergence is faster than for σ = 10. This illustrates a phe-
nomenon, which is supported by the analysis and holds also for the two-
dimensional case [9], that for small-enough mesh Reynolds numbers, the

1058 CHEN GREIF AND JAMES VARAH

“more nonsymmetric” systems converge faster than the “close to symmet-
ric” ones (close in the sense of PDE coefficients close to zero).

3. The upwind difference scheme converges more slowly than the centered differ-
ence scheme when the mesh Reynolds numbers are small in magnitude, but
convergence is extremely fast for large mesh Reynolds numbers. This applies
to both the reduced and the unreduced systems and follows from the fact that
as the PDE coefficients grow larger, the underlying matrix is more diagonally
dominant when upwind schemes are used.

6. Concluding remarks. We have presented ordering strategies for a cyclically
reduced matrix arising from discretizing a 3D model problem with constant coeffi-
cients. We have derived bounds on convergence rates for block stationary schemes
associated with what we called 1D splitting or 2D splitting. We have compared the
amount of work involved in solving the system with the suggested splittings. In gen-
eral, the 1D splitting gives rise to more-efficient solvers. Since the matrices associated
with this splitting are not consistently ordered, we have analyzed their departure from
block Property A and have shown that, in fact, these matrices are nearly block con-
sistently ordered. We have shown, both analytically and numerically, that one step of
cyclic reduction results in a system which is easier to solve, compared to the original,
unreduced system.

Acknowledgments. We would like to thank the referees for their helpful com-
ments, which substantially improved this manuscript.

REFERENCES

[1] O. Axelsson and I. Gustafsson, On the use of preconditioned conjugate gradient methods for
red-black order five-point difference schemes, J. Comput. Phys., 35 (1980), pp. 284–289.

[2] O. Buneman, A compact non-iterative Poisson solver, Report 294, Stanford University Insti-
tute for Plasma Research, Stanford, CA, 1969.

[3] B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub, The direct solution of the
discrete Poisson equation on irregular regions, SIAM J. Numer. Anal., 8 (1971), pp. 722–
736.

[4] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s
equations, SIAM J. Numer. Anal., 7 (1970), pp. 627–656.

[5] T. F. Chan and H. C. Elman, Fourier analysis of iterative methods for elliptic problems,
SIAM Rev., 31 (1989), pp. 20–49.

[6] P. Concus and G. H. Golub, Use of fast direct methods for the efficient numerical solution
of nonseparable elliptic equations, SIAM J. Numer. Anal., 10 (1973), pp. 1103–1120.

[7] E. Detyna, Point cyclic reductions for elliptic boundary-value problems I: The constant coef-
ficient case, J. Comput. Phys., 33 (1979), pp. 204–216.

[8] H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced non-self-adjoint linear
systems, Math. Comp., 54 (1990), pp. 671–700.

[9] H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced non-self-adjoint linear
systems II, Math. Comp., 56 (1991), pp. 215–242.

[10] H. C. Elman and G. H. Golub, Line iterative methods for cyclically reduced discrete
convection-diffusion problems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 339–363.

[11] H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[13] C. Greif, Analysis of Cyclic Reduction for the Numerical Solution of Three-Dimensional
Convection-Diffusion Equations, Ph.D. thesis, University of British Columbia, Vancouver,
BC, 1998.

STATIONARY METHODS FOR CYCLICALLY REDUCED SYSTEMS 1059

[14] C. Greif and J. M. Varah, Iterative solution of cyclically reduced systems arising from dis-
cretization of the three-dimensional convection diffusion equation, SIAM J. Sci. Comput.,
(1998), pp. 1918–1940.

[15] L. A. Hageman, F. T. Luk, and D. M. Young, On the equivalence of certain iterative accel-
eration methods, SIAM J. Numer. Anal., 17 (1980), pp. 852–873.

[16] L. A. Hageman and R. S. Varga, Block iterative methods for cyclically reduced matrix equa-
tions, Numer. Math., 6 (1964), pp. 106–119.

[17] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc.
Comput. Mach., (1965), pp. 95–113.

[18] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, 1st ed., Chapman and
Hall, London, 1996.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

[20] R. A. Sweet, A generalized cyclic reduction algorithm, SIAM J. Numer. Anal., 11 (1974), pp.
506–520.

[21] R. A. Sweet, A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary
dimension, SIAM J. Numer. Anal., 14 (1977), pp. 706–720.

[22] R. S. Varga, p-Cyclic matrices: A generalization of the Young-Frankel successive over-
relaxation scheme, Pacific J. Math., 9 (1959), pp. 617–628.

[23] R. S. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[24] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

ABLE: AN ADAPTIVE BLOCK LANCZOS METHOD FOR
NON-HERMITIAN EIGENVALUE PROBLEMS∗

ZHAOJUN BAI† , DAVID DAY‡ , AND QIANG YE§

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1060–1082

Abstract. This work presents an adaptive block Lanczos method for large-scale non-Hermitian
Eigenvalue problems (henceforth the ABLE method). The ABLE method is a block version of the
non-Hermitian Lanczos algorithm. There are three innovations. First, an adaptive blocksize scheme
cures (near) breakdown and adapts the blocksize to the order of multiple or clustered eigenvalues.
Second, stopping criteria are developed that exploit the semiquadratic convergence property of the
method. Third, a well-known technique from the Hermitian Lanczos algorithm is generalized to
monitor the loss of biorthogonality and maintain semibiorthogonality among the computed Lanczos
vectors. Each innovation is theoretically justified. Academic model problems and real application
problems are solved to demonstrate the numerical behaviors of the method.

Key words. non-Hermitian matrices, eigenvalue problem, spectral transformation, Lanczos
method

AMS subject classifications. 65F15, 65F10

PII. S0895479897317806

1. Introduction. A number of efficient numerical algorithms for solving large-
scale matrix computation problems are built upon the Lanczos procedure, a procedure
for successive reduction of a general matrix to a tridiagonal form [28]. In the 1970s and
’80s, great progress in mathematical and numerical analysis was made on applying
the Lanczos algorithm for solving large sparse Hermitian eigenvalue problems. Today,
a Lanczos-based algorithm has been accepted as the method of choice to large sparse
Hermitian eigenvalue problems arising in many computational science and engineering
areas.

Over the last decade there has been considerable interest in Lanczos-based algo-
rithms for solving non-Hermitian eigenvalue problems. The Lanczos algorithm with-
out rebiorthogonalization is implemented and applied to a number of application
problems in [12]. Different schemes to overcome possible failure in the non-Hermitian
Lanczos algorithm are studied in [38, 17, 53]. A Lanczos procedure with look-ahead
scheme is available in QMRPACK [18]. Theoretical studies of breakdown and insta-
bility can be found in [21, 36, 23, 6]. Error analyses of the non-Hermitian Lanczos
procedure implemented in finite precision arithmetic are presented in [2, 14].

Despite all this progress, a number of unresolved issues, some of which are related
to the use of nonorthogonal basis and hence its conditional stability property, obstruct
a robust and efficient implementation of the non-Hermitian Lanczos procedure. These
issues include

• how to distinguish copies of converged Rayleigh–Ritz values from multiple or
clustered eigenvalues,

∗Received by the editors March 4, 1997; accepted for publication (in revised form) by Z. Strakos
February 27, 1998; published electronically July 9, 1999. This work was supported in part by NSF
grant ASC-9313958, DOE grant DE-FG03-94ER25219, and a research grant from NSERC of Canada.

http://www.siam.org/journals/simax/20-4/31780.html
†Department of Mathematics, University of Kentucky, Lexington, KY 40506 (bai@ms.uky.edu).
‡MS 1110, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (dday@cs.

sandia.gov).
§Department of Applied Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

(ye@gauss.amath.umanitoba.ca).

1060

ABLE METHOD 1061

• how to treat a (near) breakdown to preserve the stringent numerical stabil-
ity requirements on the Lanczos procedure for eigenvalue problems in finite
precision arithmetic,
• how to explain and take advantage of the observed semiquadratic convergence

rate of the Lanczos procedure, and
• how to extend the understanding of the Hermitian Lanczos algorithm with

semiorthogonality [46] and the non-Hermitian Lanczos algorithm with semibi-
orthogonality [14] to the block non-Hermitian Lanczos algorithm.

In the adaptive block Lanczos method for large-scale non-Hermitian Eigenvalue prob-
lems (ABLE method) proposed in this work, we address each of these issues as follows:

• A block version of the Lanczos procedure is implemented. Several nontrivial
implementation issues are addressed. The blocksize adapts to be at least the
order of multiple or clustered eigenvalues, and the linear independence of the
Lanczos vectors is maintained. This accelerates convergence in the presence
of multiple or clustered eigenvalues.
• The blocksize also adapts to cure (near) breakdowns. The adaptive block-

ing scheme proposed here enjoys the theoretical advantage that any exact
breakdown can be cured with fixed augmentation vectors. In contrast, the
prevalent look-ahead techniques require an arbitrary number of augmenta-
tion vectors to cure a breakdown and may not be able to cure all breakdowns
[38, 17, 36].
• An asymptotic analysis of the second-order convergence of the Lanczos pro-

cedure is presented and utilized in the stopping criteria.
• A scheme to monitor the loss of the biorthogonality and maintain semibior-

thogonality is developed in the adaptive block Lanczos procedure.

The ABLE method is a generalization of the block Hermitian Lanczos algorithm
[10, 19, 39, 22] to the non-Hermitian case. For general application codes that represent
their matrices as out-of-core, block algorithms substitute matrix block multiplies and
block solvers for matrix vector products and simple solvers [22]. In other words, higher
level BLAS are used in the inner loop of block algorithms. This decreases the I/O
costs essentially by a factor of the blocksize.

We will demonstrate numerical behaviors of the ABLE method using several nu-
merical examples from academic model problems and real application problems. There
are many competitive methods for computing large sparse non-Hermitian eigenvalue
problems, namely, the simultaneous iteration method [5, 50, 15], Arnoldi’s method
[1, 42], the implicitly restarted Arnoldi method [48, 29], block Arnoldi [43, 45], the
rational Krylov subspace method [40], Davidson’s method [13, 44], and the Jacobi–
Davidson method [47, 8]. In particular, ARPACK [31], an implementation of the
implicitly restarted Arnoldi method, is gaining acceptance as a standard piece of
mathematical software for solving large-scale eigenvalue problems. A comparative
study of simultaneous iteration-based methods and Arnoldi-based methods is pre-
sented in [30]. It is beyond the scope of this paper to compare our ABLE method
with the rest of the methods. However, a comprehensive comparison study is certainly
a part of our future work.

The rest of this paper is organized as follows. In section 2, we present a basic block
non-Hermitian Lanczos algorithm, discuss its convergence properties, and review how
to maintain biorthogonality among Lanczos vectors computed in finite precision arith-
metic. An adaptive block scheme to cure (near) breakdown and adapt the blocksize to
the order of multiple or clustered eigenvalues is described in section 3. In section 4, we

1062 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

1. Choose starting n× p vectors P1 and Q1 so that PT1 Q1 = I
2. R1 = (PT1 A)T and S1 = AQ1

3. For j = 1, 2,
3.1. Aj = PTj Sj
3.2. Rj := Rj − PjATj and Sj := Sj −QjAj
3.3. Compute the QR decompositions: Rj = Pj+1B

T
j+1 and Sj = Qj+1Cj+1

3.4. Compute the singular value decomposition: PTj+1Qj+1 = UjΣjV
H
j

3.5. Bj+1 := Bj+1UjΣ
1/2
j and Cj+1 := Σ

1/2
j V Hj Cj+1

3.6. Pj+1 := Pj+1ŪjΣ
−1/2
j and Qj+1 := Qj+1VjΣ

−1/2
j

3.7. Rj+1 = (PTj+1A− Cj+1P
T
j)T and Sj+1 = AQj+1 −QjBj+1

Fig. 2.1. Basic block non-Hermitian Lanczos algorithm.

model the loss of biorthogonality among the Lanczos vectors in finite precision arith-
metic and present an efficient algorithm for maintaining semibiorthogonality among
the computed Lanczos vectors. The complete ABLE method is presented in section
5. In section 6, we briefly discuss how a spectral transformation is used to solve a
generalized eigenvalue problem using the ABLE method. Numerical experiments are
reported in section 7.

2. A block non-Hermitian Lanczos algorithm. In this section we present a
block implementation of the non-Hermitian Lanczos algorithm and discuss its conver-
gence properties for solving non-Hermitian eigenvalue problems. An adaptive block
non-Hermitian Lanczos algorithm (see section 5) builds into this algorithm features
presented in the intervening sections.

2.1. A basic block Lanczos algorithm. The basic block non-Hermitian Lanc-
zos procedure presented in Figure 2.1 is a variation of the original Lanczos procedure
as proposed by Lanczos [28]. Given an n by n matrix A and initial n by p block vec-
tors P1 and Q1, two sequences of n by p block vectors {Pj} and {Qj}, called Lanczos
vectors, are generated such that for j = 1, 2, . . . ,

span{PT1 , PT2 , . . . , PTj } = Kj(PT1 , A) := span{PT1 , PT1 A, PT1 A2, . . . , PT1 A
j−1 },

span{Q1, Q2, . . . , Qj } = Kj(Q1, A) := span{Q1, AQ1, A
2Q1, . . . , A

j−1Q1 },

where Kj(Q1, A) and Kj(PT1 , A) are right and left Krylov subspaces. The block
vectors {Pj} and {Qj} are constructed so that they are biorthonormal. Together
these properties determine the computed quantities up to a scaling. Several nontrivial
practical issues are resolved in the implementation presented in Figure 2.1.

The basic block Lanczos iteration implements the three-term recurrences

Bj+1P
T
j+1 = PTj A−AjPTj − CjPTj−1,(2.1)

Qj+1Cj+1 = AQj −QjAj −Qj−1Bj .(2.2)

The procedure can be also viewed as a successive reduction of an n×n non-Hermitian
matrix A to a block tridiagonal form. If we let

Pj = [P1, P2, . . . , Pj], Qj = [Q1, Q2, . . . , Qj],

ABLE METHOD 1063

and

Tj =

A1 B2

C2 A2
. . .

. . .
. . . Bj
Cj Aj

 ,(2.3)

then the three-term recurrences (2.1) and (2.2) have the matrix form

PTj A = TjPTj + EjBj+1P
T
j+1,(2.4)

AQj =QjTj +Qj+1Cj+1E
T
j ,(2.5)

where Ej is a tall thin matrix whose bottom square is an identity matrix and which
vanishes otherwise. Furthermore, the computed Lanczos vectors Pj and Qj satisfy
the biorthonormality

PTj Qj = I.(2.6)

When the blocksize p = 1, this is just the unblocked non-Hermitian Lanczos algorithm
discussed in [20, p. 503].

Remark 1. For a complex matrix A we still use the transpose ·T instead of the
conjugate transpose ·H . If A is complex symmetric and P1 = Q1, then (2.4) is the
transpose of (2.5), and it is necessary to compute only one of these two recurrences
provided that a complex symmetric scaling scheme is used at step 3.4 in Figure 2.1.

Remark 2. The above block Lanczos algorithm can breakdown prematurely if
RTj Sj is singular (see step 3.6 in Figure 2.1). We will discuss this issue in section 3.

Remark 3. Many choices of the p×p nonsingular scaling matrices Bj+1 and Cj+1

satisfy RTj Sj = Bj+1Cj+1. The one presented here involves a little more work (com-

puting singular value decomposition (SVD) of PTj+1Qj+1), but it maintains that the
local basis vectors in Pj+1 and Qj+1 are orthogonal and at the same time biorthogonal
to each other. Furthermore, the singular values provide principal angles between the
subspaces spanned by Pj+1 and Qj+1, which is a measure of the quality of the bases
constructed (see Remark 4 below).

An alternative scaling maintains the unit length of all Lanczos vectors. This
scaling scheme for the unblocked Lanczos algorithm is used in [17, 36, 14]. In this

case the Lanczos algorithm determines a pencil (T̂j ,Ωj), where T̂j is tridiagonal and
Ωj is diagonal. It can be shown that the tridiagonal Tj determined by the above
unblocked (p = 1) Lanczos algorithm and this pencil are related by

Tj = ±|Ωj |1/2T̂j |Ωj |1/2.

The Lanczos vectors are also related, up to sign, by a similar scaling.
Remark 4. The condition numbers of the Lanczos vectors Pj and Qj can be

monitored by the diagonal matrices Σ1,Σ2, . . . ,Σj . Recall that the condition number
of the rectangular matrix Qj is defined by

cond(Qj) def
= ‖Qj‖2‖Q†j‖2 =

‖Qj‖2
σmin(Qj) ,

1064 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

where σmin(Qj) = min‖x‖2=1 ‖Qjx‖2. To derive the bound for cond(Qj) observe from

step 3.6 in Figure 2.1 that ‖PTi ‖2 = ‖Qi‖2 = ‖Σ−1/2
i ‖2. Then for a unit vector v such

that ‖PTj ‖2 = ‖PTj v‖2,

‖PTj ‖22 = ‖PTj v‖22 =

j∑
i=1

‖PTi v‖22 ≤
j∑
i=1

1

min(Σi)
,

where min(Σi) denotes the smallest diagonal element of Σi. The latter bound also
applies toQj . Furthermore, we note that the biorthonormality condition (2.6) implies
that ‖Pj‖2 σmin(Qj) ≥ 1. Therefore,

cond(Qj) ≤ ‖Pj‖2‖Qj‖2 ≤
j∑
i=1

1

min(Σi)
.

The bound applies to cond(Pj) by the similar argument. This generalizes and slightly
improves a result from [36].

Remark 5. This implementation is a generalization of the block Hermitian Lanc-
zos algorithms of Golub and Underwood [19] and Grimes, Lewis, and Simon [22] to
the non-Hermitian case. A simple version of the block non-Hermitian Lanczos proce-
dure has been studied in [3]. Other implementations of the basic block non-Hermitian
Lanczos procedure have been proposed for different applications in [7].

2.2. Eigenvalue approximation. To extract approximate the eigenvalues and
eigenvectors of A, we solve the eigenvalue problem of the jp × jp block tridiagonal
matrix Tj after step 3.3 in Figure 2.1. Each eigentriplet (θ, wH , z) of Tj ,

wHTj = θwH and Tjz = zθ,

determines a Rayleigh–Ritz triplet , (θ, yH , x), where yH = wHPTj and x = Qjz.
Rayleigh–Ritz triplets approximate eigentriplets of A.

To assess the approximation, (θ, yH , x), of an eigentriplet of the matrix A, let s
and r denote the corresponding left and right residual vectors. Then by (2.4) and
(2.5), we have

sH = yHA− θyH = (wHEj)Bj+1P
T
j+1,(2.7)

r = Ax− xθ = Qj+1Cj+1(ETj z).(2.8)

Note that a remarkable feature of the Lanczos algorithm is that the residual norms
‖sH‖2 and ‖r‖2 are available without explicitly computing yH and x. There is no
need to form yH and x until their accuracy is satisfactory.

The residuals determine a backward error bound for the triplet. The biorthogo-
nality condition, (2.6), applied to the definition of x and yH yields

PTj+1x = 0 and yHQj+1 = 0.(2.9)

From (2.8) and (2.7), we have the following measure of the backward error for the
Rayleigh–Ritz triplet (θ, yH , x):

yH(A− F) = θyH and (A− F)x = xθ,

ABLE METHOD 1065

where the backward error matrix F is

F =
rxH

‖x‖22
+
ysH

‖y‖22
(2.10)

and ‖F‖2F = ‖r‖22/‖x‖22 + ‖sH‖22/‖y‖22. That is, the left and right residual norms
bound the distance to the nearest matrix to A with eigentriplet (θ, yH , x). In fact it
has been shown that F is the smallest perturbation of A such that (θ, yH , x) is an
eigentriplet of A − F [25]. The computed Rayleigh–Ritz value θ is a ‖F‖F -pseudo
eigenvalue of the matrix A [51].

If we write A = B+F , where B = A−F , then a first-order perturbation analysis
indicates that there is an eigenvalue λ of A such that

|λ− θ| ≤ cond(θ)‖F‖2,

where cond(θ) = ‖yH‖2 ‖x‖2/|yHx| is the condition number of the Rayleigh–Ritz
value θ [20]. This first-order estimate is very often pessimistic because θ is a two-
sided or generalized Rayleigh quotient [34]. A second-order perturbation analysis
yields a more realistic error estimate, which should be used as a stopping criterion.
Global second-order bounds for the accuracy of the generalized Rayleigh quotient may
be found in [49] and [9]. Here we derive an asymptotic bound.

Recall that (θ, yH , x) is an eigentriplet of B = A − F and that yHF = sH

and Fx = r. Assume that B has distinct eigenvalues {θi} and the corresponding
normalized left and right eigenvectors {yHi , xi} (‖yHi ‖2 = ‖xi‖2 = 1). Let us perturb
θ = θ(0) toward an eigenvalue λ of A using the implicit function θ(t) = θ(B + tE)
for E = F/‖F‖2. Under classical results from function theory [26], it can be shown
that in a neighborhood of the origin there exist differentiable θ(t), yH(t), and x(t)
(‖yH(t)‖2 = ‖x(t)‖2 = 1) such that

yH(t)(B + tE) = θ(t)yH(t) and (B + tE)x(t) = x(t)θ(t).(2.11)

Next expand θ(t) about t = 0:

λ = θ(‖F‖2) = θ(0) + θ′(0)‖F‖2 +
1

2
θ′′(0)‖F‖22 +O(‖F‖32).

By differentiating (2.11) with respect to t, and setting t = 0, we obtain

θ′(0) =
1

‖F‖2
yHFx

yHx
.

Note that from (2.10), yHFx = yHr + sHx. Substitute (2.7), (2.8), and (2.9) to find
yHFx = 0. This implies the stationarity property θ′(0) = 0. Differentiate (2.11) with
respect to t twice, and set t = 0, and there appears

θ′′(0) =
2

‖F‖2
sH

yHx
x′(0).

Now the standard eigenvector sensitivity analysis gives

x′(0) =
∑
θi 6=θ

yHi Ex

(θ − θi)yHi xi
xi.

1066 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

See, for example, Golub and Van Loan [20, p. 345]. From the above two formulas, up
to the second order of ‖F‖2, we obtain

|λ− θ| ≤ ‖s
H‖2 ‖r‖2

gap(θ,B)

 1

|yHx|
∑
θi 6=θ

1

|yHi xi|

 .(2.12)

Here gap(θ,B) = minθi 6=θ |θ− θi|. Note that the term in the parentheses involves the
condition numbers of the eigenvalues {θi} of B.

The bound (2.12) shows that the accuracy of the Rayleigh–Ritz value θ is pro-
portional to the product of the left and right residuals and the inverse of the gap
in eigenvalues of B. We call this the semiquadratic convergence. Since gap(θ,B) is
not computable, we use the gap(θ, Tj) to approximate gap(θ,B) when ‖F‖2 is small.
From (2.10) and (2.12), we advocate accepting θ as an approximate eigenvalue of A if

min

{
‖sH‖2, ‖r‖2, ‖s

H‖2 ‖r‖2
gap(θ, Tj)

}
≤ τc,(2.13)

where τc is a given accuracy threshold. Note that for ill-posed problems, small resid-
uals (backward errors) do not imply high eigenvalue accuracy (small forward error).
In this case, the estimate is optimistic. In any case, since both the left and right
approximate eigenvectors are available, the approximate eigenvalue condition num-
bers are readily computable. This detects ill-posedness in an eigenvalue problem. See
numerical example 5 in section 7.

It is well known that for Hermitian matrices, the Lanczos algorithm reveals first
the outer and well-separated eigenvalues [35]. In the block Hermitian Lanczos algo-
rithm with blocksize p, the outer eigenvalues and the eigenvalue clusters of order up
to p that are well separated from the remaining spectra converge first [19, 41]. This
qualitative understanding of convergence has been extended to the block Arnoldi al-
gorithm for non-Hermitian eigenproblems in [42, 24].

2.3. Maintaining the biorthogonality of the Lanczos vectors. The quan-
tities computed in the block Lanczos algorithm in the presence of finite precision
arithmetic have different properties than the corresponding exact quantities. The
biorthogonality property, (2.6), fails to hold, and the columns of the matrices Pj and
Qj are spanning sets but not bases. The loss of linear independence in the matrices
Pj and Qj computed by the three-term recurrence is coherent; as a Rayleigh–Ritz
triplet converges to an eigentriplet of A, copies of the Rayleigh–Ritz values appear.
At this iteration, Qj is singular because it maps a group of right eigenvectors of Tj
to an eigenvector of A.

For example, in a Lanczos run of 100 iterations, one may observe 5 copies of
the dominant eigenvalue of A among the Rayleigh–Ritz values. This increases the
number of iterations required to complete a given task. As a partial remedy, we
advocate maintaining local biorthogonality to ensure the biorthogonality among con-
secutive Lanczos vectors in the three-term recurrences [14]. Local biorthogonality is
maintained as follows. After step 3.2 in Figure 2.1,

Rj := Rj − Pj(QTj Rj),
Sj := Sj −Qj(PTj Sj).

Repeating this inner loop increases the number of floating point operations in a Lanc-
zos iteration. However, no new data transfer is required, and without repetition

ABLE METHOD 1067

the local biorthogonality would normally be swamped. The cost effectiveness seems
indisputable.

Another limitation of simple implementations of the three-term recurrences is
that the multiplicity of an eigenvalue of A is not related in any practical way to the
multiplicity of a Rayleigh–Ritz value. To reveal the multiplicity or clustering of an
eigenvalue it typically suffices to explicitly enforce (2.6). This variation has been
called a Lanczos algorithm with full rebiorthogonalization [38]. It is maintained by
incorporating a variant of the Gram–Schmidt process called the two-sided modified
Gram–Schmidt biorthogonalization (TSMGS) [36]. After step 3.6 in Figure 2.1, we
biorthogonalize Pj+1 and Qj+1 in place against all previous Lanczos vectors Pj =
[P1, P2, . . . , Pj] and Qj = [Q1, Q2, . . . , Qj]:

for i = 1, 2, . . . , j
Pj+1 := Pj+1 − Pi(QTi Pj+1)
Qj+1 := Qj+1 −Qi(PTi Qj+1)

end
Maintaining full biorthogonality substantially increases the cost per iteration of the
Lanczos algorithm. To be precise, at Lanczos iteration j, an additional 8p2jn flops
is required. More importantly all the computed Lanczos vectors are accessed at each
iteration. This is very often the most costly part of a Lanczos run, although there
are cases where the matrix-vector multiplications may be the dominating factor. A
less-costly alternative to full biorthogonality is presented in section 4.

3. An adaptive block Lanczos algorithm. In this section, we present an
adaptive block scheme. This algorithm has the flexibility to adjust the blocksize to
the multiplicity or the order of a cluster of desired eigenvalues. In addition, the
algorithm can be used to cure (near) breakdowns.

3.1. Augmenting the Lanczos vectors. In a variable block Lanczos algo-
rithm, at the jth iteration, Pj and Qj have pj columns, respectively. At the next
(j+ 1)th iteration, the number of columns of the Lanczos vectors Pj+1 and Qj+1 can
be increased by k as follows.

First note that for any n by k matrices P̂j+1 and Q̂j+1, the basic three-term recur-

rences (2.1) and (2.2) also hold with augmented (j+1)th Lanczos vectors [Pj+1 P̂j+1]

and [Qj+1 Q̂j+1]:

[
Bj+1 0

] [PTj+1

P̂Tj+1

]
= PTj A−AjPTj − CjPTj−1

and [
Qj+1 Q̂j+1

] [Cj+1

0

]
= AQj −QjAj −Qj−1Bj .

Provided that [
Pj+1 P̂j+1

]T [
Qj+1 Q̂j+1

]
(3.1)

is nonsingular , the Lanczos procedure continues as before under the substitutions

Pj+1 ←
[
Pj+1 P̂j+1

]
, Qj+1 ←

[
Qj+1 Q̂j+1

]

1068 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

with proper normalization and

Bj+1 ←
[
Bj+1 0

]
, Cj+1 ←

[
Cj+1

0

]
.

The only other constraint on P̂j+1 and Q̂j+1 is that they satisfy the biorthogonality
condition among the Lanczos vectors; i.e., it is required that

P̂Tj+1Qj = 0 and PTj Q̂j+1 = 0.

As a consequence, the adaptive block scheme has the same governing equations and
the same resulting Rayleigh–Ritz approximation properties as the basic block Lanczos
method described in section 2.

Before we turn to the usage of the adaptive block scheme, we discuss the choice of
the increment vectors P̂Tj+1 and Q̂j+1. Ideally we would like to choose augmentations

so that the resulting matrix PTj+1Qj+1 is well conditioned. To be precise we want

the smallest singular value of PTj+1Qj+1 to be larger than the given threshold τb, say

τb = 10−8 in double precision. However, there may not exist P̂Tj+1 and Q̂j+1 such

that the given threshold τb is satisfied. A natural choice to choose P̂j+1 and Q̂j+1 in
practice is to biorthogonalize a pair of random n by k vectors to the previous Lanczos
vectors. In other words, the vectors P̂j+1 and Q̂j+1 are computed by applying TSMGS
(see section 2.3) to a pair of random n by k vectors. The construction is repeated a
few times (say, 3 at most) if necessary to ensure that the smallest singular value of
(3.1) is larger than a threshold. We observe that this works well in practice.

3.2. Adaptive blocking for clustered eigenvalues. If A has an eigenvalue of
multiplicity greater than the blocksize, then the Rayleigh–Ritz values converge slowly
to this group of eigenvalues [12, 19, 22, 3]. In some applications, information about
multiplicity is available a priori and then the blocksize can be chosen accordingly. But
when this information is not available, it is desirable to adjust the blocksize using the
information obtained during the iteration.

In any variable block implementation of the Lanczos algorithm in which the
biorthogonality of the computed Lanczos vectors is maintained, it is advantageous
to increase the blocksize to the order of the largest cluster of Rayleigh–Ritz values,
{θi}. The adaptive block scheme proposed in section 3.1 offers such flexibility.

The cluster of Rayleigh–Ritz values about θi is the set of all θk such that

|θi − θk| ≤ ηmax(|θi|, |θk|),(3.2)

where η is a user-specified clustering threshold. The order of the largest cluster of
Rayleigh–Ritz values is computed whenever we test for convergence, and the blocksize
is increased to the order of the largest cluster.

3.3. Adapting the blocksize to treat breakdown. A second reason to in-
crease the blocksize is to overcome a breakdown in the block Lanczos algorithm. Recall
from section 2.1 that breakdown occurs when RTj Sj is singular. There are two cases:

I. Either Rj or Sj is rank deficient.
II. Both Rj and Sj are not rank deficient but RTj Sj is.

Exact breakdowns are rare, but near breakdowns (i.e., RTj Sj has singular values
close to 0) do occur. In finite precision arithmetic this can cause numerical instability.

In case I, if Sj vanishes in step 3.2 of Figure 2.1 of the basic block Lanczos
algorithm, an invariant subspace is detected. To restart the Lanczos procedure choose

ABLE METHOD 1069

Qj+1 to be any vector such that PTj Qj+1 = 0. If Sj is just (nearly) rank deficient,
then after the QR decomposition of Sj , Sj = Qj+1Cj+1, we biorthogonalize Qj+1

to the previous left Lanczos vectors Pj . This also effectively expands the Krylov
subspace and continues the procedure. Rank deficiency of Rj is treated similarly.
Note that in this case, the blocksize is not changed. This generalizes the treatment
suggested by Wilkinson for the unblocked Lanczos procedure [52, p. 389].

Case II is called a serious breakdown [52]. Let us first examine the case of exact
breakdown. Let Rj = Pj+1B

T
j+1 and Sj = Qj+1Cj+1 be the QR decompositions of

Rj and Sj . In this case, PTj+1Qj+1 is singular. Suppose that PTj+1Qj+1 has the SVD

PTj+1Qj+1 = U

[
Σ 0
0 0

]
V H ,

where Σ is nonsingular if it exists (Σ may be 0 by 0). Let us see how to augment
Pj+1 and Qj+1 so that PTj+1Qj+1 is nonsingular. For clarity, drop the subscript j + 1

and partition PŪ and QV into

PŪ =
[
P(1) P(2)

]
and QV =

[
Q(1) Q(2)

]
.

Here the number of columns of P(2) and Q(2) is the number of zero singular values of
PTQ. Let the augmented Lanczos vectors be

P :=
[
P(1) P(2) P̂

]
and Q :=

[
Q(1) Q(2) Q̂

]
,

where

P̂ = (I −Πj)
T Q̄(2) and Q̂ = (I −Πj)P̄(2).

Πj = QjPTj is the oblique projector. The biorthogonality condition (2.6) and then

the orthonormality of the columns of
[
P(1) P(2)

]
yield

PT(1)Q̂ = PT(1)(I −Πj)P̄(2) = PT(1)P̄(2) = 0

and

PT(2)Q̂ = PT(2)(I −Πj)P̄(2) = PT(2)P̄(2) = I.

Similarly, P̂TQ(1) = 0 and P̂TQ(2) = I. Therefore, we have

PTQ =

 Σ 0 0
0 0 I

0 I P̂T Q̂

 ,
which is nonsingular for any P̂T Q̂. Therefore, we conclude that exact breakdowns are
always curable by the adaptive blocksize technique.

However, for the near breakdown case, the situation is more complicated. The
above choice may not succeed in increasing the smallest singular value of PTj+1Qj+1

above a specific given threshold, τb. The difficulty involves the fact that the norms of P̂
and Q̂ can be large because of the use of oblique projector Πj . In our implementation,

we have chosen P̂ and Q̂ by dualizing a pair of random n by k vectors to the previous

1070 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

Lanczos vectors as described in section 3.1. The increment to the blocksize is the
number of singular values of PTj+1Qj+1 below a specified threshold.

Another scheme for adjusting the block size to cure (near) breakdown is the look-
ahead strategy [38, 17]. In the look-ahead Lanczos algorithm, the spans of the columns
of Pj and Qj remain within K(PT1 , A) and K(Q1, A), respectively. Specifically, PTj+1

and Qj+1 are augmented by

P̂ = (I −Πj)
TATPj+1 = ATPj+1 − PjCTj+1

and

Q̂ = (I −Πj)AQj+1 = AQj+1 −QjBj+1.

If [Pj+1 P̂
T] [Qj+1 Q̂] is not (nearly) singular, then one step of look-ahead is successful

and Pj+1 and Qj+1 are obtained from P and Q, respectively, after normalization.
Since

span(Qj+1) = span(Qj , [Qj+1, Q̂])

and

span(Qj+2) = span(Qj , [Qj+1, Q̂], A[Qj+1, Q̂])

= span(Qj+1, A
2Qj+1),

Qj+2 has no more columns than Qj+1 prior to augmentation. That is, the block
size doubles at step j + 1 only and then returns to the ambient block size at the
following step j+2. It may be necessary to repeatedly augment the (j+1)th Lanczos
block-vectors [36]. In contrast, we have shown that the adaptive strategy has the
property that an exact breakdown is cured in using a fixed number of augmentation
vectors. Moreover, to reveal clustered eigenvalues and to eliminate a potential source
of slow convergence, we store Pj and Qj and maintain biorthogonality (see section
4). We have found the adaptive block scheme to be a viable alternative to look-ahead
strategies here.

4. Maintaining semibiorthogonality. In this section we present a form of
limited rebiorthogonalization that is more efficient than the full rebiorthogonalization
described in section 2.3. This method extends the block Hermitian Lanczos algorithm
with partial reorthogonalization to the non-Hermitian case [22]. Instead of maintain-
ing full biorthogonality (section 2.3), only semibiorthogonality is maintained at each
iteration; i.e., for j ≥ 1,

dj+1 = max

(
‖PTj Qj+1‖1
‖Pj‖1‖Qj+1‖1 ,

‖QTj Pj+1‖1
‖Qj‖1‖Pj+1‖1

)
≤ √ε,(4.1)

where ε is the roundoff error unit. This generalizes the definition of semibiorthogonal-
ity for the unblocked Lanczos algorithm [14]. We will show that semibiorthogonality
requires less computation and data transfer to maintain than full biorthogonality. In
particular, Pj and Qj are accessed only at certain iterations.

In section 4.1 we show how to monitor the loss of numerical biorthogonality
without significantly increasing the number of floating point operations in the Lanczos
recurrences. In section 4.2 we show how best to correct the loss of biorthogonality.

ABLE METHOD 1071

4.1. Monitoring the loss of biorthogonality. When the Lanczos algorithm
is implemented in finite precision arithmetic, the computed quantities can be modeled
by perturbed three-term recurrences:

Bj+1P
T
j+1 = PTj A−AjPTj − CjPTj−1 − FTj ,(4.2)

Qj+1Cj+1 = AQj −QjAj −Qj−1Bj −Gj ,(4.3)

where Fj and Gj represent the roundoff error introduced at iteration j. By applying
the standard model of the rounding errors committed in floating point arithmetic [52],
it can be shown that to first order in roundoff errors there holds

‖Fj‖F ≤ u(‖A‖1 ‖Pj‖1 + ‖Aj‖1 ‖Pj‖1 + ‖Cj‖1 ‖Pj−1‖1),

‖Gj‖F ≤ u(‖A‖1 ‖Qj‖1 + ‖Aj‖1 ‖Qj‖1 + ‖Bj‖1 ‖Qj−1‖1),

where u is a constant multiple of the roundoff error unit ε. The governing equations
for the computed quantities are

PTj A = TjPTj + EjBj+1P
T
j+1 +FTj ,(4.4)

AQj =QjTj +Qj+1Cj+1E
T
j + Gj ,(4.5)

where the matrices F j = [F1, F2, . . . , Fj] and Gj = [G1, G2, . . . , Gj] are such that

max(‖F j‖F , ‖Gj‖F) ≤ u(‖A‖1 + ‖Tj‖1) max(‖Pj‖F , ‖Qj‖F).(4.6)

A detailed analysis for the unblocked case can be found in [2, 14].
Now we use this model of rounding errors in the Lanczos process to quantify the

propagation of the loss of biorthogonality from iteration to iteration. The biorthogo-
nality of the (j+1)th Lanczos vectors to the previous Lanczos vectors can be measured
using the short vectors

Xj = PTj Qj+1 and Yj = PTj+1Qj .
In the following, we show that these vectors satisfy perturbed three-term recurrences
which we can use to efficiently monitor the biorthogonality loss.

The recurrence for Xj is derived as follows. Note that

PTj Qj =

[
Xj−1

0

]
+ Ej .(4.7)

Let Wij = PTi Qj . Multiply (4.3) by PTj on the left, substitute in (4.4) × Qj , and
there appears

XjCj+1 = TjPTj Qj −PTj QjAj −PTj Qj−1Bj(4.8)

+ EjBj+1Wj+1,j +FTj Qj −PTj Gj .
Substitute (4.7) above and (2.3), the definition of Tj , and simplify to find

TjPTj Qj −PTj QjAj = Tj

[
Xj−1

0

]
−
[
Xj−1

0

]
Aj + Ej−1Bj .(4.9)

In addition, we have the identity

PTj Qj−1 =

 Xj−2

0
0

+ Ej−1 +Wj,j−1Ej .(4.10)

1072 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

Substituting (4.9) and (4.10) into (4.8) finally yields

XjCj+1 = Tj

[
Xj−1

0

]
−
[
Xj−1

0

]
Aj −

 Xj−2

0
Wj,j−1

Bj(4.11)

+ EjBj+1Wj+1,j +O(uj),

where O(uj) represents the local rounding error term FTj Qj −PTj Gj and

uj = u(‖Tj‖1 + ‖A‖1) max(‖Pj‖F , ‖Qj‖F).

The similar analysis of the left Lanczos vectors yields

Bj+1Yj = [Yj−1, 0]Tj −Aj [Yj−1, 0]− Cj [Yj−2, 0, Wj−1,j](4.12)

+ Wj,j+1Cj+1Ej +O(uj).

Equations (4.11) and (4.12) model the propagation of the loss of the numerical
biorthogonality among Lanczos vectors from iteration to iteration. The following
algorithm implements these recurrence relations to monitor the biorthogonality loss.
Note that the scalar parameter d̂j+1 is our measure of the biorthogonality. When

d̂j+1 >
√
ε, then TSMGS is invoked to recover biorthogonality as described in the

next section.1

Algorithm for monitoring the loss of biorthogonality.
Initially, when j = 1, we set X1 = 0, Y1 = 0, d1 = u, compute

X2 = PT1 Q2, Y2 = PT2 Q1, and let W
(l)
1 = Y2, W

(r)
1 = X2. When

j > 1.

1. W
(l)
2 = PTj+1Qj

2. X3 = Tj

[
X2

0

]
−
[
X2

0

]
Aj −

[
X1

W
(l)
1

]
Bj +

[
0

Bj+1W
(l)
2

]
3. X3 := (X3 + Fj)C

−1
j+1

4. X1 =

[
X2

0

]
; X2 = X3

5. W
(r)
2 = PTj Qj+1

6. Y3 =
[
Y2 0

]
Tj−Aj

[
Y2 0

]−Cj [Y1 W
(r)
1

]
+
[

0 W
(r)
2 Cj+1

]
7. Y3 := B−1

j+1(Y3 + FTj)

8. Y1 =
[
Y2 0

]
; Y2 = Y3

9. W
(l)
1 = W

(l)
2 ; W

(r)
1 = W

(r)
2

10. d̂j+1 = max(‖X2‖1/(‖Pj‖1‖Qj+1‖1), ‖Y2‖∞/(‖Qj‖1‖Pj+1‖1))
The matrix Fj is a random matrix scaled to have norm uj to simulate the roundoff
errors in the three-term recurrences. The number of floating point operations per
iteration of the monitoring algorithm is 2j2 +O(n), where the 2j2 is for the multipli-
cations by Tj in steps 2 and 6 above and the n comes from the “inner products” of
block Lanczos vectors in steps 1 and 5 above. If the block tridiagonal structure of Tj
is taken in account, then the cost is just O(n). Therefore the cost of the monitoring
algorithm is not significant, as promised.

1To economize on storage there is a subtle change of notation in the following monitoring algo-
rithm. At Lanczos iteration j, the vectors Xj−1, Xj , and Xj+1 are denoted X1, X2, and X3, and
the previous Xk are not stored. Similar conventions apply to {Yi} and {Wi,k}.

ABLE METHOD 1073

4.2. Correcting the loss of biorthogonality. When action is required to
maintain semibiorthogonality (4.1), TSMGS (see section 2.3) is invoked to rebiortho-
normalize or correct the candidate Lanczos vectors Pj+1 and Qj+1. Recall from (4.11)
that the sequence {Xj} satisfies a perturbed three-term recurrence. Correcting Qj+1

annihilates the O(
√
ε) matrix Xj , but at the next Lanczos iteration Xj+1 will be a

multiple of the nearly O(
√
ε) matrix Xj−1. Instead, as Qj+1 is corrected to maintain

semibiorthogonality, we also correct Qj ; in this way the biorthogonality of the fol-
lowing Lanczos vectors can deteriorate gradually. The similar comments hold for the
left Lanczos vectors. There is a much better way to do this than to apply TSMGS
at consecutive iterations to the pairs of Pj and Qj and Pj+1 and Qj+1, respectively.
Instead, as the columns of Pj and Qj are transferred from slow storage to the com-
putational unit to correct Pj+1 and Qj+1, the previous Lanczos vectors Pj and Qj
also can be retroactively corrected. This halves the amount of data transfer required.

Retroactive TSMGS. Biorthogonalize Pj , Pj+1, Qj , and Qj+1 against the
previous Lanczos vectors in place.

for i = 1, 2, . . . , j − 1

Pj := Pj − Pi(QTi Pj)
Pj+1 := Pj+1 − Pi(QTi Pj+1)

Qj := Qj −Qi(PTi Qj)
Qj+1 := Qj+1 −Qi(PTi Qj+1)

end

Pj+1 := Pj+1 − Pj (QTj Pj+1)

Qj+1 := Qj+1 −Qj(PTj Qj+1)

We do not update the QR decompositions and SVDs computed in the basic Lanczos
algorithm after retroactive TSMGS for the same technical reasons discussed in section
6.3 of [14] for the unblocked Lanczos algorithm.

5. The ABLE method. In summary, the ABLE method presented in Figure
5.1 incorporates an adaptive blocking scheme (section 3) into the basic block Lanczos
algorithm (section 2) and maintains the local and semibiorthogonality of Lanczos
vectors (section 4). Specifically, we have the following:

• At step 3.3, we suggest the use of (2.13) in section 2.2 as the stopping criterion.
Then, at the end of a Lanczos run, we compute the residual norms ‖sH‖2 and
‖r‖2 corresponding to the converged Rayleigh–Ritz triplets (θ, yH , x). See
(2.7) and (2.8) in section 2.2. Note that the theory in section 2.2 is based
on the exact biorthogonality. When only semibiorthogonality is maintained,
θ′(0) is no longer zero. However, using (4.4), (4.5), and semibiorthogonality
(4.1), it is easy to see that θ′(0) is still in the magnitude of

√
ε. Thus, as far as

‖F‖2 is not too small (not less than O(
√
ε)), the second term in the expansion

for λ still dominates the first term θ′(0)‖F‖2, and therefore, (2.13) would be
valid. (Specifically, yHr ∼ √ε‖r‖2 and the first term in the expansion satisfies
θ′(0)‖F‖2 ∼ 1

|yHx|
√
ε‖F‖2.)

• At step 3.4, (3.2) is used to compute the order of the largest cluster as de-
scribed in section 3.2.
• For step 3.7, see section 3.3 for an explanation.
• At step 3.9, τb is a threshold for breakdown. min(Σ) is the smallest singular

value of the matrix PTj+1Qj+1. If there is (near) breakdown and/or the order
of the largest cluster of the converged Rayleigh–Ritz values is larger than the
blocksize, then the blocks are augmented as described in section 3.1.

1074 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

1. Choose starting vectors P1 and Q1 so that PT1 Q1 = I
2. R = (PT1 A)T and S = AQ1

3. For j = 1, 2, . . . until convergence
3.1. Aj = PTj S

3.2. R := R− PjATj and S := S −QjAj
3.3. Compute the eigen-decomposition of Tj , and test for convergence
3.4. Find the largest order δ of the clustering of converged Rayleigh–Ritz

values
3.5. Local biorthogonality: R := R− Pj(QTj R) and S := S −Qj(PTj S)

3.6. Compute the QR decompositions: R = Pj+1B
T
j+1 and S = Qj+1Cj+1

3.7. If R or S (or both) is rank deficient, apply TSMGS to biorthogonalize
Pj+1 and Qj+1 against the previous Lanczos vectors

3.8. Compute the SVD: PTj+1Qj+1 = UΣV H

3.9. Increase blocksize if min(Σ) < τb and/or δ > pj
3.10. Bj+1 := Bj+1UΣ1/2 and Cj+1 := Σ1/2V HCj+1

3.11. Pj+1 := Pj+1ŪΣ−1/2 and Qj+1 := Qj+1V Σ−1/2

3.12. Monitor the loss of biorthogonality, and correct if necessary
3.13. R = (PTj+1A− Cj+1P

T
j)T and S = AQj+1 −QjBj+1

Fig. 5.1. ABLE method.

• Algorithms for monitoring the loss of biorthogonality and maintaining semibi-
orthogonality at step 3.12 are described in sections 4.1 and 4.2.

The non-Hermitian Lanczos algorithm is also called the two-sided Lanczos algo-
rithm because both the operations

XTA and AX

are required at each iteration. A is referenced only as a rule to compute these matrix-
vector products. Because of this feature, the algorithm is well suited for large sparse
matrices or large structured dense matrices for which matrix-vector products can be
computed cheaply. The efficient implementation of these products depends on the
data structure and storage format for the A matrix and the Lanczos vectors.

If no Lanczos vectors are saved, the three-term recurrences can be implemented
using only six block vectors of length n. To maintain the semibiorthogonality of the
computed Lanczos vectors Pj and Qj , it is necessary to store these vectors in core
or out-of-core memory. This consumes a significant amount of memory. The user
must be conscious of how much memory is needed for each application. For very
large matrices it may be best to store the Lanczos vectors out-of-core. After each
Lanczos iteration, save the current Lanczos vectors to an auxiliary storage device.
The Lanczos vectors are recalled in the procedure TSMGS for rebiorthogonalization
and when the converged Rayleigh–Ritz vectors are computed at the end of a Lanczos
run.

A block Lanczos algorithm is ideal for application codes that represent A out-of-
core. The main cost of a Lanczos iteration, with or without blocks, is accessing A.
Block algorithms compute the matrix block vectors product with only one pass over
the data structure defining A, with a corresponding savings of work.

The most time-consuming steps in a Lanczos run are to
1. apply the matrix A (from the left and the right),
2. apply retroactive TSMGS to maintain semibiorthogonality, and

ABLE METHOD 1075

3. solve the eigenproblem for the block tridiagonal matrix Tj when j increases.
Items 1 and 2 have been addressed already (see the above and section 4.2). For item
3, we presently use the QR algorithm for Tj . We note that it is not necessary to solve
the eigenproblem for Tj at each Lanczos iteration. A way to reduce such cost is to
solve the eigenvalue problem for Tj only after a correction iteration has been made
to maintain semibiorthogonality. This technique utilizes the connection between the
loss of the biorthogonality and convergence [33, 35, 2].

6. A spectral transformation ABLE method. In this section we briefly
discuss how to use the ABLE method to compute some eigenvalues of the generalized
eigenvalue problem

Kx = λMx(6.1)

nearest an arbitrary complex number, σ. We assume that K−σM is nonsingular and
that it is feasible to solve the linear system of equations with coefficient matrix K −
σM . The reward for solving this linear system of equations is the rapid convergence of
the Lanczos algorithm. In section 7 we apply the ABLE method to such a generalized
eigenvalue problem arising in magneto-hydro-dynamics (MHD).

We apply a popular shift-and-invert strategy to the pair (K,M) with shift σ [16].
In this approach, the ABLE method is applied with

A = (K − σM)−1M.(6.2)

The eigenvalues, µ, of A are µ = 1/(λ − σ). The outer eigenvalues of A are now
the eigenvalues of (K,M) nearest to σ. This spectral transformation also generally
improves the separation of the eigenvalues of interest from the remaining eigenvalues
of (K,M), a very desirable property.

When we apply the ABLE method to the matrix A = (K − σM)−1M , the gov-
erning equations become

PTj (K − σM)−1M = TjPTj + EjBj+1P
T
j+1,(6.3)

(K − σM)−1MQj =QjTj +Qj+1Cj+1E
T
j .(6.4)

If (θ, wH , z) is an eigentriplet of Tj , then from the above governing equations (6.3)
and (6.4), the triplet(

λ̃, ỹH , x̃
)

:=

(
σ +

1

θ
, wHPTj (K − σM)−1, Qjz

)
is an approximate eigentriplet of the matrix pair (K,M). The corresponding left and
right residuals are

sH = ỹHK − λ̃ỹHM = −1

θ
wHEjBj+1P

T
j+1,

r = Kx̃− λ̃Mx̃ = −1

θ
(K − σM)Qj+1Cj+1E

T
j z.

The matrix-vector products Y = [(K−σM)−1M]X and ZT = XT [(K−σM)−1M]
required in the inner loop of the algorithm can be performed by first computing the
LU factorization of K − σM = LU and then solving the linear systems of equations
LUY = MX and ZT = XT (LU)−1M for Y and ZT , respectively.

1076 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

If K and M are real, and the shift σ is complex, one can still keep the Lanczos
procedure in real arithmetic using a strategy proposed by Parlett and Saad [37].

In many applications, M is symmetric positive definite. In this case, one can avoid
factoring M explicitly by preserving M -biorthogonality among the Lanczos vectors
[16, 35, 11, 22]. Numerical methods for the case in which M is symmetric indefinite
are discussed in [22, 32].

7. Summary of numerical examples. This section summarizes our numerical
experience with the ABLE method. We have selected test eigenvalue problems from
real applications to demonstrate the major features of the ABLE method. Each
numerical example illustrates a property of the ABLE method. All test matrices
presented here can be found in the test matrix collection for non-Hermitian eigenvalue
problems [4].

The ABLE method has been implemented in Matlab 4.2 with sparse matrix com-
putation functions. All numerical experiments are performed on a SUN Sparc 10
workstation with IEEE double precision floating point arithmetic. The tolerance
value τc for the stopping criterion (2.13) is set to be 10−8. The clustering threshold
(3.2) is η = 10−6. The breakdown threshold is τb = 10−8.

Example 1. The block algorithm accelerates convergence in the presence of mul-
tiple and clustered eigenvalues. When the desired eigenvalues are known in advance
to be multiple or clustered, we should initially choose the blocksize as the expected
multiplicity or the cluster order. For example, the largest eigenvalue of the 656× 656
Chuck matrix has multiplicity 2. If we use the unblocked ABLE method, then at
iteration 20 the converged Rayleigh–Ritz values,

5.502378378875370e+ 00,
1.593971696766128e+ 00,

approximate the two largest distinct eigenvalues. But the multiplicity is not yet
revealed. However, if we use the ABLE method with initial blocksize 2, then at
iteration 7 the converged Rayleigh–Ritz values are

5.502378378347202e+ 00,
5.502378378869873e+ 00.

Each computed Rayleigh–Ritz value agrees to 10 to 12 decimal digits compared with
the one computed by the dense QR algorithm.

Example 2. Full biorthogonality is very expensive to maintain in terms of floating
point operations and memory access. Based on our experience, maintaining semibi-
orthogonality is a reliable and much less expensive alternative. Our example is a
2500 × 2500 block tridiagonal coefficient matrix obtained by discretizing the two-
dimensional model convection-diffusion differential equation

−∆u+ 2p1ux + 2p2uy − p3u = f in Ω,

u = 0 on ∂Ω

using finite differences, where Ω is the unit square {(x, y) ∈ R2, 0 ≤ x, y ≤ 1}.
The eigenvalues of the coefficient matrix can be expressed analytically in terms of
the parameters p1, p2, and p3. In our test run, we choose p1 = 0.5, p2 = 2, and
p3 = 1. For this set of parameters, all eigenvalues of the resulting matrix A are
positive real and distinct. With full biorthogonality, at iteration 132, the two largest

ABLE METHOD 1077

20 40 60 80 100 120

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Lanczos step

bi
or

th
og

on
al

ity

Estimated (dash dot) and Exact (solid) Duality, Omega (+)

Fig. 7.1. The exact (solid line) and estimated (dash-dot line) biorthogonality of the Lanczos
vectors and the smallest singular values (+) of PTj+1Qj+1.

eigenvalues are converged. If we use the ABLE method with semibiorthogonality, at
iteration 139, the same two largest eigenvalues are converged to the same accuracy.
The difference is that only 8 corrections of biorthogonality loss are invoked to maintain
semibiorthogonality, compared to 132 corrections for full biorthogonality.

In Figure 7.1 the solid and dotted lines display the exact and estimated biorthog-
onality of the computed Lanczos vectors, and the “+”-points concern breakdown and
are the smallest singular values of PTj Qj . The solid line plots

dj+1 = max

(
‖PTj Qj+1‖1
‖Pj‖1‖Qj+1‖1 ,

‖QTj Pj+1‖1
‖Qj‖1‖Pj+1‖1

)
for j = 1, 2, . . . , 132. Each sharp decrease corresponds to a correction. The dotted
line plots the estimate, d̂j+1, of this quantity computed by the monitoring algorithm
of section 4.2. Correction iterations are taken when the dotted line increases to the
threshold

√
ε, where ε denotes the machine precision. The observation that the solid

line is below the dotted line indicates that the monitoring algorithm is prudent. A
near breakdown occurs if the smallest singular value of PTj+1Qj+1 is less than the
breakdown threshold, but this is not the case in this example.

Example 3. As mentioned before, when we know the multiplicity of the eigenvalues
in advance, we should choose the appropriate blocksize, otherwise the adaptive scheme
presented in section 3 can dynamically adjust the blocksize to accelerate convergence.
This smooths the convergence behavior to clusters of eigenvalues. For example, we
apply the ABLE method with initial blocksize 1 to the 656 × 656 Chuck matrix. At
iteration 24, the double eigenvalue is detected and the blocksize is doubled.

Example 4. Exact breakdowns are rare but near breakdowns are not. In general,
we can successfully cure the near breakdowns. For example, when the ABLE method
is applied to the 882 × 882 Quebec Hydro matrix from the application of numerical

1078 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

6

8

real part

im
ag

in
ar

y
pa

rt

Eigenvalues (+) and Rayleigh−Ritz values (o)

Fig. 7.2. Spectra (+) and pseudospectra (◦) of 30 by 30 Wilkinson bidiagonal matrix.

methods for power systems simulations, four near breakdowns are cured. At iteration
37, the four leading eigenvalues are converged.

In the further investigation of this example, we found that the breakdowns are
solely caused by the bad balancing of the entries of the matrix A. If we balance the
matrix first (say, using the balance function available in Matlab), then the breakdown
does not occur for the balanced matrix. The balancing of a large sparse matrix is a
subject of further study.

Example 5. One of the attractive features of the ABLE method is that condition
numbers of the approximate eigenvalues can be readily computed at the end of the
ABLE method. This makes it possible to detect ill-posed eigenvalue problems. Our
example is the 30 by 30 Wilkinson bidiagonal matrix [52, p. 90],

A =

30 30

29 30
. . .

. . .

2 30
1

 .
In the ABLE method with blocksize 1, all the residual errors after 30 iterations indi-
cate convergence but the Rayleigh–Ritz values do not approximate exact eigenvalues;
see Figure 7.2. This is understandable since all corresponding condition numbers
cond(θi) are of the order 1011 to 1013. The eigenvalue problem for the Wilkinson
matrix is ill-posed and the “converged” Rayleigh–Ritz values are pseudospectra.

Example 6. In this example, we apply the spectral transformation ABLE method
to a generalized eigenvalue problem

Kx = λMx(7.1)

arising from MHD [27, 11], where K is non-Hermitian and M is Hermitian positive
definite. The interesting part of the spectrum in MHD problems is not the outer part

ABLE METHOD 1079

of the spectrum but an internal branch, known as the Alfvén spectrum. We need to
use a spectral transformation technique to transfer the interesting spectrum to the
outer part. In section 6, we have outlined a general approach. Now, we show the
numerical results of this general approach for the MHD test problem. Both K and
M are 416 by 416 block tridiagonal matrices with 16 by 16 blocks. To two significant
digits, there holds

‖K‖1 = 3100 and ‖M‖1 = 2.50,

but the estimated condition number of M is 5.05×109; M is quite ill conditioned. The
computational task is to calculate the eigenvalues close to the shift σ = −0.3 + 0.65i
[8].

We ran the unblocked spectral transformation ABLE method. After only 30
iterations, 10 Rayleigh–Ritz values are converged; their accuracy ranges from 10−8 to
10−12, compared with the eigenvalues computed by the QZ algorithm. The following
table lists the 10 converged Rayleigh–Ritz values θi and the corresponding left and
right residual norms, where

Res-Li =
‖yHi K − θiyHi M‖2
max(‖K‖1, ‖M‖1)

, Res-Ri =
‖Kxi − θiMxi‖2

max(‖K‖1, ‖M‖1)
,

and (yHi , xi) are the normalized approximate left and right eigenvectors of (K,M)
(i.e., ‖yHi ‖2 = ‖xi‖2 = 1):

i θi Res-Li Res-Ri

1 −2.940037576164888e− 01 + 5.871546479737660e− 01i 3.82e− 12 6.59e− 11
2 −2.381814888866186e− 01 + 5.914958688660595e− 01i 2.66e− 11 4.46e− 11
3 −3.465530921874517e− 01 + 5.468970786348115e− 01i 1.23e− 11 2.76e− 10
4 −3.780991425908282e− 01 + 5.071655448857557e− 01i 6.18e− 11 3.98e− 10
5 −2.410301845692590e− 01 + 5.238090347100917e− 01i 9.81e− 11 4.32e− 10
6 −1.989292783177918e− 01 + 5.900118523050361e− 01i 5.34e− 11 8.55e− 11
7 −2.045328538082208e− 01 + 5.678048139549289e− 01i 5.97e− 11 1.12e− 10
8 −3.092857309948118e− 01 + 4.687528684165645e− 01i 5.23e− 09 2.59e− 08
9 −1.749780170739634e− 01 + 5.920044440850396e− 01i 5.62e− 10 9.58e− 10
10 −1.573456542107287e− 01 + 5.976613227972810e− 01i 5.98e− 09 9.63e− 09

In addition, six other Rayleigh–Ritz values range in accuracy from 10−5 to 10−7.
Figure 7.3 shows Alfvén spectrum computed by the QZ algorithm (+) and the Ray-
leigh–Ritz values (◦) computed by the spectral transformation ABLE method.

Three corrections to maintain semibiorthogonality were taken at iterations 13,
20, and 26. The convergence history of the Rayleigh–Ritz values are shown in the
following table, where j is the Lanczos iteration and k is the number of converged
Rayleigh–Ritz values at the jth iteration:

j ≤ 14 15–18 19 20–22 23–24 25–26 27–28 29 30
k 0 1 2 3 4 7 8 9 10

Moreover, at Lanczos iteration 45, the entire Alfvén branch of spectra of the MHD test
problem are revealed: 20 Rayleigh–Ritz values converged, and 12 other Rayleigh–Ritz
values range in accuracy from 10−7 up to 10−5. No copies of eigenvalues are observed.

Acknowledgments. The authors would like to thank the referees for their valu-
able comments on the manuscript.

1080 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

real part

im
ag

in
ar

y
pa

rt

Fig. 7.3. The Alfvén spectra of the MHD test problem. “ +” denotes the eigenvalues com-
puted by the QZ algorithm. “◦” are the Rayleigh–Ritz values computed by 30 steps of the spectral
transformation ABLE method. “ ∗” is the shift σ = −0.3 + 0.65i.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenprob-
lem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[2] Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem,
Math. Comp., 62 (1994), pp. 209–226.

[3] Z. Bai, A spectral transformation block nonsymmetric Lanczos algorithm for solving sparse
non-Hermitian eigenproblems, in Proc. Fifth SIAM Conference on Applied Linear Algebra,
J. G. Lewis, ed., SIAM, Philadelphia, PA, 1994, pp. 307–311.

[4] Z. Bai, D. Day, D. Demmel, and J. Dongarra, A Test Matrix Collection for Non-Hermitian
Eigenvalue Problems, available online from http://math.nist.gov/MatrixMarket.

[5] Z. Bai and G. W. Stewart, SRRIT: A Fortran subroutine to calculate the dominant invariant
subspace of a nonsymmetric matrix, ACM Trans. Math. Software, 23 (1997), pp. 494–513.

[6] D. Boley, S. Elhay, G. H. Golub, and M. H. Gutknecht, Nonsymmetric Lanczos and
Finding Orthogonal Polynomials Associated with Indefinite Weights, Numerical Analysis
report NA-90-09, Stanford University, Palo Alto, CA, 1990.

[7] D. Boley and G. Golub, The nonsymmetric Lanczos algorithm and controllability, Systems
Control Lett., 16 (1991), pp. 97–105.

[8] J. G. L. Booten, H. A. van der Vorst, P. M. Meijer, and H. J. J. te Riele, A Pre-
conditioned Jacobi-Davidson Method for Solving Large Generalized Eigenvalue Problems,
Technical report NM-R9414, Dept. of Numerical Math, CWI, Amsterdam, the Netherlands,
1994.

[9] F. Chatelin, Eigenvalues of Matrices, John Wiley, Chichester, England, 1993.
[10] J. Cullum and W. E. Donath, A block Lanczos algorithm for computing the q algebraically

largest eigenvalues and a corresponding eigenspace of large sparse real symmetric matrices,
in Proc. 1974 IEEE Conference on Decision and Control, Phoenix, AZ, 1974, pp. 505–509.

[11] J. Cullum, W. Kerner, and R. Willoughby, A generalized nonsymmetric Lanczos procedure,
Comput. Phys. Comm., 53 (1989), pp. 19–48.

[12] J. Cullum and R. Willoughby, A practical procedure for computing eigenvalues of large
sparse nonsymmetric matrices, in Large Scale Eigenvalue Problems, J. Cullum and R. Wil-
loughby, eds., North-Holland, Amsterdam, 1986.

[13] E. R. Davidson, The iteration calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, Comput. Phys., 17 (1975), pp. 87–94.

ABLE METHOD 1081

[14] D. Day, Semi-Duality in the Two-Sided Lanczos Algorithm, Ph.D. thesis, University of Cali-
fornia, Berkeley, CA, 1993.

[15] I. Duff and J. Scott, Computing selected eigenvalues of sparse nonsymmetric matrices using
subspace iteration, ACM Trans. Math. Software, 19 (1993), pp. 137–159.

[16] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical
solution of large sparse generalized symmetric eigenvalue problem, Math. Comp., 35 (1980),
pp. 1251–1268.

[17] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993),
pp. 137–158.

[18] R. W. Freund, N. M. Nachtigal, and J. C. Reeb, QMRPACK User’s Guide, Technical
report ORNL/TM-12807, Oak Ridge National Laboratory, Oak Ridge, TN, 1994.

[19] G. Golub and R. Underwood, The block Lanczos method for computing eigenvalues, in
Mathematical Software III, J. Rice, ed., Academic Press, New York, 1977, pp. 364–377.

[20] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, MD, 1989.

[21] W. B. Gragg, Matrix interpretations and applications of the continued fraction algorithm,
Rocky Mountain J. Math., 5 (1974), pp. 213–225.

[22] R. Grimes, J. Lewis, and H. Simon, A shifted block Lanczos algorithm for solving sparse
symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 228–
272.

[23] M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, Parts I and II, SIAM J. Matrix Anal. Appl., Part I, 13 (1992), pp. 594–639, Part
II, 15 (1994), pp. 15–58.

[24] Z. Jia, Generalized block Lanczos methods for large unsymmetric eigenproblems, Numer. Math.,
80 (1998), pp. 239–266.

[25] W. Kahan, B. N. Parlett, and E. Jiang, Residual bounds on approximate eigensystems of
nonnormal matrices, SIAM J. Numer. Anal., 19 (1982), pp. 470–484.

[26] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1980.
[27] W. Kerner, Large-scale complex eigenvalue problems, J. Comput. Phys., 85 (1989), pp. 1–85.
[28] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators, J. Res. Natl. Bur. Stand, 45 (1950), pp. 225–280.
[29] R. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iterations, Ph.D.

thesis, Rice University, Houston, Texas, 1995.
[30] R. Lehoucq and J. A. Scott, An Evaluation of Software for Computing Eigenvalues of

Sparse Nonsymmetric Matrices, Preprint MCS-P547-1195, Argonne National Laboratory,
Argonne, IL, 1996.

[31] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large Scale
Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, SIAM, Phildelphia, PA,
1998.

[32] K. Meerbergen and A. Spence, Implicitly Restarted Arnoldi with Purification for the Shift-
Invert Transformation, report tw 225, Dept. of Comput. Sci., Katholieke Universiteit Leu-
ven, Belgium, 1995.

[33] C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices,
Ph.D. thesis, London University, London, UK, 1971.

[34] B. Parlett, The Rayleigh quotient algorithm iteration and some generalizations for nonnor-
mal matrices, Math. Comp., 28 (1974), pp. 679–693.

[35] B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[36] B. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 567–593.
[37] B. Parlett and Y. Saad, Complex shift and invert strategies for real matrices, Linear Algebra

Appl., 88/89 (1987), pp. 575–595.
[38] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsym-

metric matrices, Math. Comp., 44 (1985), pp. 105–124.
[39] A. Ruhe, Implementation aspects of band Lanczos algorithms for computation of eigenvalues

of large sparse symmetric matrices, Math. Comp., 33 (1979), pp. 680–687.
[40] A. Ruhe, Rational Krylov, a Practical Algorithm for Large Sparse Nonsymmetric Matrix Pen-

cils, Computer Science Division UCB/CSD-95-871, University of California, Berkeley, CA,
1995.

[41] Y. Saad, On the rates of convergence of the Lanczos and block Lanczos methods, SIAM J.
Numer. Anal., 17 (1980), pp. 687–706.

[42] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric

1082 ZHAOJUN BAI, DAVID DAY, AND QIANG YE

matrices, Linear Algebra Appl., 34 (1980), pp. 269–295.
[43] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press (division of John

Wiley), New York, 1992.
[44] M. Sadkane, Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems,

Numer. Math., 64 (1993), pp. 195–211.
[45] M. Sadkane, A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large

sparse unsymmetric matrices, Numer. Math., 64 (1993), pp. 181–193.
[46] H. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984),

pp. 115–142.
[47] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear

eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
[48] D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J.

Matrix Anal. Appl., 13 (1992), pp. 357–385.
[49] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-

value problems, SIAM Rev., 15 (1973), pp. 727–764.
[50] W. J. Stewart and A. Jennings, Algorithm 570 LOPSI: A simultaneous iteration algorithm

for real matrices, ACM Trans. Math. Software, 7 (1981), pp. 230–232.
[51] L. N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991, Dundee, Scotland,

Longman Sci. Tech., Harlow, 1992.
[52] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,

1965.
[53] Q. Ye, A breakdown-free variation of the nonsymmetric Lanczos algorithms, Math. Comp., 62

(1994), pp. 179–207.

THE BR EIGENVALUE ALGORITHM∗

G. A. GEIST† , G. W. HOWELL‡ , AND D. S. WATKINS§

SIAM J. MATRIX ANAL. APPL. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1083–1098

Abstract. The BR algorithm, a new method for calculating the eigenvalues of an upper Hes-
senberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the
QR algorithm, it is well adapted to computing the eigenvalues of the narrow-band, nearly tridiagonal
matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and
gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest
problems run so far, the BR algorithm beats the QR algorithm by a factor of 30–60 in computing
time and a factor of over 100 in matrix storage space.

Key words. eigenvalue computation, QR algorithm, unsymmetric Lanczos process

AMS subject classifications. 65F15, 15A18

PII. S0895479897317077

1. Introduction. One of the most economical tools for probing the spectrum
of a large, sparse, nonsymmetric matrix is the look-ahead Lanczos algorithm [4], [7],
[8]. A subproblem that arises at least twice and perhaps repeatedly in a look-ahead
Lanczos run is that of calculating the eigenvalues of a nearly tridiagonal auxiliary
matrix that is generated by the algorithm. After m Lanczos steps, the auxiliary
matrix is m × m. If m is small, one can calculate the eigenvalues cheaply by the
standard method, the QR algorithm. However, as m grows large, this step can become
a bottleneck, since the cost of applying the QR algorithm grows approximately as
m3. The QR algorithm does not make use of all of the structure of the auxiliary
matrix; it exploits and preserves the upper Hessenberg form, but it neither exploits
nor preserves the many zeros above the main diagonal. It is therefore natural to look
for an algorithm that does a better job of preserving the structure.

In this paper we introduce the BR algorithm, which attempts to exploit and
preserve all of the structure of the auxiliary matrix. It turns out that with rare
exceptions (in our experience) it does succeed in preserving enough of the structure
to run significantly faster than the QR algorithm. Since it stores the matrix in a
banded data structure, it also requires significantly less storage space than the QR
algorithm. In our best runs we have been able to cut computer time by a factor of 60
and matrix storage space by a factor of more than 100.

The BR algorithm is a member of the family of GR algorithms [18], [16]. It is an
implicit GR algorithm, which makes it a bulge-chasing algorithm [17]. Bulge-chasing
algorithms operate on matrices that have been reduced to upper Hessenberg form
(or some comparable form). Each iteration consists of an initial transformation that

∗Received by the editors February 18, 1997; accepted for publication (in revised form) by A.
Greenbaum March 23, 1998; published electronically July 9, 1999.

http://www.siam.org/journals/simax/20-4/31707.html
†Mathematical Sciences Section, Oak Ridge National Laboratory, Box 2008, Bldg. 6012, Oak

Ridge, TN 37831-6367 (gst@ornl.gov).
‡Department of Applied Mathematics, Florida Institute of Technology, 150 W. University Boule-

vard, Melbourne, FL 32901 (howell@zach.fit.edu).
§Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

99164-3113 (watkins@wsu.edu). Mailing address: 6835 24th Avenue NE, Seattle, WA 98115-7037.
The work of this author was supported by the National Science Foundation under grant DMS-
9403569.

1083

1084 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

disturbs the upper Hessenberg form, followed by a sequence of transformations that
restore the upper Hessenberg form. Thus algorithms that transform a matrix to upper
Hessenberg form lie at the center of this subject.

In this paper we restrict our attention to real matrices. Similar algorithms can
be developed for complex matrices.

2. Algorithms that transform a matrix to upper Hessenberg form. It
is well known [19], [6], [15] that every m × m matrix can be transformed to upper
Hessenberg form by an orthogonal similarity transformation in O(m3) operations.
Upper Hessenberg means that aij = 0 if i > j + 1. The transformation is effected in
m−2 major steps as follows: In the first step a reflector (Householder transformation)
acting on rows 2 through m transforms entries (3, 1), . . . , (m, 1) to zero. When the
transformation is applied on the right (i.e., to columns 2 through m), the first column
is untouched, so the zeros are preserved. In the second step a reflector acting on rows
3 through m creates zeros in entries (4, 2), . . . , (m, 2), and so on. In general the kth
step produces the desired zeros in the kth column. A venerable implementation of this
procedure is the code ORTHES from EISPACK [1]. A more modern implementation,
which applies the reflectors in blocks, is the code DGEHRD from LAPACK [3].

If one does not insist upon orthogonal transformations, one can use other means to
create the zeros. For example, the EISPACK algorithm ELMHES [1] uses Gaussian
elimination transformations with pivoting. Thus, on the first step, the largest (in
magnitude) entry in positions (2, 1), . . . , (m, 1) is identified. If it is not already in
position (2, 1), it is moved there by a row interchange. (The similarity transformation
is completed by performing the corresponding column interchange.) Then appropriate
multiples of the second row are subtracted from rows 3 through m to create zeros in
positions (3, 1), . . . , (m, 1). Multiples of columns 3 through m are added to column 2
to complete the similarity transformation.

If one uses Gaussian elimination transformations, one can often create additional
zeros above the main diagonal. In fact it has long been known [19] that almost any
matrix can be transformed to tridiagonal form. The first step of such a transformation
can be accomplished as follows. Once the zeros have been created in the first column,
if the entry in the (1, 2) position is nonzero, it can be used as a pivot for column
operations that create zeros in the first row. That is, the appropriate multiples of the
second column are subtracted from columns 3 through m to produce zeros in positions
(1, 3), . . . , (1,m). The similarity tranformation is completed by adding multiples of
rows 3 through m to row 2. The important point is that these operations do not
disturb the previously created zeros in column 1. However, we do not have the
luxury of pivoting. A single row and column interchange at the beginning of each
step determines the pivots for both the row elimination and the column elimination.
Furthermore, if the (1, 2) pivot entry happens to be zero, the row elimination will not
be possible. More important, if the (1, 2) entry is very close to zero, the eliminations
will require extremely large multipliers, and the transformation will be unstable.

There have been numerous attempts to stabilize the reduction to tridiagonal form,
none of which was entirely successful. Recently Howell, Geist, and Diaa [10] and
Howell, Geist, and Rowan [11] developed a compromise strategy that reduces the
matrix to upper Hessenberg form and also introduces as many zeros above the diagonal
as possible. The resulting matrix is somewhere between tridiagonal and full upper
Hessenberg. Since it is typically a banded upper Hessenberg matrix, the algorithm is
called BHESS.

The BHESS strategy is roughly as follows. For details see [10], [11]. On the kth

THE BR EIGENVALUE ALGORITHM 1085

step BHESS does a column elimination to make zeros in positions (k+2, k), . . . , (m, k).
It also attempts to create zeros in the kth row or some previous row that was not
eliminated on an earlier step. Thus it will attempt to create zeros in positions (j, k+
2), . . . , (j,m), where j designates a row such that j ≤ k and the (j, k + 2), . . . , (j,m)
entries are not all zero already. The row elimination will be carried out if the mul-
tipliers that would be used for the column and row eliminations are not too big on
average. The precise meaning of “too big” depends on a user-specified error tolerance
τ . If more than one row qualifies for elimination, the qualifier with the smallest j is
eliminated. A row and column interchange that minimizes the maximum multiplier
for row and column eliminations together is performed. This is a compromise. Once
the row and column to be eliminated have been determined, the product of row and
column pivots is invariant. Thus pivoting to maximize the column pivot will have
the effect of minimizing the row pivot and vice versa. Rather than optimizing one
or the other, BHESS chooses pivots that do as well as possible for rows and columns
together.

If no row qualifies for elimination, only the column elimination is done. The
maximal pivot is chosen.

3. Bulge-chasing algorithms. This is a brief review. For details see [18] and
[17]. Given an upper Hessenberg matrix A, an iteration of a double-shiftGR algorithm
can be performed on A as follows. First two shifts σ1 and σ2 are chosen. Most
commonly these are taken to be the eigenvalues of the 2 × 2 submatrix at the lower
right-hand corner of A. Then the vector x = (A − σ1)(A − σ2)e1 is formed. Since
A is upper Hessenberg, only the first three components of x are nonzero. If either
σ2 = σ1 or σ1 and σ2 are real, then x will be real. A nonsingular matrix G0 is
constructed so that G0e1 is proportional to x. For example, G0 can be a reflector
or a Gaussian elimination transformation, with or without pivoting. In any event,
G0 should have the form G0 = diag{M, In−3}, where M is 3 × 3. The similarity
transformation A ← G−1

0 AG0 disturbs the upper Hessenberg form; the new matrix
has a bulge extending to position (4, 1), as illustrated here in the 7× 7 case:

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

.

The rest of the iteration consists of returning the matrix to upper Hessenberg
form by clearing out the columns one at a time, as in the algorithms discussed in
the previous section. Each step removes a row from the left-hand side of the bulge
and adds a new row to the bottom. Thus the bulge is “chased” from the upper left-
hand corner downward along the subdiagonal until it disappears off the bottom of the
matrix. This completes an iteration.

It is shown in [17] that this procedure amounts to an iteration of a GR algorithm,
regardless of which method for reduction to upper Hessenberg form is used. Thus
the convergence theory of [18] is applicable. Under mild hypotheses repeated bulge-
chasing iterations will cause the matrix to converge to block upper triangular form,
revealing the eigenvalues.

1086 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

If all of the transformations in the bulge chase are orthogonal (e.g., reflectors,
as in ORTHES), each iteration amounts to a step of the QR algorithm. If Gauss
transforms (with or without pivoting) are used, the iteration amounts to a step of the
LR algorithm (with or without pivoting).

4. The BR algorithm. One can equally well use BHESS to chase the bulge.
This is the primary idea behind the BR algorithm. We can expect (or at least hope)
that iterative use of BHESS will successively narrow the bandwidth of the matrix as it
makes progress toward finding the eigenvalues. If the matrix has a narrow bandwidth
to begin with, as is the case in the look-ahead Lanczos process, repeated application
of BHESS can be expected to keep it narrow.

It has to be noted, however, that when BHESS is used to chase the bulge in
a narrow-band matrix, there are two mutually antagonistic forces at work. We have
already seen that the algorithm is constantly trying to create new zeros above the main
diagonal. This tends to reduce the bandwidth. On the other hand, the algorithm does
a certain amount of pivoting for stability. These row and column interchanges tend
to widen the band. It is not clear a priori which of these forces will prevail in the long
run.

Our first experiments were disappointing. We used BHESS to perform an initial
reduction to narrow-band Hessenberg form. We then applied BHESS as a bulge-
chasing algorithm on the narrow-band matrix. It turned out that over the course of
many iterations the bandwidth tended to grow until the matrix became full upper
Hessenberg. On inspecting the intermediate matrices we found that some extremely
large numbers were building up in the part of the matrix above the main diagonal.
These made row eliminations difficult. A mechanism for preventing this growth was
needed.

After some experimentation we found that if a balancing operation is performed
before each iteration, the undesired element growth is prevented. Our balancing
operation is described as follows. For i = 1, 2, . . . , n multiply the ith row of the
matrix by d−1

i and the ith column by di, where di is chosen so that the ith row and
column will have equal 1-norm after rescaling. The operations are performed in serial.
That is, the scaling factor di is determined after the first i−1 rows and columns have
been rescaled by d1, . . . , di−1. The entire scaling operation amounts to a similarity
transformation A← D−1AD, where D = diag{d1, . . . , dn}.

An important difference between our scaling operation and the classical balancing
routine [1], [3] is that our routine makes only one sweep through the matrix, whereas
the classical routine iterates until each row’s norm is nearly equal to that of the
corresponding column. Our routine makes no such guarantee; the equality between
row and column norms that is established for the first rows and columns will be upset
by the rescaling of the later rows and columns. Nevertheless, we have found that
this single sweep does a good job of shifting excess weight from the upper part of the
matrix to the lower part.

The inclusion of balancing improved performance dramatically. A more refined
strategy, which we use in our current code, is to balance only a small portion of the
matrix at a time. Thus we balance the first few rows (20 or so), then run the bulge
through that part of the matrix, then we balance some more and run the bulge further,
and so on.

Further improvements can be made by refining the elimination strategy. BHESS
was developed for reducing a full matrix to a sparse form. The strategy it uses does
not consider that the matrix may already have contained many zeros to begin with.

THE BR EIGENVALUE ALGORITHM 1087

beginning of iteration early in iteration

later end of iteration

Fig. 4.1. Spike in profile of narrow-band matrix during bulge chase by BHESS.

Thus when BHESS is applied to a narrow-band matrix, an elimination in row i may
cause the destruction of many previously existing zeros in other rows. For example,
suppose that at step i the entry in position (m, i+1) is used as a pivot to create zeros
in positions (m, i+ 2), . . . , (m, i+ b). Then multiples of column i+ 1 are subtracted
from columns i + 2, . . . , i + b. These operations can result in destruction of zeros in
any other row p for which the (p, i+ 1) entry is nonzero. More important, multiples
of rows i + 2, . . . , i + b must then be added to row i + 1 to complete the similarity
transformation. If the nonzero part of any of these rows protrudes far past the nonzero
part of row i + 1, the bandwidth in row i + 1 will be widened considerably by these
operations. This effect compounds itself from one step to the next and can result in
the creation of a huge spike of nonzeros in the profile of what had been a narrow-band
matrix, as shown in Figure 4.1. By the end of the bulge chase, the narrow-band
form has been restored, but the cost of restoration is unacceptable. Spikes of this
type occur frequently at low tolerances (e.g., τ = 3) and also occasionally at larger
tolerances (e.g., τ = 15).

In order to minimize the destruction of previously created zeros during the bulge
chase, we made the following modifications of the elimination strategy. We keep track
of the position of the last nonzero entry in each row. That is, for each i we keep a
record of αi such that the entry in position (i, αi) is the last nonzero in row i. At step
i we find the first row m ≤ i for which the entries in positions (m, i + 1), . . . , (m,n)
are not all zero already. We consider performing an elimination only in that row. If
an elimination in row m is permissible according to the multiplier tolerance test, then
it will be perfomed only if it does not result in too great an increase in αi+1.

If it is decided not to eliminate a row, the column elimination is done without
pivoting if all of the multipliers are smaller than the tolerance τ . Otherwise the
maximal pivot is chosen.

Our code also incorporates several other features that are standard in QR codes,

1088 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

Table 5.1
Performance of BR algorithm for varying τ .

Time (sec) Maximum
Average Std. dev. Maximum error

QR algorithm 6.09 0.21 6.45 1.3× 10−11

BR with τ = 1 16.16 2.18 19.36 1.0× 10−9

BR with τ = 3 2.78 0.48 3.78 3.5× 10−9

BR with τ = 10 1.24 0.44 2.45 2.3× 10−7

BR with τ = 30 0.91 0.07 0.99 6.0× 10−5

BR with τ = 100 0.85 0.06 0.94 1.4× 10−3

BR with τ = 300 0.83 0.05 0.90 6.1× 10−1

e.g., exceptional shifts when the iterations seem to be stalled and exploitation of pairs
of consecutive small subdiagonal entries.

5. Performance of the BR algorithm.

5.1. Experiments with random matrices. In this paper we are mainly ad-
vocating the use of the BR algorithm on the nearly tridiagonal matrices produced by
the look-ahead Lanczos process. Nevertheless, we shall begin by reporting on some ex-
periments with full matrices. The numbers reported in this subsection were obtained
using an early version of the algorithm that does a complete rebalance between bulge
chases and no rebalancing during a bulge chase.

We constructed random matrices with known eigenvalues by the following proce-
dure. First a random block upper triangular matrix T + N is constructed. T is the
block diagonal part. It has 1×1 and 2×2 blocks; its eigenvalues are obvious, and these
are the eigenvalues of the matrix. The eigenvalues and the entries of N are normally
distributed with mean zero and standard deviations σT and σN , respectively. The
ratio σT /σN is adjusted to control the ratio δ = ‖N ‖F /‖T ‖F , which is a measure of
departure from normality. We also control the number of complex eigenvalues. We
then produce a matrix A with the same eigenvalues by applying a random orthogonal
similarity transformation (uniform with respect to Haar measure on the orthogonal
group) by the method of Stewart [14].

We generated numerous matrices of this type. Table 5.1 shows some results for
500 × 500 matrices with 50 real and 450 complex eigenvalues and a departure from
normality δ ≈ 1. This ratio produces matrices whose eigenvalues are well conditioned.
Each matrix was reduced to upper Hessenberg form by the LAPACK code DGEHRD,
and its eigenvalues were calculated by the LAPACK multishift QR code DHSEQR.
This is (on average) the fastest QR code we know of for modern cache-based RISC
workstations, such as the DEC AlphaStation 500/333 that was used for these exper-
iments. Each matrix was also reduced to banded upper Hessenberg form by BHESS,
and its eigenvalues were calculated by BR with various choices of the user-specified
tolerance τ . The times are the average, standard deviation, and maximum over 10
matrices. Each error is the maximum error over all 10 matrices.

We observe that for all choices of τ , BR is less accurate than QR. If the greatest
possible precision is needed, BR is not the algorithm of choice. We see that as τ
is increased from 1 to 300, there is a tradeoff between reduced computing time and
increased error. For τ ≥ 10 the times look quite good, but at τ = 1BR is unacceptably
slow. In the latter case the tolerance is too small to allow the preservation of a narrow-
band form. The matrix eventually fills out to full upper Hessenberg form after having
spent a lot of time creating and trying to defend zeros above the diagonal. At τ = 3

THE BR EIGENVALUE ALGORITHM 1089

Table 5.2
Accuracy as a function of departure from normality.

Departure Maximum error
from normality QR BR (τ = 15)

0.0 2.3× 10−14 1.9× 10−9

0.5 2.7× 10−14 4.7× 10−10

1.0 1.6× 10−13 6.6× 10−9

1.5 2.4× 10−11 1.6× 10−5

2.0 1.1× 10−8 9.1× 10−4

2.5 8.4× 10−7 6.1× 10−1

the algorithm does much better at creating and preserving zeros, but the production
of new nonzeros is still significant. (More evidence of this will be given in Table 5.3.)
The intermediate values τ = 10 and τ = 30 compute reasonably accurate eigenvalues
very quickly.

Since the BR algorithm uses Gaussian elimination and may allow multipliers
that are much greater than one, depending on the tolerance, there is no guarantee of
backward stability. Indeed, it is not hard to make the algorithm fail. Table 5.2 shows
the maximum error accrued in calculating the eigenvalues of a 300× 300 matrix with
270 complex eigenvalues, varying the departure from normality δ = ‖N ‖F /‖T ‖F
from 0 to 2.5.

For both theQR and theBR algorithm the maximum error grows as the departure
from normality grows. Since the QR algorithm is backward stable, the growth in error
can be attributed almost entirely to increasing ill conditioning of the eigenvalues. The
BR results also reflect the increasing ill conditioning, but they are consistently about
five decimal places worse than the QR results. As a consequence, at δ = 2.5 the QR
algorithm is still delivering accurate eigenvalues, whereas BR is no longer resolving
all eigenvalues well.

These results apply specifically to the class of randomly generated matrices de-
scribed above. Experiments on other classes of matrices have shown that the departure
from normality is generally a poor indicator of the accuracy of the BR algorithm.

Getting back to the question of computing times, we can learn more by considering
matrices of various sizes, as in Table 5.3. The matrices used for these tests were
randomly generated with independent entries normally distributed with mean zero
and variance one. Thus the exact eigenvalues are not known. Matrices generated in
this way have a departure from normality very close to 1, and their eigenvalues tend
to be well conditioned. In every case we compared the eigenvalues generated by BR
with those generated by QR. The maximum “error” ranged from 10−11 for small
matrices and small tolerances to 10−5 for the largest matrices and tolerances.

The times in Table 5.3 are times to calculate eigenvalues of matrices that have
been reduced to upper Hessenberg form by either DGEHRD or BHESS. We see that
with τ ≥ 9 BR is very much faster than QR on large matrices. Let us consider the
trends. We expect the computing time of QR to be O(n3), based on the reasoning
that each iteration takes O(n2) work and at least one iteration will be required for
each eigenvalue or pair of eigenvalues. This expectation can be checked numerically
by making a log-log plot of the computing time as a function of matrix size n. Doing
so, we find that the plot is nearly a straight line. If the slope is k, then the computing
time is O(nk). In fact the slope of the least squares straight line fit to the QR data is
2.88, which is close to the expected slope 3. Now how do the BR times grow with n?

1090 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

Table 5.3
Random matrices reduced to upper Hessenberg form.

QR time BR time
n τ = 3 τ = 6 τ = 9 τ = 12 τ = 15 τ = 18

107 .10 .07 .06 .06 .06 .06 .06
142 .21 .16 .10 .10 .10 .10 .11
190 .45 .31 .21 .18 .18 .18 .18
253 .98 .54 .37 .37 .34 .36 .33
337 2.13 1.53 .75 .62 .55 .53 .56
450 4.79 3.11 1.56 1.21 1.09 1.06 1.04
600 11.92 6.68 6.26 2.48 2.23 1.97 1.82
800 29.26 19.74 13.04 9.49 4.55 3.39 3.19

1067 79.04 74.07 21.76 17.85 17.49 9.20 7.36

Table 5.4
Observed computational complexity O(nk).

QR exponent BR exponents
τ = 3 τ = 6 τ = 9 τ = 12 τ = 15 τ = 18

k 2.88 2.91 2.69 2.48 2.34 2.12 2.03

If the bandwidth is very small (O(1)) and stays small throughout each iteration, then
an iteration will require O(n) work. Thus the total work for O(n) iterations should
be O(n2).

Taking least squares fits to the log-log plots for BR, we obtain the slopes given in
Table 5.4. For τ = 15 and τ = 18 we obtain the desired results. The situation is not
so good for τ = 6 and τ = 3, for which we get slopes of 2.7 and 2.9, respectively. Thus
with τ = 3 we are seeing almost O(n3) behavior. This shows that at these values of
τ , the algorithm is not doing a good job of keeping the band narrow. These results
suggest that successful use of BR will require use of a fairly liberal value of τ . From
now on we will stick with τ = 15.

The numbers in Table 5.3 are encouraging. Before moving on to the look-ahead
Lanczos process, let us inject one more set of discouraging numbers. The tests reported
in Table 5.3 used matrices generated by filling the entire array with random numbers,
then reducing the matrix to upper Hessenberg form. If one instead builds matrices
by simply filling the upper Hessenberg part with random numbers and skipping the
reduction step, one gets very different results, as shown in Table 5.5.

These matrices have a high departure from normality (e.g., δ ≈ 12 when n = 600).
Their eigenvalues are very badly conditioned, but they are fairly well conditioned
with respect to the nearly upper Hessenberg perturbations that occur during the
execution of bulge chasing algorithms. Thus both the QR and the BR algorithm
are able to compute the eigenvalues quite accurately. Here the issue is not accuracy
but computing time. While the QR times are not much different than they were in
Table 5.3, the BR times with τ = 15 are much worse. Indeed they are no better than
the QR times. Matrices of this type have so much weight above the main diagonal
that it is difficult to get them into a narrow-band form. As a consequence BR ends
up doing as much work as QR.

5.2. Experiments with sparse matrices. We performed numerous experi-
ments in which we used the BR algorithm to calculate the eigenvalues of the nearly
tridiagonal matrices generated by the look-ahead Lanczos process. These are upper

THE BR EIGENVALUE ALGORITHM 1091

Table 5.5
Random upper Hessenberg matrices.

QR time BR time
n τ = 15

253 1.03 0.77
337 2.33 2.05
450 5.21 5.22
600 12.00 12.02

Hessenberg, so we can apply BR directly to them; there is no need to preprocess them
by BHESS. We modified the code DULAL from the package QMRPACK by Freund
and Nachtigal [5]. In that code the eigenvalue computation is done by the QR algo-
rithm in a standard array data structure. We switched to a banded storage scheme
and replaced QR with BR. In many cases we ran both QR and BR for comparison
purposes. DULAL uses the EISPACK code HQR, but we substituted the LAPACK
code DHSEQR, which is usually faster than HQR on the DEC AlphaStation 500/333
and similar machines.

Another change we made was in the balancing strategy of BR. Instead of rebal-
ancing the whole matrix once before each bulge chase, we rebalance small sections of
the matrix during the bulge chase, as described earlier. That is, we balance the first
few rows, then we run the bulge through that part of the matrix, then we balance
some more and run the bulge further, and so on. This change reduces the growth of
the bandwidth significantly. This is an important improvement, since the matrix now
has to be kept within the confines of a banded data structure.

In the experiments reported below, the matrices produced by the look-ahead
Lanczos process were always very nearly tridiagonal. If the look-ahead feature is not
used at all, a tridiagonal matrix is formed. Each time the look-ahead is used, a small
bulge on the upper side of the band is formed. In our experiments no more than four
look-aheads were needed in any given run. The upper bandwidths of the resulting
matrices never exceeded 3. A more typical upper bandwidth was 2, and in many cases
it was 1 (tridiagonal), indicating that no look-ahead steps had been needed.

Convection-diffusion matrices. Our first examples are matrices obtained by
discretizing a three-dimensional convection-diffusion operator

Lu = −uxx − uyy − uzz + c(ux + uy + uz)

on the domain Ω = (0, 1)3 with u = 0 on ∂Ω. The standard second-order centered
finite-difference approximations were used.

With a mesh size h = 1
40 in each direction, we obtain a matrix of order 393 =

59319. Each row has seven nonzero entries. We chose the convection coefficient c = 8
to get a Péclet number ch

2 = 0.1. We ran m look-ahead Lanczos steps and calculated
the eigenvalues of the m × m narrow-band matrix for various choices of m ranging
from about 100 to 6000. In Figure 5.1 we display the time to generate the matrix (plus
symbols), the time to calculate its eigenvalues by the QR algorithm (cross symbols),
and the time to calculate the eigenvalues by the BR algorithm (circle symbols) with
τ = 15.

We see that BR is cheaper than QR for all m in the range that we studied,
but for small matrices it does not matter which method we use. Both algorithms
can calculate the eigenvalues in a small fraction of the time it takes to generate the

1092 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

dimension of matrix

tim
e

in
 s

ec
on

ds

Fig. 5.1. Time to generate m × m a narrow-band matrix (plus symbols) from convection-
diffusion operator and calculate its eigenvalues by the QR algorithm (crosses) and by the BR algo-
rithm with τ = 15 (circles).

matrix. As the matrix dimension increases, the time spent computing eigenvalues
rapidly becomes significant, especially if the QR algorithm is used. The line that
best fits the Lanczos times has slope 0.93, whereas the line that fits the QR times
(the solid line in Figure 5.1) has slope 3.01. For values of m above 1100 we did not
do the QR calculation, because it would have taken too long. The line that best
fits the BR times has slope 2.09, so we can go to much larger matrices before the
BR computation time becomes significant. At m = 5993, the largest run shown in
Figure 5.1, the Lanczos algorithm took 5.6 minutes to generate the matrix, and the
BR algorithm took 4.8 minutes to calculate the eigenvalues. If we had used the QR
algorithm to calculate the eigenvalues, it would have taken about 4.8 hours, so the
BR algorithm saves us a factor of 60 on that part of the calculation.

Storage space is also a consideration. Just to store the 5993 × 5993 matrix in
the standard array format, which QR needs, would require 287 megabytes. On the
run under consideration here we stored the matrix in a 5993× 50 array, which allows
enough room to store a band of 46 diagonals above the main diagonal. This array
occupies 2.4 megabytes of memory. The maximum number of diagonals actually used
in this computation was 37, so we could have gotten away with a bit less storage
space.

For dimensions below 1100 we were able to compare the computed eigenvalues
from the QR and BR calculations. We sorted the eigenvalues and paired them off. In
no case did the relative difference between the QR and BR values exceed 5.5× 10−6.
The matrices typically had a high departure from normality, ranging from 4.7 to 23.1,
with typical values around 15.

On the matrices with dimensions above 1100 it was not possible to make the
comparison, but we did do some spot checking. On each matrix we took a sample

THE BR EIGENVALUE ALGORITHM 1093

Table 5.6
Convection-diffusion operators with various Péclet numbers.

Péclet QR time BR time Max. rel. Max. upper
number τ = 15 “error” bandwidth (BR)

0.1 5.38 0.95 2.4× 10−8 8
0.2 6.54 0.90 5.2× 10−8 12
0.4 6.46 1.07 7.2× 10−4 14
0.6 4.39 *** *** **
1.5 5.35 *** *** **
2.0 5.55 *** *** **
3.0 4.78 0.85 4.2× 10−6 7
6.0 5.02 0.85 1.3× 10−8 7

of about
√
m computed eigenvalues and refined them using the generalized Rayleigh

quotient iteration code GIRI [13]. In no case did the relative difference between the
original computed value and the refined value exceed 1.2× 10−5.

We have focused on how well BR calculates the eigenvalues of the m×m narrow-
band matrix. Typically only a few of these will be good approximations to the eigen-
values of the large sparse matrix. The question of which ones are “good” is difficult
and obviously important. We are ignoring it here, because our objective is simply to
study how well the BR algorithm does its assigned task.

Harder Péclet numbers. One can make the BR algorithm fail on convection-
diffusion problems by making the Péclet number closer to 1. When it is exactly 1,
all of the eigenvalues of the convection diffusion operator coalesce into a single highly
defective eigenvalue. The Jordan canonical form consists of one gigantic Jordan block,
and the eigenvalue is catastrophically ill conditioned. For Péclet numbers near 1 the
eigenvalues are distinct but crowded, and they are all ill conditioned.

Table 5.6 lists the outcomes of runs with a variety of Péclet numbers. In these
experiments a coarser grid with h = 1/20 was used. The dimension of the convection-
diffusion matrix was thus 193 = 6859. The look-ahead Lanczos process was run for
450 steps (taking about 2.5 seconds), and the eigenvalues of the resulting 450 × 450
matrix were calculated by both the QR and the BR algorithm.

For Péclet numbers far from 1, the BR algorithm returns good results in about one
sixth the time as QR. For three values nearer 1, BR returned without calculating the
eigenvalues, because it needed more space than was allocated. That is, the bandwidth
blew up. We had allocated enough room for a band of 42 diagonals above the main
diagonal. The numbers in the last column of Table 5.6 show that this was far more
than enough room for those runs that were successful. For the unsuccessful runs,
42 diagonals was far less than enough. On a subsequent attempt we increased the
maximum bandwidth to 120, but that still was not enough. By taking the bandwidth
large enough, we would eventually be able to make the code work. However, our
experiences with the earlier version of the code suggest that bandwidth blowups are a
sign of trouble that should not be ignored. They cause a severe increase in computing
time, and the computed eigenvalues are likely to be inaccurate. We suggest that BR
be used with a modest maximum bandwidth. If it cannot solve the problem within
the allocated space, it probably will not be able to solve the problem economically or
accurately.

Another way to deal with bandwidth blowups is to increase the tolerance τ . When
we set τ at 100, BR succeeded for all three of the Péclet numbers for which it had

1094 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

matrix dimension

tim
e

in
 s

ec
on

ds

Fig. 5.2. Time to generate m × m a narrow-band matrix (plus symbols) from pentadiago-
nal Toeplitz operator and calculate its eigenvalues by the QR algorithm (crosses) and by the BR
algorithm with τ = 15 (circles).

failed at τ = 15. It also succeeded for Péclet numbers 0.9 and 1.1. Execution times
were under one second. However, the results agreed with those computed by QR to
only about one decimal place. This is partly due to loss of accuracy caused by taking
such a high tolerance. However, the values computed by QR should not necessarily
be accepted as correct, since most of the eigenvalues are extremely ill conditioned.

Pentadiagonal Toeplitz matrices. Our next example is the pentadiagonal
Toeplitz matrix of dimension 25000 with symbol (1,−10, 0, 10, 1). This is one of the
matrices in the collection of Higham [9]. We did a series of Lanczos runs with m in
the range from 100 to 7000 and calculated the eigenvalues of the resulting matrix by
the BR algorithm. For m < 1000 cases, we also computed the eigenvalues by the
QR algorithms and compared the results of the two computations. In no case did the
relative difference exceed 6 × 10−8. For the larger cases, spot checks using Rayleigh
quotient iteration suggested that the eigenvalues are correct to at least six decimal
places. The times are given in Figure 5.2.

The timings are generally similar to those for the convection-diffusion operator,
but in this case the trend for the QR times was better than before: The slope of
the QR time line is only 2.80. The slope of the BR line is 2.09, just as it was
for the convection-diffusion operator. The slope of the Lanczos time line was 0.86.
On the largest run we had m = 6920. The look-ahead Lanczos algorithm took 1.4
minutes to generate the matrix, and the BR algorithm took 5.6 minutes to calculate
its eigenvalues. The projected time for the QR algorithm is 3.1 hours, some 33 times
longer.

We did numerous tests on other pentadiagonal Toeplitz matrices, with comparable
results.

THE BR EIGENVALUE ALGORITHM 1095

0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 5.3. Spectrum of 100 × 100 Grcar matrix (left), and computed spectrum of transposed
Grcar matrix (right) by the QR algorithm (pluses) and the BR algorithm (circles) with τ = 15.

Tolosa matrix. We performed the same sequence of experiments on a Tolosa
matrix of dimension 40,000, which we obtained from the collection of Bai et al. [2].
The results were nearly identical to those shown in Figure 5.2, except that we were
unable to get BR (with tolerance τ = 15) to run for matrices above about 3000,
because the bandwidth would not stay within the constraint that we had imposed (46
bands above the main diagonal). We remedied this by increasing τ to 30. We were
then able to run m up to 7000 with modest bandwidths.

Other matrices. We also experimented with several other matrices from the
collection of Bai et al. [2], including the Brusselator wave model of a chemical reac-
tion, the Ising model for ferromagnetic materials, and the Navier–Stokes matrix of
dimension 23560 from Mahajan, Dowell, and Bliss [12]. In all cases the BR algo-
rithm was able to calculate the eigenvalues of the narrow-band matrices produced by
look-ahead Lanczos quickly and with reasonable accuracy.

Upper Hessenberg examples. A few of the standard test matrices are narrow-
band upper Hessenberg matrices to begin with. We can apply the BR algorithm
directly to these matrices, without having to preprocess them by BHESS or look-
ahead Lanczos.

The Grcar matrices, which are included in the collections of Bai et al. [2], Higham
[9], and others, are a well-known family of matrices with ill-conditioned eigenvalues.
They are upper Hessenberg Toeplitz matrices with bandwidth 5, ai,i−1 = −1, and
aij = 1 for j = i, . . . , i + 3. We used the QR and BR algorithms to calculate the
eigenvalues of the 100 × 100 Grcar matrix. The results agreed to about 10 decimal
places. The spectrum is shown in the left panel of Figure 5.3.

The results are good because the eigenvalues are not sensitive to Hessenberg or
near-Hessenberg perturbations of the matrix. The sensitivity can be brought out

1096 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

-300 -200 -100 0 100 200 300
-100

-50

0

50

100

Fig. 5.4. Incorrect spectrum of 300× 300 Clement matrix computed by the QR algorithm.

by transposing the matrix. We used the LAPACK code DGEHRD to reduce the
transposed matrix to upper Hessenberg form, then we applied the QR algorithm. The
resulting computed spectrum is given by plus symbols in the right panel of Figure 5.3.
We also used BHESS to reduce the transposed matrix to banded upper Hessenberg
form, and then we applied the BR algorithm. The results are given by circle symbols
in the figure. We observe that both QR and BR failed to resolve the eigenvalues at
the ends of the spectrum accurately, and both failed by about the same amount.

The Clement matrices, which are also in the collection of Higham, are n × n
tridiagonal matrices with ai,i−1 = i − 1, aii = 0, and ai,i+1 = n − i. Thus the 4 × 4
Clement matrix is

0 1
3 0 2

2 0 3
1 0

 .
It is diagonally similar to a symmetric matrix, so its eigenvalues are all real; in fact
they are the integers λj = n + 1 − 2j, j = 1, . . . , n. The bad scaling makes the
eigenvalues ill conditioned. We calculated the eigenvalues of the 300 × 300 Clement
matrix by the BR algorithm and got the correct eigenvalues to 10 decimal places.
Presumably the BR algorithm’s repeated rebalancing was helpful here. When we
used the QR algorithm on the same matrix, we got the computed spectrum shown
in Figure 5.4. This is clearly wrong; some of the eigenvalues have imaginary parts
greater than 50. We tried balancing the matrix beforehand by the LAPACK routine
DGEBAL, but that did not help. In fact, the numbers used to generate Figure 5.4
were from a run in which DGEBAL had been used.

This is an amusing comparison but, of course, it is unfair. The “right” way to
calculate the eigenvalues of this matrix is to symmetrize it and then to apply any
of the several fast, reliable algorithms for calculating the eigenvalues of a symmetric,
tridiagonal matrix.

We modified the Clement matrix to disguise its underlying symmetry. This was
accomplished by making a similarity transformation A → S−1AS, where S is the
upper triangular, block-diagonal matrix S = diag{U,U, U, . . .} with

U =

 1
1 1

1

 .
The resulting modified Clement matrix is still upper Hessenberg but has upper band-
width 2, instead of 1. The QR algorithm (with preprocessing by DGEBAL) performed

THE BR EIGENVALUE ALGORITHM 1097

even worse on this matrix. In the 200 × 200 case it produced computed eigenvalues
with imaginary parts as large as 50. The computed spectrum was similar in appear-
ance to the spectrum shown in Figure 5.4. In contrast, the BR algorithm was able to
compute the correct eigenvalues to 10 decimal places.

One can build modified Clement matrices with arbitrarily thick bands by ap-
plying further similarity transformations with matrices like S. We performed a few
experiments along those lines with results similar to what we have reported here.

6. Concluding remarks. We have introduced the BR algorithm and shown
that it does a good job of computing the eigenvalues of the narrow-band upper Hes-
senberg matrices produced by the look-ahead Lanczos process. Although the BR
algorithm can sometimes fail, our experience has been that failures are rare. The
BR algorithm is usually much faster than the QR algorithm, and it needs much less
storage space. Experiments suggest that its execution time is little more than O(m2)
as the matrix size m becomes large, provided that a liberal multiplier tolerance (e.g.,
τ = 15) is used. Since large multipliers are allowed, we cannot claim that the al-
gorithm is stable. Thus the raw output of the algorithm should not be accepted as
accurate spectrum without further testing. In the context of the Lanczos process such
further testing is carried out routinely, since it is also necessary to decide which of the
eigenvalues of the narrow-band matrix are indeed good approximations to eigenvalues
of the original large matrix.

REFERENCES

[1] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler, Matrix Eigensystem Routines—EISPACK Guide, 2nd ed., Springer-Verlag,
New York, 1976.

[2] Z. Bai, D. Day, J. Demmel, and J. Dongarra, A Test Matrix Collection for Nonhermitian
Eigenvalue Problems, Tech. Rep., University of Kentucky, Lexington, KY, 1996. Available
by anonymous ftp from ftp.ms.uky.edu. from the directory pub/misc/bai.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, SIAM, Philadelphia, 1992.

[4] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993),
pp. 137–158.

[5] R. W. Freund, N. M. Nachtigal, and J. C. Reeb, QMRPACK Users’ Guide,
Tech. Rep. ORNL/TM-12807, Oak Ridge National Laboratory, Oak Ridge, TN,
http://www.epm.ornl.gov/∼santa/ (1994).

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[7] M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, Part I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594–639.

[8] M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, Part II, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 15–58.

[9] N. J. Higham, The Test Matrix Toolbox for MATLAB, Tech. Rep. 276, University of Manch-
ester, Manchester, England, http://www.ma.man.ac.uk/∼higham/testmat.html (1995).

[10] G. W. Howell, G. A. Geist, and N. Diaa, Gaussian Reduction to a Similar Near-tridiagonal
Hessenberg Form: Algorithm BHESS, preprint, 1995.

[11] G. W. Howell, G. A. Geist, and T. Rowan, Error Analysis of Reduction to Similar Banded
Hessenberg Form, Tech. Rep. ORNL/TM-13344, Oak Ridge National Laboratory, Oak
Ridge, TN, March 1998.

[12] A. Mahajan, E. H. Dowell, and D. Bliss, Eigenvalue calculation procedure for an
Euler/Navier-Stokes solver with applications to flows over airfoils, J. Comput. Phys., 97
(1991), pp. 398–413.

[13] G. Schrauf, Algorithm 696, An inverse Rayleigh iteration for complex band matrices, ACM
Trans. Math. Software, 17 (1991), pp. 335–340.

1098 G. A. GEIST, G. W. HOWELL, AND D. S. WATKINS

[14] G. W. Stewart, The efficient generation of random orthogonal matrices with an application
to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403–409.

[15] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley and Sons, New York, 1991.
[16] D. S. Watkins, QR-like algorithms—an overview of convergence theory and practice, in The

Mathematics of Numerical Analysis, Lectures in Applied Math. 32, J. Renegar, M. Shub,
and S. Smale, eds., American Mathematical Society, Providence, RI, 1996, pp. 879–893.

[17] D. S. Watkins and L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix
Anal. Appl., 12 (1991), pp. 374–384.

[18] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-
value problem, Linear Algebra Appl., 143 (1991), pp. 19–47.

[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.

	SJMAEL_V20_i1_p0001.pdf
	SJMAEL_V20_i1_p0014.pdf
	SJMAEL_V20_i1_p0031.pdf
	SJMAEL_V20_i1_p0045.pdf
	SJMAEL_V20_i1_p0060.pdf
	SJMAEL_V20_i1_p0078.pdf
	SJMAEL_V20_i1_p0101.pdf
	SJMAEL_V20_i1_p0117.pdf
	SJMAEL_V20_i1_p0131.pdf
	SJMAEL_V20_i1_p0149.pdf
	SJMAEL_V20_i1_p0159.pdf
	SJMAEL_V20_i1_p0182.pdf
	SJMAEL_V20_i1_p0196.pdf
	SJMAEL_V20_i1_p0228.pdf
	SJMAEL_V20_i1_p0244.pdf
	SJMAEL_V20_i1_p0270.pdf
	SJMAEL_V20_i2_p0279.pdf
	SJMAEL_V20_i2_p0295.pdf
	SJMAEL_V20_i2_p0303.pdf
	SJMAEL_V20_i2_p0354.pdf
	SJMAEL_V20_i2_p0363.pdf
	SJMAEL_V20_i2_p0373.pdf
	SJMAEL_V20_i2_p0400.pdf
	SJMAEL_V20_i2_p0420.pdf
	SJMAEL_V20_i2_p0428.pdf
	SJMAEL_V20_i2_p0437.pdf
	SJMAEL_V20_i2_p0446.pdf
	SJMAEL_V20_i2_p0466.pdf
	SJMAEL_V20_i2_p0471.pdf
	SJMAEL_V20_i2_p0493.pdf
	SJMAEL_V20_i2_p0513.pdf
	SJMAEL_V20_i3_p0563.pdf
	SJMAEL_V20_i3_p0575.pdf
	SJMAEL_V20_i3_p0596.pdf
	SJMAEL_V20_i3_p0606.pdf
	SJMAEL_V20_i3_p0628.pdf
	SJMAEL_V20_i3_p0646.pdf
	SJMAEL_V20_i3_p0667.pdf
	SJMAEL_V20_i3_p0700.pdf
	SJMAEL_V20_i3_p0720.pdf
	SJMAEL_V20_i3_p0756.pdf
	SJMAEL_V20_i3_p0777.pdf
	SJMAEL_V20_i3_p0800.pdf
	SJMAEL_V20_i3_p0820.pdf
	SJMAEL_V20_i4_p0839.pdf
	SJMAEL_V20_i4_p0860.pdf
	SJMAEL_V20_i4_p0871.pdf
	SJMAEL_V20_i4_p0887.pdf
	SJMAEL_V20_i4_p0889.pdf
	SJMAEL_V20_i4_p0902.pdf
	SJMAEL_V20_i4_p0915.pdf
	SJMAEL_V20_i4_p0953.pdf
	SJMAEL_V20_i4_p0970.pdf
	SJMAEL_V20_i4_p0987.pdf
	SJMAEL_V20_i4_p1007.pdf
	SJMAEL_V20_i4_p1027.pdf
	SJMAEL_V20_i4_p1038.pdf
	SJMAEL_V20_i4_p1060.pdf
	SJMAEL_V20_i4_p1083.pdf

